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B.S. Honors Thesis. I’ve also added new Sections 12 and 13 to give some updates.

1 Introduction

An important application of algebraic geometry today is its use in computer graphics
and the computer-aided design (CAD) of machines such as automobiles. Design
plans are a representation of solid, three-dimensional objects and their boundaries,
and, for such plans to be manipulated and displayed by a computer, the objects
must be described mathematically. Often, thin sheets of metal, plastic, or glass
are approximated by two-dimensional surfaces in three-dimensional space. Such a
surface can be represented by three equations in two independent parameters, or by
one implicit equation in three variables. Either way, the number of each type of
equation is determined by the surface’s dimension, and the dimension of the ambient
space. An implicit equation of a surface is, generally, a more compact description,
and some properties of the surface such as symmetry may be more evident than in
the parametric description. Parameters, however, can be a more natural way for a
CAD program to graphically plot a surface, and parametric equations arise often in
applications.

Example 1.1. Consider, for example, the sphere in space. It is two-dimensional, so
we can parametrize a sphere with two independent parameters, called θ and φ.

x = cos θ sinφ

y = cos θ cosφ

z = sin θ.
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This is a familiar parametrization, where θ and φ are angles of latitude and longitude.
The radius of the sphere is 1 and any point on the sphere can be described by values
of θ and φ between 0 and 2π. There is another less obvious, but computationally
simpler parametrization.

x =
1− s2

1 + s2
2t

1 + t2
(1.1)

y =
1− s2

1 + s2
1− t2

1 + t2

z =
2s

1 + s2
.

Notice that the quotients which appear in the place of the cosines and sines in the
previous parametrization satisfy the same algebraic relation as the cosines and sines:
(cos θ)2 + (sin θ)2 = 1.

The s, t parametrization is described as “fourth degree,” meaning that the max-
imum degree of the numerators and denominators is 4 (from the s2t2 term in (1.1)).
It turns out that this is more than necessary; there is a similar parametrization of
the sphere with second-degree polynomials in the numerator (Example 8.8).

The implicit equation in x, y, z describing the sphere is, of course, the quadratic
equation x2 + y2 + z2 = 1. Surfaces with quadratic implicit equations are called
quadric surfaces, which are analogous to conic sections in the plane.

Elimination theory deals with the connection between the two ways of describing
a surface — parametric or implicit. It makes use of linear algebra and matrices, and
also commutative algebra and ideal theory.

If we substitute the s, t or the θ, φ parametrizations of x, y, and z into the implicit
equation x2+y2+z2 = 1, then we see that the implicit equation is identically satisfied.
Any values for the parameters lead to values for x, y, and z that satisfy the implicit
relation.

Example 1.2. To demonstrate a method for deriving an implicit equation from a
set of parametric equations, consider a four-dimensional space with coordinates x, y,
z, t and three parameters u, v, w. The set of points described by these parameters
forms a three-dimensional object in the 4-dimensional space (such a thing is called a
“hypersurface”; in general, a set a points that is the solution to a system of polynomial
equations is called an “algebraic variety”).

x = uv y = uw z = vw t = u2 + v2 + w2.

To get an implicit equation in x, y, z, t that describes this hypersurface, solve for
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each variable in terms of x, y, z, t:

u =
x

v
(1.2)

w =
y

u
=

yv

x
(1.3)

v =
z

w
=

zx

yv
(1.4)

v2 =
zx

y
(1.5)

u2 =
x2

v2
=

x2y

zx
=

xy

z
(1.6)

w2 =
y2

u2
=

y2v2

x2
=

yz

x
(1.7)

t = u2 + v2 + w2 =
xy

z
+

zx

y
+

yz

x
(1.8)

xyzt = x2y2 + x2z2 + y2z2. (1.9)

Step (1.9) is the desired implicit equation. It is of fourth degree in x, y, z, t.

A mathematician may become proficient with such computations by experience,
but such an ad hoc manipulation of variables until all parameters are “eliminated”
does not lend itself to automation. In several cases, there is a way to solve the
system of parametric equations algorithmically, by entering their coefficients into a
special matrix and taking the determinant. The determinant is the “resultant” of
the equations and the theory behind the algorithm is called “elimination theory.”
The example used above is an example of an algebraic variety described by quadratic
expressions in the parameters. Quadratic equations are the simplest non-linear kind
of parametric equations, and occur in CAD when describing surfaces. That the
implicit equation derived in Example 1.2 is necessarily fourth degree and irreducible
(cannot be factored) can be proven by the methods of algebraic geometry.

The geometry of such an object is also very interesting. The “cross-section”
formed by fixing t = 1 in (1.9), which intersects the hypersurface with the 3-
dimensional space {(x, y, z, 1)}, describes a “Roman Surface,” which is the image of
a parametric representation of the real projective plane. Sets of quadratic paramet-
ric equations can lead to varieties which are the image of a non-orientable surface,
and there are many ways to describe images of the real projective plane in three-
dimensional Euclidean space. A classification of the parametrization coefficients
leads to a classification of quadratically parametrized maps of the real projective
plane into real projective 3-space, and such a classification uses linear algebra and
algebraic geometry.
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The goal of this classification is to establish some way to anticipate the geometric
behavior of a set of quadratic parametric equations.

2 The Real Projective Plane

Some terminology is presented here for reference in later Sections. The following
definition of real projective space is as a set defined by a larger set and an equivalence
relation. Consider R

n \ {0}, and an equivalence relation ∼, where for vectors x,
y ∈ R

n \ {0}, x ∼ y ⇐⇒ x = λy for some λ ∈ R \ {0}, that is, vectors are
∼-equivalent if and only if one is a non-zero scalar multiple of the other.

Each line through the origin is now a point in the set of equivalence classes.
The resulting set is a (n − 1)-manifold, called “real projective (n − 1)-space,” or
RP (n−1). The “Real Projective Plane” is this object when n = 3. It is a 2-manifold,
or a “surface,” and with this in mind, there are algebraic and topological definitions
analogous to the one given above.

The quotient map p : Rn+1 \ {0} → RPn sends real coordinates to “projective
coordinates”:

p(x0, x1, . . . , xn) = [x0 : x1 : . . . : xn], (2.1)

and the projective coordinates are thought of as the n independent ratios of the
n + 1 coordinates. For a chosen 0 ≤ i ≤ n, the corresponding “affine subset” of the
coordinates is the set of all points where xi �= 0 and this subset is homeomorphic
to R

n. The complement of this set is a (n − 1)-manifold termed a “hyperplane at
infinity,” corresponding to xi = 0. For example, the set of projective coordinates
[x0 : x1] contains a copy of R plus the point [0 : 1], a single “point at infinity.” Such
a set is homeomorphic to a circle, and can be called the real projective line.

Consider the set of lines through the origin of three-dimensional space. The unit
sphere contains two representative points from each line. To reduce the number of
representative points to one, and thus get a surface which has the same topology as
RP 2, simplify identify each point with its opposite point. This is the “antipodal map”
— one hemisphere is mapped onto the other. For points on the equator, however, the
identification poses some problems, which we solve by making another identification.
The equator can be collapsed into a diameter by a projection. The diameter can
then be folded in half, away from the hemisphere. In terms of points (x, y, 0) on
the unit circle, (x, y, 0) 	→ (x, 0, 0) 	→ (0, 0, |x|). In this way, the points (x, y, 0) and
(−x,−y, 0) are both mapped to (0, 0, |x|), but so are (x,−y, 0) and (−x, y, 0), which
were supposed to be identified with each other anyway. This phenomenon is one of
self-intersection, and the geometric object resulting from subjecting the equator of
a hemisphere to the above operations was named by Steiner a “cross-cap,” and it is
one of the earliest geometric representations of the real projective plane.
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There is no way to map RP 2 into three-dimensional space in a continuous, injec-
tive way. This is a consequence of the fact that it does not admit an orientation. Its
non-orientability can be thought of as inherited from a Möbius strip it contains, or
it can be seen by looking at an illustration or model of the cross-cap surface.

There are other representations of the Real Projective Plane in 3-space, and some
are displayed in Section 11, the Appendix of illustrations. (See also [A], [F]). They
can be described once some terminology is introduced.

Results of Whitney describe smooth maps from the plane into space. The canon-
ical embedding is the Euclidean plane, a surface of zero curvature and infinite extent
in two dimensions, which no self-intersections. Under a suitable choice of location
of the origin in a three-dimensional real vector space, the plane is a two-dimensional
subspace. Topologically equivalent surfaces that are embeddings of the plane include
graphs of maps from 2-space to the real numbers, such as z = f(x, y) = x2 + y2.
Considering differentiable maps that send a plane of coordinates (parameters) into
3-space and that are not necessarily injective, different cases may arise. The self-
intersection set (points with an inverse image containing more than one point) may
be a 1-dimensional curve, or a 2-dimensional region, as in Example 1.1, where the
parametric equations are periodic and the image is a sphere.

If the self-intersection set is one-dimensional, then it may have no boundary (as in
the Klein bottle) or it may contain points of its boundary. An example of a geometric
object that is the image of a planar region, and that has a self-intersection set with
boundary, can be described as follows.

Example 2.1. The images of parametric curves, {(x, x2, 0)} and {(x, x2, 1)}, are
parabolas in space. Connect each point on one parabola to a point on the other
using the line determined by (x, x2, 0) and (−x, x2, 1). This is a one-parameter family
of lines, and it is the image of a plane mapped to three-dimensional space. The
self-intersection set is the open ray {(0, y, 0.5) : y > 0}. This object, or anything
homeomorphic to a region around (0, 0, 0.5), is called a Whitney umbrella (several
Whitney umbrellas will appear in Section 11, the Appendix of illustrations). The
singularity point (0, 0, 0.5) is called a pinch point. The line containing the ray is the
double line and the opposite ray {(0, y, 0.5), y < 0} is a whisker or handle of the
umbrella.

The pinch point in Example 2.1 is undisturbed by small perturbations of the
construction. If the lines connect (x, x2, 0) to (−x + ε, (−x + ε)2, 1), for example,
then the pinch point moves in space and the neighborhood around it is distorted by
a small amount, but its local topological shape is not changed.

The general definition of a singularity of a map from a plane to space is the
image of a point where the Jacobian matrix of the mapping function has rank < 2.
A singularity of an implicitly defined surface in space is a point where the implicit

5



equation has gradient vector 0. We will use the word “singularity” to refer to either
notion, although these are generally different sets of points.

Example 2.2. There are examples of singularities other than the pinch point of
the Whitney umbrella. If, to the umbrella constructed in Example 2.1, the plane
{(x, 0, z)} is added, then the point (0, 0, 0.5) is a different kind of singularity, and the
line {(0, 0, z)} becomes another self-intersection set. See Figure 9. in Section 11, the
Appendix of illustrations. If, however, the new plane is perturbed by some amount
ε in the positive y-direction, then the plane does not intersect the pinch point of
the umbrella, the pinch point singularity is restored, and the triple point (0, ε, 0.5)
occurs.

The behavior exhibited in Example 2.2 is expected — under small deformations,
only singularities that look like pinch points are unchanged. By Whitney’s theory of
singularities, any other type is “unstable” under deformations; it is lost after most
perturbations and either no singularity is left, or a pinch point remains.

Pinch points and more complicated singularities can occur when using quadratic
parametric formulas to describe surfaces.

3 Quadratic Parametric Maps

Parameters occur naturally in the study of surfaces. More generally, parametric
equations define a mapping from F

n (parameter space) to F
m (the target space, or

the ambient space of the image of Fn; F is a field which for current purposes will be
either R or C). A parametric representation of an object is easy for a computer to
plot (for F = R, n = 1, 2, m = 2, 3), and it is the most convenient description of
geometrical objects for many applications.

Example 3.1. Consider R3 as a space of parameters (u0, u1, u2), and a map μ taking
(u0, u1, u2) to:

(u20 + u21 + u22, u1u2, u0u2, u0u1)

= (x0, x1, x2, x3) = x ∈ R
4.

Each xi is a homogeneous, quadratic polynomial in the three parameters. These
are the same equations as in Example 1.2, but using different variable letters. The
homogeneity of the parametric polynomials suggests projective coordinates in both
the parameter and the ambient spaces.

The map μ followed by p (from (2.1)) sends R3 \{0} to RP 3. Let m = p◦μ; then
m(u0, u1, u2) = m(λ(u0, u2, u2)) (3.1)

= [u20 + u21 + u22 : u1u2 : u0u2 : u0u1].
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By (3.1), it is clear that the domain might as well be RP 2 instead of R3. Redefine
m : RP 2 → RP 3:

m([u0 : u1 : u2]) = [u20 + u21 + u22 : u1u2 : u0u2 : u0u1].

Since m is continuous and RP 2 is compact, the image is compact in the topology
of the target space RP 3. However, the intersection of the image with an affine subset
R
3 need not be compact in the standard metric topology of R3.
The map m from Example 3.1 is a specific instance of a homogeneous quadratic

map, and the generalization is as follows: u20, u
2
1, u

2
2, u1u2, u0u2, u0u1 are the only six

quadratic combinations of u0, u1, and u2, so any homogeneous quadratic polynomial
in these three variables is a linear combination of u20, u

2
1, u

2
2, u1u2, u0u2, and u0u1.

A 6× 4 matrix P can be constructed with the following property:

(u20, u
2
1, u

2
2, u1u2, u0u2, u0u1)P = (x0, x1, x2, x3). (3.2)

In Example 3.1,

P =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
1 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦
. (3.3)

P is called the coefficient matrix. The points (x0, x1, x2, x3) in the image of the map
(3.2) satisfy a homogeneous polynomial equation as in (1.9). The set of all solutions
(x0, x1, x2, x3) of the implicit equation forms a hypersurface in R

4, which is mapped
by p to a set of points [x0 : x1 : x2 : x3] forming a surface in RP 3.

4 Equivalence of Coefficient Matrices

Depending on the application, it is natural to have a notion of equivalence of parametriza-
tions. Given two sets of parametric equations, or two implicit equations, they should
be equivalent if they describe the same geometric set of points, or if some “nice” (lin-
ear, isometric, etc.) transformation relates the two sets. In the context of computer
graphics, if a surface is of more interest than any particular equation that generates it,
or if its position and orientation in space are subordinate to its shape, then the right
notion of equivalence should be not only intuitive, but can lead to a simplification of
computation, as in the sphere in Example 1.1.

For quadratic parametric maps as in Section 3, first assume the coefficient matrix
P has maximal rank, that is, rank P = 4. The kernel of the F-linear transformation
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corresponding to P has dimension 2 (the left kernel is a set of row vectors in F
6),

and two basis elements for the kernel can (in the sparse cases we will consider)
often be determined by inspection of P. In the example (3.3), (1,−1, 0, 0, 0, 0) and
(0, 1,−1, 0, 0, 0) are two row vectors in the kernel and their span can be written as
(λ, μ − λ,−μ, 0, 0, 0).

Notation 4.1. The isomorphism w takes symmetric three-by-three matrices with F

entries to row vectors with six components:

w :

⎡
⎣ a f e

f b d
e d c

⎤
⎦ 	→ (a, b, c, d, e, f).

Kernels of coefficient matrices are mapped by w−1 onto two-dimensional subspaces
of the space of symmetric matrices (such a subspace is called a pencil). Again from
the (3.3) example,

w−1(λ, μ − λ,−μ, 0, 0, 0) =

⎡
⎣ λ 0 0

0 μ− λ 0
0 0 −μ

⎤
⎦ . (4.1)

If u is the row vector (u0, u1, u2), then

uTu =

⎡
⎣ u20 u0u1 u0u2

u0u1 u21 u1u2
u0u2 u1u2 u22

⎤
⎦

and
w(uTu) = (u20, u

2
1, u

2
2, u1u2, u0u2, u0u1).

Notation 4.1 makes a linear change of coordinates in the parameter space easy to
express for quadratic maps. Let A be a nonsingular three-by-three matrix mapping
u to uA. By elementary facts about the transpose operator T ,

(uA)T (uA) = ATuTuA.

A linear change of coordinates in the target space is implemented with a nonsin-
gular four-by-four matrix B, again acting on x from the right side.

Two quadratic maps are equivalent means: their parametric coordinates and
image coordinates are F-linear transformations of each other:

Notation 4.2. On the set of 6×4 coefficient matrices, define the equivalence relation
P ∼ Q to mean that there are some A and B as above so that

w(uTu)Q = w(ATuTuA)PB.
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Given two coefficient matrices, then, a concrete way to check equivalence would
be desirable.

There is a more convenient statement of w(ATuTuA). Let A =

⎡
⎣ b c d

e f g
h i j

⎤
⎦ .

Then w(ATuTuA) = w(uTu)R(A), where

R(A) =

⎡
⎢⎢⎢⎢⎢⎢⎣

b2 c2 d2 cd bd bc
e2 f2 g2 fg eg ef
h2 i2 j2 ij hj hi
2eh 2fi 2gj fj + gi ej + gh ei+ fh
2bh 2ci 2dj cj + di bj + dh bi+ ch
2be 2cf 2dg cg + df bg + de bf + ce

⎤
⎥⎥⎥⎥⎥⎥⎦
.

A computation ([Derive]) shows det(R(A)) = det(A)4, and since A is assumed to be
nonsingular, R(A) is also nonsingular, with (R(A))−1 = R(A−1).

So, Notation 4.2 can be restated as follows:

P ∼ Q ⇐⇒ w(uTu)Q = w(uTu)R(A)PB.

To determine the equivalence of P and Q, it suffices to examine the pencils of
matrices that are the images of ker(P) and ker(Q) under w−1.

Theorem 4.3. P ∼ Q if and only if the corresponding pencils are congruent (over
F).

Proof. 1. Suppose there are two pencils S and T of symmetric three-by-three ma-
trices with entries that are linear combinations of λ and μ, and that there exists a
nonsingular A that relates them, as sets, by congruence:

S ∈ S =⇒ ATSA ∈ T and T ∈ T =⇒ (A−1)TTA−1 ∈ S.

Now, choose a Q and P such that ker(Q) = w(S) = {w(S) : S ∈ S} and ker(P) =
w(T ). By construction, R(A)P and Q have the same kernel, so they must be related
by a nonsingular transformation B as in Notation 4.2; this proves P ∼ Q.

2. Suppose that Q = R(A)PB, with ker(Q) = ker(R(A)PB) = the pencil S.
ThenATSA = ker(PB) = ker(P), and the two kernels are related by congruence.

The problem of classifying coordinate matrices has been reduced to finding con-
gruence classes of pencils of matrices.
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5 Characteristic of a Pencil

Notation 5.1. For a complex pencil S = {λL + μM} spanned by three-by-three,
independent, complex, symmetric matrices L and M, define

dS(λ, μ) = det(λL+ μM),

a polynomial of degree at most three in λ and degree at most three in μ.

Notation 5.2. In the set of 3 × 3 complex symmetric matrices, define Ω to be the
set of singular matrices (the chordal variety), and V to be the subset of Ω consisting
of matrices of rank less than two (the Veronese variety).

Given S as in Notation 5.1, the intersection with the chordal variety is:

S ∩ Ω = {λL+ μM : dS(λ, μ) = 0}.

By the linearity properties of the determinant function, if (λ, μ) is a pair that satisfies
dS(λ, μ) = 0, then dS(κλ, κμ) = 0, so [λ : μ] is called a root ratio of S with respect
to L and M. The pair [0 : 0] is to be disregarded.

Notation 5.3. The intersection character, or characteristic of S is the ordered pair
(ρ, v), where ρ is the number of distinct root ratios of S, and v is the number of
distinct root ratios of S that correspond to λL+ μM in V .

Solving for λ in the polynomial equation dS(λ, μ) = 0 gives at most three root
ratios, unless the polynomial is identically zero.

Proposition 5.4. Using elementary facts about determinants, it can be shown that
there are exactly eight mutually exclusive possibilities for (ρ, v).

1. dS(λ, μ) is identically zero. Any [λ : μ] is a root ratio. This corresponds to the
case where S is contained in Ω.

(a) (ρ, v) = (∞, 0). S does not intersect V ; λL+μM always has rank exactly
two.

(b) (ρ, v) = (∞, 1).

(c) (ρ, v) = (∞, 2). There can be no more than two intersections with V .

2. dS(λ, μ) has one root ratio (of multiplicity three).

(a) (ρ, v) = (1, 0). The root ratio [λ : μ] corresponds to λL+μM with rank 2.

(b) (ρ, v) = (1, 1). The root ratio [λ : μ] corresponds to λL+μM with rank 1.
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3. dS(λ, μ) has two distinct root ratios.

(a) (ρ, v) = (2, 0). Both root ratios correspond to matrices with rank 2.

(b) (ρ, v) = (2, 1). The double root ratio corresponds to λL+μM with rank 1.

4. dS(λ, μ) has three distinct root ratios.

(a) (ρ, v) = (3, 0). None can be in the Veronese variety.

Example 5.5. The following list of pencils shows that each case from Proposition
5.4 can occur.

• 1.a.

⎡
⎣ 0 0 λ

0 0 μ
λ μ 0

⎤
⎦ 1.b.

⎡
⎣ λ μ 0

μ 0 0
0 0 0

⎤
⎦ 1.c.

⎡
⎣ 0 0 0

0 λ μ
0 μ −λ

⎤
⎦

• 2.a.

⎡
⎣ 0 λ μ

λ 0 0
μ 0 −λ

⎤
⎦ 2.b.

⎡
⎣ λ 0 μ

0 μ 0
μ 0 0

⎤
⎦

• 3.a.

⎡
⎣ 0 λ −λ

λ 0 μ
−λ μ 0

⎤
⎦ 3.b.

⎡
⎣ 0 λ 0

λ 0 0
0 0 μ

⎤
⎦

• 4.a.

⎡
⎣ λ 0 0

0 μ− λ 0
0 0 −μ

⎤
⎦ (This was seen in Equation (4.1).)

Remark 5.6. Theorem 4.3 and Proposition 5.4 were known in classical complex pro-
jective geometry, although different terminology has been used. [A] gives cases 1.a.,
2.a., 3.a., and 4.a. as representatives determined only by ρ, describing equivalence
classes “under homography of 3-pencils of conics without fixed points in complex
projective space.”

Lemma 5.7. The characteristic (ρ, v) of S does not depend on the L and M used to
span the pencil.

Proof. This is proved by consideration of the set S as a vector space spanned by
L and M. Any other basis for S is related by a nonsingular change of coordinates[
α β
γ δ

]
, which acts on L and M as follows:
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The vector λL+ μM is transformed to:

λ(αL+ γM) + μ(βL+ δM) = (αλ+ βμ)L+ (γλ+ δμ)M.

dS(λ, μ) does not necessarily equal dS(αλ + βμ, γλ + δμ), and [λ : μ] does not
necessarily equal [αλ + βμ : γλ+ δμ]. However, the number of intersections with Ω
and V does not change, since S itself is not changed as a set. This should clarify the
earlier abuse of language: ρ from Notation 5.3 is defined and computed in terms of
dS from Notation 5.1, which depends on a choice of basis for S, but ρ may be called
the number of root ratios of S without regard to any particular choice of L and M,
and similarly v.

The methods in Theorem 4.3 can be used in another theorem:

Theorem 5.8. Two complex pencils of matrices S and T have the same characteristic
(ρ, v) if and only if they are related by congruence (over C).

Proof. 1. Suppose a nonsingular A relates S and T by congruence. Then, for T ∈
T , there is some S = λL + μM ∈ S so that T = ATSA = AT (λL + μM)A =
λATLA+ μATMA, and choosing ATLA and ATMA as a basis for T , dT (λ, μ) =
(det(A))2dS(λ, μ). So, the root ratios are identical and they must occur the same
number of times, ρ. Because the operation S 	→ ATSA preserves rank, v is also the
same for S and T .

2. The converse must be proven separately for pencils of each characteristic. As
an example, the (ρ, v) = (3, 0) case can be proved with an argument adapted from
[B].

S is spanned by L and M; choose [λ1 : 1] a simple root of dS(λ, μ). (This
is possible because S has three distinct root ratios.) Temporarily fixing μ = 1,
λL +M = M + λ1L + (λ − λ1)L. M + λ1L is singular, so it is congruent to M′ =⎡
⎣ 0 0 0

0 y w
0 w z

⎤
⎦. It follows that λL+M is congruent to an expression of the form

M′ + (λ− λ1)L
′ =

⎡
⎣ 0 0 0

0 y w
0 w z

⎤
⎦+ (λ− λ1)

⎡
⎣ a d e

d b f
e f c

⎤
⎦ . (5.1)

By hypothesis, det(λL + M) has (λ − λ1) as non-repeated factor, so a �= 0, since
otherwise (λ−λ1) could be factored out of both the first row and the first column of
(5.1). The expression (5.1) is then congruent to

M′′ + (λ− λ1)L
′′ =

⎡
⎣ 0 0 0

0 y w
0 w z

⎤
⎦+ (λ− λ1)

⎡
⎣ a 0 0

0 b f
0 f c

⎤
⎦ ,

12



where in matrix calculations like this, the small latin letters are place-holding entries
without fixed value. Let N = M′′ − λ1L

′′, so that λL+M is congruent to λL′′ +N.
The 1, 1 entry of N is −λ1a.

Choosing one of the remaining root ratios, [λ2 : 1], and repeating the above argu-

ment, it is proved that λL +M is congruent to λ

⎡
⎣ a 0 0

0 b 0
0 0 c

⎤
⎦ +

⎡
⎣ q 0 0

0 r 0
0 0 s

⎤
⎦, and

reinstating μ as a variable, λL+μM is congruent to λ

⎡
⎣ a 0 0

0 b 0
0 0 c

⎤
⎦+μ

⎡
⎣ q 0 0

0 r 0
0 0 s

⎤
⎦,

with aq �= 0, since otherwise dS(λ, μ) would be identically zero. Rescaling the pa-

rameters, λL+ μM is congruent to λ

⎡
⎣ 1 0 0

0 b 0
0 0 c

⎤
⎦+ μ

⎡
⎣ q 0 0

0 r 0
0 0 s

⎤
⎦.

By a transformation of S by

[
α β
γ δ

]
as in Lemma 5.7, let

[
α β
γ δ

]
=

[
1 0
−q 1

]
,

so S is congruent to the subspace of matrices λ

⎡
⎣ 1 0 0

0 b 0
0 0 c

⎤
⎦+μ

⎡
⎣ 0 0 0

0 r 0
0 0 s

⎤
⎦. s �= 0,

since otherwise dS(λ, μ) would have a double root, so again by scaling, we can set

s = 1 and apply a transformation

[
1 −c
0 1

]
to get that S is congruent to the pencil

λ

⎡
⎣ 1 0 0

0 b 0
0 0 0

⎤
⎦+μ

⎡
⎣ 0 0 0

0 r 0
0 0 1

⎤
⎦. br �= 0, since otherwise dS(λ, μ) would have a double

root, so the subspace is spanned by λ

⎡
⎣ a 0 0

0 −1 0
0 0 0

⎤
⎦ + μ

⎡
⎣ 0 0 0

0 1 0
0 0 s

⎤
⎦. Multiplica-

tion on both sides by A =

⎡
⎢⎢⎣

√
1
a 0 0

0 1 0

0 0
√
−1

s

⎤
⎥⎥⎦ gives the result: S is congruent to the

subspace λ

⎡
⎣ 1 0 0

0 −1 0
0 0 0

⎤
⎦+μ

⎡
⎣ 0 0 0

0 1 0
0 0 −1

⎤
⎦. This subspace has characteristic (3, 0),

and the above calculation showed that any pencil of characteristic (3, 0) is congruent
to this one, and by transitivity, to any other pencil of characteristic (3, 0).

Remark 5.9. The above Proof did not treat cases 1., 2., or 3. from Proposition 5.4.
Case 1., where all the matrices in the pencil are singular (ρ = ∞) corresponds, by

13



Theorem 4.3, to coefficient matrices P where the parametric equations satisfy an
implicit equation of degree 2 — a quadric surface such as a sphere or cone.

6 Congruence over the Reals

If L and M are symmetric matrices with real entries and λ and μ are real coefficients,
then S = {λL + μM} is called a real pencil of matrices. Two real pencils S and T
are related by congruence over R means:

S ∈ S =⇒ ATSA ∈ T and T ∈ T =⇒ (A−1)TTA−1 ∈ S,

where A is a nonsingular three-by-three matrix with real entries.
If S and T are congruent over R, then they are also congruent over C, so each

equivalence class under this new relation is a subset of an equivalence class under
congruence over C. An analogue of Lemma 5.7 holds, with a similar proof.

Lemma 6.1. The number of real root ratios of a real pencil S = {λL + μM} does
not depend on the choice of L and M.

Considering again (as in part 2. of the Proof of Theorem 5.8) only the “generic”
case 4.a. (from Proposition 5.4), there are three equivalence classes under congruence
over R. Geometrically, as in Theorem 4.3, there are three “surfaces” given by coef-
ficient matrices whose kernels fall into case 4.a., but which are not related to each
other by real transformations of coordinates in the parameter or target spaces.

Theorem 6.2. Suppose L and M are real symmetric matrices and that they are
independent, spanning a real pencil S. Suppose also that dS(λ, μ) has three distinct
root ratios, possibly complex. Then S = {λL + μM} is congruent over R to one of
the following:

i)

⎧⎨
⎩λ

⎡
⎣ 1 0 0

0 1 0
0 0 0

⎤
⎦+ μ

⎡
⎣ 0 0 0

0 1 0
0 0 −1

⎤
⎦
⎫⎬
⎭ and dS(λ, μ) has three real root ratios,

ii)

⎧⎨
⎩λ

⎡
⎣ 1 0 0

0 −1 0
0 0 0

⎤
⎦+ μ

⎡
⎣ 0 0 0

0 1 0
0 0 −1

⎤
⎦
⎫⎬
⎭ and dS(λ, μ) has three real root ratios,

iii)

⎧⎨
⎩λ

⎡
⎣ 1 0 0

0 −1 0
0 0 0

⎤
⎦+ μ

⎡
⎣ 0 1 0

1 0 0
0 0 −1

⎤
⎦
⎫⎬
⎭ and dS(λ, μ) has only one real root ratio.
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Proof. Since dS(λ, μ) is a real polynomial of degree three in λ and μ, it has at least
one real root ratio, [λ1 : μ1]. Choose a new basis L′ and M′, so that L′ = λ1L+μ1M,
and L′ has rank two.

By Sylvester’s Law of Inertia, L′ is congruent to

⎡
⎣ 1 0 0

0 1 0
0 0 0

⎤
⎦ or to

⎡
⎣ 0 1 0

1 0 0
0 0 0

⎤
⎦,

and the entries of M′ are real and labeled

⎡
⎣ a b c

b d e
c e f

⎤
⎦.

If L′ is congruent to

⎡
⎣ 1 0 0

0 1 0
0 0 0

⎤
⎦, then

dS(λ, μ) = fλ2μ+ (fd− e2 + af − c2)λμ2 + μ3 det(M′),

which by assumption has three distinct roots, so f �= 0. λL′ + μM′ is congruent to

λL′ + μM′′ = λ

⎡
⎣ 1 0 0

0 1 0
0 0 0

⎤
⎦+ μ

⎡
⎣ a b 0

b d 0
0 0 1

⎤
⎦ , (6.1)

and such matrices span the subspace

⎧⎨
⎩λ

⎡
⎣ 1 0 0

0 1 0
0 0 0

⎤
⎦+ μ

⎡
⎣ 0 b 0

b d− a 0
0 0 1

⎤
⎦
⎫⎬
⎭. Set

c = d− a. S is congruent as a set to T =

⎧⎨
⎩λ

⎡
⎣ 1 0 0

0 1 0
0 0 0

⎤
⎦+ μ

⎡
⎣ 0 b 0

b c 0
0 0 1

⎤
⎦
⎫⎬
⎭, with

dT (λ, μ) = λ2μ+ cλμ2 − b2μ3,

which has discriminant c2 + 4b2. There are always two more distinct real roots.⎡
⎣ 0 b 0

b c 0
0 0 1

⎤
⎦ can be diagonalized by an orthogonal matrix, with entries expressed
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in terms of its eigenvalues:

e1 =
c+

√
4b2 + c2

2
> 0

e2 =
c−√

4b2 + c2

2
< 0

z =
−e2√
b2 + e22

A =

⎡
⎢⎢⎣

bz
e1

√
−e1
e2

bz
e2

0

z
√

−e1
e2

z 0

0 0 1

⎤
⎥⎥⎦

AT

⎛
⎝λ

⎡
⎣ 1 0 0

0 1 0
0 0 0

⎤
⎦+ μ

⎡
⎣ 0 b 0

b c 0
0 0 1

⎤
⎦
⎞
⎠A = λ

⎡
⎣ 1 0 0

0 1 0
0 0 0

⎤
⎦+ μ

⎡
⎣ e1 0 0

0 e2 0
0 0 1

⎤
⎦ .

Three more steps give result i) of the Theorem. By a transformation

[
1 0

−e1 1

]
as

in Lemma 5.7, scaling μ by 1
e2−e1

, and then congruence by B =

⎡
⎣ 1 0 0

0 1 0
0 0

√
e1 − e2

⎤
⎦,

S is congruent to

⎧⎨
⎩λ

⎡
⎣ 1 0 0

0 1 0
0 0 0

⎤
⎦+ μ

⎡
⎣ 0 0 0

0 1 0
0 0 −1

⎤
⎦
⎫⎬
⎭.

In upcoming computations, simple intermediate steps are sketched or left entirely
to the reader.

If L′ is congruent to

⎡
⎣ 0 1 0

1 0 0
0 0 0

⎤
⎦, then again (as in (6.1)) M′ can be transformed

to

⎡
⎣ a b 0

b d 0
0 0 1

⎤
⎦, and these two matrices also span T =

⎧⎨
⎩λ

⎡
⎣ 0 1 0

1 0 0
0 0 0

⎤
⎦+ μ

⎡
⎣ a 0 0

0 d 0
0 0 1

⎤
⎦
⎫⎬
⎭,

with dT (λ, μ) = λ2 + adμ3, which has two real roots if and only if ad > 0.

If a > 0 and d > 0 then, for A =

⎡
⎣

√
d

√
d 0

−√
a

√
a 0

0 0 1

⎤
⎦,

ATTA =

⎧⎨
⎩λ

⎡
⎣ −2

√
ad 0 0

0 2
√
ad 0

0 0 0

⎤
⎦+ μ

⎡
⎣ 2ad 0 0

0 2ad 0
0 0 1

⎤
⎦
⎫⎬
⎭ ,
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which is related by scaling, congruence by a permutation matrix, and exchange of

parameters to

⎧⎨
⎩λ

⎡
⎣ 1 0 0

0 1 0
0 0 0

⎤
⎦+ μ

⎡
⎣ 0 0 0

0 1 0
0 0 −1

⎤
⎦
⎫⎬
⎭, which is the same set as in case

i).

If a < 0 and d < 0 then, for A =

⎡
⎣

√−d
√−d 0

−√−a
√−a 0

0 0 1

⎤
⎦,

ATTA =

⎧⎨
⎩λ

⎡
⎣ −2

√
ad 0 0

0 2
√
ad 0

0 0 0

⎤
⎦+ μ

⎡
⎣ −2ad 0 0

0 −2ad 0
0 0 1

⎤
⎦
⎫⎬
⎭ ,

which is related by scaling and congruence to

⎧⎨
⎩λ

⎡
⎣ 1 0 0

0 −1 0
0 0 0

⎤
⎦+ μ

⎡
⎣ 0 0 0

0 1 0
0 0 −1

⎤
⎦
⎫⎬
⎭.

This is not congruent to the case i) set, and gives case ii) of the Theorem.

If a < 0 and d > 0 then, for A =

⎡
⎣

√
d

√
d 0

−√−a
√−a 0

0 0 1

⎤
⎦,

ATTA =

⎧⎨
⎩λ

⎡
⎣ −2

√−ad 0 0

0 2
√−ad 0

0 0 0

⎤
⎦+ μ

⎡
⎣ 0 2ad 0

2ad 0 0
0 0 1

⎤
⎦
⎫⎬
⎭ ,

which is related by scaling and congruence to

⎧⎨
⎩λ

⎡
⎣ 1 0 0

0 −1 0
0 0 0

⎤
⎦+ μ

⎡
⎣ 0 1 0

1 0 0
0 0 −1

⎤
⎦
⎫⎬
⎭.

This is not congruent to any previous cases, and gives case iii) of the Theorem.

If a > 0 and d < 0 then, for A =

⎡
⎣

√−d
√−d 0

−√
a

√
a 0

0 0 1

⎤
⎦,

ATTA =

⎧⎨
⎩λ

⎡
⎣ −2

√−ad 0 0

0 2
√−ad 0

0 0 0

⎤
⎦+ μ

⎡
⎣ 0 −2ad 0

−2ad 0 0
0 0 1

⎤
⎦
⎫⎬
⎭ ,

which is related by scaling and congruence to

⎧⎨
⎩λ

⎡
⎣ 1 0 0

0 −1 0
0 0 0

⎤
⎦+ μ

⎡
⎣ 0 1 0

1 0 0
0 0 1

⎤
⎦
⎫⎬
⎭.
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This is related to the set in case iii) by congruence using

⎡
⎣ 0 −1 0

1 0 0
0 0 1

⎤
⎦ and scaling.

Remark 6.3. In this case with three complex root ratios, case iii) is distinguished
from the other two by only having one real root ratio. To distinguish the other two
cases, i) and ii) with three real root ratios, the above Proof suggests examining the
non-zero eigenvalues of the singular elements of the pencil. The signs of eigenvalues
of the corresponding singular elements of the pencils are invariants under real con-
gruence (by an argument using Sylvester’s Law of Inertia). Any (non-zero) singular
matrix corresponding to a root ratio in a pencil from case ii) will have eigenvalues
of opposite sign, as seen by inspecting the representative pencil from the statement
of the Theorem. In case i), some singular matrices will have eigenvalues of opposite
sign, but others will have eigenvalues of the same sign (possibly repeated).

7 Elimination of Parameters

Once a congruence class of a matrix pencil S is established, there are many ways
to choose two linearly independent matrices for a basis, and many ways to choose a
coefficient matrix P with a kernel equal to w(S) as in Theorem 4.3.

However, once a set of parametric equations is given that defines a surface (as in
(3.2)), an implicit equation of minimal degree is uniquely determined (up to scalar
multiplication). Any process that achieves this conversion of parametric equations
to an implicit equation is called implicitization.

It turns out that quadratic parametrizations, as in Section 3, always satisfy a
polynomial implicit equation of degree at most 4.

We illustrate this for the three cases from Theorem 6.2.

Example 7.1. From case i)

w

⎛
⎝
⎧⎨
⎩λ

⎡
⎣ 1 0 0

0 1 0
0 0 0

⎤
⎦+ μ

⎡
⎣ 0 0 0

0 1 0
0 0 −1

⎤
⎦
⎫⎬
⎭
⎞
⎠ = {(λ, λ+ μ,−μ, 0, 0, 0)}

= ker

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
−1 0 0 0
−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦
.
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The parametric equations are:

x0 = u20 − u21 − u22

x1 = u1u2

x2 = u0u2

x3 = u0u1

These are similar to the equations from Example 1.2, and the calculation leading to
an implicit equation is similar to the steps leading up to (1.9), only some signs are
different in step (1.8). These parametric equations satisfy the implicit equation

x1x2x3x0 + x21x
2
2 + x21x

2
3 − x22x

2
3 = 0.

Example 7.2. From case ii)

w

⎛
⎝
⎧⎨
⎩λ

⎡
⎣ 1 0 0

0 −1 0
0 0 0

⎤
⎦+ μ

⎡
⎣ 0 0 0

0 1 0
0 0 −1

⎤
⎦
⎫⎬
⎭
⎞
⎠ = {(λ,−λ+ μ,−μ, 0, 0, 0)}

= ker

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
1 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦
.

This P matrix is the same as (3.3), and the parametric equations are exactly as in
(3.1) from Example 3.1. The implicitization was carried out in Example 1.2, so in
the [x0 : . . . : x3] coordinates the implicit equation is

x1x2x3x0 − x21x
2
2 − x21x

2
3 − x22x

2
3 = 0.

Example 7.3. From case iii)

w

⎛
⎝
⎧⎨
⎩λ

⎡
⎣ 1 0 0

0 −1 0
0 0 0

⎤
⎦+ μ

⎡
⎣ 0 1 0

1 0 0
0 0 −1

⎤
⎦
⎫⎬
⎭
⎞
⎠ = {(λ,−λ,−μ, 0, 0, μ)}

= ker

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦
.
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The parametric equations are:

x0 = u20 + u21

x1 = u22 + u0u1

x2 = u1u2

x3 = u0u2

The steps eliminating the parameters are different than in the other cases:

u1 =
x2
u2

u0 =
x3
u2

x0 =
x22 + x23

u22

x1 =
x22 + x23

x0
+

x0x2x3
x22 + x23

0 = (x22 + x23)
2 − x0x1(x

2
2 + x23) + x20x2x3.

Example 7.4. For some coefficient matrices, implicitization is not so easily done by
hand. Consider, for example,

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 0 1 0
0 1 0 0
−1 0 0 0
0 0 0 1
0 −1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Its kernel is spanned by (1, 0, 0, 1, 0, 0) and (0, 0, 1, 0, 0, 1). The image of the kernel

under w−1 is S =

⎧⎨
⎩λ

⎡
⎣ 1 0 0

0 0 1
0 1 0

⎤
⎦+ μ

⎡
⎣ 0 1 0

1 0 0
0 0 1

⎤
⎦
⎫⎬
⎭. dS(λ, μ) = −(λ3+μ3), which

has three distinct root ratios, only one of which is real. This falls under case iii) from
Theorem 6.2.

The parametric equations defined by the coefficient matrix are

x0 = u20 − u1u2

x1 = u22 − u0u1

x2 = u21

x3 = u0u2.
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What follows is an attempt to eliminate parameters by steps similar to the previous
Example:

u0 =
x3
u2

x0 =
x23
u22

− u1u2

x1 = u22 −
x3u1
u2

u1 =
x23
u32

− x0
u2

x2 =
x43
u62

− 2x0x
2
3

u42
+

x20
u22

(7.1)

x1 = u22 −
x33
u42

+
x0x3
u22

. (7.2)

All that remains now is two equations, (7.1) and (7.2), and one variable (u2) to be
eliminated. The Sylvester Resultant can now give a polynomial expression in the xi
variables, but since this method depends on the degree of each equation, v can be
substituted for u22 to simplify the calculation:

0 = v3 − x1v
2 + x0x3v − x33

0 = x2v
3 − x20v

2 + 2x0x
2
3v − x43.

Subtracting the first equation multiplied by x2 from the second to lower the degree
of the second equation gives:

0 = v3 − x1v
2 + x0x3v − x33

0 = (x1x2 − x20)v
2 + (2x0x

2
3 − x0x2x3)v − x43 + x2x

3
3.

The resultant of this system of equations is the determinant of the 5× 5 matrix

⎡
⎢⎢⎢⎢⎣

1 −x1 x0x3 −x33 0
0 1 −x1 x0x3 −x33

x1x2 − x20 2x0x
2
3 − x0x2x3 x2x

3
3 − x43 0 0

0 x1x2 − x20 2x0x
2
3 − x0x2x3 x2x

3
3 − x43 0

0 0 x1x2 − x20 2x0x
2
3 − x0x2x3 x2x

3
3 − x43

⎤
⎥⎥⎥⎥⎦ ,

which is

−x8
3

(
x4
3 − 3x2x

3
3 − 2x0x1x

2
3 + 3x2

2x
2
3 + x0x1x2x3 − x3

2x3 − x3
0x3 + x2

0x
2
1 + x0x1x

2
2 − x3

1x2

)
.
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This symbolic calculation was done easily on a personal computer using [Derive]. As
sometimes occurs with resultants, there is an extraneous factor, in this case −x83, and
the other factor,

x43 − 3x2x
3
3 − 2x0x1x

2
3 + 3x22x

2
3 + x0x1x2x3 − x32x3 − x30x3 + x20x

2
1 + x0x1x

2
2 − x31x2,

is an irreducible, homogeneous, fourth degree polynomial which is an implicit equa-
tion satisfied by the above parametric equations.

8 Geometric Consequences

In all examples so far, an implicit equation has been derived so that algebraic relations
among variables called xi are satisfied by values of xi given by quadratic polynomials
in three parameters uj . However, the implicit equations can have some solutions in
addition to any presentable in terms of the given parameters.

For quadratically parametrized surfaces with a fourth degree implicitization, these
extra solutions always appear along the double lines, as described in Section 2. In a
particular affine neighborhood, the extra solutions form either a ray of whisker points
starting at a singularity on the surface (there can be one or two such rays), or one
segment of whisker points between two singularities.

Example 8.1. Points in the image of the parametric map

[u0 : u1 : u2] 	→ [u20 + u21 + u22 : u1u2 : u0u2 : u0u1]

satisfy the implicit equation

x1x2x3x0 − x21x
2
2 − x21x

2
3 − x22x

2
3 = 0.

from Examples 1.2, 3.1, and 7.2, in case ii) of Theorem 6.2. The equation is homo-
geneous, defining a real hypersurface in R

4, and a real surface in RP 3.
Every point in the parameter domain [u0 : u1 : u2] has an image with x0 �= 0

(there are no points in the domain RP 2 where x0 = u20 + u21 + u22 = 0 holds), so
setting x0 = 1 to look at an affine subset (x, y, z) = [1 : x1 : x2 : x3] of the target
RP 3, will show every image point of the parametric map. The image shape could
also be considered as the image of the restriction of the mapping from Equation (3.1)
to the unit sphere {u20 + u21 + u22 = 1} in R

3. This restriction is two-to-one on the
sphere: antipodal points are mapped to the same image, as described in Section 2.

The image of the above parametric map from the real projective plane to R
3 is

called Steiner’s Roman Surface. This is the first of the illustrations in Appendix
11. The image itself is not homeomorphic to a real projective plane because it has
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self-intersections, and the image is contained in, but not equal to, the solution set
of the fourth degree implicit equation; both of these issues are visible as the three
double lines appearing on the Roman Surface. In the (x, y, z) coordinate system,
these double lines are exactly the coordinate axes, meeting at the triple point (0, 0, 0)
on the surface.

If we again consider the parametric map as a restriction to the unit sphere, this
puts a constraint on the real parameters:

x0 = u20 + u21 + u22 = 1 (8.1)

=⇒ −1 ≤ uj ≤ 1.

In the xyz-space where x0 = 1, x = u1u2 is also constrained, −1 ≤ u1u2 ≤ 1, but
the affine point (x, y, z) = (5, 0, 0), and every other point on the x-axis, satisfies the
implicit equation xyz − x2y2 − x2z2 − y2z2 = 0.

The Roman Surface is the first of the illustrations in Appendix 11; Surface Plotter
([SP]) used polar parameters in Figure 1. as follows:

u1 = ρ cos θ

u2 = ρ sin θ

u20 = 1− u21 − u22 = 1− ρ2

x = u1u2 = ρ2 cos θ sin θ

y = u0u2 = ρ sin θ
√
1− ρ2

z = u0u1 = ρ cos θ
√

1− ρ2.

Example 8.2. [A] uses the equations

x0 = u20 + u21 + u22

x1 = u1u2

x2 = 2u0u1

x3 = u20 − u21

as a parametrization of Steiner’s Cross Cap Surface, and they satisfy the implicit
equation

4x21(x
2
1 + x22 + x23 + x0x3) + x22(x

2
2 + x23 − x20) = 0.

Setting x0 = 1 does not lose any image points in the parametrization. As in Example
8.1, this can be considered as a map of the sphere. There is only one double line,
{x1 = x2 = 0}, and in the xyz-space where x0 = 1, the implicit equation

4x2(x2 + y2 + z2 + z) + y2(y2 + z2 − 1) = 0
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describes the Cross-Cap Surface with its double line on the z-axis. There are two
more algebraic double lines, defined by systems of linear equations with complex
conjugate coefficients:

0 = y − i
√
2x = z + 1,

0 = y + i
√
2x = z + 1.

The three complex lines meet at a triple point, which happens to have real coordi-
nates, on the surface at (0, 0,−1). The real surface does not show three real double
lines meeting at a point, but (0, 0,−1) is where a whisker intersects the surface. This
falls under case iii) of Theorem 6.2.

The Cross-Cap Surface is the second illustration in Appendix 11, with polar
coordinates in Figure 2:

u1 = ρ cos θ

u2 = ρ sin θ

u20 = 1− u21 − u22 = 1− ρ2

x = u1u2 = ρ2 cos θ sin θ

y = 2u0u1 = 2ρ cos θ
√
1− ρ2

z = u20 − u21 = 1− ρ2(1 + cos2 θ).

Example 8.3. For the implicit equation from Example 7.1,

x1x2x3x0 + x21x
2
2 + x21x

2
3 − x22x

2
3 = 0

and the parametric equations, falling in case i) of Theorem 6.2:

x0 = u20 − u21 − u22 (8.2)

x1 = u1u2 (8.3)

x2 = u0u2 (8.4)

x3 = u0u1, (8.5)

the surface can no longer be considered as an image of the sphere. There are nonzero
values of x1, x2, x3 for some points where x0 = 0, so the image cannot be contained
in the x0 = 1 affine space (nor any other). Further, in Examples 8.1 and 8.2, x0 was
positive for any real ui values, but in this case x0 can be negative, so the parametric
image will appear to have two “pieces” in the x0 �= 0 neighborhood. In Equation
(8.1) from Example 8.1, setting u20+u21+u22 = 1 captured representatives of every line
through the origin in the u0u1u2-space, and setting x0 = 1 mapped every point in the
domain to the {x0 �= 0} affine neighborhood in the target. For this example, setting
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u20 − u21 − u22 = 1 from (8.2) only meets some of the lines through the origin; setting
u20−u21−u22 = −1 gets most of the rest. So to view the image of the parametrization in
the {x0 �= 0} neighborhood, and before converting to polar coordinates for plotting,
the two cases will need to be considered separately.

The solution set of the implicit equation has two pinch points, as in Example 8.2,
and three real double lines that meet at a real triple point, as in Example 8.1. In
xyz-space, the surface

xyz + x2y2 + x2z2 − y2z2 = 0

has pinch point singularities at (−0.5, 0, 0) and (0.5, 0, 0), and double lines on each
of the three coordinate axes, since setting any two of the x, y, z variables equal to
zero satisfies the implicit equation. The double lines on the y and z axes do not
have pinch points and lie inside the image of the parametric map. Like the previous
Examples, some of the points on the x-axis are whiskers that are not images of the
parameters, for example, x = u1u2 = 7 and y = z = 0. Only points between the
pinch points are in the image of the parametric map: from (8.4), (8.5), if y = z = 0,
then u0 = 0, and the real ratio x = x1

x0
= u1u2

−u2
1−u2

2
is constrained to −0.5 ≤ x ≤ 0.5.

In polar coordinates where u1 = ρ cos θ, u2 = ρ sin θ, the parametric plot can be
done piecewise. The first piece has no pinch points and looks like a smooth saddle
surface.

x0 = u20 − u21 − u22 = 1 =⇒ u20 = 1 + u21 + u22 = 1 + ρ2

x =
x1
x0

= u1u2 = ρ2 cos θ sin θ

y =
x2
x0

= u0u2 = ρ sin θ
√

1 + ρ2

z =
x3
x0

= u0u1 = ρ cos θ
√
1 + ρ2.

For the other piece, ρ ≥ 1, as shown in Figure 3:

x0 = u20 − u21 − u22 = −1 =⇒ u20 = −1 + u21 + u22 = ρ2 − 1

x =
x1
x0

= −u1u2 = −ρ2 cos θ sin θ

y =
x2
x0

= −u0u2 = −ρ sin θ
√
ρ2 − 1

z =
x3
x0

= −u0u1 = −ρ cos θ
√
ρ2 − 1.

Figure 4. shows both pieces plotted together.
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Example 8.4. Another set of parametric equations falling in case i) of Theorem 6.2:

x0 = u20 − u21 (8.6)

x1 = u21 − u22

x2 = u1u2

x3 = u0u2

with homogeneous implicit equation

(x23 − x22)
2 + x0x1(x

2
3 − x22)− x20x

2
2 = 0. (8.7)

This surface also has two pinch points, but only one double line visible in the {x0 �= 0}
affine neighborhood with coordinates (x, y, z), where the implicit equation is:

(z2 − y2)2 + x(z2 − y2)− y2 = 0. (8.8)

The solution set of (8.8) contains the x-axis, but if y = z = 0 and x0 �= 0 then

u2 = 0 and x = x1
x0

=
u2
1

u2
0−u2

1
has values in (∞,−1] ∪ [0,∞). So, the whisker is the

segment from (−1, 0, 0) to (0, 0, 0), unlike in Example 8.3 where the double line met
the parametrized surface in a segment and the whiskers formed two rays.

The other two double lines are real, but contained in the plane at infinity, {x0 =
0}, where they meet the first double line at a real triple point.

The two pieces of the parametric map formed by positive or negative values of
x0 = u20 − u21 do not intersect in xyz-space, and each contains one pinch point.

In polar coordinates where u1 = ρ cos θ, u2 = ρ sin θ, the parametric map can be
plotted piecewise:

x0 = u20 − u21 = 1 =⇒ u20 = 1 + u21 = 1 + ρ2 cos2 θ

x =
x1
x0

= u21 − u22 = ρ2(cos2 θ − sin2 θ)

y =
x2
x0

= u1u2 = ρ2 cos θ sin θ

z =
x3
x0

= u0u2 = ρ sin θ
√
1 + ρ2 cos2 θ.

This piece is shown by itself in Figure 5. For the other piece, the polar coordinates
in the domain are changed to u0 = ρ cos θ, u2 = ρ sin θ:

x0 = u20 − u21 = −1 =⇒ u21 = 1 + u20 = 1 + ρ2 cos2 θ

x =
x1
x0

= −(u21 − u22) = −1− ρ2(cos2 θ − sin2 θ)

y =
x2
x0

= −u1u2 = −ρ sin θ
√
1 + ρ2 cos2 θ

z =
x3
x0

= −u0u2 = −ρ2 cos θ sin θ.
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See Figure 6. in Appendix 11, where both pieces are shown, the first in front of the
second, and they are congruent as geometric objects in xyz-space.

Example 8.5. Another set of parametric equations falling in case i) of Theorem 6.2:

x0 = u21 − u22

x1 = u1u2 − u20

x2 = u0u2

x3 = u0u1

has homogeneous implicit equation

(x23 − x22)
2 + x0x1(x

2
3 − x22)− x20x2x3 = 0. (8.9)

This implicit equation differs from (8.7) only in the last term.
Looking at the {x3 �= 0} affine neighborhood with coordinates (x, y, z, 1) (instead

of the {x0 �= 0} neighborhood as in previous Examples), the implicit equation where
x3 = 1 becomes

(1− z2)2 + xy(1− z2)− x2z = 0.

This surface in R
3 has two double lines, but the third, and the triple point where

they meet, are at the {x3 = 0} plane at infinity. The two visible double lines are
parallel to each other and to the y-axis; one is {x = 0, z = 1} which is entirely in
the image of the parametric map, the other is {x = 0, z = −1}, which has two pinch
points bounding a segment of whisker points.

Figure 7. in Appendix 11 is a view in a small box around the whisker: −4 <
x, y < 4, −2 < z < 0, so only one double line is visible. Figure 7. was generated by
plotting points on curves on the surface where z is constant. Figure 8. shows a wider
view, with both double lines.

Example 8.6. This example shows how the surface from Example 8.4 can undergo
a transformation so that it looks like the surface in Example 8.3. Both are in the
same equivalence class of parametrizations, from case i) of Theorem 6.2, so this will
give an example of an equivalence by a specific real matrix B as in Theorem 4.3.

The plane {x = −0.5} is the perpendicular bisector of the whisker segment in the
surface (8.8) in xyz-space. This plane can be mapped to the plane at infinity, corre-
sponding to y0 = 0 in a new [y0 : y1 : y2 : y3] target space. There is a new coordinate
system (x′, y′, z′) for the affine neighborhood {y0 �= 0}. The transformation matrix

is B =

⎡
⎢⎢⎣

1 0 0 0
2 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦; let (y0, y1, y2, y3) = (x0, x1, x2, x3)B.
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Then, for any point where x0 = 1 and x1 = −0.5, we have y0 = x0+2x1 = 1−1 =
0.

The parametric equations (8.6) are transformed to new parametric equations:

y0 = u20 − u21 + 2(u21 − u22) = u20 + u21 − 2u22

y1 = u21 − u22

y2 = u1u2

y3 = u0u2,

and the implicit equation (8.7) is transformed to:

(y23 − y22)
2 + (y0 − 2y1)y1(y

2
3 − y22)− (y0 − 2y1)

2y22 = 0.

One double line is {y′ = z′ = 0}, where x′ = y1
y0

=
u2
1

u2
0+u2

1
, so the parametric image

meets the double line only in the segment 0 ≤ x′ ≤ 1 between two pinch points.
The other two double lines, which were at infinity in Example 8.4, are now visible at
{x′ = 0.5, y′ = ±z′}, meeting the first double line at a triple point, as in Example 8.3
and Figure 4.

Example 8.7. The following parametric equations:

x0 = u20 + u21 − u22 (8.10)

x1 = u21 − u22 (8.11)

x2 = u1u2

x3 = u0u2,

differ from those in Examples 8.4 and 8.6 only in the x0 expression (8.10). They fall
in case 3.a. of Proposition 5.4: the kernel of the coefficient matrix for these equations

looks like

⎡
⎣ 0 λ 0

λ μ 0
0 0 μ

⎤
⎦ and has determinant −μλ2.

The parametric image has a singularity that is different from a pinch point; there is
a point that looks like a union of a pinch point and a tangent plane, as in Example 2.2.
To demonstrate the expected instability of such a point, consider the following pertur-
bation of the parametric equations: change Equation (8.11) to x1 = u21− (1+ε)u22 for

small real ε. The kernel of the coefficient matrix changes to

⎡
⎣ −εμ λ 0

λ (1 + ε)μ 0
0 0 μ

⎤
⎦,

and has determinant −μ(λ2 + ε(1 + ε)μ2), which, for values of ε other than 0 or
−1, is in case 4.a. of Proposition 5.4 and in case i) or iii) from Theorem 6.2. The
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singularities in the 4.a. cases are two pinch points; the 3.a. case has one standard
pinch point and one point with the singularity from Example 2.2.

The polar coordinatization has two pieces, both shown in Figure 9., with u0 =
ρ cos θ, u1 = ρ sin θ:

x0 = u20 + u21 − u22 = 1 =⇒ u22 = u20 + u21 − 1 = ρ2 − 1

x =
x1
x0

= u21 − u22 = 1− ρ2 cos2 θ

y =
x2
x0

= u1u2 = ρ sin θ
√

ρ2 − 1

z =
x3
x0

= u0u2 = ρ cos θ
√
ρ2 − 1.

Similarly for the second piece,

x0 = u20 + u21 − u22 = −1 =⇒ u22 = u20 + u21 + 1 = ρ2 + 1

x =
x1
x0

= − (
u21 − u22

)
= −1− ρ2 cos2 θ

y =
x2
x0

= −u1u2 = −ρ sin θ
√

ρ2 + 1

z =
x3
x0

= −u0u2 = −ρ cos θ
√
ρ2 + 1.

These can be easily modified to get piecewise polar expressions for the perturbed
equations (with ε).

Example 8.8. The following parametric equations:

x0 = u20 + u21 + u22

x1 = 2u0u2

x2 = 2u0u1

x3 = u20 − u21 − u22,

satisfy the implicit equation x21 + x22 + x23 − x20 = 0, which is quadratic (unlike the
previous Examples in Section 8, which were all of degree 4). In the x0 = 1 affine
neighborhood, this is an equation for the unit sphere in 3-space, as mentioned in
Section 1. The parametric equations fall into case 1.c. from Proposition 5.4. A polar
coordinatization uses u1 = ρ cos θ, u2 = ρ sin θ, 0 ≤ ρ ≤ 1:

x =
2u0u2

u20 + u21 + u22
= 2ρ sin θ

√
1− ρ2 (8.12)

y =
2u0u1

u20 + u21 + u22
= 2ρ cos θ

√
1− ρ2

z =
u20 − u21 − u22
u20 + u21 + u22

= 1− 2ρ2.
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Some perturbations of the parametric equations continue to describe quadric sur-
faces, for example, if x1 = 2u0u2+εu0u1, then the parametrization is still in case 1.c.
and the equations with x = 2ρ(sin θ+ε cos θ)

√
1− ρ2 describe an ellipsoid. This per-

turbation results just from a linear transformation of the xyz-space, so the coefficient
matrices are equivalent. The curve where x = 0 is always the circle y2 + z2 = 1.

Example 8.9. Another perturbation of the parametrization of the sphere from Ex-
ample 8.8 is:

x0 = u20 + u21 + u22

x1 = 2u0u2 + εu1u2

x2 = 2u0u1

x3 = u20 − u21 − u22,

which changes the polar formula (8.12) to

x = 2ρ sin θ
√
1− ρ2 + ερ2 sin θ cos θ.

The homogeneous implicit equation is

4x21(x3 + x0)
2 + (x22 + x23 − x20)(2(x3 + x0) + εx2)

2 = 0.

So for ε = 0, x0 = 1, this is the sphere from Example 8.8, but for any other value of ε,

the kernel of the coefficient matrix looks like

⎡
⎣ 0 0 −εμ

0 λ 2μ
−εμ 2μ −λ

⎤
⎦, with determinant

−ε2λμ2. This is case 3.a. from Proposition 5.4, so the coefficient matrix is not
equivalent to the coefficient matrix for the sphere.

This is a notable example in that it is a family of surfaces that always, except
at ε = 0, retains an unstable singularity at (0, 0,−1) (locally, the same pinch point
meeting a plane shape as in Example 8.7). There are more pinch points, (± ε

2 , 0,−1)
that move toward each other along a double line as ε → 0. Another double line is given
by the equations {x = 0, z+ ε

2y+1 = 0}, which intersects the circle {x = 0, y2+z2 = 1}
at two points, (0, 0,−1) and another pinch point,

(
0, −4ε

ε2+4
, ε

2−4
ε2+4

)
. See Figure 10.

Remark 8.10. The real surfaces from Examples 8.7 and 8.9 falling in case 3.a. from
Proposition 5.4 are related by complex equivalence as in Theorem 4.3, but are not
related by real equivalence. Their corresponding real pencils are not congruent over
R. There is an analogue of Theorem 6.2, not proved here, stating that case 3.a.
admits exactly two real equivalence classes. The surfaces are different geometrically,
in their number of pinch points and whiskers, and because the parametric equations
from Example 8.9 have an image in RP 3 which is contained in an affine neighborhood,
while the image from Example 8.7 cannot be contained in any affine neighborhood.
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Example 8.11. One more perturbation of the parametrization of the sphere from
Example 8.8 is given by:

x0 = u20 + u21 + u22

x1 = 2u0u2

x2 = 2u0u1

x3 = u20 − u21 − (1 + ε)u22.

The homogeneous implicit equation is:

(
x22 +

(
1 +

ε

2

)
x21

)2
+ (x21 + x22)(x3 − x0)

2 + 2x0(x3 − x0)
(
x22 +

(
1 +

ε

2

)
x21

)
= 0.

At ε = 0, the polynomial is not irreducible, it factors as

(x21 + x22)(x
2
1 + x22 + x23 − x20),

so the zero set is a union of a sphere and some extraneous solutions, although only
the sphere is in the image of the parameters, and the second quadratic factor is the
lowest degree implicitization of the parametric equations at ε = 0.

For ε �= 0, the kernel of the coefficient matrix looks like

⎡
⎣

ελ
2 0 0
0 − (

1 + ε
2

)
λ μ

0 μ λ

⎤
⎦,

with determinant − ελ
2

((
1 + ε

2

)
λ2 + μ2

)
.

For ε = −2, the coefficients fall in case 3.a. from Proposition 5.4 and the surface
is similar in appearance to the surfaces from Example 8.9, with a T-shaped self-
intersection set along two double lines: the z-axis and {(x, 0, 1)}. It has the implicit
equation

x21(x3 − x0)
2 + x22(x

2
2 + x23 − x20) = 0.

Considering the family of surfaces for real values of ε in the x0 = 1 neighborhood
with coordinates (x, y, z), the z-axis is always a double line (except at ε = 0). For
non-zero ε > −2, the parametric equations are in case 4.a. from Proposition 5.4 and
case iii) from Theorem 6.2, the Cross-Cap Surface. For ε < −2 the equations fall in
case ii) from Theorem 6.2, in the same class as the Roman Surface.

The Cross-Cap Surface has one real double line and two singularities. The Roman
Surface has three real double lines and six singularities. The intermediate surface at
ε = −2 has two real double lines and four singularities. The animation feature
of Surface Plotter ([SP]) can be used with ε as a time parameter, to observe the
transitions from Cross-Cap to sphere to Cross-Cap to the intermediate surface to the
Roman Surface, as ε decreases. The double lines appearing in the Roman Surface,
depending on ε, are given by the equations {z = 1, y2 +

(
1 + ε

2

)
x2 = 0}.
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9 Combinatorial Models

The surfaces described above, even with the pictures in Appendix 11, can be hard
to understand and visualize. As a guide for interpretation, geometric constructions
call “combinatorial surfaces” are useful. Triangles and squares can be joined along
common edges or corners to create a surface “ambient isotopic” to the actual image
of the parameters in xyz-space. Two surfaces M0 and M1 in R

3 are ambient isotopic
means: there is a continuous map F : R3 × [0, 1] → R

3 such that for every t ∈ [0, 1],
F (., t) is a homeomorphism, F (., 0) = idR3 , and F (M0, 1) = M1.

Imagine a solid cube, centered at the origin of R3, so that each face of the cube
is perpendicular to one of the coordinate axes, and each edge is of length 2. Now
remove two smaller cubes from this cube: one where the larger cube intersects the
first octant {x > 0, y > 0, z > 0}, and another from {x < 0, y < 0, z > 0}. The Cross-
Cap Surface is ambient isotopic to the boundary of the remainder of this solid. Pinch
points are represented where corners meet, at (0, 0, 0), and (0, 0, 1). The segment
between the pinch points on the z-axis represents the self-intersection set.

Imagine this solid again, but remove two additional cubes, at {x < 0, y > 0, z < 0}
and {x > 0, y < 0, z < 0}. What is left is four solid cubes, each touching two others
along an edge, and each meeting the other three at the origin point. The solid’s
boundary has six pinch points: (±1, 0, 0), (0,±1, 0), and (0, 0,±1), with the three
self-intersection segments meeting in a triple point at the center. This surface is a
model of the Roman Surface.

10 Computer Software and Graphic Media

[Derive] was used in the calculation of determinants when using resultants to elimi-
nate parameters. On a personal computer, reasonable time periods (on the order of
seconds) were spent on matrices of size up to 10× 10.

Surface Plotter ([SP]) was used to plot surfaces during the research for this project
and for the final draft of this paper. In most cases, converting to polar coordinates
was more efficient than the quadratic parametrizations, in terms of visualizing the
whole surface rather than just a local patch.

Level curves of surfaces were also observed using plots generated by a basic
program on an Amiga personal computer.

Paper models were of use in the visualization of, and communication about, the
pinch points, self-intersections, and symmetry of some surfaces; the square pages of
a desk calendar (appropriately, for non-orientable surfaces, [L1], [L2]) were suitable
as an artistic medium.
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11 Appendix — Illustrations

[Some of the original illustrations from 1991 were not available, and were recon-
structed in 2018 using [Maple∗], as indicated.]

• Figure 1. Steiner’s Roman Surface, plotted using polar parameters, as in Ex-
ample 8.1, using Surface Plotter [SP].

• Figure 2. Steiner’s Cross-Cap Surface, plotted using polar parameters, as in
Example 8.2, using Surface Plotter [SP].

• Figure 3. One piece of the polar parametrization from Example 8.3, using
Surface Plotter [SP].

• Figure 4. Both pieces of the surface from Example 8.3, using [Maple∗].

• Figure 5. One piece of the polar parametrization from Example 8.4, using
Surface Plotter [SP].

• Figure 6. Both pieces of the polar parametrization from Example 8.4, using
Surface Plotter [SP].

• Figure 7. A local view of the surface from Example 8.5 near a whisker segment.
The plot was generated by basic code on an Amiga personal computer.

• Figure 8. A wider view of the surface from Example 8.5, using [Maple∗].

• Figure 9. Both pieces of the polar parametrization from Example 8.7, using
Surface Plotter [SP].

• Figure 10. The surface from Example 8.9, with ε = 6, using [Maple∗].
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12 Postscript — added in 2018

This Bachelor’s thesis was submitted to the Department of Mathematics to fulfill
the requirements to graduate in May 1991 with High Honors in mathematics. It
was supervised by Art Schwartz, and my research was supported in the Summer of
1990 by a Research Experiences for Undergraduates grant from the National Science
Foundation.

This thesis remained unpublished (and unavailable on the internet until 2018),
but Prof. Schwartz and I continued to work on this topic, leading to a paper published
in 1996: [CSS∗], and also a web page with graphics and animation, currently at this
address: [C∗]. Some of my subsequent research papers (which I hope have better
writing, proofs, and graphics than here. . . ) have been on related topics, in real and
complex projective geometry, linear algebra and matrix pencils, analogues of Theorem
4.3 and Theorem 6.2, and the mathematics of surfaces in computer graphics.

Theorem 6.2 stated the classification of 2-dimensional real pencils of 3 × 3 sym-
metric matrices up to real congruence, but only for the case of distinct root ratios.
The classification for the other cases was essentially known to me and Schwartz by
1991, but not included in the thesis I submitted in early 1991. In the following “Ad-
dendum” Section, I am copying some of my notes from later in 1991, in a format
similar to Proposition 5.4 and Example 5.5. We ended up using different notation
in the published paper [CSS∗], but this classification of real pencils is the calcula-
tion behind the main geometric result of [CSS∗], the classification of quadratically
parametrized maps into the nine real types of Steiner Surfaces (three non-degenerate
types in case 4, three degenerate quartics with v = 0, three ruled cubics with v = 1)
and quadric surfaces (case 1).

2018 contact information:

Department of Mathematical Sciences

Purdue University Fort Wayne

Fort Wayne, IN 46805-1499

e-mail CoffmanA@pfw.edu
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13 Addendum — notes from 1991

In the following Proposition, the (ρ, v) pair from Notation 5.3 is modified by replacing
ρ with symbols indicating whether each of the ρ root ratios corresponds to a matrix
with eigenvalues of the same sign (+), opposite signs (−), or which are non-real (0).

Proposition 13.1. Any two-dimensional real pencil of symmetric three-by-three ma-
trices falls into exactly one of the following cases, which determines its congruence
class over R:

1. dS(λ, μ) is identically zero.

(a) (ρ, v) = (∞, 0).

(b) (ρ, v) = (∞, 1).

(c) (ρ, v) = (∞, 2).

i. Two distinct, real root ratios each correspond to a matrix of rank 1.

ii. No real root ratio [λ : μ] will give an intersection with V , but there
are two complex intersections.

2. dS(λ, μ) has one root ratio (of multiplicity three).

(a) (ρ, v) = (1, 0) = (−, 0).

(b) (ρ, v) = (1, 1) = (+, 1).

3. dS(λ, μ) has two distinct root ratios.

(a) (ρ, v) = (2, 0).

i. (+−, 0).

ii. (−−, 0).

(b) (ρ, v) = (2, 1).

i. (++, 1).

ii. (+−, 1).

4. dS(λ, μ) has three distinct root ratios.

(a) (ρ, v) = (3, 0).

i. (+ +−, 0).

ii. (−−−, 0).

iii. (− 0 0, 0).
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Example 13.2.

• 1.a.

⎡
⎣ 0 λ 0

λ 0 μ
0 μ 0

⎤
⎦ 1.b.

⎡
⎣ λ μ 0

μ 0 0
0 0 0

⎤
⎦

• 1.c.i.

⎡
⎣ λ 0 0

0 μ 0
0 0 0

⎤
⎦ 1.c.ii.

⎡
⎣ λ μ 0

μ −λ 0
0 0 0

⎤
⎦

• 2.a.

⎡
⎣ 0 λ μ

λ μ 0
μ 0 0

⎤
⎦ 2.b.

⎡
⎣ λ 0 μ

0 μ 0
μ 0 0

⎤
⎦

• 3.a.i.

⎡
⎣ 0 λ 0

λ μ 0
0 0 μ

⎤
⎦ 3.a.ii.

⎡
⎣ 0 λ 0

λ μ 0
0 0 −μ

⎤
⎦

• 3.b.i.

⎡
⎣ λ 0 0

0 λ 0
0 0 μ

⎤
⎦ 3.b.ii.

⎡
⎣ 0 λ 0

λ 0 0
0 0 μ

⎤
⎦

• 4.a.i.

⎡
⎣ λ 0 0

0 μ+ λ 0
0 0 −μ

⎤
⎦ 4.a.ii.

⎡
⎣ λ 0 0

0 μ− λ 0
0 0 −μ

⎤
⎦

• 4.a.iii.

⎡
⎣ λ μ 0

μ −λ 0
0 0 −μ

⎤
⎦

Remark 13.3. The 4.a. cases were established in Theorem 6.2. The two 3.a. cases
appeared in Examples 8.7 and 8.9, as mentioned in Remark 8.10. Note that even with
the refined +/− / 0 invariant for singular matrices in a real pencil, the information
about rank 1 matrices (the number v) is still needed to distinguish case 3.a.i. with
(+−, 0) from 3.b.ii. with (+−, 1), and the two cases from 1.c.

Remark 13.4. The quadratically parametrized maps corresponding to case 1. of
Propositions 5.4 and 13.1 have images contained in quadric surfaces. In cases 1.a.,
1.b., and 1.c.i., the real parametric image is contained in (but not necessarily equal
to) a real ruled quadric surface (cone, cylinder, hyperboloid of one sheet, etc., de-
pending on the affine neighborhood). In case 1.c.ii., the real parametric image is a
sphere, as in Example 8.8, or something projectively equivalent to a sphere (ellipsoid,
paraboloid, hyperboloid of two sheets).
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[A] F. Apéry, Models of the Real Projective Plane, Vieweg, Braunschweig,
1987. MR 0986729 (91a:57029), Zbl 0623.57001.
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