Introduction to Microbiology BIOL 220, Summer Session 1, 1996 Exam # 2

Name				
I. Mu	ltiple C	Choice (1 point each)		
D_	_1. W	/hich transport process requires e	nergy?	
	A. C	Osmosis	C. Diffusion	
	B. Fa	acilitated diffusion D. Ac	tive transport	
D_	_2. W	Thich of the following in NOT true	e of the gram positive cell wall?	
	A. T	he peptidoglycan layer is thicker t	han the layer in gram negative cells.	
	B. It	may contain teichoic acid.		
	C. It	is easily penetrated by penicillin.		
	D. It	contains lipopolysaccharides.		
		Thich component of the gram-neg nillic molecules?	ative cell prevents the passage of most hydrophobic and	
	A. P	eptidoglycan	C. Outer membrane	
		nner membrane	D. Teichoic acid	
		bacterial culture, with an initial poells will be present after 2 hours?	opulations size of 300, has a doubling time of 30 minutes	
	A. 1	-	C. 4800	
	B. 2		D. 9600	
		uring which phase of a growth cu	rve do you think that bacteria are most sensitive to	
antibio				
	A. L	_	C. Stationary	
	В. Е	xponential	D. Death	
B_		Thich of the following environment	1 • 1	
	A. S	kin of a desert animal	C. Hot sulfur spring	
	B. R	efrigerator	D. Soil	
A_	7. W	Which of the following would be an example of a continuous culture?		
		A. Bacteria growing in the gastrointestinal tract.		
		B. Bacteria growing in a test tube in the lab.		
		acteria growing on unrefrigerated	food.	
	D. B	Sacteria growing on blood agar.		

C_	8. An organism growing in an unopened	d can of vegetables is probably a(n)
	A. Facultative anaerobe	C. Obligate anaerobe
	B. Obligate aerobe	D. Microaerophile
D_	9. Which is TRUE of anabolism but not	t catabolism?
	A. Energy is given off and complex mol	lecules are broken down.
	B. Energy is given off and simple molec	cules are broken down.
	C. Energy is required and simple molec	ules are made.
	D. Energy is required and complex mole	ecules are made.
B	10. Which of the following is NOT TR	UE of enzymes?
	A. They typically have only one or two	substrates.
	B. They are required in large quantities.	
	C. They are still present in original form	at the end of the reaction.
	D. They often require small molecules to	o function.
D_	11. Which of the following is TRUE of a	a competitive inhibitor of enzyme activity?
	A. It interacts with enzyme at a site other	
	B. It typically interferes with many enzyments	mes.
	C. Its effects are usually irreversible.	
	D. It cannot be converted to products by	the enzyme which it inhibits.
A	12. What is the function of enzymes wit	hin cells?
	A. To lower the activation energy of the	
	B. To raise the activation energy of the	reaction.
	C. To add energy to substrates.	
	D. To slow down spontaneous reaction	S.
A_	13. ATP is important in cells because .	
	A. It transfers energy from exergonic re	_
	B. It is polymerized to become a memb	rane component.
	C. It acts as an enzyme.	
	D. It changes the rate of diffusion.	
C_	14. The main function of glycolysis is the	he
	A. Removal of hydrogen from glucose.	
	B. Synthesis of glucose.	
	C. Splitting of a six-carbon sugar to yie	ld two three-carbon compounds.
	D. Production of ATP.	
D_	<u> </u>	
	A. It requires ATP but produces no AT	P.
	B. It doesn't require ATP but produces	ATP.

	C. It neither requires nor produces ATP.	
	D. It both requires and produces ATP.	
A_	A16. In fermentation	
	A. Both the electron donor and final acceptor are	e organic molecules.
	B. Only the final electron donor is organic.	
	C. Only the final electron acceptor is organic.	
	D. Neither the electron donor nor the final electr	on acceptor is organic.
E_	E17. Which of the following is NOT TRUE conce	erning fermentation?
	A. Production of small amounts of ATP.	
	B. It regenerates NAD.	
	C. It provides useful products.	
	D. It continues the breakdown of glucose.	
	E. All of these statements are TRUE.	
C_	C18. In prokaryotes, where are the proteins of the	- · ·
	J 1	na membrane
	B. Mitochondria D. Cell v	vall
A_	A19. Oxygen is necessary in aerobic respiration b	pecause
	A. It is the final electron acceptor.	
	B. It makes lots of ATP.	
	C. Cells must have water to survive.	
	D. It makes glucose metabolism more efficient.	
B	B20. The chemiosmotic hypothesis proposes that	
	A. Osmosis is necessary to make ATP.	
	B. ATP is generated as a consequence of a proto	on gradient.
	C. Oxygen is necessary to make ATP.	
	D. The movement of free electrons causes ATP	to be made.
	21. Which of the following statements is FALSE of	-
	A. It is selective in the transport and movement of	
	B. It contains the enzymes involved in the electron	- ·
	C. It contains teichoic acid in Gram positive cells	
	D. It is the site of attachment of the bacterial chr	omosome.
II. Fil	Fill-In	
22		is a process in which molecule bind to
	embrane receptor and move across the membrane from	<u> -</u>

a

	of the growth curve are:,, and	
	are organisms that use inorganic carbon	
28 molecules.	are organisms that require a supply of ca	arbon in the form of organic
29. Organisms that grow	best at temperatures above 40°C are termed	
30. Organisms that grov	v best at pH levels of 5.0 or below are called	
31-32. The disaccharide	e lactose is composed ofa	nd
33-34. The disaccharide	e sucrose is composed ofand	l
•	o determine the number of bacteria present and	-
	is a term that describes the sy involves the degradation of molecules in the	
39-40 electrons.	is the gain of electrons, and	is the loss of
41-42. Two typical ca	rriers of electrons (electron acceptors) are:	and
43-44-45. An example cofactor would be _	of a coenzyme would be Both of the and are a necess	nese are referred to as
make them functional.		
46. Aits ability to inhibit is reve	enzyme inhibitor is one that is an analogue rsible.	to the normal substrate, and
works by putting stress	ins an where the substrate and	
	·	

50. If an organic molecule is the electron donor and the final electron acceptor is an inorganic molecule such as Nitrate or CO ₂ , the process is called
51. Most of the ATPs that are made during aerobic respiration are made in the
52. One product of fermentation is
53. Decarboxylation of pyruvic acid produces NADH and the 2-carbon molecule which then is able to go into the Krebs cycle and make a six carbon citric acid
molecule.
54. Peptidoglycan is composed of two sugar molecules, and as well as a
55-56. A spectrophotometer will measure either the percent transmission of light or the, and as the amount of bacteria increases the percent transmission of light will (increase/decrease).
III. True-False
T57. A cell placed into a hyperosmotic medium will shrink.
F58. Agar supplies a nice source of nutrients for bacterial growth.
F59. There is no bacterial replication during the stationary phase of the growth curve.
T60. Growth of <i>Mycobacterium leprae</i> occurs only in humans and armadillos.
F61. <i>Helicobacter</i> is considered a true acidophile.
T62. The energy for formation of bacterial ATP comes from the ability of the cell to pump electrons outside the cell membrane so that they can pass through a channel that is associated with an ATPase enzyme.
F63. Receptors on the bacterial cell membrane tell the bacteria when to start producing energy.
T64. Every oxidation reaction is coupled with a concurrent reduction reaction.
F65. Enzymes are used up in the process of catalyzing substrate degradation.
F 66. Lysozyme kills all Gram positive bacteria.

Complete the missing information in the following Table: (9 points {1/2 pt each box})

Agar Medium	Type Selective/Differential	Special Ingredients	Bacteria Isoloated
SS agar	Selective	Bile salts & Neutral Red	Salmonella & Shigella
MacConkey's Agar	Selective/ Differential	Crystal Violet & Bile Salts	Enteric G- bacilli
Eosin methylene blue	Selective/ Differential	Eosin & Methylene Blue	Enteric G- bacilli
Mannitol Salt Agar	Selective/ Differential	Sodium chloride & Phenol Red	Staphylococcus
Blood Agar	Differential	Blood	Streptococci
Chocolate Agar	Enriched	Heated Blood	Neisseria

BONUS:

Give the number of ATP molecules made and the number of NADH and $FADH_2$ molecules made at each pathway: (5 points)

 $\underline{\text{ATP}}$ $\underline{\text{NADH}}$ $\underline{\text{FADH}}_2$

Glycolysis

Pyruvic acid --->Acetyl CoA

Krebs Cycle

Total ATP from all of these