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Abstract

We construct an example of a smooth map C → C
2 which vanishes to

infinite order at the origin, and such that the ratio of the norm of the z̄
derivative to the norm of the z derivative also vanishes to infinite order.
This gives a counterexample to strong unique continuation for a vector
valued analogue of the Beltrami equation.

1 Introduction

We will construct an example of a smooth function u : C → C2 which has
an isolated zero of infinite order at the origin (‖z−ku(z)‖ → 0 as z → 0 for all
k ≥ 0), and where the ratio of norms of derivatives ‖uz̄‖/‖uz‖ is small, also
vanishing to infinite order at z = 0. This behavior is obviously different from
that of a map u with uz̄ ≡ 0, which would be holomorphic and could not have
an isolated zero of infinite order. This vector valued case is also different from
the complex scalar case, where solutions u : C → C of the well-known Beltrami
equation uz̄ = a(z)uz, for small a(z), also cannot vanish to infinite order at an
isolated zero ([B], [CH], [AIM], [R]).

More precisely, we will show in Section 4 that in a neighborhood of the
origin, u(z) is a solution of a Beltrami-type system of differential equations,
which is linear, elliptic, and has continuous coefficients very close to those of
the Cauchy-Riemann system, but does not have the strong unique continuation
property. In Theorem 4.1, we verify the coefficients are not Lipschitz continuous.
Counterexamples to the weak unique continuation property for elliptic Beltrami
systems have been considered by [IVV].

The construction was motivated by an example of Rosay ([R]) and questions
posed by [IS], who were considering the unique continuation problem for systems
of equations from almost complex geometry.

MSC 2010: 35A02 (Primary); 30G20, 32W50, 35J46 (Secondary)
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In Section 2, we develop a general framework for constructing smooth maps
C → C2 vanishing to infinite order. In Section 3, we present both Rosay’s
example and our new example. In Section 5 we state some open questions.

2 General Setup

2.1 Annular cutoff functions

Start with a real valued function s(x) which is smooth on R, with s ≡ 0 on
[0, 14 ], s increasing on [ 14 ,

3
4 ], s(

1
2 ) =

1
2 , s

′(12 ) = 2, s′′(12 ) = 0, and s ≡ 1 on [ 34 , 1].
For r1 > 0 and two parameters 0 < r < r1 and 0 < Δr < r1 − r, denote

the annulus Ar,Δr = {z = x + iy ∈ C : r ≤ |z| ≤ r + Δr} (contained in the
disk Dr1), and define a family of functions χr,Δr : Ar,Δr → R by the formula

χr,Δr(z) = s
(

|z|−r
Δr

)
. At a particular point z̃ = (x̃, ỹ) ∈ Ar,Δr,

∂

∂x
[χr,Δr(x, y)](x̃,ỹ) =

∂

∂x

[
s

(√
x2 + y2 − r

Δr

)]
(x̃,ỹ)

= s′
(√

x̃2 + ỹ2 − r

Δr

)
· x̃√

x̃2 + ỹ2
· 1

Δr

= s′
( |z̃| − r

Δr

)
· x̃

|z̃|Δr
.

The y derivative is similar, and the z, z̄ derivatives are complex linear combi-
nations. In particular,

∂

∂z̄
χr,Δr(z) =

∂

∂z
χr,Δr(z) = s′

( |z| − r

Δr

)
· x+ iy

2|z|Δr
(1)

=⇒
∣∣∣∣ ∂∂z̄ χr,Δr(z)

∣∣∣∣ =

∣∣∣∣ ∂∂zχr,Δr(z)

∣∣∣∣ ≤ m01

Δr
(2)

for some constant m01 > 0 not depending on r1, r or Δr.
For higher derivatives of χr,Δr, the following Lemma is a simplified version

of the Faà di Bruno formula for derivatives of composites.

Lemma 2.1. For k ≥ 0, there exist polynomials pabc(x1, x2, x3), qabc(x1, x2, x3)
indexed by a, b, c ≥ 0, a+ b = k, c ≤ k, with constant complex coefficients (not
depending on r1, r, Δr, or s), so that

∂a

∂za
∂b

∂z̄b
χr,Δr(z) =

k∑
c=0

s(c)
( |z| − r

Δr

)
· pabc(z, z̄,Δr) + |z|qabc(z, z̄,Δr)

|z|2k(Δr)k
.

Proof. The k = 0 case is trivial and the k = 1 case is stated above. We record
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the second derivatives:

∂2

∂z̄2
χr,Δr(z) =

∂2

∂z2
χr,Δr(z)

= s′′
( |z| − r

Δr

)
z2

4|z|2(Δr)2
+ s′

( |z| − r

Δr

) −z2

4|z|3Δr
, (3)

∂2

∂z∂z̄
χr,Δr(z) = s′′

( |z| − r

Δr

)
1

4(Δr)2
+ s′

( |z| − r

Δr

)
1

4|z|Δr
.

The proof for all larger k is by induction on k; the calculation is straightforward
and omitted here.

It follows as a consequence of the Lemma that there are positive constants
mab (indexed by a, b ≥ 0, a+ b = k, and depending on the choices of s and r1,
but not depending on r, Δr) so that∣∣∣∣ ∂a

∂za
∂b

∂z̄b
χr,Δr(z)

∣∣∣∣ ≤ mab

|z|2k(Δr)k

=⇒ max
z∈Ar,Δr

∣∣∣∣ ∂a

∂za
∂b

∂z̄b
χr,Δr(z)

∣∣∣∣ ≤ mab

r2k(Δr)k
.

In various cases, in particular k = 1 as in (2), the r2k can be improved (with a
smaller exponent), but it is good enough to use later in Lemma 2.3.

2.2 The basic construction of the examples

Let rn be a real sequence decreasing with limit = 0. Denote Δrn = rn − rn+1.
Let An denote the closed annulus

An = Arn+1,Δrn = {z ∈ C : rn+1 ≤ |z| ≤ rn},

so the union is a disk: Dr1 = (∪An)∪ {0}. The annular cutoff functions can be
indexed by n: χn = χrn+1,Δrn : An → R.

For n ∈ N, let p(n) be an increasing positive integer sequence; set p(0) = 0.
Let F (n) be a positive real valued sequence; set F (0) = 1. Define a function

u : Dr1 → C2 by u(0) =

[
0
0

]
and on the annulus An, for even n:

u(z) =

[
u1(z)
u2(z)

]
,

u1(z) = F (n)zp(n), (4)

u2(z) = χn(z)F (n− 1)zp(n−1) + (1− χn(z))F (n+ 1)zp(n+1). (5)

For odd n, switch the formulas for u1, u2.
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So far, for any s, rn, p, F , the function u is smooth on Dr1 \{0}, and extends
holomorphically for |z| ≥ r1. We also have that u and uz have non-zero value
at every point of Dr1 \ {0}; for n even (and switching indices if n is odd):

‖uz‖ ≥
∣∣∣∣ ∂∂zu1

∣∣∣∣ = F (n)p(n)|z|p(n)−1. (6)

2.3 Smoothness at the origin

An important property of the examples u : Dr1 → C
2 we want to construct is

that they are smooth at (and near) the origin. It is not enough to check only
that the components vanish to infinite order. In general, as easily constructed
examples would show, for functions f : RN → RM , f can vanish to infinite order
at the origin:

lim
�x→�0

f(�x)

‖�x‖k = �0

for all whole numbers k, but need not be smooth. Our approach to proving
smoothness of our examples will be to show u1, u2, and all their higher partial
derivatives approach 0; this implies vanishing to infinite order, as in the following
Lemma.

Lemma 2.2. Given f : R2 \ {�0} → R1, suppose f is smooth and for each
j, k = 0, 1, 2, 3, . . .,

lim
(x,y)→�0

∂k+jf(x, y)

∂xk∂yj
= 0.

Then extending f so that f(0, 0) = 0 defines a smooth function on R
2 that

vanishes to infinite order at the origin.

Proof. f is continuous at �0 by hypothesis (j = k = 0). To show f is smooth, we
only need to show every partial derivative of order � of f exists at �0, and has

value 0; then it follows that for k + j = �, ∂k+jf(x,y)
∂xk∂yj is continuous at �0.

The proof is by induction on �; suppose for any non-commutative word

xk1yj1 · · ·xkayjb with k1+ · · · ka+j1+ . . .+jb = k+j = �, ∂�

∂xk1yj1 ···xkayjb
f(x, y)

exists at �0 and has value 0. Then, the x-derivative at the origin is (with the
y-derivative being similar):

∂

∂x

(
∂�f(x, y)

∂xk1yj1 · · ·xkayjb

)]
(0,0)

= lim
t→0

∂�

∂xk1yj1 ···xkayjb
f(0 + t, 0)− ∂�

∂xk1yj1 ···xkayjb
f(0, 0)

t

= lim
t→0

∂�

∂xk∂yj f(t, 0)− 0

t
.
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Let g(t) = ∂�

∂xk∂yj f(t, 0) for t 
= 0; then lim
t→0

g(t) = 0 by hypothesis, and

g′(t) =
∂�+1

∂xk+1∂yj
f(t, 0).

L’Hôpital’s Rule applies to the above limit:

lim
t→0

g(t)

t
= lim

t→0

g′(t)
1

= lim
t→0

∂�+1

∂xk+1∂yj
f(t, 0) = 0.

The property of vanishing to infinite order follows from Taylor approximation
at the origin.

For our examples u, we want to choose rn, p, and F , so that u is smooth
and vanishes to infinite order at 0. The following criterion for smoothness will
be verified for both the Examples in Section 3.

Lemma 2.3. If (Δrn/rn)
(Δrn+2/rn+2)

is a bounded sequence and, for each integer k ≥ 0,

lim
n→∞

F (n+ 1)(p(n+ 1))kr
p(n+1)−4k
n

(Δrn/rn)k
= 0, (7)

then u is smooth and vanishes to infinite order at the origin.

Proof. From Lemma 2.2 and the construction of u, it is enough to show, for any
non-negative integers a, b, with a+ b = k, that

max
z∈An

∣∣∣∣∣
(

∂

∂z

)a(
∂

∂z̄

)b

u1

∣∣∣∣∣, max
z∈An

∣∣∣∣∣
(

∂

∂z

)a(
∂

∂z̄

)b

u2

∣∣∣∣∣
both have limit 0 as n → ∞.

The following estimates for the derivatives assume n is even, and sufficiently
large compared to k. The derivatives of u1 = F (n)zp(n) (4) are easy:∣∣∣∣∣

(
∂

∂z

)a(
∂

∂z̄

)b

u1

∣∣∣∣∣ ≤
∣∣∣F (n)p(n)(p(n)− 1) · · · (p(n)− k + 1)zp(n)−k

∣∣∣
≤ F (n)(p(n))krp(n)−k

n (8)

The derivatives of u2(z) (5) are considered one term at a time. For the first
term: (

∂

∂z

)a(
∂

∂z̄

)b (
χn(z)F (n− 1)zp(n−1)

)
= F (n− 1)

(
∂

∂z

)a
(((

∂

∂z̄

)b

χn(z)

)
· zp(n−1)

)

= F (n− 1)

2a∑
a1+a2=a

((
∂

∂z

)a1
(

∂

∂z̄

)b

χn(z)

)((
∂

∂z

)a2

zp(n−1)

)
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The sum is over the 2a terms (with many repeated) that result from applying
the product rule a times.

By Lemma 2.1,∣∣∣∣∣
(

∂

∂z

)a1
(

∂

∂z̄

)b

χn(z)

∣∣∣∣∣ ≤ ma1b

|z|2(a1+b)(Δrn)a1+b
,

and ∣∣∣∣( ∂

∂z

)a2

zp(n−1)

∣∣∣∣ = p(n− 1) · · · (p(n− 1)− a2 + 1)|z|p(n−1)−a2

≤ (p(n− 1))a2 |z|p(n−1)−a2 .

Let mk = max
a+b≤k

mab. Then∣∣∣∣∣
(

∂

∂z

)a(
∂

∂z̄

)b (
χn(z)F (n− 1)zp(n−1)

)∣∣∣∣∣
≤ F (n− 1)2a max

a1≤a

{
ma1b

|z|2(a1+b)(Δrn)a1+b

}
max
a2≤a

{
(p(n− 1))a2 |z|p(n−1)−a2

}
≤ F (n− 1)2a

mk

|z|2k(Δrn)k
(p(n− 1))a|z|p(n−1)−a

≤ F (n− 1)2k
mk

(Δrn)k
(p(n− 1))k|z|p(n−1)−3k

≤ 2kmk
F (n− 1)(p(n− 1))kr

p(n−1)−3k
n

(Δrn)k
. (9)

Similarly for the second term of u2(z),∣∣∣∣∣
(

∂

∂z

)a(
∂

∂z̄

)b (
(1− χn(z))F (n+ 1)zp(n+1)

)∣∣∣∣∣
≤ 2kmk

F (n+ 1)(p(n+ 1))kr
p(n+1)−3k
n

(Δrn)k
. (10)

So, the criteria for all the derivatives of u to vanish at the origin are that the
expressions (8), (9), and (10) must all have limit 0 as n → ∞. The hypothesis
(7) is equivalent to (10)→ 0. Comparing (10) to (8) by shifting the index in (8)
from n to n+ 1, this scalar multiple of (10) is much larger:

F (n+ 1)(p(n+ 1))kr
p(n+1)−3k
n

(Δrn)k
> F (n+ 1)(p(n+ 1))kr

p(n+1)−k
n+1 ,

so if (10) has limit 0, then so does (8).

(10)→ 0 also implies F (n + 1)r
p(n+1)−k
n → 0, which is enough to show u

vanishes to infinite order: ‖z−ku(z)‖ → 0 as z → 0.
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Shifting the index in (9) from n to n + 2 gives the following quantity (11),
which is comparable to (10):

2kmk

F (n+ 1)(p(n+ 1))kr
p(n+1)−3k
n+2

(Δrn+2)k
(11)

< 2kmk
F (n+ 1)(p(n+ 1))kr

p(n+1)−4k
n

(Δrn/rn)k
· (Δrn/rn)

k

(Δrn+2/rn+2)k
,

and under the additional hypothesis that Δrn/rn
Δrn+2/rn+2

is a bounded sequence, (7)

also implies (9)→ 0.

2.4 Comparing first derivatives

We want to choose F , p, and rn so that
‖uz̄‖
‖uz‖ is small, as z → 0. For z ∈ An,

n even (and switching indices if n is odd), expanding the derivative and using
(2) gives:

‖uz̄‖ =

∣∣∣∣ ∂∂z̄ u2

∣∣∣∣
≤ m01

Δrn
F (n− 1)|z|p(n−1) +

m01

Δrn
F (n+ 1)|z|p(n+1)

=
m01

Δrn
|z|p(n)−1

[
F (n− 1)|z|p(n−1)−p(n)+1 + F (n+ 1)|z|p(n+1)−p(n)+1

]
.

Using (6) and introducing a factor g(n) > 0, for z ∈ An:

‖uz̄‖
‖uz‖ ≤ m01rng(n)

Δrnp(n)
·
[
F (n− 1)r

p(n−1)−p(n)
n+1 + F (n+ 1)r

p(n+1)−p(n)
n

]
g(n)F (n)

.(12)

The first fraction in the product is what we want to make small for large n,

depending on p and
Δrn
rn

. The second fraction we would like to make bounded,

depending on F and rn, and an arbitrary fudge factor g. The role of g is to
manage the size of F and simplify the calculation proving boundedness of the
second factor, possibly at the expense of affecting the rate at which the first
factor approaches 0.

3 Examples

Example 3.1. Rosay’s example ([R]) has p(n) = n, rn = 2−n+1, and Δrn
rn

= 1
2 .

Then (12) becomes:

‖uz̄‖
‖uz‖ ≤ m012g(n)

n
·
[
F (n− 1)2n + F (n+ 1)2−n+1

]
g(n)F (n)

. (13)
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The choice, as in ([R]), F (n) = 2n
2/2, satisfies the recursive formula

F (n− 1)2n = g(n)F (n), (14)

with g(n) =
√
2. This simplifies the second factor of the RHS of (13), so it is

easily seen to be bounded. The conclusion is ‖uz̄‖
‖uz‖ ≤ C1

n for z ∈ An, and since
1
n ≤ 1

− log2 |z| ≤ 1
n−1 on An,

‖uz̄‖
‖uz‖ ≤ C1

− log2 |z|
(15)

for all z ∈ D1 \ {0}.
To check that u is smooth and vanishing to infinite order at the origin, it is

enough to verify the condition of Lemma 2.3; for each fixed k ≥ 0:

lim
n→∞

2(n+1)2/2(n+ 1)k(2−n+1)(n+1−4k)

(2−1)k
= 0.

The goal of the next example is to improve upon the order of vanishing of
the ratio (15).

Example 3.2. Consider rn = 1
ln(n+1) , so r1 = 1

ln(2) ≈ 1.44, r2 = 1
ln(3) , . . . .

This radius shrinks much more slowly than in Example 3.1. Since

lim
n→∞

1− ln(n+1)
ln(n+2)

1/(n ln(n+ 2))
= 1,

there are constants C2, c2 > 0 so that for all n:

c2
n ln(n+ 2)

<
Δrn
rn

= 1− ln(n+ 1)

ln(n+ 2)
<

C2

n ln(n+ 2)
. (16)

Let p(n) = n2; then the inequality (12) becomes:

‖uz̄‖
‖uz‖ ≤ m01 · (n ln(n+ 2))g(n)

c2n2

·

[
F (n− 1)

[
1

ln(n+2)

]−2n+1

+ F (n+ 1)
[

1
ln(n+1)

]2n+1
]

g(n)F (n)
.

This motivates, in analogy with the previous Example, this choice of g and a
recursive formula for F (n) as in (14):

g(n) = ln(n+ 2),

F (n) = (ln(n+ 2))[2n−2]F (n− 1).

So F (1) = F (0) = 1, and for n > 1,

F (n) = (ln(n+ 2))[2n−2] · (ln(n+ 1))[2(n−1)−2] · · · (ln(5))4 · (ln(4))2
=

[
(ln(n+ 2))n−1 · (ln(n+ 1))n−2 · · · (ln(5))2 · (ln(4))1]2 .
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Then the following sequence of ratios is bounded above because it is convergent
as n → ∞:

F (n− 1)(ln(n+ 2))[2n−1] + F (n+ 1)(ln(n+ 1))−[2n+1]

g(n)F (n)

=
F (n− 1)(ln(n+ 2))[2n−1] + (ln(n+3))2n(ln(n+2))[2n−2]F (n−1)

(ln(n+1))[2n+1]

ln(n+ 2)(ln(n+ 2))[2n−2]F (n− 1)

= 1 +
(ln(n+ 3))2n

ln(n+ 2)(ln(n+ 1))[2n+1]
≤ C3.

Here we used the elementary calculus lemma that
(

ln(n+2)
ln(n)

)n
is a bounded

sequence.
The estimate for the ratio of derivatives on An, for even n, becomes:

‖uz̄‖
‖uz‖ ≤ |u2

z̄|
|u1

z|
≤ m01 · (n ln(n+ 2)) ln(n+ 2)

c2n2
· C3

=
m01(ln(n+ 2))2C3

c2n
=

C4(ln(n+ 2))2

n
(17)

<
C5(ln(n+ 1))2

n+ 2
. (18)

For z ∈ An,

1

ln(n+ 2)
≤ |z| ≤ 1

ln(n+ 1)

⇐⇒ (ln(n+ 1))2 ≤ 1

|z|2 ≤ (ln(n+ 2))2

⇐⇒ 1

n+ 2
≤ exp(− 1

|z| ) ≤
1

n+ 1
,

so

‖uz̄‖
‖uz‖ ≤ C5

1

|z|2 exp( 1
|z| )

,

for all z ∈ Dr1 \ {0}. It remains to check that u is smooth, and vanishes to
infinite order. The hypothesis on Δrn of Lemma 2.3 is satisfied (using (16)), so
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for fixed k, consider the expression:

F (n+ 1)(p(n+ 1))kr
p(n+1)−4k
n

(Δrn/rn)k

=

[
(ln(n+ 3))n(ln(n+ 2))n−1 · · · ln(4)]2 ((n+ 1)2)k

(
1

ln(n+1)

)(n+1)2−4k

(
1− ln(n+1)

ln(n+2)

)k
<

[
(ln(n+ 3))n(ln(n+ 2))n−1 · · · ln(4)]2 (n+ 1)2k

(ln(n+ 1))(n+1)2−4k
(

c2
n ln(n+2)

)k
<

[
(ln(n+ 3))n(ln(n+ 2))n−1 · · · ln(4)]2 (n+ 1)3k(ln(n+ 2))k

ck2(ln(n+ 1))(n+1)2−4k
.

The last expression has limit zero by the Ratio Test:

((ln(n+4))n+1(ln(n+3))n··· ln(4))2

ck2(ln(n+2))(n+2)2−4k
· (n+ 2)3k(ln(n+ 3))k

((ln(n+3))n··· ln(4))2
ck2(ln(n+1))(n+1)2−4k

· (n+ 1)3k(ln(n+ 2))k

=
(ln(n+ 4))2n+2(ln(n+ 1))(n+1)2−4k(n+ 2)3k(ln(n+ 3))k

(ln(n+ 2))(n+2)2−4k(n+ 1)3k(ln(n+ 2))k

<
(ln(n+ 4))2n+2+k(n+ 2)3k

(ln(n+ 2))2n+3+k(n+ 1)3k
→ 0,

again using the boundedness of
(

ln(n+2)
ln(n)

)n
.

4 A Beltrami-type system

Any smooth map u : C → C2, u =

[
u1

u2

]
, satisfies the following Beltrami-type

system of first-order differential equations at points where uz 
= 0:[
u1
z̄

u2
z̄

]
=

[
u1
z̄

u2
z̄

]
[u1

z u2
z]

|u1
z|2 + |u2

z|2
[

u1
z

u2
z

]
=

1

‖uz‖2
[

u1
z̄u

1
z u1

z̄u
2
z

u2
z̄u

1
z u2

z̄u
2
z

] [
u1
z

u2
z

]
(19)

= Q2×2(z)

[
u1
z

u2
z

]
.

For u constructed as in Section 2, on the annuli An with even n, u1
z̄ ≡ 0, so the

first row of the matrix in (19) is [0 0], and similarly the second row is [0 0] for
odd n. Define Q(0) to be the zero matrix.
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For a matrix Q(z) defined as in (19) by some fixed function u, the operator

L =
∂

∂z̄
−Q(z)

∂

∂z
is complex linear. If, on some neighborhood of z = 0, the

Q(z) entries are defined and small enough, then L is elliptic (in the sense of
[AIM] Section 7.4).

In the following Theorem, we consider Q(z) for the example u(z) from Ex-
ample 3.2. If we restrict u and Q to z in some sufficiently small neighborhood
of the origin, u will be a solution of the elliptic equation L(u) = 0.

Theorem 4.1. For u as in Example 3.2, let qij(z) =
ui
z̄u

j
z

‖uz‖2 denote the i, j

entry in the matrix Q(z) from (19).

• qij ∈ C∞(Dr1 \ {0}) ∩ C0(Dr1);

• qij vanishes to infinite order: |z−kqij(z)| → 0 as z → 0 for any k ≥ 0;

• The partial derivatives exist at the origin: ∂
∂xqij(0) =

∂
∂y qij(0) = 0;

• For any 0 < r < r1, q22 does not have the Lipschitz property on Dr.

Proof. The C∞ claim follows from the smoothness of u on Dr1 and the nonva-
nishing of uz for z 
= 0.

The sum |q11|2 + |q12|2 + |q21|2 + |q22|2 is exactly
‖uz̄‖2
‖uz‖2 , which vanishes to

infinite order as z → 0 for u as in Example 3.2. It follows that each qij also
vanishes to infinite order, which implies Q and the entries qij are continuous
at the origin, with the previously assigned values qij(0) = 0. The flatness also
implies the existence of all directional derivatives at the origin of C = R2; for
the x direction,

∂

∂x
qij

]
(x,y)=(0,0)

= lim
x→0

qij(x, 0)− qij(0, 0)

x
= 0.

The last claim takes up the rest of the Proof; the plan is to show there is a se-

quence of points xn ∈ C approaching 0 so that
∂

∂z̄

u2
z̄u

2
z

‖uz‖2
]
z=xn

is an unbounded

sequence. If q22 had a Lipschitz property on Dr, i.e., |q22(z1)−q22(z2)| ≤ K|z1−
z2| for some K and all z1, z2, then its derivatives on Dr \{0} would be bounded;
the unboundedness of the derivative also directly shows q22 /∈ C1(Dr). A real
variable analogue of this behavior is the function exp(−1/|x|) cos(exp(1/|x|)),
which vanishes to infinite order but has unbounded first derivative as x → 0.

It is enough, and simpler, to consider only n which are even and sufficiently
large. This will involve some estimates for derivatives that are more precise
than (9).

We choose the sequence xn = rn+1 +
1
2Δrn + 0i ∈ An; then by construction

of s and χn, χn(xn) =
1
2 , and (1) gives ∂χn

∂z̄ (xn) =
∂χn

∂z (xn) =
1

Δrn
. From (3),

∂2χn

∂z∂z̄
(xn) = −∂2χn

∂z2
(xn) = −∂2χn

∂z̄2
(xn) =

1

2xnΔrn

11



(this is where we use the s′′(12 ) = 0 assumption, to simplify the calculation).
For rn as in Example 3.2, 1

ln(n+2) < xn < 1
ln(n+1) , and Δrn = 1

ln(n+1) −
1

ln(n+2) satisfies

0 < c6n(ln(n+ 2))2 <
1

Δrn
< C6n(ln(n+ 2))2.

In the following expression,

∂

∂z̄

u2
z̄u

2
z

‖uz‖2 =
u2
z̄z̄u

2
z

‖uz‖2 +
u2
z̄u

2
zz

‖uz‖2 − u2
z̄u

2
z

∂
∂z̄ (u

1
zu

1
z + u2

zu
2
z)

‖uz‖4

=
u2
z̄z̄u

2
z

‖uz‖2 +
u2
z̄u

2
zz(u

1
zu

1
z + u2

zu
2
z)− u2

z̄u
2
z(u

1
zu

1
zz + u2

zz̄u
2
z + u2

zu
2
zz)

‖uz‖4 , (20)

the terms with the largest magnitude are the ones involving the second z-
derivatives, u1

zz and u2
zz. Evaluated at points in the sequence xn, these terms

individually grow at least as fast as some constant multiple of n. However, due
to some cancellations, the overall growth rate turns out to be less than n; the
Theorem will be proved by showing one of the terms is unbounded and the
remaining terms have a slower rate of growth.

The first cancellation is that the second and last terms in the numerator of
the second fraction in (20) are exactly opposites. This leaves two terms with

zz-derivatives; using the power rule on u1 = F (n)zn
2

in the interior of An gives:

u1
zz = u1

z ·
n2 − 1

z
.

(20) becomes:

u2
z̄z̄u

2
z

‖uz‖2 +
u2
z̄u

1
zu

1
z

(
u2
zz − (n2−1)u2

z

z

)
‖uz‖4 − u2

z̄u
2
zu

2
zz̄u

2
z

‖uz‖4 . (21)

We will show that the last of the three terms in (21) is the dominant one.
First, consider the ratio:

|u2
z|/|u1

z|
=

∣∣∣∣F (n− 1)(
∂χn

∂z
z(n−1)2 + χn · (n− 1)2z(n−1)2−1) (22)

+ F (n+ 1)(−∂χn

∂z
z(n+1)2 + (1− χn)(n+ 1)2zn

2+2n)

∣∣∣∣ / ∣∣∣F (n)n2zn
2−1
∣∣∣ .

The following calculation for z ∈ An is similar to that for the estimate (17).

|u2
z|

|u1
z|

≤
F (n− 1)

[∣∣∣∂χn

∂z

∣∣∣ |z|(n−1)2 + χn · (n− 1)2|z|n2−2n
]

F (n)n2|z|n2−1

+
F (n+ 1)

[∣∣∣∂χn

∂z

∣∣∣ |z|(n+1)2 + (1− χn)(n+ 1)2|z|n2+2n
]

F (n)n2|z|n2−1

12



From Example 3.2, recalling F (n) = (ln(n + 2))2n−2F (n − 1), 1
ln(n+2) ≤ |z| ≤

1
ln(n+1) , and

∣∣∣∂χn

∂z

∣∣∣ ≤ m01

Δrn
, it follows that there is some constant C7 > 1 so that

|u2
z|

|u1
z|

≤ C7 ln(n+ 2). (23)

To estimate the denominators of (21),

‖uz‖2
|u1

z|2
= 1 +

( |u2
z|

|u1
z|
)2

≤ 1 + (C7 ln(n+ 2))
2

=⇒ ‖uz‖2 ≤ C8(ln(n+ 2))2|u1
z|2.

So we get a lower bound for the third term in (21),∣∣∣u2
z̄u

2
zu

2
zz̄u

2
z

∣∣∣
‖uz‖4 ≥

∣∣u2
z̄

∣∣ ∣∣u2
z

∣∣2 ∣∣u2
zz̄

∣∣
C2

8 (ln(n+ 2))4|u1
z|4

, (24)

and consider (24) one factor at a time.

|u2
z̄|

|u1
z|

=

∣∣∣∂χn

∂z̄ · F (n− 1)z(n−1)2 − ∂χn

∂z̄ · F (n+ 1)z(n+1)2
∣∣∣∣∣F (n)n2zn2−1

∣∣ (25)

|u2
z̄|

|u1
z|
]
z=xn

=
1

Δrn

∣∣∣∣ 1

(ln(n+ 2))2n−2n2x2n−2
n

− (ln(n+ 3))2nx2n+2
n

n2

∣∣∣∣
≥ c6n(ln(n+ 2))2

(
(ln(n+ 1))2n−2

(ln(n+ 2))2n−2n2
− (ln(n+ 3))2n

n2(ln(n+ 1))2n+2

)
≥ c4(ln(n+ 2))2

n
. (26)

This lower bound (26) is comparable to the upper bound (17), which is used in

the next step to find a lower bound for
|u2

z|
|u1

z| (22). Note that the expression (22)

has two terms which, using the equality of ∂χn

∂z̄ and ∂χn

∂z when evaluated at xn,
match two of the terms from u2

z̄ in (25):

|u2
z|

|u1
z|
]
z=xn

=

∣∣∣∣∣ u2
z̄

u1
z

]
xn

+
(n− 1)2

2(ln(n+ 2))2n−2n2x2n−1
n

+
(ln(n+ 3))2n(n+ 1)2x2n+1

n

2n2

∣∣∣∣
≥ (n− 1)2(ln(n+ 1))2n−1

2(ln(n+ 2))2n−2n2
−
∣∣∣∣∣ u2

z̄

u1
z

]
xn

∣∣∣∣∣
− (ln(n+ 3))2n(n+ 1)2

2n2(ln(n+ 1))2n+1

≥ c9 ln(n+ 2)− C4
(ln(n+ 2))2

n
− C10

1

ln(n+ 1)

≥ c7 ln(n+ 2). (27)
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This lower bound is comparable to the upper bound (23). The remaining factor
from (24) involves second derivatives:

|u2
zz̄|/|u1

z|
=

∣∣∣∣F (n− 1)

(
∂2χn

∂z∂z̄
· z(n−1)2 + 2

∂χn

∂z̄
· (n− 1)2zn

2−2n

)
−F (n+ 1)

(
∂2χn

∂z∂z̄
· z(n+1)2 +

∂χn

∂z̄
· (n+ 1)2zn

2+2n

)∣∣∣∣ /|F (n)n2zn
2−1|

≥ F (n− 1)

F (n)n2

(∣∣∣∣∂χn

∂z̄

∣∣∣∣ (n− 1)2|z|−2n+1 −
∣∣∣∣∂2χn

∂z∂z̄

∣∣∣∣ |z|−2n+2

)
−F (n+ 1)

F (n)n2

(∣∣∣∣∂2χn

∂z∂z̄

∣∣∣∣ |z|2n+2 +

∣∣∣∣∂χn

∂z̄

∣∣∣∣ (n+ 1)2|z|2n+1

)
.

Evaluating at xn (again, for sufficiently large n),

|u2
zz̄|

|u1
z|
]
xn

≥ 1

(ln(n+ 2))2n−2n2

(
(n− 1)2

Δrnx
2n−1
n

− 1

2xnΔrn

1

x2n−2
n

)
− (ln(n+ 3))2n

n2

(
x2n+2
n

2xnΔrn
+

1

Δrn
(n+ 1)2x2n+1

n

)
≥ 1

(ln(n+ 2))2n−2n2

(
c6n(ln(n+ 2))2(n− 1)2(ln(n+ 1))2n−1

−1

2
C6n(ln(n+ 2))2(ln(n+ 2))2n−1

)
− (ln(n+ 3))2nC6(ln(n+ 2))2

n2

(
1

2(ln(n+ 1))2n+1

+
(n+ 1)2

(ln(n+ 1))2n+1

)
≥ c11n(ln(n+ 2))3. (28)

So, the term from (24) is bounded below by a product including factors from
(26), (27), and (28):∣∣∣u2

z̄(u
2
z)

2u2
zz̄

∣∣∣
‖uz‖4

⎤⎦
xn

≥ c4(ln(n+ 2))2(c7 ln(n+ 2))2c11n(ln(n+ 2))3

nC2
8 (ln(n+ 2))4

≥ c12(ln(n+ 2))3. (29)
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From the second term in (21), we consider the following quantity:

u2
zz −

(n2 − 1)u2
z

z

= F (n− 1)

(
∂2χn

∂z2
z(n−1)2 + 2

∂χn

∂z
(n− 1)2zn

2−2n

+χn · (n− 1)2(n2 − 2n)zn
2−2n−1

)
+F (n+ 1)

(
−∂2χn

∂z2
z(n+1)2 − 2

∂χn

∂z
(n+ 1)2zn

2+2n

+(1− χn) · (n+ 1)2(n2 + 2n)zn
2+2n−1

)
−F (n− 1)(n2 − 1)

(
∂χn

∂z
zn

2−2n + χn · (n− 1)2zn
2−2n−1

)
−F (n+ 1)(n2 − 1)

(
−∂χn

∂z
zn

2+2n + (1− χn) · (n+ 1)2zn
2+2n−1

)
.

The cancellation of the n4 quantities is the key step. The ratio∣∣∣∣u2
zz −

(n2 − 1)u2
z

z

∣∣∣∣ /|u1
z|

=

∣∣∣∣F (n− 1)

(
∂2χn

∂z2
z(n−1)2 +

∂χn

∂z
(n2 − 4n+ 3)zn

2−2n

−χn · (n− 1)2(2n− 1)zn
2−2n−1

)
+F (n+ 1)

(
∂2χn

∂z2
z(n+1)2 − ∂χn

∂z
(n2 + 4n+ 3)zn

2+2n

+(1− χn)(n+ 1)2(2n+ 1)zn
2+2n−1

)∣∣∣ / ∣∣∣F (n)n2zn
2−1
∣∣∣
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has an upper bound on the xn sequence:∣∣∣u2
zz − (n2−1)u2

z

z

∣∣∣
|u1

z|

⎤⎦
xn

≤ 1

(ln(n+ 2))2n−2n2

(
1

2xnΔrnx
2n−2
n

+
n2 − 4n+ 3

Δrnx
2n−1
n

+
(n− 1)2(2n− 1)

2x2n
n

)
+
(ln(n+ 3))2n

n2

(
x2n+2
n

2xnΔrn
+

(n2 + 4n+ 3)x2n+1
n

Δrn
+

(n+ 1)2(2n+ 1)x2n
n

2

)
≤ 1

(ln(n+ 2))2n−2n2

(
C6n(ln(n+ 2))2(

1

2
+ n2 − 4n+ 3)(ln(n+ 2))2n−1

+
1

2
(n− 1)2(2n− 1)(ln(n+ 2))2n

)
+
(ln(n+ 3))2n

n2

(
C6n(ln(n+ 2))2(

1

2
+ n2 − 4n+ 3)

1

(ln(n+ 1))2n+1

+
(n+ 1)2(2n+ 1)

(ln(n+ 1))2n

)
≤ C13n(ln(n+ 2))3. (30)

The middle term from (21), evaluated at points xn, has factors bounded by
(17), (27), and (30):∣∣∣∣∣∣

u2
z̄u

1
zu

1
z

(
u2
zz − (n2 − 1)u2

z/z
)

‖u‖4

∣∣∣∣∣∣
⎤⎦
xn

≤ |u2
z̄||u1

z|2
∣∣u2

zz − (n2 − 1)u2
z/z
∣∣

|u2
z|4

]
xn

=
|u2

z̄|
|u1

z|
]
xn

|u1
z|4

|u2
z|4
]
xn

∣∣u2
zz − (n2 − 1)u2

z/z
∣∣

|u1
z|

]
xn

≤ C4
(ln(n+ 2))2

n

1

(c7 ln(n+ 2))4
C13n(ln(n+ 2))3

≤ C14 ln(n+ 2). (31)
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The first term from (21) involves the second z̄-derivative:

|u2
z̄z̄|

|u1
z|

=

∣∣∣∂2χn

∂z̄2 F (n− 1)z(n−1)2 − ∂2χn

∂z̄2 F (n+ 1)z(n+1)2
∣∣∣∣∣F (n)n2zn2−1

∣∣
≤ F (n− 1)

F (n)n2

∣∣∣∣∂2χn

∂z̄2

∣∣∣∣ |z|−2n+2 +
F (n+ 1)

F (n)n2

∣∣∣∣∂2χn

∂z̄2

∣∣∣∣ |z|2n+2.

|u2
z̄z̄|

|u1
z|
]
xn

≤ 1

2xnΔrnn2

(
1

(ln(n+ 2))2n−2
· 1

x2n−2
n

+ (ln(n+ 3))2nx2n+2
n

)
≤ C6n(ln(n+ 2))2

2n2

(
(ln(n+ 2))2n−1

(ln(n+ 2))2n−2
+

(ln(n+ 3))2n

(ln(n+ 1))2n+1

)
≤ C15

(ln(n+ 2))3

n
.

The first term from (21) also approaches 0 for large n:

|u2
z̄z̄u

2
z|

‖uz‖2
]
xn

≤ |u2
z̄z̄|

|u1
z|
]
xn

|u2
z|

‖uz‖
]
xn

≤ C15
(ln(n+ 2))3

n
.

The conclusion from (20) and (21) is:∣∣∣∣∣ ∂∂z̄ u2
z̄u

2
z

‖uz‖2
∣∣∣∣∣
]
xn

≥ c12(ln(n+ 2))3 − C14 ln(n+ 2)− C15
(ln(n+ 2))3

n

>
c16
x3
n

.

5 Remarks and Questions

Remark 5.1. The regularity of the coefficients is an important consideration
in the analysis of unique continuation properties for some PDEs (for example,
[LNW] for strong UCP, and [IVV] for weak UCP), which is why we presented the
detailed Proof of Theorem 4.1. However, we do not yet understand the sharp-
ness of Example 3.2 and Theorem 4.1 for this particular unique continuation
problem. The question that naturally arises is: would improved regularity of
Q(z) (in addition to, or instead of, the flatness property) imply a strong unique
continuation property, or, oppositely, is there some counterexample where Q(z)
is smooth?

Remark 5.2. [R] shows how Example 3.1 can be modified so that the origin is
a non-isolated zero of u; it is a matter of replacing quantities zN in (4), (5) by
zN−1(z − an) for a sequence an and re-working the cutoff functions χn. Our
Example 3.2 can be modified in an analogous way but we have not worked out
all the details.
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Remark 5.3. By a construction analogous to (19), the function u from Example

3.2 also satisfies a real linear, elliptic equation of the form uz̄ = Q̃2×2uz. Q̃(z)
is not the same as Q(z) but also has entries vanishing to infinite order.

Remark 5.4. Another differential inequality, considered by [R], is

‖uz̄‖ ≤ K‖u‖α‖uz‖,

for 0 < α < 1. Our attempts to use the construction of Section 2 to find
smooth functions u satisfying the inequality and vanishing to infinite order
at an isolated zero have not yet met any success. [R] proves a weak unique
continuation property for α = 1

2 , but the strong property remains an open
question.
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