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1 Introduction

If T : C∪{∞} → C∪{∞} is a Möbius transformation of the extended complex
plane, it is well-known that the image under T of a line or circle is another line
or circle. It seems natural to consider the image T (E) of a non-circular ellipse
E ⊆ C, although as shown in Figure 1, such a curve is not always an ellipse. For
the sake of convenience, we will call a curve C a “möte,” for “Möbius Transfor-
mation of an Ellipse,” if C = T (E) for some non-circular ellipse E and Möbius
transformation T . We will also call two curves C1 and C2 in C ∪ {∞} “Möbius
equivalent” if there exists a Möbius transformation T such that C2 = T (C1).
Our main result is that two mötes, T1(E1) and T2(E2), are Möbius equivalent if
and only if E1 and E2 are ellipses with the same eccentricity. In this sense, the
eccentricity is an invariant of an ellipse not only under similarity transforma-
tions of the plane, but also under the larger group of Möbius transformations.
In the last Section we briefly consider some other special plane curves in the
extended complex plane.

2 Möbius transformations

We begin by summarizing some facts about Möbius transformations. The for-
mula for a Möbius transformation T : C ∪ {∞} → C ∪ {∞} is:

T (z) =
az + b

cz + d
, (1)

or
T (z) =

az̄ + b

cz̄ + d
, (2)

with complex coefficients that satisfy ad− bc �= 0, and the usual conventions for
∞ input and output, so that T is continuous, considering C ∪ {∞} as the Rie-
mann sphere. Any such T is one-to-one and onto, and M, the set of all Möbius
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Figure 1: Ellipse E with a non-convex central inversion (left), and with a convex
central inversion (right).

transformations, is a group under composition. For T ∈ M, the following are
equivalent: i) T (∞) = ∞, ii) c = 0, and iii) T restricted to C is a similarity
transformation of the plane. The similarities form a subgroup of M.

Inversion in a circle is also a special case of a Möbius transformation. For a
circle in C with center q ∈ C and radius r > 0, the formula for the inversion in
that circle is T (z) = r2

z̄−q̄ + q.
Finally, we recall that Möbius transformations are conformal — they pre-

serve angles where curves intersect (preserving or reversing the orientation of
the angle in cases (1), (2), respectively), and they also preserve tangency.

From this point, we will use the term “ellipse” only for non-circular ellipses
in the plane C, and we will use the term “circle” to refer to both circles in C and
extended straight lines, so a Möbius transformation takes a circle to a circle.

3 Central Inversions

As a special case of a möte, consider the image of an ellipse E under an inversion
in a circle C so that C and E have the same center. Such a möte generated by a
central inversion has appeared in different areas of geometry — it was described
by Proclus [13] as a special case of the intersection of a torus and a plane, so it
is called a “hippopede of Proclus.”

For sufficiently eccentric ellipses, it is clear from Figure 1 that the interior
of a hippopede need not be convex, and so a hippopede is not necessarily an
ellipse. In fact, no hippopede is an ellipse, but this is not so obvious for the less
eccentric ellipse in Figure 1, which is close to a circle, and so is its oval-shaped
image under inversion. Our first lemma proves this fact, considering without
loss of generality an ellipse centered at the origin, and inversion in the unit
circle.

Lemma 1 If E is an ellipse centered at 0 ∈ C, and T (z) = 1/z̄, then the image
T (E) is not an ellipse.

Proof: For any rotation around the origin, R(z) = eiθ · z, an easy calculation
checks T = R−1 ◦T ◦R. Since T (E) is just a rotation of the möte T (R(E)), T (E)
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is an ellipse if and only if T (R(E)) is an ellipse. So, we can assume E has been
rotated into “standard position,” with its major diameter on the real axis, and
given in terms of the real coordinates (x, y) (the components of the complex
coordinate z = x + iy) by:

E =
{

(x, y) :
x2

A2
+

y2

B2
= 1

}
, (3)

with 0 < B < A.
In the group of similarity transformations, the möte T (E) has the same

symmetries as the ellipse: reflections in the major and minor axes, and a 180◦

rotational symmetry. This is easily seen in Figure 1, and also follows from a short
calculation: if S is any of the similarity transformations z �→ z̄, z �→ −z̄, or z �→
−z, then S◦T = T ◦S, so S(T (E)) = T (S(E)) = T (E). If T (E) is an ellipse, then
its axes, which are its lines of reflection symmetry, must be the coordinate axes,
and T (E) contains the points T (±A+0i) = ± 1

A +0i and T (0±Bi) = 0± 1
B i, so it

must have an equation of the form A2x2+B2y2 = 1. However, it is easy to check
that the point (A+Bi)/

√
2 is on E , but T ((A+Bi)/

√
2) =

√
2(A+Bi)/(A2+B2)

does not satisfy the equation A2x2 + B2y2 = 1 unless A = B.

4 An intersection property

The following lemma will be useful in the proof of the main result. It states
some familiar (or at least plausible) properties of conics, but it will also lead to
a similar property of mötes as an immediate corollary.

Lemma 2 A circle C and a conic L that does not contain C can have at most
four points of intersection, and at most two points of tangency.

Proof: Recall that “circle” includes straight lines, but we take for granted that
lines have the claimed properties. The circle C, with finite radius r > 0 and
center (U, V ), admits a parametric equation of the form

p : R → R
2 : t �→

(
2rt

1 + t2
+ U,

r(1 − t2)
1 + t2

+ V

)
. (4)

The image p(R) covers the whole circle except one point, (U, V − r). If this
point happens to be an element of L, there is some rotation transformation
R which fixes the circle, so that R((U, V − r)) /∈ L. R ◦ p is still given by
quadratic rational functions of t, so if necessary we can replace p by R◦p to get
a parametrization of C that contains all the points of intersection. If q(x, y) = 0
is a non-zero quadratic implicit equation for L, the composition (q ◦ p)(t) is
zero exactly at the points where p(t) meets L. Expanding q ◦p gives a rational
function N(t)

D(t) whose denominator is never zero, and whose numerator has degree
at most 4. Since lim

t→∞p(t) exists and is not in L,

lim
t→∞ q(p(t)) = q( lim

t→∞p(t)) �= 0,
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so N is not identically zero, and there are at most four points of intersection.
A point of intersection p(t0) is a point of tangency exactly when dp

dt (t0) is
orthogonal to the gradient, (∇q)(p(t0)). By the chain rule,

(
d

dt
(q ◦ p)

)
(t0) = (∇q)(p(t0)) ·

(
dp
dt

(t0)
)

,

so the curve is tangent to L when t0 is a root of both (q◦p)(t) and d
dt (q◦p)(t) =

N ′(t)
D(t) − N(t)D′(t)

(D(t))2 , which implies t0 is a root of N(t) and N ′(t), and therefore a

double root of the quartic N(t); there can be at most two such double roots.

Corollary 3 Any möte T (E) and any circle C can meet in at most four points,
and can have at most two points of tangency.

Proof: Applying T−1 gives E , a non-circular ellipse, and a circle T−1(C), which
by Lemma 2 can intersect in at most four points. Since Möbius transformations
preserve tangency, the second claim also follows from the Lemma.

In particular, a möte can meet a straight line in at most four points, and
without going into the details, any möte is contained in the zero set of some
polynomial in the (x, y) coordinates with degree at most 4 — obviously ellipses
have degree 2, but the points on a möte that is a hippopede of Proclus satisfy
an irreducible, degree 4 implicit equation.

5 The main results

The main result mentioned in the Introduction will be a consequence of the
following Theorem.

Theorem 4 If two ellipses E, E ′ are Möbius equivalent, with T (E) = E ′, then
T is a similarity.

Proof: If T (E) = E ′, and R is a reflection symmetry of E ′, then R ◦ T also
takes E onto E ′. So, without loss of generality we can assume T ∈ M is of the
form (2), and we want to show that c = 0.

An ellipse has four points lying on its axes of reflection symmetry. We call
these points “vertices,” and any similarity transformation of the plane takes the
vertices of an ellipse to the vertices of the image ellipse.

Since the similarities form a subgroup of M, we can also assume that E is in
standard position, Equation (3). Its vertices are the points (±A, 0) and (0,±B),
or in complex coordinates, ±A and ±iB.

Let C be a circle tangent to an ellipse L at a point z0. We say that C is
bitangent at z0 if there is some point z1 �= z0 so that C is tangent to L at z1.
From Figure 2, it is easy to see that at any point z0 that is not a vertex, there
are at least two bitangent circles: one interior, centered on the major axis, and
one exterior, centered on the minor axis.
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Figure 2: Bitangent circles (dashed) with a common point of tangency.

At a vertex of an ellipse, there is only one bitangent circle: if the other point
of tangency were any point besides the opposite vertex, then by the reflection
symmetry of the ellipse and circle, there would be a third point of tangency,
contradicting Lemma 2.

Let z0 be a vertex of E , but, suppose toward a contradiction that T (z0) is
not a vertex of E ′. Then, at T (z0), E ′ has two bitangent circles, and there are
distinct points z1, z2 ∈ E so that these circles are tangent to E ′ at T (z0) and
T (z1), and T (z0) and T (z2), respectively. Since T−1 preserves circles and the
tangency of curves, these two bitangent circles of E ′ at T (z0) are transformed
to two bitangent circles of E at z0, contradicting the previous observation that
there is only one bitangent circle at the vertex z0 of E . So, T (A), T (−A), T (iB),
and T (−iB) must be the vertices of E ′.

The images of the axes of E must therefore be circles orthogonal to the ellipse
E ′ at its vertices. Since E ′ is non-circular, these circles must be straight lines,
the axes of E ′, so the pairs T (A), T (−A), and T (iB), T (−iB) are the pairs of
opposing vertices of E ′.

Now suppose again by way of contradiction that c �= 0. By the previous
paragraph, the point −d/c which T maps to ∞ must lie on both the major and
minor axes of E , so d = −d/c = 0. Hence T has the form T (z) = a + b/z̄, with
b �= 0. Since z �→ a + bz is a similarity, the image of E under the map z �→ 1/z̄

must be an ellipse, however, this contradicts Lemma 1.
The first Corollary is just the special case of the Theorem where E = E ′. It

appears as a statement without proof in [16].

Corollary 5 The only Möbius transformations that are symmetries of an el-
lipse are similarities.

The next Corollary is the result on the invariance of the eccentricity.

Corollary 6 If two mötes T1(E1) and T2(E2) are Möbius equivalent, then E1

and E2 have the same eccentricity.

Proof: The hypothesis is that there exists T ∈ M such that T (T1(E1)) =
T2(E2), and this implies E2 = T−1

2 (T (T1(E1))). By the Theorem, the composition
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T−1
2 ◦ T ◦ T1 is a similarity transformation, so E2 and E1 are similar and have

the same eccentricity.
The notion that eccentricity is an invariant of mötes seems to have been

known to the authors of [4] and [9], but not explicitly stated in that way. Their
interest was in the description of conics by quadratic rational parametric maps,
analogous to formula (4), and how these rational maps transform under Möbius
transformations.

Corollary 7 Any möte is either an ellipse or the image of an ellipse under
inversion in a circle, and these cases are mutually exclusive.

Proof: First, the mutually exclusive part follows from the Theorem: for ellipses
E , E ′, there can be no inversion R such that R(E) = E ′, since R is a Möbius
transformation that is not a similarity.

If the möte T (E) is not an ellipse, then T is not a similarity, so T is of
the form (1) or (2) with c �= 0, and T (∞) = a/c. We can compose T with
an inversion that sends a/c back to ∞: let R(z) = 1

z̄−a/c
+ a

c . Then a short

calculation will check that R ◦ T is a similarity transformation, so R(T (E)) is
an ellipse E ′, and it follows from R = R−1 that T (E) = R(E ′).

The Famous Curves web site [11] at St. Andrews has an interactive demon-
stration where the user can manipulate a circle of inversion to see various images
of the ellipse in the plane. Corollary 7 says that every möte can be generated
this way, and the reader is encouraged to experiment with this to get an idea of
what shapes a möte may have.

6 The other conics

In addition to ellipses, one might also consider hyperbolas and parabolas, and
in the Riemann sphere, these conic curves become closed only when they also
include the point at infinity. The topic of images of conics under inversions in
circles is frequently addressed in books ([8], [17], [18]) and web sites ([5], [6],
[11]) on plane curves, and the same curves also appear as “pedal curves” of
conics ([1]). The term “hippopede of Proclus” applies to the central inversion
of either an ellipse or a hyperbola — but in the hyperbolic case, the curve is
self-intersecting, as in Figure 3.

The self-intersection will appear in any Möbius transformation of a hyper-
bola (a möth?), although for similarities, the self-intersection remains at the
point ∞. This makes an analogue of Theorem 4 for hyperbolas easier to prove
than the ellipse case. The interior angle in either of the loops is a conformal
invariant and depends only on the eccentricity of the hyperbola, so the analogue
of Corollary 6 is also easy: the eccentricity is a Möbius invariant for hyperbolas.
So, we see the key to the proof of Theorem 4 was to show that an ellipse has
distinguished points (the vertices) with respect to Möbius transformation geom-
etry, even though an ellipse in C has no points with distinguishing topological
or conformal properties.
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Figure 3: Two conics and their inverses with respect to a circle. Hyperbola and
lemniscate (left); parabola and cardioid (right).

A Möbius transformation of a parabola is seen to have a cusp singularity, as
in Figure 3, which distinguishes the image from the other Möbius transforma-
tions of conics. References [7], [10], and [12] use the term “nodal biquadratic” to
refer to a curve that is Möbius equivalent to an ellipse or hyperbola, and “cus-
pidal biquadratic” to refer to a curve that is Möbius equivalent to a parabola.
We can generalize the main result, Corollary 6, as follows:

Proposition 8 Let L1 be a non-degenerate conic (circle, ellipse, parabola, or
hyperbola), L2 another non-degenerate conic, and let T1 and T2 be Möbius trans-
formations. If T1(L1) and T2(L2) are Möbius equivalent, then L1 and L2 have
the same eccentricity.

In addition to its original description as an intersection of a plane with
a torus, the elliptic hippopede also occurs as an intersection of a plane with
Fresnel’s elasticity surface ([15]). The arclength of both types of hippopede
curves was a topic of investigation by Booth, [2], [3], so they have also been called
“lemniscates of Booth,” of elliptic and hyperbolic types. They also appear in
some interesting applications, for example, in mechanical linkages ([5], [18]) and
fluid physics ([14]). Some of the references on special plane curves refer to the
elliptic hippopede of Proclus as merely an “oval,”1 but some other special cases
of inverses of conics are more famously named curves, including the limaçons of
Etienne Pascal, as shown in the following table.

1Quoting E. Fermi, “If I could remember the names of all these particles, I would have
been a botanist.”
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Curve Eccentricity Center of
Inversion

Image

hyperbola e > 1 center hyperbolic lemniscate of Booth
= self-intersecting hippopede

hyperbola e > 1 focus self-intersecting limaçon
hyperbola e = 2 focus trisectrix
hyperbola e = 2 vertex trisectrix of Maclaurin
hyperbola e =

√
2 vertex right strophoid

hyperbola e =
√

2 center lemniscate of Bernoulli
parabola e = 1 focus cusped limaçon = cardioid
parabola e = 1 vertex cissoid of Diocles
ellipse 0 < e < 1 center elliptic lemniscate of Booth

= simple hippopede
ellipse 0 < e < 1 focus simple limaçon

References

[1] R. Alperin, A grand tour of pedals of conics, Forum Geometricorum 4
(2004), 143–151. MR 2130228.

[2] J. Booth, Researches on the geometrical properties of elliptic integrals,
Philosophical Transactions of the Royal Society of London 142 (1852),
311–416, and 144 (1854), 53–69.

[3] J. Booth, A Treatise on Some New Geometrical Methods, Longmans,
Green, Reader, and Dyer, London, Vol. I, 1873, and Vol. II, 1877.

[4] R. Deaux, Introduction to the Geometry of Complex Numbers, transl.
from the revised French ed. by H. Eves, Ungar Pub. Co., New York, 1957.
MR 0086745 (19,236f).
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