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ABSTRACT. Elementary properties of the trace operator, and of some natural
vector valued generalizations, are given basis-free statements and proofs, using
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with respect to a non-degenerate (but possibly indefinite) metric are similarly
analyzed.
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Preface

These notes are a mostly self-contained collection of some theorems of linear
algebra that arise in geometry, particularly results about the trace and bilinear
forms. Many results are stated with complete proofs, the main method of proof
being the use of canonical maps from abstract linear algebra.

So, the content of these notes is highly dependent on the notation for these
maps developed in Chapter 1. This notation will be used in all the subsequent
Chapters, which appear in a logical order, but for 1 < m < n, it is possible to
follow Chapter 1 immediately by Chapter n, with only a few citations of Chapter
m. To review the elementary prerequisites, some foundational material appears in
Chapter 0 and the Appendices.

In such a collection of results, there will be several statements which will not be
needed in later Lemmas, Theorems, or Examples, and can be skipped without losing
any logical steps. Such statements will be labeled “Proposition” or “Exercise,” with
a short proof following from a “Hint” or left to the reader entirely. There are a few
statements which are needed in later steps but whose proofs do not fit the basis-free
theme; they are labeled “Claim,” with proofs left to the references.

Adam Coffman






Overview

The goal of these notes is to present the subject of linear algebra in a way
that is both natural as its own area of mathematics, and applicable, particularly to
geometry. The unifying theme is the trace operator on spaces of linear maps, and
generalizations of the trace, including vector valued traces, and traces with respect
to non-degenerate inner products. The emphasis is on the canonical nature of the
objects and maps, and on the basis-free methods of proof. The first definition of the
trace (Definition 2.3) is essentially the “conceptual” approach of Mac Lane-Birkhoff
([MB] §IX.10) and Bourbaki ([B]). This approach also is taken in disciplines
using linear algebra as a tool, for example, representation theory and mathematical
physics ([FH] §13.1, [Geroch] Chapter 14, [K]). Some of the subsequent formulas
for the trace (Theorem 2.10, and in Section 2.4) could be used as alternate but
equivalent definitions. In most cases, it is not difficult to translate the results into
the usual statements about matrices and tensors, and in some cases, the proofs
are more economical than choosing a basis and using matrices. In particular, no
unexpected deviations from matrix theory arise.

Part of the motivation for this approach is a study of vector valued Hermit-
ian forms, with respect to abstractly defined complex and real structures. The
conjugate linear nature of these objects necessitates careful treatment of scalar
multiplication, duality of vector spaces and maps, and tensor products of vector
spaces and maps ([GM], [P]). The study of Hermitian forms seems to require a pre-
liminary investigation into the fundamentals of the theory of bilinear forms, which
now forms the first half of these notes. The payoff from the detailed treatment of
bilinear forms will be the natural way in which the Hermitian case follows, in the
second half.

Chapter 0 gives a brief review of elementary facts about vector spaces, as
in a first college course; this should be prerequisite knowledge for most readers.
Chapter 1 then sketches a review of notions of spaces of maps Hom(U, V'), tensor
products U ® V, and direct sums U @ V, and introduces some canonical linear
maps, with the notation and basic concepts which will be used in all the subsequent
Chapters. Chapter 2 starts with a definition of the usual trace of a map V' — V,
and then states definitions for the generalized trace of maps V@ U — V @ W,
or V. — V & W, whose output is an element of Hom(U, W), or W, respectively.
Many of the theorems can be viewed as linear algebra versions of more general
statements in category theory, as considered by [JSV], [Maltsiniotis], [K], [PS],
[Stolz-Teichner], [S].

Chapter 3 offers a similar basis-free approach to definitions, properties, and
examples of a metric on a vector space, and the trace, or contraction, with respect to
a metric. The metrics are assumed to be non-degenerate, and finite-dimensionality
is a consequence. The main construction is a generalization of the well-known
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2 OVERVIEW

inner product Tr(AT - B) on the space of matrices; the construction of Theorem
3.41 shows how a metric on Hom(U, V) is induced by arbitrary metrics on U and V/,
so that Hom(U, V') is isometric to U* ® V' with the induced tensor product metric.
Chapter 4 develops the W-valued case of the trace with respect to a metric.

The basis-free approach is motivated in part by its usefulness in the geometry of
vector bundles and structures on them, including bilinear and Hermitian forms, and
almost complex structures. Important geometric applications include real vector
bundles with Riemannian metrics, pseudo-Riemannian metrics (since definiteness is
not assumed), or symplectic forms. The linear algebra results can be restated geo-
metrically, with linear maps directly replaced by bundle morphisms, “distinguished
non-zero element” by “nonvanishing section,” and in some cases, “K” by “trivial
line bundle.”

The plan is to proceed at an elementary pace, so that if the first few Lem-
mas in Chapter 1 make sense to the reader, then nothing more advanced will be
encountered after that. In particular, the relationships with differential geome-
try and category theory can be ignored entirely by the uninterested reader and
are mentioned here only in optional “Remarks.” It will be pointed out when the
finite-dimensionality is used— for example, in the Theorems in Chapter 2 about
the vector valued trace T'rv,y,w, V must be finite-dimensional, but U and W need
not be.



CHAPTER 0

Review of Elementary Linear Algebra

0.1. Vector spaces

DEFINITION 0.1. Given a set V', a field K, a binary operation +: V xV — V
(addition), and a function - : K x V' — V (scalar multiplication), (V,+,-) is a
vector space means that the operations have all of the following properties:

(1) Associative Law for Addition: For any u € V and v € V and w € V,
(u+v)+w=u+ (v+w).

(2) Existence of a Zero Element: There exists an element Oy € V such that
forany v € V, v + 0y = v.

(3) Existence of an Opposite: For each v € V, there exists an element of V,
called —v € V| such that v + (—v) = Oy.

(4) Associative Law for Scalar Multiplication: For any p,o0 € K and v € V,
(po)-v=p-(0o-v).

(5) Scalar Multiplication Identity: For any v € V, 1-v = v.

(6) Distributive Law: For all p,c e Kandv € V, (p+0)-v = (p-v) + (o -v).

(7) Distributive Law: For all p € K and u,v € V, p- (u+v) = (p-u) + (p-v).

It is a convenient abbreviation to refer to a vector space (V,+, ) as just V, as
in all of the following Exercises.

EXERCISE 0.2 (Right Cancellation). Given w,v,w € V, if u+w = v + w, then
u=uv.

HiNT. These first several Exercises, 0.2 through 0.11, can be proved using only
the first three axioms about addition.

EXERCISE 0.3. Given u,w € V if u + w = w, then u = Oy. [
EXERCISE 0.4. For any v € V, (—v) +v = 0y. I
EXERCISE 0.5. For any v € V, Oy +v = v. [ |

EXERCISE 0.6 (Left Cancellation). Given w,v,w € V, if w + u = w + v, then

’LL:’U.l

EXERCISE 0.7 (Uniqueness of Zero Element). Given u,w € V, if w +u = w,
then u = Oy . [ |

EXERCISE 0.8 (Uniqueness of Additive Inverse). Given v,w € V, if v+w = Oy
then v = —w and w = —v. W

EXERCISE 0.9. —0y = 0y [ |
EXERCISE 0.10. For any v € V, —(—v) =v. Il

3



4 0. REVIEW OF ELEMENTARY LINEAR ALGEBRA

EXERCISE 0.11. Given u,z € V, —(u+ ) = (—z) + (—u). I

The previous results only used the properties of “+.” but the next result, even
though its statement refers only to -+, uses a scalar multiplication trick, together
with the distributive axioms, which relate scalar multiplication to addition.

THEOREM 0.12 (Commutative Property of Addition). For any v,w € V,
V+w=w+ 0.

PROOF. We start with this element of V, (1 + 1) - (v + w), and then set
LHS=RHS, and use both distributive laws:

1+ -(v+w) = (1+1) (v+w)
(I+D-0)+((1+1D)-w) = (1-(v+w)+(1-(v+w))
(T-o)+(@-0)+ (1w +(1-w) = (v+w)+(v+w)
(v+o)+w+w) = (v+w)+(v+w)
)

Cancellation leaves v + (w +w) = w + (v + w). Using the associative law again,
(v4+w)+w = (w+v)+w, and Right Cancellation gives the result v+w = w+w.

EXERCISE 0.13. For any v € V, 0-v = Oy. [ |

EXERCISE 0.14. For any v € V, (=1) -v = —wv. [

EXERCISE 0.15. For any p € K, p- 0y = Oy. [ |

EXERCISE 0.16. For any p e Kandu e V, (—p) - u = —(p-u). 1l

EXERCISE 0.17. Given p € Kand u € V, if p-u = 0y, then p =0 or u = Oy . [

EXERCISE 0.18. If % € K, then for any v € V, the following are equivalent. (1)

v+v =0y, (2) v=—v, (3) v=0y.

HINT. Only the implication (1) = (3) requires & € K; the others can be

proved using only properties of +. [ |

DEFINITION 0.19. Tt is convenient to abbreviate the sum v + (—w) as v — w.
This defines vector subtraction, so that v minus w is defined to be the sum of v
and the opposite (or “additive inverse”) of w.

NotaTioON 0.20. Considering the associative law for addition, it is convenient
to write the sum of more than two terms without all the parentheses: u+ v+ w can
mean either (u + v) + w, or u + (v + w), since we get the same result either way.
In light of Exercise 0.16, we can write —p - v to mean either (—p) - v or —(p - v),
since these are the same. The multiplication “dot” can be used, or omitted, for
both scalar times scalar and scalar times vector, when it is clear which symbols are
scalars and which are vectors: instead of 3 - u, just write 3u. It is also convenient
to establish an “order of operations,” so that scalar multiplication is done before
addition or subtraction. So, 4v+u—3w is a short way to write (4-v)+(u+(—(3-w))).



0.2. SUBSPACES 5

0.2. Subspaces

The general idea of the statement “W is a subspace of V" is that W is a vector
space contained in a bigger vector space V with the same field K, and the + and -
operations are the same in W as they are in V.

DEFINITION 0.21. Let (V, 4y, v ) be a vector space with field of scalars K. A
set W is a subspace of V' means:

e W CV, and

e There are operations +y : W x W — W and -y : Kx W — W such that
(W, 4w, -w) is a vector space, and

e Forallz, ye W,z +vy=2+wy, and

e forallz e W, peK, pvae=pwaz.

THEOREM 0.22. If W is a subspace of V', where V' has zero element Oy, then
Oy is an element of W, and is equal to the zero element of W.

PrOOF. By the second part of Definition 0.21, W is a vector space, so by
Definition 0.1 applied to W, W contains a zero element Oy, € W. By the first part
of Definition 0.21, W C V', which implies Oy € V. By Definition 0.1 applied to W,
Ow +w Ow = Ow, and by Definition 0.21, Oy +v Ow = Ow +w Ow . It follows that
Ow +v Ow = Ow € V, and then Exercise 0.3 implies Oy = Oy [ |

Theorem 0.22 can be used in this way: if W is a set that does not contain Oy
as one of its elements, then W is not a subspace of V.

THEOREM 0.23. If W is a subspace of V', then for every w € W, the opposite
of w in W is the same as the opposite of w in V.

PRrROOF. Let w be an element of W; then w € V because W C V.

First, we show that an additive inverse of w in W is also an additive inverse of
w in V. Let y be any additive inverse of w in W, meaning y € W and w+wy = Ow .
(There exists at least one such y, by Definition 0.1 applied to W.) W C V implies
y € V. From Theorem 0.22, Oy = Oy, and w +w y = w +y y by Definition 0.21,
so w +vy y = Oy, which means y is an additive inverse of w in V.

Second, we show that an additive inverse of w in V' is also an additive inverse of
w in W. Let z be any additive inverse of w in V', meaning z € V and w+y z = Oy .
(There exists at least one such z, by Definition 0.1 applied to V.) Then w +y z =
Oy = w +v vy, so by Left Cancellation in V, z = y and y € W, which imply z €¢ W
and w +w z = w +w y = Oy, meaning z is an additive inverse of w in W.

By uniqueness of opposites (Exercise 0.8 applied to either V' or W), we can
refer to y = z as “the” opposite of w, and denote it y = —w.

Theorem 0.23 also implies that subtraction in W is the same as subtraction in
V: by Definition 0.19, for v, w e W, v —pw=v4+wy=v+yy=v —y w.

Theorem 0.23 can be used in this way: if W is a subset of a vector space V and
there is an element w € W, where the opposite of w in V' is not an element of W,
then W is not a subspace of V.
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THEOREM 0.24. Let (V,+v,-v) be a vector space, and let W be a subset of V.
The following are equivalent.

o W satisfies all of these three properties:
(1) x e W,y e W imply x +vy € W (closure under +y addition),
and
(2)peK,xeW imply p-vaeW (cosure under -v scalar multi-
plication), and
(3) W #0Q.
e W is a subspace of V.

PROOF. Let V have zero element Oy, .

First suppose W is a subspace, so that by Definition 0.21, W is a vector space
and contains a zero element Oy, which shows W #0, and (3) is true. From
Definition 0.1 the vector space W has an operation 4y so that z € W,y € W imply
x+wy € W, and from the definition of subspace, t+wy =x+vy,sox+yy € W,
establishing (1). Similarly, from Definition 0.1, W has a scalar multiplication so
that p € K implies p-yw x € W, and from the definition of subspace, p-w x = p v z,
so p-v x € W, establishing (2).

Conversely, it follows from (1), (2), and (3) that W is a subspace of V, as
follows: W is a subset of V' by hypothesis. Define +y and -y for x,y € W and
peEKbyx+wy=z+yvy, and p-w z = p-y x — these define operations on
W by (1) and (2), and the last two properties from Definition 0.21 are satisfied by
construction. It remains to check the other properties from Definition 0.1 to show
that (W, +w, -w) is a vector space. Since W #@ by (3), there is some x € W, and
by (2), 0.y = € W. By Exercise 0.13, 0 -y z = Oy, so Oy € W, and it satisfies
T 4+w Oy =2 +y 0y =z for all x € W, so Oy is a zero element for W. The scalar
multiple identity also works: 1.y x = 1.y 2 = z. Also by (2), for any = € W,
(=1) -y 2 € W, and it is easy to check (—1) -y « is an additive inverse of z in W
z+w (=) va)=1va)+v((-1)-vz) = (14+(-1))va = 0-yz = Oy. The other
vector space properties, (1), (4), (6), (7) from Definition 0.1, follow immediately
from the facts that these properties hold in V' and the operations in W give the
same sums and scalar multiples. [ |

EXERCISE 0.25. Given a vector space V, if W is a subspace of V and U is a
subspace of W, then U is a subspace of V. [ |

EXERCISE 0.26. Given a vector space V, if W is a subspace of V, U is a
subspace of V., and U C W, then U is a subspace of W. [

EXERCISE 0.27. Given a vector space V, if U is a subspace of V and W is a
subspace of V' then the intersection U N W is a subspace of V. [

DEFINITION 0.28. A vector space V is finite-dimensional means that there does
not exist an infinite ordered list of subspaces of V,

(VO7‘/17‘/25"'7VV5"')5
with V,, C V4 for all v.

EXERCISE 0.29. Given a vector space V, if V is finite-dimensional and W is a
subspace of V', then W is finite-dimensional. [ |
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DEFINITION 0.30. Given a vector space V and any subset S C V', the span of
S is the subset of V' defined as the set of all (finite) sums of elements of S with
coeflicients in K:

{181 +agsa+ ...+ ausytaq,...,a, €K s1,...,5, € S}
This is always a subspace of V. (We define the span of @ to be {0y }.)

EXERCISE 0.31. Given a vector space V, if V is finite-dimensional then there
exists a finite subset S C V such that the span of S is equal to V. [ |

DEFINITION 0.32. Given an ordered list (possibly with repeats) of elements of

a vector space V', (u1,usg,...,u,), the list is linearly independent means that the
following implication holds for scalars aq,...,q, € K:
ol +agus + ... +apu, =0y — ap=as=...=a, =0.

The empty list is linearly independent. We will not have occasion to consider
infinite lists.

CrAaM 0.33. If V is a vector space equal to the span of a finite set S C V with
v elements, then V is finite-dimensional and there is no linearly independent list of
elements of V' of length > v. [ |

DEFINITION 0.34. Given an ordered list of elements of a vector space V,
(u1,ua,...,u,), the list is an ordered basis of V' means that the list is linearly
independent and the span of the set {u1,uz,...,u,} is equal to V.

0.3. Additive functions and linear functions
Let U, V, and W be vector spaces with the same field of scalars K.

DEFINITION 0.35. A function F': U — V is additive means: I has the property
that F(u 4+ w) = F(u) + F(w) for all u,w € U.

DEFINITION 0.36. A function F' : U — V is linear means: F' is additive and
also has the scaling property: F(p-u) =p- F(u) for all p € K and all u € U.

EXERCISE 0.37. If F': U — V is additive, then: F(0y) = Oy, and for all u € U,
F(—u)=—F(u). I

EXERCISE 0.38. If K contains the rational numbers Q as a subrng, and F' :
U — V is additive, then for every rational number p € Q, F(p-u) = p- F(u).

HINT. Start by showing that for integers v € Z, F(v - u) = v - F(u). i

EXERCISE 0.39. Give an example of a field, vector spaces V and W, and a
function F': V' — W, such that F' has the scaling property, but which is not linear
because it is not additive. W

EXERCISE 0.40. Give an example of a field, vector spaces V and W, and a
function F : V' — W such that F' has the additive property, but which is not linear
because it does not have the scaling property.

HINT. Try this for K = C and then for K = R (harder). i
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NOTATION 0.41. At this point, the arrow notation F' : V — W will only be
used for functions that are linear from a vector space V' (the domain) to another
vector space W (the target). A linear function will also be called a map, linear
map, or arrow, or when it is convenient to emphasize the scalar field, a K-linear
map. A function which is not necessarily linear will be denoted with a variant ~~
arrow symbol.

ExaMPLE 0.42. Given a vector space V and a subspace W, the canonical
subspace inclusion function @ : W — V defined by Q(w) = w is linear.

NoTAaTION 0.43. As a special case of the above inclusion map (and as in Ex-
ample 6.15), the identity map Idy : V — V, defined by the formula Idy (v) = v, is
linear.

EXERCISE 0.44. Given vector spaces U, V, W, and functions F : W — V,
G:V — U, if F and G are linear, then the composite G o F': W — U is linear. [ |

The o notation for composites is as in Notation 6.16.

ExaMPLE 0.45. For a linear function F' : W — V. the image of F is the set
FW)={F(w) €V :w € W}. The image is always a subspace of the target V.

EXAMPLE 0.46. For a linear function F' : W — V, the kernel of F' is the set
ker(F) = {w € W : F(w) = Oy }. The kernel is always a subspace of the domain
w.

DEFINITION 0.47. A linear map C' : X — Y is a linear monomorphism means:
C has the following cancellation property for any compositions with linear maps A
and B (which are well-defined in the sense that X is the target space of both A
and B),

CoA=CoB — A=B.

EXERCISE 0.48. Given a linear map F': U — V, the following are equivalent.
(1) F is one-to-one.
(2) F is left cancellable.
(3) F has a left inverse: there exists a function H : V ~» U such that Ho F =
Idy.
(4) F is a linear monomorphism.

(5) ker(F) = {Ou}.

HiNT. The first three properties are considered in Exercise 6.17, and their
equivalence is a matter of set theory only, without using the linearity of F. In
particular, the function H is not necessarily linear. The implication (2) = (4) is
trivial, and (1) = (5) uses only F'(07) = Oy from Exercise 0.37. The implications

(5) = (1) and (4) = (5) follow from the linearity of F. [

EXERCISE 0.49. Given a list (ug,us,...,u,) of elements of V, if A:V — W
is linear and the list (A(uq),..., A(u,)) is independent in W, then (u1,uz, ..., u,)
is independent. If A : V — W is linear and one-to-one, and (uy,us,...,u,) is

independent, then (A(uy),..., A(uy)) is independent. W

EXERCISE 0.50. If V is finite-dimensional and I' : U — V is linear and one-to-
one, then U is finite-dimensional.
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EXERCISE 0.51. Given linear maps A: W — Vand F : U — V, if AW) C
F(U) and H : V ~~ U is any left inverse of F, then Ho A: W — U is linear.

HINT. For any two elements vy, vo € F(U), v1 = F(uq) for some unique u; as
in Exercise 0.48, and similarly vo = F'(uz). Using the linearity of F' and any scalar
A,

H(Ul + ’UQ) = H(F(ul) + F(UQ)) = H(F(u1 + UQ))
(0.1) = wuy+up = H(F(u1))+ H(F(u2)) = H(vi) + H(v2),
HM\-v1) = HWA\ -F(u1))=H(F(\-u))

= Aup=A-H(F(u1)) =\ H(v).

In particular, for wq, we € W, let A(wy) = F(u1) and A(wz) = F(uz). Then, using
the additivity of A and (0.1),

(HoA)(wy +wz) = H(A(w1)+ A(wz)) = (H 0 A)(w1) + (H o A)(ws).
The scaling property for H o A follows similarly. [ |

DEFINITION 0.52. A map C : X — Y is a linear epimorphism means: C' has
the following cancellation property for any compositions with linear maps A and
B,

AoC=Bo(C = A=B.

EXERCISE 0.53. If the linear map F': U — V has a right inverse, meaning that
there exists H : V ~» U so that F'o H = Idy, then F is onto and right cancellable
as in Exercise 6.18, and the right cancellable property implies that F' is a linear
epimorphism. [ |

EXERCISE 0.54. Given vector spaces V', W, and a linear function F : W — V,
the following are equivalent.
(1) F is both one-to-one and onto.
(2) F has a right inverse Hy : V ~» W and a left inverse Hy : V ~» W,
(3) There exists a linear map G : V. — W such that G is a left inverse of F’
and G is a right inverse of F.

HINT. The (3) = (2) direction is trivial. The equivalence (1) <= (2) does
not use the linearity of F' — see Exercise 6.20, which also shows that (2) implies
Hy = Hs, 80 G :V ~~ W in (3) can be chosen to equal H; = Hs. The linearity of
I then implies the linearity of G by Exercise 0.51. [

NOTATION 0.55. Given vector spaces V', W, and a linear function F : W — V,
F is invertible means that F satisfies any of the three equivalent properties (1), (2),
or (3) from Exercise 0.54, as in Definition 6.21. However, we usually use property
(3), so that as in Notation 6.22, G is the unique inverse of F', denoted G = F~1.
It follows that F~! is also invertible, with inverse F.

CLAIM 0.56. IfV is finite-dimensional and F : V. — V is linear and F is either
a linear monomorphism or a linear epimorphism, then F is invertible. [ |

Cram 0.57. Given a finite-dimensional vector space V' and a linear map F :
V — V, the following are equivalent.
(1) For all linear maps A:V -V, AcF=FoA:V =V.
(2) There exists a scalar A € K so that for allv € V, F(v) = X - v.
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PROOF. The second property can be denoted F = X - Idy. See [B] Exercise
11.1.26 or [J] §3.11. |



CHAPTER 1

Abstract Linear Algebra

1.1. Spaces of linear maps

For this Chapter, we fix an arbitrary field (K, +,-,0,1). All vector spaces use
the same scalar field K, and + and - also refer to the vector space addition and
scalar multiplication. A K-linear map A with domain U and target V, such that
A(u) = v, will be written as A: U — V : u — v, or the A may appear near the
arrow when several maps are combined in a diagram.

NOTATION 1.1. The set of all K-linear maps from U to V' is denoted Hom(U, V).

Cram 1.2. Hom(U, V) is itself a vector space over K. If U and V are finite-
dimensional, then Hom(U, V') is finite-dimensional. [

NotaTION 1.3. Hom(V, V) is abbreviated End(V'), the space of endomorphisms
of V. The space End(V') has a distinguished element, the identity map denoted
Idy : v — v from Notation 0.43.

NoTATION 1.4. Hom(V,K) is abbreviated V*, the dual space of V.
DEFINITION 1.5. For maps A : U’ — U and B : V — V', define
Hom(A, B) : Hom(U, V) — Hom(U’, V")
so that for FF': U — V,
Hom(A,B)(F)=BoFoA:U — V'

LEmMA 1.6. ([B] §I1.1.2) IfA:U -V, B: VW, C: X —>Y,D:Y - Z,
then

Hom(A, D) o Hom(B,C) = Hom(B o A, D o C) : Hom(W, X)) — Hom(U, Z).

DEFINITION 1.7. For any vector spaces U, V', W, define a generalized transpose
map,

t : Hom(U, V) — Hom(Hom(V, W), Hom(U, W)),
so that for A: U -V, B:V - W,

t{ (A) = Hom(A, Idw) : B+ Bo A.

11
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LEMMA 1.8. For any wvector spaces U, V., W, U’, V', W', and any maps
E:U U, F: V=V, G:W — W, the following diagram is commutative.

tW

Hom (U, V) —=— Hom(Hom(V, W), Hom(U, W))

Hom(Hom(F,Idw ),Hom(E,G))
Hom(E,F) I{OID(I’IOHI(‘//7 W), I’IOI?(I(UY/7 W/))
THom(Hom(Idvz,G),HoIn(IdU/,IdW/))
W
Hom(U', V') = Hom(Hom (V', W’), Hom(U’, W"))
PrOOF. Forany A:U — V,
Hom(Hom(Idy+, G), Hom(Idy:, Idy)) o tfh, o Hom(E, F) :
A — (V. (FoAoE))oHom(Idy/,G)
= Hom(F o Ao E,Idw')oHom(Idy/,G),
Hom(Hom(F, Idy ), Hom(E,G)) o t{}y :
A — Hom(E,G)oHom(A, Idw)oHom(F, Idw).

The claimed equality follows from Lemma 1.6. [

NoTATION 1.9. In the special case W = K, tﬂév is a canonical transpose map
from Hom(U, V) to Hom(V*,U*), and it is abbreviated t5y, = tyv.

NoTATION 1.10. tyy(A) = Hom(A, Idk) is abbreviated by A* : V* — U*, so
that for ¢ € V*, A*(¢) is the map ¢ o A: U — K, ie., (A*(¢))(u) = ¢(A(u)).

CrAaM 1.11. For any vector spaces U, V', the map
tyy : Hom(U,V) — Hom(V*,U") : A A"
is one-to-one. If V is finite-dimensional then tyy is invertible. [

LEMMA 1.12. For A: U -V and F:V = V', (Fo A)* = A* o F*, and if A
is invertible, then so is A*, with (A=Y)* = (A*)~1. Also, Idy- = Id3,.

PRrROOF. The claim about F o A follows from Lemma 1.8 (with F = Idy, G =
Idk), or by applying Lemma 1.6 directly. Note that tyy : End(V) — End(V*) takes
the distinguished element Idy € End(V') to the distinguished element ty v (Idy) =
Idi, = Idy- € End(V*). [

DEFINITION 1.13. For any vector spaces V', W, define
dyw : V — Hom(Hom(V, W), W)
so that for v € V., H € Hom(V, W),

(de(v)) H— H(U)
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LEMMA 1.14. For any vector spaces U, V., W, X and any maps H : U =V,
G: W — X, the following diagram is commutative.

duw Hom(Hom(U, W), W)
dux Hom (Hom (H,Idw),G)
H Hom(Hom(U, X),X)__ _ Hom(Hom(V,W), X)
Hom(Hom(H,G),Idx)
THom(Hom(ldv,G) Idx)
1% dvx Hom (Hom(V, X), X

PrOOF. Forue U, A:V - W,

Hom(Hom(Idy,G),Idx)odyxoH :u — (dyx(H(u)))oHom(Idy,G):
A = (GoA)(H(u)),
Hom(Hom(H,G),Idx)odyx :u +— (dux(u))oHom(H,G) :
A — (GoAoH)(u),
Hom(Hom(H, Idw),G)odyw :u +— Go (dyw(u)) o Hom(H, Idw) :
A = G((duw(u) (Ao H))
= G((AoH)(u)).
|
As a special case of Lemma 1.14 with W = X, G = Idw, forany H : U =V,
(1.1) (t}VK)m(V,W),Hom(U,W)(tg/V(H))) odyw = dyw o H,

where t}VK)m(V,W),Hom(U,W) (t¥.,(H)) = Hom(Hom(H, Idyw ), Idw) by Definition 1.7

of the ¢ maps.

NOTATION 1.15. In the special case W = K, dyk is abbreviated dy . It is the
canonical double duality map dy : V — V**, defined by (dy (v))(¢) = ¢(v).

The case (1.1) of Lemma 1.14 then gives the equation ([B] §11.2.7, [AF] §20)
(1.2) dy o A= A" ody,
where for A: U — V, A** abbreviates ty-y-(tyv (A)).

CrAM 1.16. The canonical map dy is one-to-one. dy is invertible if and only
if V' is finite-dimensional.

PROOF. The one-to-one property is easily checked. See [B] §I1.7.5. [
LEMMA 1.17. Hom(dvw, Idw) o dyomv,w),w = Iduomv,w)-

Proor. ForveV, K :V - W,

((Hom(dvw, Idw) o diom(v,w),w) (K))(v) = (duomv,w),w (K))(dvw (v))

In the W =K case, this one-sided inverse relation gives ([AF] §20)
d#{/ o dv* = Idv*.
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REMARK 1.18. In some applications, the vector space V' is often identified with
a subspace of V**  or the map dy is ignored, but it is less trouble than might be
expected to keep V and V** distinct, and always accounting for dy turns out to be
convenient bookkeeping.

LEMMA 1.19. Suppose U is finite-dimensional. For A : U — V, if A* has a
linear right inverse F : U* — V*, so that A* o F' = Idy~, then A has a linear left
inverse. If A* has a linear left inverse E : U* — V*, so that E o A* = Idy -, then
A has a linear right inverse.

Proor. Using Lemma 1.12; case (1.2) of Lemma 1.14, and Claim 1.16,
dit o F*ody o A=dy' o F* 0o A ody = dyt o (A* o F)* ody = Idy.
Using the one-to-one property of dy,
dyoAod;'oE*ody = A™oFE*ody = (FoA*) ody =dy
e AodaloE*odV = Idy.

DEFINITION 1.20. For any vector space W, define m : W — Hom(K, W) so
that for w € W,

m(w) : A= X w.

LEMMA 1.21. For any vector spaces W, W', with two maps m, m’ as indicated,
and any maps ¢ € K*, G: W — W', the following diagram is commutative.

w " Hom(K, W)
¢(1)~Gl lHom(@G)
W ™ Hom(K, W").

ProoF. For A e K, w e W,

Hom(¢,G)om:w +— Go(m(w))op:A— G(p(A) - w),
mo(p(1)-G):w — m'(p(1) - Gw)) : A= X-¢(1) - G(w).

LEMMA 1.22. For any vector space W, m : W — Hom(K, W) is invertible.
PROOF. An inverse is
m~t = dgw (1) : Hom(K, W) — W : A A(1).

Checking both composites, ((m om™1)(A4))(\) = X A(1) = A(N), and (m~!o
m)(w) = (m(w))(1) =1-w = w. [
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1.2. Tensor products

DEFINITION 1.23. For vector spaces U, V, W, a function A : U x V ~» W is a
bilinear function means: for any A € K, uy, ug € U, v1, v3 € V,
A(u1 + usg, ’Ul) = A(U,l, ’Ul) + A(U,Q, ’Ul)7
A(ur,v1 +v2) = A(ur,v1) + A(ug,ve), and
A(/\ . ’U,l,Ul) = A(U,l, )\ . Ul) = /\ . A(’U,l,’Ul).
REMARK 1.24. We remark that the above Definition is different from the notion

of bilinear form, from Definition 3.1 in Chapter 3. The way in which these types of
functions are related is described in Example 1.55.

For any vector spaces U and V, there exists a tensor product vector space
U ® V', which we informally define as the set of formal finite sums

(1.3) P11 UL QUL F P2 U QU2+ F Py - Uy B Uy,

for scalars p1,...,p, € K, elements uy,...,u, € U, and elements vq,...,v, € V|
with addition and scalar multiplication carried out in the usual way, subject to the
relations:

(U1 +u)®v = W UV+u®0,
u® (v +v2) = UV +uuv,
(p-uw)@v = ui(p-v)=p-(u@0).

A term u ® v is also called a tensor product of the vectors u and v. The
operation taking a pair of vectors to their tensor product is a bilinear function,
denoted

T:UXxV~~>URV:(u,v)—~u®o.

U ®V and 7 have the property that for any bilinear function A : U X V ~» W as in
Definition 1.23, there is a unique linear map a : U ® V' — W such that A =ao T,
that is, for any v € U and v € V,

(1.4) A(u,v) = alu @ v).

So bilinear functions can be converted to linear maps, by replacing the domain
U x V with the tensor product U ® V.

A more formal proof of the existence of U ® V' and 7 as above uses methods
different from the main stream of this Chapter, so we refer to Appendix 6.3, where
(1.4) is stated as Theorem 6.35. The following re-statement of the description (1.3)
also follows from the construction of Appendix 6.3:

LEMMA 1.25. For any U, V, there exists a space U@V and a bilinear function
T:UXV ~~U®YV such that U ®V is equal to the span of elements of the form
7(u,v) = u®uv. Any linear map B : UV — W is uniquely determined by its
values on the set of elements u @ v. [ |

REMARK 1.26. In general, although the set of tensor products of vectors, {u®uv :
u € U,v € V} spans the space U ® V, not every element of U ® V is of the form
u ® v — generally elements are finite sums as in (1.3).

LEMMA 1.27. IfU and V are finite-dimensional, then so is U Q@ V. | |
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ExXAMPLE 1.28. The scalar multiplication operation -7 : KxU ~~ U is a bilinear
function, and induces a map

lv : KU =U: AQu— A u.

The map [y is invertible, with inverse l[}l(u) = 1 ® u, and sometimes [y is abbre-
viated [, with the same [ notation used for maps UK = U : u®@ XA — X - u.

ExAMPLE 1.29. The switching function
S:UXxV~VxU:(uv)— (v,u)
composes with 7: V x U ~~» V ® U:
ToS:UXxV~=VaU: (uv)—=veu.

This composite is a bilinear function and induces an invertible, K-linear switching
map
s:URQV =2VRU :iu®v—vu.

Cram 1.30. The spaces (U @ V) @ W and U @ (V @ W) are related by a
canonical, invertible, K-linear map.

REMARK 1.31. In addition to the discussion in Appendix 6.3, the above state-
ments about tensor products follow standard constructions as in references [VIB]
§IX.8, [AF] §19, [K] §II.1. From this point, product sets U x V and the function
7 will not appear often, but could be used by the reader to verify certain maps
are well-defined. Lemma 1.25 will be used frequently and without comment when
defining maps (as already done in Examples 1.28 and 1.29) or proving equality of
two maps (as in Lemma 1.36, below).

REMARK 1.32. The notion of a multilinear map is also standard, and the spaces
from Claim 1.30 can be identified with each other and yet another space, a triple
tensor product UV @W. This is spanned by elements of the form u®v®w, and it is
a convenient abbreviation for our purposes to also identify elements (u ® v) ® w =
u® (vew) =u®v®w We leave the justification for this to the references;
some applications or generalizations of linear algebra keep track of this associativity
and do not use such abbreviations, but we will make these identifications without
comment. Similarly, notions of associativity for tensor products of more than three
spaces or vectors will be implicitly assumed as needed.

A tensor product of K-linear maps canonically induces a K-linear map between
tensor product spaces, as follows.

DEFINITION 1.33. For any vector spaces Uy, Us, Vi, Vs, define
J : Hom(Uy, V1) ® Hom(Us, Va) — Hom(U; ® Us, Vi ® Va),

so that for A: Uy — Vi, B: Uy — Vi, u € Uy, and v € Uy, the map j(A ® B) acts
as:

(j(A®B)) :u®v (Alu) @ (B(v)).

CrAaM 1.34. The canonical map j is one-to-one. If one of the ordered pairs
(U1, Us), (U1, V1), or (Us, Vo) consists of finite-dimensional spaces, then j is invert-
ible.

PROOF. See [B] §I1.7.7 or [K] §I1.2. i
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Although it frequently occurs in the literature that j(A ® B) and A ® B are
identified, we will maintain the distinction. In this Section and later (many times
in Section 2.2), the canonical map j will appear in diagrams as a function in its
own right, and it is useful to keep track of it everywhere, instead of only ignoring
it sometimes. However, the notation j(A ® B) is not always as convenient as the
following abbreviation.

NOTATION 1.35. Let [A® B] denote j(A® B), so that, for example, the equation
(J(A® B))(u®@v) = (A(u) ® (B(v))
appears as
[A® B](u®v) = (A(u) ® (B(v)).
LeEmMA 1.36. ([B] §I1.3.2, [K] §I1.6)
[A®Blo[Ee F]=[(AoF) & (BoF))
i

Note that the brackets conveniently establish an order of operations, and appear
three times in the Lemma, but may stand for three distinct canonical j maps,
depending on the domains of A, B, F, and F'. When it is necessary or convenient
to keep track of different maps, the j symbols are used instead of the brackets, and
are sometimes labeled with subscripts, primes, etc., as in the following Lemma.

LEMMA 1.37. For any vector spaces Uy, Ua, Us, Uy, V1, Vo, Vs, Vi, with maps
i, 7" as indicated, and any maps Ay : U3 — Uy, Ay : Uy — Us, By : Vi — V3,
By : Vo — Vi, the following diagram is commutative.

-/

Hom(Uy, V1) ® Hom(Us, V2) Hom(U; ® Uz, Vi @ V3)

l/ [Hom(A;,B1)®Hom(A2,B2)] lHom( [A1®A3],[B1®Ba])

Hom(Us, V3) ® Hom(Uy, Vy)

Hom(Us @ Uy, V3 @ Vi)

ProOOF. For £ : Uy — Vi and F : Uy — Vs,
E®F +— (j”0[Hom(A1, By) ® Hom(As, Bo)|)(E ® F)
= j"((Hom(Ay, B1)(E)) ® (Hom(Asz, B2)(F)))
= j/((BioEoA:)® (B2oFoA)),
E®F +— (Hom([A; ® A3],[B1 ® Ba]) 0§ )(E® F)
[B1® Bo] o (j'(E ® F)) o [A1 ® Ay]
J"((BioEoA;)® (Byo FoAs)).
The last step uses Lemma 1.36. [ |

LEMMA 1.38. For any vector spaces U, W, and any maps ¢ € K*, F €
Hom(U, W), the following diagram is commutative.

lu

KU
[¢®F]l l«uu).zr
KeoWw — W W

U
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Proor. For A € K, u € U,
lwolp@Fl: A@u — lw((¢(N) ® (F(u))) = ¢() - F(u),
(p(1) - Floly: A@u — &(1)- F(

>
=

LEMMA 1.39. For any wvector spaces U, U', V, V', any maps A : U — U’,
B:V — V', and switching maps s and s', the following diagram is commutative.

U@V ——VaU
[A®B]l/ l/[B@A]
Uev —>veU

Proor. Forue U,veV,
(B@Alos)(u®v) = (B(v)) ® (A(u)) = (s' o [A® B])(u®v).

DEFINITION 1.40. For arbitrary vector spaces U, V., W, define
n: Hom(U,V) @ W — Hom(U,V @ W)
so that for A: U -V, weW,uelU,
n(A@w):ur (Au)) @ w.

NoTATION 1.41. The ordering of the spaces from Definition 1.40 is not canon-
ical; the “n” label (with various subscripts) is used for analogously defined maps:
no : Hom(U, V)@ W — Hom(U,VaW): A®w: (u— (A(u)) ®w)
ny: Hom(U,V)@W — Hom(UWaV):Aw: (u— w® (A(u)))
ny: W@Hom(U,V) — Hom(U,VOW):w®A: (u— (Alu)) ®w)
nz: W @Hom(U,V) — Hom(UWeV):w®A: (u—we (Au))).

For map with the n label appearing in a diagram or equation, its type from the

above list of four formulas can usually be determined by context. The above variants
are related to each other by compositions with switching maps.

LEMMA 1.42. For any vector spaces U, U', V, V', W, W', with maps n, n’ as
indicated, and any maps F : U' — U, B:V = V', C : W — W/, the following
diagram is commutative.

Hom(U,V) ® W —— Hom(U,V @ W)

[Hom(F‘,B)@C]l l/Hom(F,[B@C])
Hom(U’, V') @ W' —~~ Hom(U", V' @ W')
PrOOF. For A: U =V, we W,u e U,
Aw +— Hom(F,[BC(C))on)(A®w)=[BaClo(n(Ao w))oF:

u' = [BeCI(A(F(u)) @ w) = ((Be Ao F)(u)) @ (C(w)),
A@w + (n'o[Hom(F,B)®CC])(A®@w)=n'((BoAoF)® (C(w))) :
W = ((BeAoF)(w))® (C(w). N
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The n map is related to a canonical j map.

LEMMA 1.43. The following diagram is commutative.

Hom(U, V)@ W = Hom(U,V @ W)

[IdHom(U,V)®m]l/ lHom(lUJdV@W)
Hom(U, V) @ Hom(K, W) —— Hom(U @ K,V @ W)
PROOF. Starting with A ® w € Hom(U,V) @ W,
Agw = (jo[lduomw,v) @ m])(A®w) = j(A® (m(w))) :
w@A o (A®w)® (A w) = A+ (Aw) @ w,
Aw +— (Hom(ly,Idvgw)on)(A®w)= (n(A®w))oly :
u@A = (AN -u)@w=A-(Au) ®w.

LEMMA 1.44. The canonical map n : Hom(U,V) @ W — Hom(U,V @ W) is
one-to-one, and if U or W is finite-dimensional, then n is invertible.

Proor. This follows from Lemma 1.22, Claim 1.34, Lemma 1.43, and the
invertibility of the Iy map as in Example 1.28. See also [B] §11.7.7 or [AF] §20. [

Lemma 1.42, Lemma 1.43, and Lemma 1.44 all generalize in straightforward
ways to re-ordered variants of n maps as in Notation 1.41.

LEMMA 1.45. For any U, V., W, W', and n maps as indicated, the following
diagram is commutative.

W @ Hom(U, V) @ W' — ") gom@, w o v) o W

l [Tdw ®no) l"é

W ® Hom(U,V @ W) o Hom(U, W @ V @ W)

ProOF. For A € Hom(U, V), we W, w' e W, ue U,

ngolns @ Idw/]:w@ Agw — ny((ns(w® A)@uw'):
(n3(w @ A))(v) @ w' =w @ (A(u) @ w',
n3(w @ (no(A®w'))) :
w® (ng(A@w))(u) =w (Au) @w'.

u
nb o [Idw @no):w® A®w

1117

u

DEFINITION 1.46. For arbitrary vector spaces U, V', W define
q : Hom(V, Hom(U, W)) — Hom(V @ U, W)
so that for K : V. — Hom(U,W),v €V, u €U,
(q(K)(v @ u) = (K(v))(u).
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LEMMA 1.47. For any vector spaces U, V', W, q is invertible.
ProoF. For D € Hom(V @ U, W), check that
¢ (D) v (ur D(v®u))
defines an inverse. See also [AF] §19, [B] §11.4.1, [MB] §1X.11, or [K] §IL.1. i

1

REMARK 1.48. In some applications, the map ¢~ is called a “currying” trans-

formation, and so ¢ is an “uncurrying” map.

NOTATION 1.49. In the same way as Notation 1.41, there are different orderings
of the spaces from Definition 1.46, with the “g” label being used in either of these
two cases:

¢1 : Hom(V,Hom(U,W)) — Hom(V@U,W): K — (v®@u— (K(v))(u)),
(1.5) g2 : Hom(V,Hom(U,W)) — Hom(U®V,W): K — (u®v— (K(v))(u)).

For map with a ¢ label appearing in a diagram or equation, its type from the above
list can usually be determined by context. The above variants are related to each
other by composition; for a switching map s : U ®V — V @ U,

(1.6) g2 = Hom(s, Idw) o qi.

Both maps from (1.5) are invertible as in Lemma 1.47 and satisfy suitably
re-ordered versions of Lemma 1.50, Lemma 1.51, and Lemma 1.52.

LEMMA 1.50. ([AF] §20) For any vector spaces Uy, Vi, Wy, Ua, Vo, Wa, with
maps q1, gz as indicated, and any maps D : Vo — Vi, E:Us — Uy, F : Wy — Wha,
the following diagram is commutative.

Hom(V4, Hom(Uy, W1)) —=> Hom(U; ® Vi, Wy)
Hom(D,Hom(E,F))l lHom([E@D],F)
Hom(Va, Hom(Us, W3)) —=> Hom(Us @ Va, Wa)
PROOF. Starting with any G : V43 — Hom(U;, W1),

(Hom([E® D], F)oq1)(G) :u®@v = (Fo(q(G))e[E®D])(u®v)
= F((GDW))(E[)),
(g2 o Hom(D,Hom(FE, F)))(G) :u®v +— (g(Hom(E,F)oGoD))(u®v)
= ((Hom(E,F)oG o D)(v))(u)
= (Fo(G(D(v))) o E)(u)
= F((GDW)))(E(w))).

LEMMA 1.51. The following diagram is commutative.
Hom (X, Hom(Y, Hom(Z, U))) —= Hom(X ® Y, Hom(Z,U))
Hom(IdX,qg)l lqz
Hom (X, Hom(Y ® Z,U)) —=— Hom(X ® Y ® Z,U)
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ProOOF. For G € Hom(X, Hom(Y,Hom(Z,U))), z € X,y €Y, z € Z,
)

(20q)(G)z@y®z = (2((G)(z@y®:2)
= (@(@)(z®y))(2)
= ((G(2)(y))(2),
(gaoHom(Idx,q3))(G):2®@y®z +— (qa(gsoG))(z Ry z)
= (50 BNy @ 2) = (a5(Ga))y ® )

= (G@)w)(). 1

LEMMA 1.52. For any vector spaces Uy, Us, Vi, Vb, the following diagram is
commutative.

Hom(Uy, V1) ® Hom(Us, V2) Hom(Uy, Vi ® Hom(Us, V2))

n
]l Hom([dUl,n')l

HOHl(Ul QKU VI ® ‘/2) Hom(Ul, HOHI(UQ, Vi® Vé))

PrOOF. For A € Hom(Uy, V1), B € Hom(Uz, Vo), u € Uy, v € Us,
(goHom(Idy,,n')on): A® B — q(n'o(n(A® B))):
u®v = ((no(n(A® B)))(u))(v)
(n'((A(w) ® B))(v) = (A(u)) ® (B(v))
(J(A® B))(u®v).

ExaMPLE 1.53. The generalized transpose map from Definition 1.7 is a distin-
guished element in the following vector space:

t, € Hom(Hom(U, V), Hom(Hom(V, W), Hom(U, W))),
and its image under this ¢ map,

g : Hom(Hom(U,V),Hom(Hom(V, W), Hom (U, W)))

—  Hom(Hom(U, V) ® Hom(V, W), Hom (U, W))
is the following map:
q(t) : Hom(U, V) @ Hom(V, W) — Hom(U, W)
A®B = (qtv))(A® B) = (t)y(A)(B)

(1.7) = Hom(A, Idw)(B) = Bo A.

The operation of composition of linear maps is a bilinear function, as in Definition
1.23:

o:Hom(U,V) x Hom(V,W) ~» Hom(U, W)
(1.8) (A,B) — BoA.

The agreement of (1.7) and (1.8) shows that ¢(¢}},,) is the unique linear map cor-
responding to composition as a bilinear function as in (1.4) and Theorem 6.35:

o=q(tfy)oT.
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REMARK 1.54. The conclusion of Example 1.53 is that the generalized trans-
pose map is a linear, curried version of composition. Considering

q(t}¥,)) € Hom(Hom(U, V') @ Hom(V, W), Hom(U, W))

as a distinguished element in a vector space has an analogue in matrix algebra (see,
for example, [CHL]), where matrix multiplication can be viewed as an element of
a space of tensors.

ExAMPLE 1.55. Let B : V x V ~» K be a bilinear function as in Definition
1.23, so that there exists a unique linear map B : V ® V — K satisfying Bo T =
B as in (1.4). The invertible map ¢~! : Hom(V @ V,K) — Hom(V, Hom(V,K))
transforms B € (V @ V)* to ¢'(B) € Hom(V,V*). So, every bilinear function
B : V x V ~ K has a linearized, curried form which is an element of Hom(V, V*),
called a bilinear form — such maps are the main topic of Chapter 3.

DEFINITION 1.56. For any vector spaces U, V, W define
ey, : Hom(U, V') — Hom(Hom(V, W) @ U, W)
so that for A: U —-V,B:V - W, and u e U,
ey (A) : B®u— B(A(u)) € W.

LEMMA 1.57. For any wvector spaces U, V., W, U', V', W', and any maps
E:U U, F: V=V, G:W — W, the following diagram is commutative.

Hom(U, V) v Hom(Hom(V, W) @ U, W)
l/Hom([Hom(F,IdW)®E],G)
Hom(E,F) Hom(Hom(V', W) @ U',W')
THom([Hom(Idv/,G)®IdU/],IdW/)
»

Hom (U, V') ~““4 Hom(Hom(V', W) @ U’, W")
PROOF. Forany A: U -V, C: V' W, ue U,
HOI?(I([HOHI(ICZVI7 G) ® IdU/], Idw) o 62//,‘// oHom(E, F) :

A = (W (FoAoE))o[Hom(Idy,G)® Idy] :
Cou — (e, (FoAoE)((GoC)®u)
= (GoC)((FoAoE)(u)),
Hom([Hom(F, Idw) @ E],G) o el¥y :
A — Gol(ell,(A)) o [Hom(F, Idw)® E] :
Cou = Glegy(A))(CoF)® (E(u))

= G((CoF)(A(E()). B

LEMMA 1.58. The following diagram is commutative.

egvv
Hom(U, V) Hom(Hom(V, W) @ U, W)

tzvvl /

Hom(Hom(V, W), Hom(U, W))
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PRrROOF.
qo t‘l/]VV : A q(Hom(A, Idw)) : BQu+— (Bo A)(u) = (egVV(A))(B ® u).
[ |

NOTATION 1.59. For the special case W = K, abbreviate ef, = epy (or
sometimes just e):

eyy : Hom(U, V) — (V* @ U)*
so that for A: U -V, e V* andue U,
evv(A) o @u— ¢(A(u)) € K.
LEMMA 1.60. If V is finite-dimensional, then eyy is invertible.

Proor. This follows from Lemma 1.58, Claim 1.11, and Lemma 1.47. [

DEFINITION 1.61. For any vector spaces U, V, define
kyy : U ®V — Hom(U, V)
so that for £ e U*, v eV, and u € U,
(kuv(€®v))ru—E&(u)-veV.

LEMMA 1.62. For maps A : U’ — U, B :V — V', the following diagram is
commutative.

UreV

Hom(U, V)

[A*®B]l/ \LHOIn(A,B)
k ! !

U@V — ~ Hom(U', V')

PROOF. For g @ v e U* @V, ue U,

(Hom(A, B)okyy)(¢®v) = Bo(kyv(¢®v))o

u = B(o(A(u))-v) = ( (u)) B(v),
(kv o[A*@B))(¢®@v) = kuv ((A*(¢)) @ (B(v))) :

u = (A%())(u) - B(v) = ¢(A(u)) - B(v).

LEMMA 1.63. For any vector space V, kyg =y« : V@ K — V*.
PROOF. Forv eV, p e V¥ A € K|

vk : 0@ = k(@A) :v—= pv)- A,
lys : 0 @A = Ao (A-p)(v).
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LEMMA 1.64. The canonical map kyy is one-to-one, and if U or V is finite-
dimensional then ki is invertible.

PROOF. The kyy map (sometimes abbreviated k) is related to a canonical n
map. The following diagram is commutative.

Hom(U,K) ® V = Hom(U,K® V)

HOm(Idu,lv)
kuv

Hom(U, V)
ly o (n(¢®v)) s um @u) v = (kuv (¢ @ v))(u).

The n map is one-to-one, and, if U or V is finite-dimensional, then n is invertible
by Lemma 1.44, which used Claim 1.34. The Iy map is invertible as in Example
1.28. See also [B] §I1.7.7 or [K] §IL2. i

LEMMA 1.65. For any vector spaces U, V., W, this diagram is commutative
Hom(U, V)@ W

Ur©V @ W —sHom(U,V & W)

uvew
PRrROOF. For o @v@w e U* @V @W and u € U,
oRvew — n(lkyy(@R0v))@w):ur (d(u) v) @w
PpRvW — kyvew(@@uv@w):ur— ¢u)- (v w).

The diagram from Lemma 1.65 can be modified by replacing the n map with
a re-ordered variant as in Notation 1.41, or adding one or more arrows to com-
pose with switching maps as in Example 1.29, to get analogous statements about
commutativity by a similar calculation.

REMARK 1.66. Unlike the canonical maps tgvv, dvw, s, j, n, q, and e‘l’]VV, the
k maps explicitly refer to the set of scalars K, in both the dual space U* and the
scalar multiplication - in V. The maps [ and m also refer to scalar multiplication.

REMARK 1.67. The canonical maps appearing in this Chapter are well-known
in abstract linear algebra. Lemma 1.8, Lemma 1.14, Lemma 1.21, Lemma 1.37,
Lemma 1.38, Lemma 1.39, Lemma 1.42, Lemma 1.50, Lemma 1.57, and Lemma
1.62 can be interpreted as statements about the naturality of the t, d, m, j, [, s,
n, ¢, e, and k maps, in a technical sense of category theory. In geometry, these
same lemmas also are enough to show that these maps transform in the right way
under (pointwise linear, invertible) changes from one local trivialization to another
in a vector bundle, so that these basis-free constructions on vector spaces extend
to well-defined maps of vector bundles.

REMARK 1.68. These canonical maps also appear in concrete matrix algebra
and applications: see [Magnus|, [G,] (particularly §1.8 and §VI.3), [Graham];
for historical references, see [F1S] and [FLJ] (Chapter 4). For example, the map
k:[}‘l/ : Hom(U, V) — U* @ V is a “vectorization,” or “vec” map. The tyy map, of
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course, is analogous to the transpose operation (A — A’, in the notation of [FLS]
and [Magnus]) and an analogue of Lemma 1.62 is the equality:

vec(ABC) = (C" @ A)vecB,
attributed by [HS] to [R], see also [Nissen], [HJ], [Magnus] (§1.10).
NoTATION 1.69. The composite of the e and k maps is denoted
fuv=epvokyy :U @V = (V'@U)"
Sometimes fyry is abbreviated f.
The output fyy (¢ ® v) acts on £ ® u to give ¢(u) - £(v) € K:
(evv (kuv (¢ @))€ ®u) = E((kuv (¢ @ v))(u)) = &(P(u) - v) = ¢(u) - £(v).

EXERCISE 1.70. For maps A : U’ — U, B: V — V', the following diagram is
commutative.

fuv

UroV

[A*@B]l l[B*@A]*
U'* ® V! furve (Vl* ® UI)*

HINT. This can be checked directly as in the Proof of Lemma 1.62; it also
follows as a corollary of Lemma 1.57 and Lemma 1.62. [

LEMMA 1.71. fiy odvgu = fyvv : V QU — U*eV)*.
PROOF. For E@u e V*@U, and g @v e U*®V,

(fov(dv-gu(@u)))(d®@v) = (dv-eu(®@u))(fuv(p®v))
(fov(p®v))(€®@u)

= o(u)-€(v)

= (frv(§®u))(p®v).

NoTAaTION 1.72. For any vector spaces U, V, the following composite is de-
noted:

puv = [dv@IdU*]OS UV VYU
So, for p e U*, v € V, pyv(o®@v) = (dyv (v)) ® ¢. Sometimes pyy is abbreviated p.

LEMMA 1.73. For maps B : V. — V', C : U* — U, the following diagram is
commutative.
puv

U@V ——m— V" U"
con e
UI* ® VI Pu’v’ VI** ® UI*

HINT. This can be checked using case (1.2) of Lemma 1.14. i
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LEMMA 1.74. The following diagram is commutative. If V is finite-dimensional
then all the maps are invertible.

UreV Jov (V* @ U)*
lpuv THom(Idv*@U,l)
Ve R U d Hom(V* ® U, K © K)

PROOF.

o®v = (Hom(Idy-gu,l)ojopuv)(d@v)=1o[(dyv(v)) @ ¢|:
E@u = &(v)-d(u)
(f(¢®0))(§ @ u).

LEMMA 1.75. The following diagram is commutative. If V is finite-dimensional
then all the maps are invertible.

U oV "V Hom(U, V)

;Dle ltuv

Ve e U — VU Hom(V*, U*)

Proor.
p@v = (ky-u-opuv)(@@0v) = ky-p«((dy(v)) ® @) :
& = (kveu-((dv(v) @ $))(&) = (dv(v))(§) - d=E&(v) - ¢:
u = E(v) - dlu),
p®v = (tuvokyv)(@®v):
£ = (tov(kov(p®)))(§) =Eo (kuv(p®v)):
u = ((kuv (9 ®v))(u) =E&(e(u) -v) = ¢(u) - £(v).

The diagram shows how Claim 1.11, Claim 1.16, and Lemma 1.64 are related. [

REMARK 1.76. The map p corresponds to another well-known object in matrix
algebra, denoted the “vec-permutation matrix” I, ,, by [HS]. The equality vecA =
TvecA’ (in the notation from Remark 1.68) corresponds to the equality kop =tok
from Lemma 1.75, and [F1S] states a matrix analogue of Lemma 1.73. This matrix
has also been called the “commutation matrix” K,,, by [Magnus] (§3.1) (with the
equivalent property KvecA = vecA’) or the “shuffle matrix” by [L], [H.J].
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1.3. Direct sums

The following definition applies to any integer v > 2 (see also [AF] §6).

DEFINITION 1.77. Given vector spaces V', Vi, Vo, ..., V, and ordered v-tuples
of maps (P1, Ps,...,P,)) and (Q1,Q2,...,Q,), where P, : V = V;, Q; : V; = V for
1=1,2,...,v, V is a direct sum of (V4,Va,...,V,) means:

QioPi+QeoPy+---+Q,0P, =1dy

and

Idy, ifi=1

Feo QI B { OHom(Vz,Va‘,) if i 7£ I

This data is sometimes abbreviated V =V}, & Vo & --- & V,,, when the maps
P; (called projections) and @); (inclusions) are understood. Note that the ordering
is part of the notation and that each map @Q; is one-to-one (having a left inverse
as in Exercise 0.48) and that if V' is finite-dimensional then each V; is also finite-
dimensional (by Exercise 0.50 — this fact may not be mentioned at every subsequent
occurrence).

We will most frequently consider direct sums of two spaces; in this v = 2 case,
the above Definition requires that five equations are satisfied by (P, P2), (Q1,Q2),
but it is enough to check only three of these equations.

LEMMA 1.78. Given wvector spaces V', Vi, Vi, if there exist P, : 'V — Vi,
P V=V, Qr: V1 =V, Qs: Vo =V such that:

QioP+Q20FP, = Idy
Pio@ = Idy
PyoQy = Idy,

then V. =V & V5.

PROOF. The conclusion is that the pairs (Py, P») and (Q1,Q2) satisfy Defi-
nition 1.77, and the only two equations remaining to be checked are P, o )1 =

OHom(Vl,Vz) and P o QQ = OHom(Vg,Vl)'

Poo@1 = PQOIdVOQl:PQO(Q10P1+Q20P2)OQ1
= PoQioPioQi+PRoQ20Po00Q:

PyoQqoldy, + Idy, o PyoQ1

PyoQr+ PoQy

= OHom(Vl,Vg)a

the last step using Theorem 0.3. The other equation is similarly checked. [
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THEOREM 1.79. Given vector spaces V', Vi, Vo, V3, Vi, if V. = V1 & Vo and
Vo=Vs®Vy, then V=V1® V3@ Vj.

PROOF. Let (P1, Py), (Q1,Q2) be the projections and inclusions for V =V, @
Vo, and let (Ps, Py), (Q3,Q4) be the direct sum data for Vo = Va3 @ V4. The
projections (Py, P3o Ps, PyoPy) and inclusions (@1, Q20Q3, Q20Q)4) give a canonical
construction for the claimed direct sum. The first equation from Definition 1.77 is:

QroP1+ (Q20Q3) 0 (P3oPy) + (Q20Q4) 0 (Pyo )
QroP+Q20(Q30P3+Quo0P)0 Py

Q10 P+ Q20 Idy, o Py

= Idy.

The remaining nine equations are also easily checked. [ |

ExampLE 1.80. If H : U — V is an invertible map between arbitrary vector
spaces, and V = V; @ Vb, then U is a direct sum of V; and V5, with projections
PioH :U =V, fori=1,2, and inclusions H o Q; : V; = U.

ExampLE 1.81. If V. = V; @ V5, and U is any vector space, then V @ U is a
direct sum of V4 ® U and V52 ® U. The projections and inclusions are [P; ® Idy] :
VeoU—=V,eU,and [Q; ® Idy] : V; @ U — V ®@ U. There is an analogous direct
sumUQV=UVieUQR V.

EXAMPLE 1.82. If V =V}, @ Va, and U is any vector space, then Hom(U, V')
is a direct sum of Hom(U,V;) and Hom(U, V3). The projections and inclusions
are Hom(Idy, P;) : Hom(U, V) — Hom(U,V;), and Hom(Idy, Q;) : Hom(U,V;) —
Hom(U, V).

EXAMPLE 1.83. If V = V; @ V5, and U is any vector space, then Hom(V,U) is

a direct sum of Hom(V;,U) and Hom(V,U). The projections are Hom(Q;, Idy) :
Hom(V,U) — Hom(V;,U), and the inclusions are

Hom(P;, Idy) : Hom(V;,U) — Hom(V, U).
EXAMPLE 1.84. As the U = K special case of the previous Example, if V' =
Vi @ Vs, then V* = Vi* @ V', with projections @7 and inclusions P;*.

LEMMA 1.85. Given V = Vi @ Va, the image of Qa, i.e., the subspace Q2(V2)
of V', is equal to the subspace ker(Py), the kernel of Py, which is also equal to
ker(Q1 0 Pp).

PROOF. The second equality follows from ker(P;) C ker(Q10P;) C ker(P1oQ;0
Py) = ker(Py). It follows from Py o Q2 = Omom(v,,v;) that Q2(V2) C ker(Pr), and if

Py (v) =0y, then v = (Q10P1 + Q20 P2)(v) = Q2(P2(v)), so ker(Py) C Qa2(Va). [ |

LEMMA 1.86. Given U = Uy @ Uy and V = Vi @ Vo, with projections and
inclusions P/, Q}, P;, Qi, respectively, if the maps A1 : Uy — Vi and Ay : Uz — Vs
are both invertible, then the map Q10 A1 o P{ + Qo0 Ayo Py : U — V is invertible.

PROOF. The inverse is Q) 0o A7 o P, + Q40 Ay ' o Py. i
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LEMMA 1.87. Given a direct sum V =V, @& Vs as in Definition 1.77, another
direct sum U = Uy @Us, with projections and inclusions P! and Q,, and H : U — V,
the following are equivalent.

(1) QroProH = HoQ,oP|.

(2) QaoPyoH=HoQ,oP;.

(3) ProH oQ% = Otom(u,,vy) and Py o H o Q) = Oomu,,va)-

(4) There exist maps Hy : Uy — Vi and Hy : Uy — Vi such that H =
Qio0HyoP+Qy0Hy0Pj.

PRrOOF. First, for (1) < (2),
H=(QioPi+Qe0P)oH = Ho(Q|oP +Q50P))
=QioPioH+QooPy0H = HoQjoP+HoQy0P;.

Applying either equality (1) or (2), then subtracting, gives the other equality. For
(1) = ),

PloHOQIQ = Plo(QloP1+Q20P2)oHoQ/2
= PIOHOQQOP{OQQ:OHom(UQ,Vl)v
PooHoQ] = PooHo(Q)oP +Q50P)oQ)

= PyoQioPioHoQ] = Otom, va)
Next, to show that (3) implies (1) or (2), let i = 1 or 2:
QioP,oH = QioPioHo(Q)oP +Q50P)
QioPoHoQ;oP]
= (QoPi+QeoP)oHoQ;oP =HoQoPF,.
The construction in (4) is the same as in Lemma 1.86 (without requiring invert-
ibility). The implication (4) = (1) is straightforward. To show that (1) and (2)
imply (4), let H; = Py o Ho Q) and Hy = P o H o Q4. Then,
QiroHioP+Qa0HyoPy = QioPioHoQioP +QyoP0oHoQ,oP,
= @QioPio@QioPioH+Q20P0Q20P0H
= (QioPi+Q20P)0oH=H.

DEFINITION 1.88. For V.= Vi@ Vo, U = Uy ®Us, and H : U — V, H
respects the direct sums means: H satisfies any of the equivalent conditions from
Lemma 1.87. For such a map and i = 1,2, the composites P;o H o Q) : U; — V; are
said to be induced by H.

LEMMA 1.89. If H : U — V is an invertible map which respects the direct sums
as in Definition 1.88, then H~! also respects the direct sums, and for each i = 1,2,
the induced map P; o H o Q) : U; — V; is invertible, with inverse P/ o H™1 0 Q;.

PROOF.
(ProHoQ)o(PloH '0Q) = PioQioPoHoH '0Q;
= PoQ;=Idy,
(PloH  0Q)o(PoHoQ) = PloH 'oHoQoF o)

— Poq)
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If i = I, this shows PjoHo(Q), is invertible. Ifi # I, then PjoH 1oQ; = Oom(vi,U1)»

so H~! respects the direct sums.

LEMMA 1.90. Given U =U, & Us, V=V ® Vo, W=W1®&Ws, if H:U -V
respects the direct sums and H' : V. — W respects the direct sums, then H' o H :
U — W respects the direct sums. A map induced by the composite is equal to the
composite of the corresponding induced maps. [ |

LEMMA 1.91. Suppose V=V & Vo, U = Uy, ®Us, and H : U — V respects
the direct sums, inducing maps P; o H o Q. Then, for any A: W — X, the map
[Ho A :U®@W =V ®X respects the direct sums

Ui WalU, W - ViXaelhe X

from Ezample 1.81. The induced map [P; @ Idx]o [H ® A] o [Q} ® Idw] is equal to
(ProHoQ)® A

ProoF. All the claims follow immediately from Lemma 1.36. [

LEMMA 1.92. Suppose V.=V, @& Vo, U = U; & Us, and H : U — V respects
the direct sums, inducing maps P; o H o Q. Then, for any A : W — X, the map
Hom(A, H) : Hom(X,U) — Hom(W, V') respects the direct sums

Hom(X, Uy) @ Hom(X, Us) — Hom(W, V1) ® Hom(W, V3)
from Example 1.82. The induced map Hom(Idw , P;) o Hom(A, H) o Hom(/dx, Q})
is equal to Hom(A, P; o H 0 Q}). Analogously, the map Hom(H, A) : Hom(V, W) —
Hom(U, X) respects the direct sums

Hom(Vy, W) @ Hom(V2, W) — Hom(U;, X) @ Hom(Us, X)

from Example 1.83, and the induced map Hom(Q}, Idw )oHom(H, A)oHom(P;, Idx)
is equal to Hom(P; o H 0 Q}, A).

ProoF. All the claims follow immediately from Lemma 1.6. [

NOTATION 1.93. Given a direct sum V' = V; @ V5, with projection and inclusion
pairs (Py, P2), (Q1,Q2), the pairs in the other order, (V2, V1), (P2, P1), (Q2,Q1),
also satisfy the definition of direct sum. The notation V = V5 & V; refers to these
re-ordered pairs.

EXAMPLE 1.94. A map H € End(V) which satisfies Qa0 Poo H = Ho Q10 P,
respects the direct sums H : V; @ Vo — Vo @ V4 (and so H also satisfies the other
identities from Lemma 1.87).

LEMMA 1.95. Given a vector space V' that admits two direct sums, V. = V1 ® Vs,
V = V! ® V4 with projections and inclusions P;, Q;, P!, QY, respectively, the
following are equivalent.

(1) The identity map Idy : V3 @ Vo — V" @ V' respects the direct sums.

) QroPr=Q7oP.
) Q2o P =Q50Py.
) Pr o Qi = Ouom(v; vy fori# 1.
) ProQ = Ouomvy vy fori# 1.

PROOF. The first statement is, by Definition 1.88 and Lemma 1.87, equivalent
to any of the next three statements. The equivalence with the last statement follows

(2
(3
(4
(5

from Lemma 1.89.
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DEFINITION 1.96. Given V, two direct sums V. =V, @ Vp and V = V" @ VJ/
are equivalent direct sums means: they satisfy any of the properties from Lemma
1.95.

For a fixed V, this notion is clearly an equivalence relation on direct sum
decompositions of V.

ExamMPLE 1.97. If V = Vi1 ® Vo and Hy : Uy — Vi and Hy : Uy — V5 are
invertible, then V is a direct sum U; ® Us, with projections H. [1 o P; and inclusions
Q; o H;. The direct sums V =V; ® V5 and V = Uy @ U, are equivalent.

LEMMA 1.98. Given U and V', a direct sum U = Uy & Us, and a map H : U —
V, suppose V.=V1 @ Vo and V. = V" @ VJ' are equivalent direct sums. Then H
respects the direct sums Uy & Us — Vi @ Vo if and only if H respects the direct
sums Uy @& Uy — V" @ Vy'. Similarly, a map A : V — U respects the direct sums
Vi & Vo — Uy & Us if and only if A respects the direct sums V' &Vy' — Uy & Us. [ |

LEMMA 1.99. Given V =V, @V, and V = V" ® V' with respective direct sum
data P;, Qi, P/, Qf, if P1 o Q3 = Otom(vy,vi), and P/ 0 Q2 = Opom(vy, vy, then
PloQi:Vy =V and PJ o Qo : Vo — Vi’ are both invertible.

PRrROOF. The inverse of P/’ 0 Q; is P, 0 QY : V" — V;. i

As a special case of both Lemma 1.99 and Lemma 1.89,if V =V, &V, and V =
V" @ V3 are equivalent direct sums, then there are canonically induced invertible
maps P'oQ,;:V, = V/ i=1,2.

LEMMA 1.100. Suppose ¢ € V*. If ¢ # Oy« then there exists a direct sum
V =K @ ker(¢).

PROOF. Let @2 be the inclusion of the kernel subspace ker(¢) = {w € V :
¢(w) =0} in V. Since ¢ # Oy, there exists some v € V so that ¢(v) # 0. Let «,
B € K be any constants so that «- 8- ¢(v) = 1. Define Qf : K — V so that for
veK,Q%y) =87 v. Define P* =a-¢:V — K. Then,

Plo@l:iy—a-¢B-y-v)=a-B-6(v)-y=1.
For any w € ker(¢), (P o Qq)(w) = a - ¢(w) = 0. Define P, = Idy — Q} o PP,
which is a map from V to ker(¢): if u € V, then
(9o Pa)(u) = (¢oldy —¢oQ) o PP)(u)
= o(u) — $(Q (- $(u)))
= ¢u) —¢(B-a-d(u)-v)
P(u) —a-B-¢(v) - ¢(u) =0.

Also, for w € ker(¢),

(P20 Qa)(w) = ((Idv — QY 0 PI*) 0 Q2)(w) = (Q2 — Q7 © Oger())-) (w) = w,
s0 P2 0 Q2 = Idyer(4), and the claim follows from Lemma 1.78. [ |

Given V and ¢, the direct sum from the previous Lemma is generally not unique,
nor are two such direct sums, depending on v, «, (3, even equivalent in general.
However, in some later examples, there will be a canonical element v ¢ ker(¢), and
in such a case, different choices of a, 5 give equivalent direct sums.
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LEMMA 1.101. Given V, ¢ € V*, and v € V so that ¢p(v) # 0, let «, 5, o,
B € K be any constants so that a- - d(v) = o' - ' - ¢p(v) = 1. Then the direct
sum V. = K @ ker(¢) constructed in the Proof of Lemma 1.100 is equivalent to

the analogous direct sum with maps Qf/ sy = By, P{’/ =dad ¢, Qo, and
Py=1Idy - Q% opr I
The following result will be used as a step in Theorem 4.40.

THEOREM 1.102. Suppose U = Uy ® Us is a direct sum with projections and
inclusions P;, Q;, and that there are vector spaces V', Vi, Vo, and maps P| : V — V,
Qy: Vo=V, H:U—=V,H :U — Vi, Hy: Uy — Va, such that PloH = Hy0 P,
Q0 Hy = HoQ2, and P{ o Q4 = Onom(vy,vy)- Suppose further that H and H;
are invertible, and that QY 1is a linear monomorphism. Then, there exist maps
Q) :Vi =V and Py :V — Va such that V. =Vy @ Va. Also, H respects the direct
sums, and Hy is invertible.

PROOF. Let Q) = H o Q4 onl. Then
PloQ)=PloHoQioH;'=HoPioQoH;"'=Idy,.
Let P, = Hyo Pyo H™1'. Then

QioP/+QhoPy = HoQioH'oP +QyoHyoPy0oH *
= Ho@QioPioH '+HoQyoPyoH !
= Idy.

Qy0Py0Q = (Idy —QyoP[)oQ =05,
so PjoQ!, = Idy,, by the monomorphism property (Definition 0.47), and this shows
V =V @& Vs by Lemma 1.78. H respects the direct sums:

Pll OHOQQ - Hl o Pl OQ2 - OHom(UQ,\/l)

PQ/OHOQl = HQOPQOHiloHOQl:OHom(Ul,Vz)'
By Lemma 1.89, Pyo Ho Q2 = Hyo Pyo H Yo Ho Qs = Hj has inverse Pyo H 1o
Q. |

EXERCISE 1.103. Let V=V, ® Vo ®--- @V, be a direct sum, as in Definition
1.77, with projections (Py, Pa, ..., P,) and inclusions (Q1, @2, ..., Q,). For another
vector space W and additive functions A : V ~» W, B : V ~» W, the following are
equivalent.

(1) Foralli=1,...,v, AoQ; =BoQ;:V; = W.
(2) A=B.

HINT. The additive property is used in steps (1.9), (1.10).
A = AO(QIOP1+"'+QVOPV)

(1.9) = (AoQi)oPi+--+(A0Q,)0 P,
— (BoQi)oPi+--+(BoQ,)oP,
(110) = BO(Q10P1+"'+QVOPV)

B.
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EXERCISE 1.104. Let V=V, ® Vo @ --- ®V,, be a direct sum. Suppose there
is some 4 and some additive function P’ : V ~ V; so that P’ o Q; = Idy,, and
Po Q[ = OHom(VI,Vf,) for I 75 1. Then, P = .Pz

HINT. This is a special case of Exercise 1.103. P’ is not assumed to be linear,
but the above calculation uses the additive property to conclude that P’ is linear
because it equals a given linear map.

In the above sense, given all the data Py, ..., Q, in a direct sum, each individual
map P; is unique. Exercise 1.106 states an analogous uniqueness result for @Q;.

EXERCISE 1.105. Let V=V & Vo @ --- @V, be a direct sum. For any set W
and any functions A: W ~~ V B : W ~» V, the following are equivalent.
(1) Foralli=1,...,v, boA=P,oB: W = V,.
(2) A=B.

HiNT. The calculation is similar to that in Exercise 1.103, but does not assume
any additive property. [ |

EXERCISE 1.106. For V =V, & Vo @ --- BV, suppose there is some ¢ and some
function Q' : V; ~» V so that P; o Q" = Idy,, and P; o Q" = Ouom(v,,v,) for I # i.
Then, Q' = Q;.

HinT. This is a special case of Exercise 1.105. [

EXERCISE 1.107. Let V = V4 @ V5 be a direct sum with projections (Py, Ps)
and inclusions (Q1,@2), and let A : V3 — V5. Then the following maps (P], Py),
(Q}, Q%) also define a direct sum.

Ql = Qi+ Qr0A: VIV
Qy = Q:Vo—>V
Pl = P VoW
PQ/ = PQ—AOP11V—>‘/2.

This is equivalent to the original direct sum if and only if A = Opom(v;,v3)-

HINT. The first equation from Definition 1.77 is:

QioP+Q40P; = (Qi+Q20A)0Pi+Qz0(Py—AoP)
= QioPi+Qr0A0P +QooPy—(Qr0A0P
Idy.

The remaining equations from Definition 1.77 (or Lemma 1.78) are also easy to
check. If the direct sums are equivalent, then Opom(v,,v,) = P20 Q) = Pao (Q1 +

Q20 A) = A, and conversely.

The direct sum P/, @ is the graph of A. In a certain sense, Exercise 1.107 has
a converse: if a space V decomposes in two ways as a direct sum, with the same
inclusion @2, then the two direct sums are related using the graph construction, up
to equivalence.
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EXERCISE 1.108. Given V, Vi, Vs, suppose the pairs (Pp, P») and (Q1,Q2)
define a direct sum V = V; @ Va, and the pairs (P{, Py), (Q},Q%) also satisfy
Definition 1.77. If Q2 = @Y%, then there exists a map A : V4 — V3, and there exist
(P, PY), (QF, Q%) which define a third direct sum, and which satisfy:

I = Qi+ QuoA:V; =V

5 = Q2:Va—=V
Pll/ = P11V—>‘/1
PQH = Py—AoP:V = Vs

This (P, Py), (QY,Q%) direct sum is equivalent to the (P], P}), (Q}, Q%) direct
sum.

HINT. Note that by Exercise 1.106, the hypothesis Q2 = Q% is equivalent to
assuming that Q5 satisfies Py o Q4 = Idy, and Py o Q) = Ogom(v,,v;)- Choosing
5 = Q2 gives the identity Py o QY = Otom(vs,v4)-
The above four equations are the properties defining a graph. The claimed ex-
istence follows from checking that the following choices have the claimed properties.

A = —P2/0Q11V1—>‘/2
! = QloPloQ:Vi -V
Pl = P,V >V

The equivalence of direct sums as in Definition 1.96 is verified by checking PjoQ{ =

OHom(Vl,Vz) .

1.4. Idempotents and involutions

DEFINITION 1.109. An element P € End(V) is an idempotent means: Po P =
P.

LEMMA 1.110. Given V and Py, Py € End(V), any three out of the following

four properties (1) — (4) imply the remaining fourth.

(1) Py is an idempotent.

(2) P2 is an idempotent.

(3) ProPy+ Pyo Py = Ogpay)-

(4) Py + Py is an idempotent.
Property (4) is equivalent to:

(5) There exists P3 € End(V') such that Ps is an idempotent and Py+Po+Ps =

Idy.

If, further, either % € K or P+ P, = Idy, then P1, Py, Ps satisfying properties
(1) — (5) also satisfy:

(6) For distinct 1,12 € {1,2,3}, P;, o Pi, = Ogna(v)-
Conversely, if Py, Py, Ps € End(V) satisfy (6) and P, + P» + P3 = Idy, then
Py, Py, Ps are idempotents satisfying (1) — (5). [ |

EXERCISE 1.111. For P € End(V), the following are equivalent.

(1) P is an idempotent.
(2) For any A € End(V), P+ PoA— Po Ao P is an idempotent.
(3) For any A € End(V), P+ Ao P — Po Ao P is an idempotent. ll
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EXERCISE 1.112. If P € End(V) is an idempotent, then the following are
equivalent.

(1) P'o P =Po P for all idempotents P’ € End(V).
(2) P = OEnd(V) or P= Id\/

HiNT. This follows from Exercise 1.111 and Claim 0.57. [ |

ExaMpPLE 1.113. An idempotent P defines a direct sum structure as follows.
Let V3 = P(V), the subspace of V' which is the image of P. Define Q1 : V4 — V
to be the subspace inclusion map, and define P; : V — Vi by restricting the
target of P : V. — V to get P, : V. — Vi with Py(v) = P(v) for all v € V.
Then P = Q0 P, : V — V by construction. The map Idy — P is also an
idempotent (this is a special case of Lemma 1.110), so proceeding analogously,
define Vo = (Idy — P)(V'), the image of the linear map Idy — P : V — V. Again,
let Q2 : Vo — V be the subspace inclusion, and define P, = Idy — P, with its
target space restricted to Vi, so that Q3 o P, = Idy — P by construction, and
QioPi+Q20P, =P+ (Idy — P) = Idy. To show V = V] @ V3, it remains
only to check that these maps satisfy the two remaining equations from Lemma
1.78. For vy € Vi, Q1(v1) = v1 = P(wy) for some wy € V, so (P; o Q1)(v1) =
Pi(P(w1)) = P(P(w1)) = P(wi) = v1. Similarly, for Q2(v2) = v2 = (Idy — P)(w2),
(P20Q2)(v2) = (Idy —P)((Idy — P)(w2)) = (Idy — P)(ws) = ve. This construction
of the direct sum V = V; @ V4 is canonical up to re-ordering.

The statement of Lemma 1.85 in the special case of Example 1.113 is that the
image of Idy — P is the kernel of P, and the image of P is the kernel of Idy — P.

EXAMPLE 1.114. Given any direct sum V = U; @ Us as in Definition 1.77
with projections (Pp, P») and inclusions (Q1,Q2), the composite Q1 0Py : V — V
is an idempotent, and so is Idy — Q1 0 P, = Q2 o P». This is a converse to the
construction of Example 1.113; any direct sum canonically defines an unordered
pair of two idempotents. For P = ()1 o P, the direct sum V = V; @& V5 constructed
in Example 1.113 is equivalent, as in Definition 1.96, to the original direct sum.

LEMMA 1.115. Given idempotents P :V — V, P’ : U — U defining direct sums
Vi ® Vo and Uy @ Uy as in Example 1.113, and a map H : U — V', the following
are equivalent.

(1) H respects the direct sums (as in Definition 1.88).
(2) HoP'=PoH. I

EXERCISE 1.116. Given maps P, : V. = Vi, Q1 : Vi =V, P, : V. — Vs,
Q2 : Vo = Vi, if Q1o Pr + Q20 P> = Idy and either P; o Q2 = Opom(vs,v;) OF
Py 0 Q1 = Oxom(vy,13), then PLoQq : Vi — Vi and P, 0 Q2 : Vo — V5 are both
idempotents.

HINT. These are some of the composites from Definition 1.77 and this claim is
related to Lemma 1.78 and Lemma 1.99. [

DEFINITION 1.117. An element K € End(V) is an involution means: K o K =
Idy.
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LEMMA 1.118. [f% € K and K € End(V), then the following are equivalent.
(1) K € End(V) is an involution.
(2) P=1%-(Idv + K) is an idempotent.
(3) Idy — P =3 (Idy — K) is an idempotent. [

LEMMA 1.119. For an involution K € End(V), let Vi ={v € V : K(v) = v},
and Vo ={v eV : K(v) = —v}. If% €K, then V. =V1 @& Vo, with Q; the subspace
inclusion maps, and projections:
(1.11) P = -(Idy + K),

(1.12) P, = =-(Idy — K).

N = N =

PRrROOF. This can be proved directly, but also follows from the construction
of Example 1.113. It is easy to check that Vj is a subspace of V', equal to the
image of the idempotent P from Lemma 1.118 and that V5 is equal to the image of
Idy — P. The composites Q1 0 Py, Q20 P € End(V) are also given by the formulas
L. (Idy £ K). [

NOTATION 1.120. We refer to the construction of V.= V; @ V5 as in Lemma
1.119 as the direct sum produced by the involution K. The subspaces Vi, V5 and
maps Py, P, in (1.11), (1.12) are canonical, but Lemma 1.119 made a choice of
order in the direct sum V = V; @ V5. With this ordering convention, the involution
— K produces the direct sum V = V5 ® V; as in Notation 1.93.

NotaTION 1.121. For the projection maps defined by formulas (1.11), (1.12)
from a direct sum produced by an involution, the double arrowhead will appear in
diagrams, P; : V. — Vi, Py : V — V5, and the same style arrow for composites of
such projections. For the subspace inclusion maps as in Lemma 1.119, the hook
arrow will appear: Q)1 : Vi < V for the fixed point subspace of K, and Q)2 : Vo — V
for the fixed point subspace of —K, and similarly for composites of such inclusions.

EXAMPLE 1.122. Given any direct sum V = U; & U, as in Definition 1.77 with
projections (P;, P») and inclusions (Q1,Q2), the map

Qlopl—QQOPQ:Idv—2'QQOP2ZV-)V

is an involution, and it respects the direct sums Uy & Uy — Uy & Uy, If % e K,
then the direct sum produced by this involution, V"= V; & V5 as in Lemma 1.119,
is equivalent, as in Definition 1.96, to the original direct sum. As in Lemma 1.89
and Lemma 1.99, there are invertible maps U; — V;. If the direct sum maps Q;, P;
were defined by some involution K as in Lemma 1.119, then Q10 P} — Q20 P> = K.

LEMMA 1.123. For an idempotent P : V — V, let V.= V1 ® V4 be the direct sum
from Example 1.113. The maps K =2-P —Idy : V -V and Idy —2-P = —-K
are involutions, and both K and —K respect the direct sums Vi3 ® Vo — Vi @ Vs.
If% € K, then the direct sum from Lemma 1.119 produced by K is the same as
V=V:ia.

PROOF. The claim that K and —K respect the direct sums is a special case of
Lemma 1.115.
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ExaMPLE 1.124. For any space V', the switching map s : V@V - VoV
from Example 1.29 is an involution. For % € K, s produces a direct sum on V@V,
denoted:

VeV =_8%VagA?%V,
with projections P; = % (Idvey +8): VRV - S?V and P, = % -(Idygy — s) :
V ®V — A2V and corresponding subspace inclusions Q1, Qo.

THEOREM 1.125. Given 3 € K, an involution K € End(V), let V =V, & Vh
be the direct sum produced by K. For any ¢ € V*, if ¢ # Oy« and ¢ o K = ¢, then
there is a direct sum V =K @ ker(¢p o Q1) ® Va.

PROOF. Let (P1, P») and (Q1, Q2) be the pairs as in Lemma 1.119; the inclusion
(01 appears in the claim. From ¢ # Oy, there is some w € V so that ¢(w) # 0.
Let v =1 (w+ K(w)) € Vi. Then

(60 QU)(v) = 9(v) = 65 - (w+ K(w) = 3 - 9w) + 3 - 9(K (w)) = p{uw) #0.

So ¢po@Q1 # Oy and Lemma 1.100 applies to get a direct sum V; = K@ ker(doQ1),
depending on parameters «, 8 € K such that « - 8- ¢(w) = 1. The inclusions are
Q/g :K— Vi iy~ B-v-v, and the subspace inclusion Q4 : ker(¢p o Q1) — V4. The
projections are P = a-¢oQy : Vi = K, Py = Idy, — Q5 o P§ : Vi — ker(¢ o Q).
Theorem 1.79 applies to get the claimed direct sum. In particular, the first inclusion
is Q10 Qg : K — V| the second is a subspace inclusion Q1 0 Q4 : ker(¢p o Q1) — V,
and the third is the subspace inclusion not depending on ¢, Qs : Vo < V. The three
projections are a-¢po@Q10P;, : V — K, (Idy, —Q§0(a~¢OQ1))OP1 1V — ker(¢oQ1),
and Py : V — Va. |

For K and ¢ as in Theorem 1.125, any element u € V can be written in the
following way as a sum of terms that do not depend on « or :

(1.13) w = Idy(u)
= (@oQfo(a-¢oQioP)
+Q10 Qa0 (Idy, = Q50 (a-$o Q1)) o PL+ Q20 Pr)(u)
ot K () + (50t K () = (w0t K(w) ) + - K(w)
The second and third terms are in the kernel of ¢; the third term is the projection
of u onto the —1 eigenspace of K, not depending on ¢ or w. The first two terms

are both in the +1 eigenspace of K, and they both depend on ¢ and on v =

LEMMA 1.126. Given % € K and two involutions K : V —V and K' : U — U,
which produce direct sums Vi ® Vo, Uy ® Us as in Lemma 1.119, a map H : U — V
respects the direct sums Uy @ Uy — V1 & Vo if and only if Ko H =Ho K'. [ |

LEMMA 1.127. Given % € K and two involutions K : V —V and K' : U — U,
which produce direct sums Vi ® Vo, Uy ® Us as in Lemma 1.119, a map H : U — V
respects the direct sums Uy & Us — Vo @ Vy if and only if Ko H=—H o K'.

PRrROOF. Note the order of the spaces V5 @ Vi is different from that appearing
in Lemma 1.126, so the notation refers to the identities Q10 Py o H = H o Q, o P
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and Q20 Pyo H = H o Q) o P|. The claims can be checked directly, but also follow
from applying Lemma 1.126 to the involutions K and —K’. [

LEMMA 1.128. Given V and a pair of involutions on V, K1 and K, zf% e K,
then the following are equivalent.
(1) The involutions commute, i.e., K1 0 Ko = Ko 0 Kj.
(2) The composite K1 0 Ko is an involution.
(3) Ky respects the direct sum V = Vi @ Va produced by K;.
(4) Ky respects the direct sum V = V3 @ Vy produced by K.

PROOF. The equivalence (1) <= (2) is elementary and does not require
€ K. The direct sums in (3), (4) are as in Lemma 1.119. The equivalences

1
2
(1) <= (3) and (1) < (4) are special cases of Lemma 1.126. i

In statement (3) of Lemma 1.128, K5 induces an involution on both V; and V;
as in Definition 1.88 and Lemma 1.89, and similarly for K in statement (4).

Given % € K, and V' with commuting involutions K, Ko as in Lemma 1.128
and Lemma 1.129, and corresponding direct sums V = Vi @ V5, V = V3 @ V4,
respectively, as in Lemma 1.128, let V' = V5 @ Vi be the direct sum produced by
the involution K7 o Ko.

LEMMA 1.129. Given V', subspaces Vi,..., Vs as above, and commuting involu-
tions K1, Ko € End(V), forv € V, any pair of two of the following three statements
implies the remaining one:

(1) v=Ki(v) € V1.
(2) v = KQ(’U) e Vs.
() v=(KioKy)(w)eVs. |

It follows from Lemma 1.129 that these subspaces of V' are equal:
(1.14) VinVa=vinVs=VnV; =ViNnVsnNV;.

Let (Ps, Ps), (@5, Qs) denote the projections and inclusions for the above direct
sum V = V5 ® Vi produced by Kj o Ks. Since K1 0Q5 = Ks0Q5, the maps induced
by K7 and K> are equal:

(115) P5OK10Q5:P5OKQOQ5I‘/5—>‘/5;

this map is a canonical involution on Vs, producing a direct sum V5 = Vi @ VY
with projection Pf : Vs — V¢ from (1.11). Similarly, there is an involution induced
by K; or Kj o K3 on V3, producing Va = V§ @ VJ’, and there is another involution
induced by K3 or K; o Ko on Vi, producing V3 = V/ @ V/”. On the set Vg, the
induced involutions are opposite:

(1.16) PsoKy10Qs=—PsoKy0Qe: Vs — Vi,
if one produces a direct sum Vg = V{ @ V', the other produces Vg = Vi’ & V{.

Similarly, there are opposite induced involutions on V5 and Vj.

THEOREM 1.130. Given % € K, and commuting involutions on V with the above
notation,
Vi=Vi=V/=VinV3NVs.
The composite projections are all equal:
PloPs=PioP3s=PoP :V —-ViNV3NVs.
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Also, VI =VonVy, V! =Von Vg, and V' =V, N V.

PRrOOF. VY is the set of fixed points v € V5 of the involution P5 o K; o Q5.
Denote the maps from Lemma 1.119 P!, Qf, so

1
/ Pl —_ .
Q50 Py B
To establish the first claim, it is enough to show V7 = V1NV3; the claims Vi = V1NV;

and V{ = V3 N V5 are similar, and then (1.14) applies. To show V7 C Vi, use the
fact that Ky commutes with Q50 P5; = % ~(Idy + K7 0 Ky); if v € V{ C Vs, then

v =Qs5(v) = (P50 K1 0Q5)(v) = Q5((Ps 0 K1 0 Qs)(v)) = K1 (Q5(v)),

so v € V1. Showing V/ C Vj is similar, so V/ C V3 N V.
Another argument would be to consider the subspace V{ as the image of Q5 o
QLo PloPsin V. Then

(Idv5 + P50 K3 OQ5).

1
Qs0Q50P.oPs = Q5o§-(IdV5+P5oKloQ5)oP5

1 1
= §'Q5OP5+§'K10Q50P5
(1.17) = QioPioQs50Ph,

which shows VY is contained in V4, the image of @Q; in V.

Conversely, if v € V4 N V3, then v = K1 (v) = Q5(v) € Vs (Lemma 1.129) and
(P50 K10 Qs)(v) = (P50 Qs)(v) = v € V.

The equality of the composites of projections follows from using the commuta-
tivity of the involutions to get Q10 Py o Q50 Ps = Q50 P50 0 Py, and then (1.17)
implies Q5 0 QLo Pl o Ps =Q10Q) 0 P{oP;.

The last claim of the Theorem follows from similar calculations. However, the
three subspaces are in general not equal to each other. [ |

The projection P5 : V — V5 satisfies P; o K1 = (P50 K7 0Q5) o Ps, so Lemma
1.126 applies: Ps respects the direct sums Vi & Ve — VZ® VY and the map Vi — V<
induced by Ps is Pi o Ps o Q1. By Theorem 1.130,

(118) PéOPSOle.P{OPlOQl:P{:Vl—»‘/ll:‘/g.

This gives an alternate construction of P; as a map induced by Ps, or similarly,
any P/ is equal to a map induced by P; for any distinct ¢ = 1,3,5, I = 1,3, 5.

THEOREM 1.131. Given % € K, suppose K, K‘Q, are commuting involutions
on V as in Theorem 1.150. Similarly, let K};, KE be commuting involutions on U,
with corresponding notation for the direct sums: U = Uy & Uy, U = Us® Uy, ete. If
amap H :U — V satisfies HOK}] = K{oH and HOK?] = K‘Q/OH, then H respects
the corresponding direct sums Uy & Uy — V1 & Vo and Us & Uy — V3 S Vy. Further,
the induced map P o HoQ}; : Uy — Vi respects the direct sums U] & U{ — V] &V}’
and similarly for the maps Us — V3, Us — V5 induced by H. The induced map
Ui — V/ is equal to the map U — V4 induced by P o H o Q3 : Us — V.

PrROOF. The fact that H respects each pair of direct sums is Lemma 1.126.
The subspace U; has a canonical involution P} o K7 o Qf;, and since K};, K&
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commute, K7 also commutes with Qf; o P} = 1 - (Idy + K};). The map induced
by H, P} o H o Q, : Uy — Vi, satisfies:

(PhoHoQb)o(PhoKEoQl) = PioHoK?oQhoPoQ)
— PloKioHoQ}
= (PyoKjoQy)o(PyoHoQy).

It follows from Lemma 1.126 again that P o H o Q}; respects the direct sums as
claimed. The induced map is PY o (P} o H o Q) o Qif : Ul — V.

The last claim of the Theorem is that this induced map is equal to the map
PYo(PEoHoQ3)oQ3 : U, — V4. The claim follows from the idea that the induced
maps are restrictions of H to the same subspace U] = U}, = U; N Us, by Theorem
1.130. More specifically, the subspace inclusions are equal: Q3; 0 Q¥ = Qf, 0 Q3 -
U1 NU;s < U, and the composites of projections are equal: PY o P} = P¥ o Pg.

ExampPLE 1.132. Given % € K, suppose K7 and K, are commuting involutions
on V as in Theorem 1.130, and suppose H is another involution on V so that
K10 H = H o Ky. The three involutions K1, Ko, K; o K5 produce direct sums
V=VieV, V&V, and Vi & Vi. Similarly, because K7 o K9 commutes with H,
the three involutions K o Ko, H, and K7 o K5 o H produce corresponding direct
sums V = Vs @V, Ve @ Vs, and Vo @ Vip. Asin (1.15), there are induced involutions
on Vs, PsoK10Q5 = PsoKooQs and PsoHoQs5 = Ps 0Ky 0KyoH oQs.
These two involutions commute: for v = Q5(v) = (K1 o K3)(v) € Vs, v satisfies
Ki(v) = Ka(v) and

(PsoK10Qs0Ps0HoQs5)(v) = (PsoKjoH)(v)=(Ps0HoKs)(v),
(PsoHoQs0Ps0K10Q5)(v) = (PsoHoKy)(v).

By Lemma 1.128, their product
(P5OK10Q5)O(P5OHOQ5):P5OK10HOQ5:P5OK20HOQ5

is also an involution on V; (although in general, K7 o H and K3 o H need not be
involutions). So, Theorem 1.130 applies to these three commuting involutions on
Vs, with P50 K7 0Qj5 producing a direct sum Vs = VI @ VY, where VZ = ViNV3N Vs
is the fixed point subspace of Ps o K; o Q5. Similarly, V5 N V7 N Vg is the fixed
point subspace of P5; o H o Q5, and denoting by V77 the fixed point subspace of
P50 Ky 0 HoQs5, the three fixed point subspaces have the following intersection:

(V1ﬂV3ﬂV5)ﬂ(V5ﬂV7ﬂV9)ﬂV11 = (V1ﬂVEg)ﬂ(V5ﬂV7)
(V1ﬂVEgﬂV5)ﬂV7:V1ﬂV3ﬂV7
= {veV:iv=Ki(v) = Ks(v)=H(v)}.
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The projections from Theorem 1.130 appear in the following commutative diagram.

Vv

T~

VinVsnVs Vi VsNVenVy

/

VinVsnVy

/

EXAMPLE 1.133. The construction in Example 1.132 also works under the
hypothesis that H commutes with both Ky and K> (instead of Ky 0o H = H o K»).

EXERCISE 1.134. For involutions on V' as in Example 1.132 satisfying K10 Ky =
Ks0 Ky and Ky 0o H = H o Ko, the set

{IdV7K1;K2;K1oKQvHvKloHvKQOH;KIOKQOH}

is the image of a representation Dy ~» End(V'), where Dy is the eight-element
dihedral group. [

REMARK 1.135. An example of a vector space over K = QQ admitting three
involutions satisfying the relations of Example 1.132 is Q(y/—1, v/2), as considered
by [Cox] (Example 7.3.4), along with diagrams analogous to the above diagram.

THEOREM 1.136. Given V, the following statements (1) to (7) are equivalent,
and any implies (8). Further, zf% € K, then all eight statements are equivalent.

(1) V admits a direct sum of the form V =U & U.

(2) V =U; @ Uy and there exist invertible maps Ay : Us — Uy and Ay : Uz —
Us.

(3) V=U" @U" and there exists an invertible map A:U" — U'.

(4) V. =U"@&U" and there exists an involution K € End(V') that respects the
direct sums U' @ U" - U" & U’.

(5) V admits an idempotent P € End(V') and an involution K € End(V') such
that Po K = K o (Idy — P).

(6) V=U @U" and there exists an invertible H € End(V') that respects the
direct sums U' @ U" - U" @ U'.

(7) V admits an idempotent P € End(V') and an invertible map H € End(V)
such that Po H = H o (Idy — P).

(8) V' admits anticommuting involutions K1, Ko (i.e., K10 Ky = —Ky0K1).

PRrROOF. The implication (1) = (2) is canonical: let Uy = U = U3 = U, and
Ay = Ay = Idy.

The implication (2) = (1) is canonical. Given V' = U; @ U, with projections
(P, P2) and inclusions (Q1,Q2), Example 1.97 applies. Let U = Us, to get V =
U @ U with projections (Afl oPy, A;l o P5) and inclusions (@10 A1, Q20 As). The
direct sums are equivalent.

The implication (1) = (3) is canonical: let U' = U"” = U and A = Idy.
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The implication (2) = (3) is canonical: let U' = Uy, U’ = Uy and A =
Al o A;l

For (3) = (1), there are two choices. Given V' = U’ @ U” with projections
(P, P") and inclusions (Q’,Q"), one choice is to let U = U’. Then V =U & U
with projections (P, A o P,) and inclusions (Q1,Q2 o A~1). The other choice is
to let U = U”, with projections (A~! o P, P,) and inclusions (Q; o 4,Q3). As
in Example 1.97, either of the two constructions gives a direct sum equivalent to
V =U"® U", so they are equivalent to each other.

For (3) = (2), there are two choices. One choice is to let Us = U’, A; = Idy,
Ay = A7, Applying the canonical (2) == (1) construction then gives projections
(P1, Ao P,) as in the first choice of the previous implication. The second choice is
to let U3 = U"”, Ay = A, Ay = Idy.~, which similarly corresponds to the second
choice in the previous implication.

The implication (3) == (4) is canonical. Given A : U" — U’, let

(1.19) K=Q"oA ' oP +Q 0AoP.

It is straightforward to check that K is an involution, and Qo P'o K = Ko Q"o P",
so K respects the direct sums as in Example 1.94.

The implication (4) = (3) is canonical. Given K, let A = P'o K 0o Q" :
U"” — U’, which by Lemma 1.89 has inverse A~! = P” o K 0 Q'.

The implication (4) = (6) is canonical: let H = K.

For (6) = (3), there are two choices. One choice is to let A =P’ o Ho Q" :
U" — U, so A=t = P" o H ! 0 @Q'. The canonical involution (1.19) from the
implication (3) = (4) isthen K = Q"o P"oH 'oQ o P'+Q' o P'oHoQ" o P".
The second choice is to let A = P’ o H='oQ". This similarly leads to an involution
Q"oP'"oHoQ oP +Q oP oH 'oQ"oP”, which, unless H is an involution,
may be different from the involution from the first choice.

For (4) = (5), and for (6) = (7), there are two choices: P = Q' o P,
or P = Q" o P"”. This choice between two idempotents was already mentioned in
Example 1.114.

Conversely, for (5) = (4) (and similarly for (7) = (6)), there are two
choices. For U’ = ker(P) and U” = P(V), as in Example 1.113, there are two ways
to form a direct sum: V =U' @ U” or V. =U" @ U’. The map K (similarly H)
respects the direct sums as in Lemma 1.115.

For (4) = (8), which does not require 3 € K, there are two choices (assuming
the ordering of the pair K;, Ky does not matter). Given K, let K; = K. One
choice is to let Ko = Q' o P/ — Q" o P”, as in Example 1.122. It follows from
KoQ@ oP' =Q"oP"oK that K; o Ky = —K5 o K;. The second choice is to let
Ko=—-Q oP +Q"oP.

Similarly for (5) = (8), there are two choices. Given K, let K3 = K. One
choice is to let Ko = 2- P — Idy, as in Lemma 1.123. The second choice is to let
Ko =1Idy —2-P.

For (8) = (4) using 1 € K, the involution K; produces a direct sum V =
V1 & Vs as in Lemma 1.119, with projections P; = %(Idv +Ky), P = %(Idv —Ky)
(the order of the direct sum could be chosen the other way, V2 @ V;). By Lemma
1.127, K = K satisfies (4). In this case, the invertible map from (3) is, by Lemma
1.89, the composite

(1.20) A=PoKy0Qy: Vo=V,
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with inverse Py o K3 0 Q1 : Vi — Va. Another choice for (8) = (4) is to use Ko
to produce a different direct sum, and then let K = K;. [ |

THEOREM 1.137. Given 3 € K and two involutions K,K' € End(V), which
produce direct sums V. =V, ® Vo, V.= V/ ® V3 as in Lemma 1.119, if K and K’
anticommute, then fori=1,2, I = 1,2, and f € K, 5 # 0, the map

ﬂ-PI/oQi:Vi—)VI'
is invertible.

ProoF. Consider PjoQ; : V; = V[ and P; 0 Q) : V/ = V;. Then
1
PjoQ;0P;oQ) :P;oi-(IdviK)oQ/I.

Since K respects the direct sums Vy @ Vy — Vi@ V] by Lemma 1.127, Pjo Ko Q) =
Ognd(v;) by Lemma 1.87. In the other order,

1
PiOQ/IOPI,OQi:PiO§'(IdViK,)oin

and similarly, P; o K" 0 Q; = Ogpna(v;)-
Since Pj o Q} = Idy; and P; o Q; = Idy,, the conclusion is that for any scalar

B eK, B#0,the map 8- P o @; has inverse%'PiOQ’I. [ |

LEMMA 1.138. Given involutions K1, Ka, K3 € End(V), any pair of two of
the following three statements implies the remaining one.
(1) K3 commutes with Ky o K.
(2) K3 anticommutes with K;.
(3) K5 anticommutes with K.

EXERCISE 1.139. If K, K5, K3 are involutions such that K7 and K5 commute
and K3 satisfies the three conditions from Lemma 1.138, then the set

{ildv,iKl, :tK27:l:K3, iKQ o K3, iKl o Kg,iKl o KQ, iKl o KQ o K3}

is the image of a representation Dy x Zg ~» End(V'), where Dy is the eight-element
dihedral group and Zs is the two-element group. [ |

For % € K and commuting involutions K;j, Ko, recall the direct sums V =
VieV, V=VseV, V="Vs& Vs from Lemma 1.129 produced by Ki, Ks,
K o K5. Further, suppose K3 is another involution satisfying the three conditions
from Lemma 1.138, and let V = V7 & Vg and V = Vi & Vg be the direct sums
produced by the involutions K3 and K7 o K5 o K3. Theorem 1.130 applies to V5
twice: first, to the pair K7, K> to get the canonical involution P; o K7 o Q5 from
(1.15) producing V5 = W & V¢ with V/ = V4 N V3N Vs, and second, to the other
pair K10 K5, K3 to get another involution P50 K30Qs5 = Pso K10 Koo K30Q)5 as
in (1.15), producing another direct sum V5 = V7" & VZ", with V" = Vs N V7 N V.

COROLLARY 1.140. Given % €K, 0+# B €K, commuting involutions K1, Ko,
and an involution K3 as in Lemma 1.138, the map

BP0 Qs V= 3!

18 invertible.
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PROOF. Qf is as in the Proof of Theorem 1.130. The projection P!’ : V5 — V"
is from the direct sum V5 = V2" @ V7" produced by Ps o K3 0 )5. The involutions
P50 K 10Qs5, Pso K30Q5 € End(V5) anticommute, and Theorem 1.137 applies. [

Using a step analogous to (1.17), the output of the above invertible map, for
input v € VZ, can be written as:

B-PoQ5:v
(1.21) = Q@

B- (P50 Qz)(v)

(Q5"(B - (P5" o (Ps 0 Q5) 0 Q3)(v)))
((Q50Q5" o P o P5) 0 Q5 0 Q5)(v)
-((QroProQs0Ps)oQs0Q5)(v)

(Q7 0 ProQs0Q5)(v)

= C (vt Ks()).

Mm@ ® @

Corollary 1.140 could be re-stated as constructing an invertible map between these
subspaces of Vs ={v eV :v = (K 0 K3)(v) }:

{v=Ki(v) = K2(v)} = {v=K3(v) = (K10 K30 K3)(v)}.
Two more subspaces of V5, from Theorem 1.130, are:

Ve = {veV:iv=-Ki(v)=—-Ks(v)} = Vo Vg,
V//// = {veV:iv=—-Ks3(v)=—(Ki0Ksyo0Ks3)(v)} =VsnN Vi,

and Theorem 1.137 also gives a construction of invertible maps: V¢ — V2" V' —
V2", and V7' — V.

ExamMpLE 1.141. Given any spaces V and W, and an involution K on V,
the map [Idw ® K] is an involution on W ® V. If 1 € K, then the direct sum
produced by [Idw ® K] has projections 3 - (Idweyv :I: [Idw ® K]). For the direct
sum V = V1®V; as in Lemma 1.119 with inclusions @1, @2, there is also a direct sum
WV =WeVidW Vs as in Example 1.81, with projections [IdW®% -(Idy £ K))
and inclusions [Idw ® Q;]. The two constructions lead to the same formula for the
projection maps, so the projections are canonical and K produces a direct sum
WV =WV e WV, The space W @ V; is a subspace of W ® V', equal
to the fixed point set of [Idw ® K], with inclusion map [Idw ® @], and similarly
W ® V4 is the fixed point subspace of —[Idy ® K]. The space V @ W admits an
analogous involution and direct sum.

ExaMPLE 1.142. Given any spaces U, W with involutions Ky on U and Ky
on W, the involutions [Idy ® Kw| and [Ky ® Idw] on U ®@ W commute, so Lemma
1.129 applies, and if % € K, then Lemma 1.128 and Theorem 1.130 apply. For
the direct sums U = U; & Uy and W = Wy @ W5 produced as in Lemma 1.119,
[Ky ® Idw] respects the direct sum U @ W7 & U ® Ws from Example 1.141; the
induced involution on U ® W7 is exactly [Ky ® Idw,], so U @ W1 admits a direct
sum Uy @ Wy @ Uy ® Wi, Similarly, [I/dy ® Kw] induces an involution on Uy @ W
and a direct sum U; ® Wy @& Uy @ W5. The subspace Uy ® Wi appears in two
different ways, but there is no conflict in naming it: by Theorem 1.130, Uy ® W7 =
UeWw)n({U;@W).



1.4. IDEMPOTENTS AND INVOLUTIONS 45

ExaMPLE 1.143. Given any spaces V and W, and an involution K on V, the
map Hom(Idy , K) is an involution on Hom(W, V). If % € K, then the direct sum
produced by Hom(Idyw , K) has projections

1 1
5 : (IdHom(W,V) + HOIn(Idw,K)) A 5 : (A + Ko A)
For the direct sum V = V; @& V5 as in Lemma 1.119, there is also a direct sum

Hom(W, V) = Hom(W, V1) @ Hom(W, V,) as in Example 1.82, with projections

Hom(Idw, P;) : Hom(W,V) - Hom(W,V;) : A— P,o A = % :
The two constructions lead to the same formula for the projection maps. The
only difference is in the target space: the fixed point set of Hom(Idy, K) is the
set of maps A : W — V such that A = K o A, while the image of the projection
Hom(Idw, Py) is a set of maps with domain W and target Vi = {v € V : v = K(v)},
which is a subspace of V. It will not cause any problems to consider Hom (W, V;)
as a subspace of Hom(W,V'); more precisely, in the case where V. = Vi @ V3 is
a direct sum produced by an involution, the map Hom(Idw,Q;) from Example
1.82 can be regarded as a subspace inclusion as in Lemma 1.119, so A and Q; o
A are identified. Then the above two direct sum constructions have the same
projections and inclusions, so the projections are canonical and K produces a direct
sum Hom(W, V) = Hom(W, V;) @ Hom(W, V3).

(Idy + K)o A.

EXAMPLE 1.144. Given any spaces V and W, and an involution K on V, the
map Hom(K, Idw) is an involution on Hom(V, W). If & € K, then the direct sum
produced by Hom(K, Idw ) has projections

1 1
(122) 5 . (IdHom(V,W) + Hom(K, IdW)) A 5 . (A + Ao K)
For the direct sum V = V; @& V5 as in Lemma 1.119, there is also a direct sum
Hom(V, W) = Hom(V;, W) @ Hom(Va, W) as in Example 1.83, with projections

Hom(Q;, Idw) : Hom(V, W) — Hom(V;, W) : A — Ao Q.

Unlike Example 1.143, the two constructions lead to different formulas for the
projection maps. The fixed point set of Hom (K, Idy ) is the set of maps A : V — W
such that A = A o K, while the image of the projection Hom(Q1, Idy ) is a set of
maps with domain V; and target W — which does not look like a subspace of
Hom(V, W). The conclusion is that the two direct sum constructions are different.
However, they are equivalent, as in Definition 1.96. Checking statements (2) and
(3) of Lemma 1.95,

1
Hom(P;, Idw) o Hom(Q;, Idw) : A Ao Q0o P, = Ao 3 (Idy £ K),
which is the same as (1.22).

ExaMpPLE 1.145. Given any spaces U, V, W, with involutions Ky on U, Ky
on V, and Hom(Ky, Idw ) on Hom(V, W) as in Example 1.144, suppose % € K and
H : U — Hom(V, W) satisfies Hom(Kvy,Idw)o H = Ho Ky. Let U = Uy @ Uy
be the direct sum produced by Ky, and consider the direct sum on Hom(V, W)
produced by Hom(Ky,Idw) as in (1.22) from Example 1.144. Then, by Lemma
1.126, H respects the direct sums:

H:Ui®Us—{A:V>W:AoKy =A@ {A:V > W: Ao Ky = —A}.
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Let V = V; @ V5 be the direct sum produced by Ky ; then by Lemma 1.98, H also
respects the other, equivalent direct sum on Hom(V, W) from Example 1.144:

H:U; ® Uy — Hom(Vy, W) @ Hom(Va, W).

ExaMPLE 1.146. Given % € K, any spaces U and W, and involutions Ky €
End(U) and Kw € End(W), let U = Uy & Uz be the direct sum produced by
Ky, with projections (P;, P») and inclusions (Q1,Q2), and let W = W37 @ Wy be
the direct sum produced by Ky, with data (P}, Pj), (Q},Q%). Then there are
commuting involutions Hom(Idy, Kw ), Hom(Ky, Idy ), on Hom(U, W), and their
composite Hom(Ky, Ky ) is another involution. Theorem 1.130 applies, and we

re-use its Vi, ..., Vg notation for the produced direct sums. As in Example 1.143,
there is a direct sum
Hom(U,W) = {A=KwoA}®{A=—-KwyoA}
= Hom(U, W1) & Hom(U, W)
= Vel

As in Example 1.144, there are two different but equivalent direct sums, the first is
Hom(U, W) = {A=AoKy}@{A=-AoKy}=V30 Vi,
with projections and inclusions denoted (Ps, Py), (@3, Q4), and the second is
Hom(U,W) = Hom(U;, W) & Hom(Us, W),
with projections and inclusions
(Hom(Q1, Idw ), Hom(Q2, Idw)), (Hom(Pr, Idw), Hom(P%, Idw)).
From Lemma 1.99, there are canonical, invertible maps
P; oHom(Py, Idw) : Hom(Up, W) — Vs,
Hom(Q1, Idw)o Q3 : V3 — Hom(Uy, W).
There is also the direct sum produced by the composite involution,
Hom(U,W) = {A=KwoAoKy}®{A=—-KwoAoKy}
= Vsl

It follows from Theorem 1.130 that V;, V3, and V5 admit canonical involutions and
direct sums. For example, P3 o Hom(Idy, Kw) o Q3 is the involution on V3, and
it produces the direct sum V3 = V4 @ VJ’, where V§ = V4 N V3 N V5. The above
invertible map Hom(Q1, Idw ) o Qs : V5 — Hom (U, W) satisfies

Hom(Idy,, Kw) o (Hom(Q1, Idw) o Q3)

Hom(Q1, Kw) o Qs
= (Hom(Q1,Idw) o Q3) o (P30 Hom(ldy, Kw) o Q3),

so by Lemma 1.126, it respects the direct sums
Vi @ V' — Hom(Uy, W) @ Hom(Uy, Wa).
By Lemma 1.89, there is a canonical, invertible map from

Vi=VinVanVs={A:U—=W:A=KyoA=AoKy=KywoAoKy}
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to Hom(Uy, W), specifically, the map
A = P{o(Qs5(Q5(4))) 0 Qu
= PjoAoQ:= %'(Idw+KW)°A°Q1 =AoQr.
The inverse is defined for B € Hom(Uy, W7) by
B = Pi(Ps(QioBoP)),

which, since Q] o B o P; is an element of the subspace V4 N V3, simplifies to
1
QioBoPy=BohP :Bo§'(IdU—|—KU).

ExXAMPLE 1.147. For % € K, and involutions K on U and Ky on W as in the
previous Example, suppose K3 is an involution on Hom(U, W) that commutes with
Hom(Ky, Kw) and anticommutes with either Hom (K, Idw) or Hom(Idy, Kw ).
Then Lemma 1.138 and Corollary 1.140 apply. Continuing with the Vi,..., V4
notation from Theorem 1.130 and Example 1.146, and also the V5 = VJ" & V””
and V7, ..., Vip notation from Corollary 1.140, the result of the Corollary is that
for 0 # B € K, there is an invertible map:

B . P5l// ° Qg . ‘/'5/ — Vl//
which maps
{A € Hom(U,W): A= Ao Ky = Ky o A}
to
{Ae€ Hom(U,W): A= KwoAo Ky = K3(A)}.
There is also the canonical, invertible map from Example 1.146,

P} o (P3yoHom(Py, Idw)) o Hom(Idy,,Q}),

which maps Hom(Uy, W1) to V4 = VZ. The composite of these maps is an invertible
map Hom(Uy, Wh) — V2

(B- P oQr) o (Pyo(P3oHom(Pr,Idw))oHom(Idy,,Q})).
For B € Hom(Uy, Wh), its output in V7" C Hom(U, W) under the above map

simplifies as follows, using the equality of subspace inclusions Q5 o Qf = Q3 o Q%
and steps similar to (1.21):
B — ((B-PloQ%)o(PsoPsoHom(P,Q))))(B)
Qs5(Q5' (8- (P o (P50 Qs5) 0 Q5 0 Py o Py o Hom(P1, Q1)) (B))
B-((Qs0Q3 o P o P5) o (Q30Q40 P50 Ps)oHom(Pr,Q1))(B)
= B-((QroProQs0Ps)0(Qs0Ps0Q30 P3)oHom(Py,Q"))(B),

which, since Q) o B o P; is an element of the subspace V3 N Vs, simplifies to
1

g(QlloBopl—FKg(Q/lOBOPl))

)
(

B-(QroPr)(QoBoP)=
The inverse map

{A = Kw o Ao Ky = K3(A)} — Hom(Ul, Wl)
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is the composite:

(Hom(Idy,, P}) o (Hom(Q1, Idw) o Q3) o Q%) o (% - P5oQy)

-Hom(Q1, PY) o (@5 © Q) o Py o (P50 Q) 0 QF

-Hom(Q1, P{) o (30 Ps0Qs50Ps)0Qs50Q%

ISR RSB

~HOH1(Q1,P1,)OQ3OP3OQ50 /5/17

whichactsasAH%~P1’o(%~(A+AoKU))oQ1:%~A0Q1,



CHAPTER 2

A Survey of Trace Elements

2.1. Endomorphisms: the scalar valued trace

In the following diagram, the canonical maps kyv, eyy, and fyy are abbrevi-
ated k, e, f, and the double duality dy«gy is abbreviated d.

LEMMA 2.1. For any vector space V', the following diagram is commutative.

V*®V

End( v End(V)

S

VeV V*®V

PROOF. The left triangle is commutative by the definition of f from Notation
1.69. The right triangle is commutative by Lemma 1.6, and the middle by Lemma
1.71. |

The spaces End(V) and (V* ® V)* each have the interesting property of con-
taining a distinguished element, which is nonzero when V' has nonzero dimension.
The identity Idy : v +— v is the distinguished element of End(V').

DEFINITION 2.2. The distinguished element of (V*®V)* is the evaluation map,
Evy : ¢ @ v — o(v).

The two distinguished elements are related by e : Idy — Euvy:
(2.1) (e(Idv))(¢ @ v) = ¢(Idy (v)) = Evy (¢ @ v).
DEFINITION 2.3. For finite-dimensional V', define the trace by
Try = (k) *(Evy) € End(V)*.

This distinguished element is the output of either of the two previously men-
tioned distinguished elements under any path of maps in the above diagram leading
to End(V)*, by Lemma 2.1, and the fact that all the arrows are invertible when V'
is finite-dimensional. At least one arrow in any path taking Idy or Evy to T'ry is
the inverse of one of the arrows indicated in the diagram.

REMARK 2.4. Using Definition 2.3 as the definition of trace, so that Try (A) =
Evy (k~1(A)), is exactly the approach of [MB], [B] §11.4.3, and [K] §I1.3. In [G]
§1.8, this formula is stated as a consequence of a different definition of trace.

49
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LEMMA 2.5. For finite-dimensional V', and H € End(V),
T?“\/* (H*) = TT\/(H).
PRrOOF. In this case, H* is tyyv(H). In the following diagram, tyy, ky«y-,
ev«v+, fv+v=, and dy-«gy~ are abbreviated ¢, k', ¢, f’, and d’. There is also a

map p: V*®V — V** ® V* from Notation 1.72, and p* maps the distinguished
element Evy- € (V** @ V*)* to Evy:

(p"(Evy-))(¢ @ v) = Evy-((dv(v)) © ¢) = (dv (v))(¢) = ¢(v) = Evy (¢ ®@v).

(V*oV)*
End(V) End(V)*
VeV (V*eV)*
¢ o
o
(V** ® V
/e/ / \ k,*\
End(V*) End(V*)”
i
V** ® V* V** ® V )

Some of the squares in the diagram are commutative, for example, k' op = to k
from Lemma 1.75, and then p* o (k*) = k* o t* by Lemma 1.6, and this is enough
to give the result:

£ (Trys) = (¢ 0 (k%)) (Boy-) = (k)" 0 p*)(Boy-) = (k) (Boy) = Trv.

The equality got = e from Lemma 1.58, which could fit in the back left square
of the above diagram, shows that ¢ maps the distinguished element Idy+ to Evy .
So, there is another formula for the trace,

(2.2) Try = ((k*)fl oq)(Idy~).
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LEMMA 2.6. For maps A :V — U and B : U — V between vector spaces of
finite, but possibly different, dimensions, Try(Bo A) = Try(Ao B).

PRrROOF. Abbreviated names for maps are used again in the following diagram,
with primes in the lower pentagon.

(Ve V)*

VeV y (V* ® V)**
Hom(A,B)|| Hom(B, A) Hom(B, A)* |[|Hom(A,B)*
[A*®B] || [B*®A] [A*@B]™™ || [B*"®A]™™
¢ / \ k'
End(U) ! P End(U)*
e
U*oU d (U* ® U)**

Some of the squares in the diagram are commutative. In the back left square with
upward arrows, it follows from Lemma 1.57 (and can also be checked directly) that:

eoHom(A,B) = [B*® A" o ¢’
For a front left square, by Lemma 1.62,
Hom(B,A)ok =k o [B* @ A,

then by Lemma 1.6, k*oHom(B, A)* = [B*®@A]* ok, corresponding to a back right
square. The claimed equality follows from the following steps, including Lemma

2.1:
Try(AoB) = Try(Hom(B,A)(Idy)) = (Hom(B,A)*(Try))(Idy)
((Hom(B Ao () toe)(Idy))(Idy)
(k) o [B" @ A" 0 ') (Idy)) (Idv)
(k") toeo Hom(A B))(Idy))(Idy)
= ((e"odok™ oHom(A, B))(Idy))(Idy)
(d(k (Hom(A B)(Idv))))(e(Idv))
(e(Idv)) (k™" (Hom(A, B)(Idy)))
(k") ™" o e)(Idv))(Hom(A, B)(Idy)) = Try(B o A).

EXAMPLE 2.7. In the case V =K, k(Idx ® 1) = Idg € End(K) = K*. The
trace is Trg = e*(d(Idg ® 1)) € K**, and for ¢ € K*, Trg(¢) = (e(¢))(Idx @ 1) =
TIdg(¢(1)) = ¢(1). So, Trx = dx(1), and in particular, Trg(Idg) = 1.
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ExampLE 2.8. If V is finite-dimensional and admits a direct sum of the form
V = K& U, with projection P, : V — K and @; : K — V, then by Lemma
2.6 and Example 2.7, Try(Q1 0o P1) = Trg(P1 0 Q1) = Trg(Idkg) = 1. Similarly,
if V' is a direct sum of finitely many copies of K, V = K& K @ --- ® K, then
Trv(_[dv) = TT\/(EQi o Pz) = ETTK(Pi [©) Qz) =X1.

EXAMPLE 2.9. Assume T'ry (Idy) # 0. Let Endo(V) denote the kernel of Try,
i.e., the subspace of trace 0 endomorphisms. Recall from Lemma 1.100 that there
exists a direct sum End(V) = K@ Endo(V), and in particular, there exist constants
a, B € Ksothat a- 8- Try(Idy) = 1, and a direct sum is defined by

P = a-Try,
(2.3) QV:K — End(V):y~ B8-v-Idy,
P, = IdEnd(V)_Q?Oplaa

and the subspace inclusion map Q2 : Endg(V) — End(V'). Such a direct sum admits
a free parameter and is generally not unique, but since Idy is a canonical element
of End(V') and is not in ker(7T'ry) by assumption, Lemma 1.101 applies, and any
choice of constants «, 3 leads to an equivalent direct sum. So, any endomorphism H
can be written as a sum of a scalar multiple of Idy , and a trace zero endomorphism:

_ Tyl Tro(H) |
- Try(Idy) Try(Idv) Idv) ’

and this decomposition of H is canonical.

-Idv—l—(H—

THEOREM 2.10. For V finite-dimensional, and A € End(V),
Try(A) = (Evy o [Idy- @ Al o k™) (Idy).
Proor. By Lemma 1.62,
[Idy- @ Alo k™! = [Id}, ® A]o k™! = k= o Hom(Idy, A),

(Boy o [Idy- ® Al o k™1 (Idy) = Evy (k™' (A)) = Try(A).
[

REMARK 2.11. The idea of Theorem 2.10 (as in [K] §I1.3) is that the trace of A
is the output of the distinguished element k~!(Idy ) under the composite of maps
in this diagram:

*®A v
VeV 1O yegy Bk
The statement of Theorem 2.10 could also be written as
TT\/(A) = ((dEnd(V)(IdV)) o Hom(k‘fl, E’Uv) Oj)(Idv* X A)

In terms of the scalar multiplication map [ from Example 1.28 and the 8 = 1 case
of (2.3) from Example 2.9,

(2.4) Qi : K — End(V*): 1+ Idy-,

the composite [Q] ® Idpnaqvy] o 17! : End(V) — End(V*) @ End(V) takes A to
Idy« ® A, so

(25) T’I“V = (dEnd(V) (Idv)) 9 Hom(kil, E’Uv) Oj o [Q% (24 IdEnd(V)] @) lil.
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The map Q1 from (2.4) is used in (2.5), and again in later Sections, without any
assumption on the identity map’s trace, so Q} is not necessarily part of the data
for some direct sum as in Example 2.9.

PROPOSITION 2.12. For V.=V @ Vo, A € End(V4), and B € End(V3), let
A @ B be the element of End(V) defined by A B=0Q10A0P, +Qy0BoP,. If
V' is finite-dimensional, then

Try(A® B) =Trv,(A) + Try,(B).
PROOF. Recall Vi and V5 are finite-dimensional by Exercise 0.50. The con-
struction of A @ B is as in Lemma 1.86.
Try(A®B) = Try(QioAoP)+Try(QzoBo )
= Try,(PLoQi0A)+Try,(PyoQ20B)
= Try,(A) +Try(B),

using Lemma 2.6. [

PROPOSITION 2.13. IfV is finite-dimensional, V = V1 ® Vs, and K € End(V),
then
Try(K) = Try,(Pro K oQ1) +Try, (P20 K o Qo).

Proor. Using Lemma 2.6,
Try(K)=Try((QroPi+ Qa0 P) oK) =Try,(ProKoQq)+ Try,(Pao K oQ2).
[

The formula Try(Idy) = Try,(Idv,) + Try,(Idy,) can be considered as a
special case of either Proposition 2.12 or Proposition 2.13.

EXERCISE 2.14. Given V finite-dimensional and A, P € End(V'), suppose P
is an idempotent with image subspace V3 = P(V), and let P, and Q; be the
projections and inclusions from Example 1.113. Then

Try(PoA) =Try,(ProAoQ).
In particular, for A = Idy, Try(P) = Try, (Idy,). [ |

EXERCISE 2.15. Suppose K has the property that Zl #0 for all v > 1.
=1
For V finite-dimensional and A € End(V'), any pair of two of the following three
statements implies the remaining third statement.
(1) There exist ¢ € V*, v € V so that A = kyv (¢ @ v).
(2) Try(A) =1.
(3) A is a non-zero idempotent.
HinT. The implications (1), (2) = (3) and (1), (3) = (2) do not require

the assumption on K (known as characteristic zero). The implication (1), (2) =
(3) is considered in ([AFMC] P1993-3). For (2),(3) = (1), by Lemma 1.64,
o

any A is of the form A = kyv Z ¢, ® v, |, and the exercise is to show that there
=1
is such an expression with p = 1. [
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PROPOSITION 2.16. ([G] §IV.7) For V finite-dimensional and A € End(V),
the following are equivalent.

(1) Try (Ao B) =0 for all B.
(2) A= Opnav)-
Proor.

Hom(Idy, A)*(Try) = (Hom(Idy,A)" o (kj*)il oe)(Idy)

= ((k*)"'oeoHom(A,Idv))(Idy)

= ((k) ' oe)(A),

by the commutativity of the diagram from Lemma 2.6, with U = V. If
Try(Ao B) = (Hom(Idy, A)*(Try))(B) = ((k*) " o e)(A))(B)

is always zero, then ((k*)~1oe)(A) = Ofnd(v)+, and since (k*)~1oe has zero kernel,

A must be Ogpq(v). The converse is trivial. [ |

PropoSITION 2.17. ([B] 8I1.10.11) If V' is finite-dimensional, then for any
® € End(V)*, there exists F € End(V) such that ®(A) = Try(F o A) for all
A € End(V).

PROOF. Let F' = e 1(k*(®)). The result follows from the commutativity of
the appropriate paths in the diagram for the Proof of Lemma 2.6 in the case U = V.

®(A) = (Hom(Idy,A)"(®))(Idv)
((e*odok™ oHom(A, Idy)oe tok*)(®))(Idy)
= ((k71)"(e(Idv)))(Hom(A, Idv)(e™ (k" (®))))
= TT\/(F [©) A)

PROPOSITION 2.18. ([B] §11.10.11) ForV finite-dimensional and ® € End(V')*,
the following are equivalent.

(1) ® satisfies P(Ao B) = ®(Bo A) for all A, B € End(V).
(2) There exists A € K such that ® = X-Try.

PRrROOF. By Proposition 2.17, ®(A o B) = Try(Fo Ao B) = ®(Bo A) =
Try(FoBoA). By Lemma 2.6, Try(FoBoA)=Try(Ao BoF) for all B, so
Hom(A, F)*(Try) = Hom(F, A)*(Try). Then

Hom(A, F)* (k") M(e(Idy))) = Hom(F, A)* (k") (e(Idv)))
(k)" (e(Hom(F, A)(Idy))) = (k)" (e(Hom(A, F)(Idy)))
() o) (Ao F) = (k) oe)(FoA),

so AoF = FoAforall A, and so F = A-Idy by Claim 0.57. The converse follows
from Lemma 2.6. |
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PROPOSITION 2.19. ([G] §IV.7) Suppose Try (Idy) # 0, and that the map Q €
End(End(V)) satisfies Q(AoB) = (Q(A))o(QB)) for all A, B, and Q(Idy) = Idy .
Then Try(QH)) = Try(H) for all H € End(V).

PROOF.

Tryv(Q(Ao B))

Try((2(A)) o (2(B))))
Try ((2(B)) o (2(A4)))
= TTV(Q(B © ))a

so Proposition 2.18 applies to Q*(Try) and Try(Q(H)) = A - Try(H). The sec-
ond property of Q implies Try (Q(Idy)) = Try(Idy) = X - Try(Idy), so either
Try(Idy)=0,or A=1and Try(QH)) =Try(H) for all H. |

REMARK 2.20. The following Lemma is a generalization of Example 2.7, mo-
tivated by a property of a “line bundle.”

LEMMA 2.21. Suppose that L is a finite-dimensional vector space, and that the
evaluation map Fvy, : L* ® L — K is invertible. Then Try, : End(L) — K is
invertible and Trp(Idg) = 1.

PRrROOF. k = kr; and e = epp are invertible. FEvy # O(z+oL)*> SO Id;, =
e H(Bvy) # Ofnacz). Trr = Evp ok~ is invertible, so Trr(Idy) # 0, and Example
2.9 applies. In particular, there is some 8 € K so that §-Trp(Idy) = 1, and a map
Qf :K — End(L) : v~ 8-~ Idy as in Equation (2.3) so that T'ry, o Qf = Idg. It
follows that

(Bvp ok ) oQP = Idg = QY o Evy, = k.

There is also some v € L, and there is some ¢ € L*, so that Evy (¢ ® v) # 0, and
so ¢(v) # 0, and v # 0. Then,

k(o ®v) = (QF o Bur)(@®v) = B~ ¢(v) - Idr,
SO
(k(¢ @v))(v) = ¢(v) - v=(B-¢(v) - Idr)(v) = B - d(v) - v,
which implies 8 = 1. [ |
REMARK 2.22. The following Proposition is proved in a different way by [AS?].

PROPOSITION 2.23. Given V finite-dimensional and any positive integer v, if
PV =V and P, : V =V are any idempotents, then

Try((Py — P)* ) = Try (P — P).

ProOOF. The odd power refers to a composite (P; — P2)o---0(P; — Py). It
can be shown by induction on v that there exist constants a,, € K, ¢t =1,...,v,
so that the composite expands:

(P — P2)2V+1 =P —P+ Za%L ((ProP) oP —(PyoPy) oP).
=1

The claim then follows from Lemma 2.6. [ |
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2.2. The generalized trace
An analogue of the trace Try : End(V) — K is the generalized trace, a map
Try.uw : Hom(V @ U,V @ W) — Hom(U, W),

constructed in Definition 2.24.

2.2.1. Defining the generalized trace.
The following particular cases of the canonical j maps will be used repeatedly:

j1: End(V)*® End(Hom(U,W)) — Hom(End(V) ® Hom(U,W), K ® Hom(U,W))
j2 : End(V) @ Hom(U, W) — Hom(V @ U,V @ W).

If V is finite-dimensional, then both j; and js are invertible, by Claim 1.34. Denote
by l; the scalar multiplication map K ® Hom(U, W) — Hom(U, W). The domain
of j1 contains the distinguished element T'ry & Idyomw,w)-

DEFINITION 2.24. For finite-dimensional V', define
Trvow = (Hom(jy ", 1) o j1)(Try & Idiomw,w))
= ho[T'ry ® Idgomu,w)) oyt

Note that the finite-dimensionality of V' is used in the Definition, since jo must
be invertible, but U and W may be arbitrary vector spaces.

EXAMPLE 2.25. A map of the form jo(A® B) : VU — V @ W, for finite-
dimensional V,and A:V — V, B: U — W, has trace

Try.uw(j2(A® B)) = L((j1(Try @ ldgomw,w)))(A® B)) = Try(A) - B.

In the V = K case, the trace is an invertible map. Denote scalar multiplication
maps ly : KW — W and Iy : KU — U.

THEOREM 2.26. For any vector spaces U, W,
Tri.ow = Hom(l; ', lw) : Hom(K @ U, K ® W) — Hom(U, W).

Proor. For any ¢ € K*, F' € Hom(U, W), the equation (¢(1) - F) oly =
lw o [¢p ® F] from Lemma 1.38 can be rewritten using js : K* ® Hom(U, W) —
Hom(K @ U, K ® W),

Hom(I;", lw) o jo = 11 0 (j1((dx (1)) ® Idgomu,w))) : ¢ @ F = ¢(1) - F.
The equality follows from Example 2.7, where Trg = dg(1):
Hom(l[}l, lw) =l o (j1((dx(1)) ® Iduomw,w))) Oj2_1 =Trgu,w-
i

In the U = W = K case, the generalized trace is related to the scalar trace as
in the following Theorem.

THEOREM 2.27. For finite-dimensional V', the scalar multiplication map ly :
VeoK—=V, and any H € End(V),

(Trv;KJK(l‘;l oHo lv))(].) = T?“\/(H).
Equivalently,
(2.6) T’I‘V;KK(l‘_/l oHo lv) = TT\/(H) . IdK.
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PrOOF. In the following diagram,

a as

End(V)* ® End(K*) End(V)*® Hom(K, K*)

J1 ljg

Hom(End (V)R K* K@K*) —2> Hom(End(V 2 K, KQK*)

End(V)* ® K*

Hom(Idgnq(v)ygrs 1) \LHom(IdEnd(V)®]K!l1) KEnd(v),x*

Hom(End(V) @ K*, K*) —~ > Hom(End(V) ® K, K*)

Hom(lz,Idg~)
Hom(ja, [ di+) \

Hom(End(V ®K), K*) <——— Hom(Hom(V®K,V),K*) —> Hom(End(V),K*)

the horizontal arrows are

a1 = [Idgnacvy- ® Hom(m, Idg- )]
ag = Hom([Idgyna(v) ® m], Idgek-)
az = Hom([Idgnav)® m], Idg-)
ay = Hom(Hom(Idygxk,lv), Idg-)
as = [Idgpavy~ ® Hom(Idg,m)]
ag = Hom(Hom(ly,Idy), Idg~),

for m : K — K* as in Definition 1.20, so that m(«) : A — A - a. So there is not
much going on besides scalar multiplication, including the map Iz : End(V) @ K —
End(V).

Starting with the element Try ® Idg« in the space in the upper left corner, its
output under the composite map going downward and then right to the lower right
corner is, using Definition 2.24, Try.x g o Hom(ly, l;l), as in the LHS of the claim
(2.6). The output in the path going right and then downward is

kEnd(V),K* (TTV & (mfl oldg- o m)) = kEnd(V),K* (TTV X IdK) cHw— Try (H) Idg,

corresponding to the RHS of the claim. The claimed equality follows from just the
commutativity of the diagram, without using any special properties of the trace
TT\/.

The upper left block is commutative by Lemma 1.37 and the middle left block
is commutative by Lemma 1.6. For the commutativity of the lower block, it is
enough, by Lemma 1.6, to check this equality, for A € End(V), o, 8 € K, v € V:

HOIn(Id\/@K, Z\/) Ojg o [IdEnd(V) ® m] :

Aa = lyo[A® (m(a)]:v@p—=Ily((AW) @ (B-a)) =6 a- Av),
Hom(lv,fdv) OZQZ

Aa = (a-Aoly:v@pr (a-A)B-v).
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Checking the commutativity of the block on the right, for ® € End(V)*, ¢ € K*,
Hom(Idgna(vygk, 1) © j3 © [[dgna(vy- @ Hom(Idg, m)] :

26 o ho[be(mos):
Ava = (2(A) - (m(d(a))) : B (2(A)) - B d(a),
Hom(l2, Idg+) © kgna(vy,k- :
PR¢ = (kgnav)r-(P®¢))ols:
Awa = (kpaav)x- (2@ ¢))(a-A) = (P(a-A))-¢: B (P(a-A)) - d(B).

2.2.2. Properties of the generalized trace.
The next Theorems in this Section are straightforward linear algebra identities
for the generalized trace.

REMARK 2.28. Versions of some of the results in this Section are stated in a
more general context of category theory, and given different proofs, in [Maltsiniotis]
§3.5 or [JSV] §2. The result of Theorem 2.26 is related to a property called “van-
ishing” by [JSV], and Theorem 2.29 and Theorem 2.30 are “naturality” properties
(IS V).

An analogue of Lemma 2.6 applies to maps A : V — V' and B: V' @ U —
V ® W, using the canonical maps

ju : Hom(V,V')®End(U) - Hom(V @ U,V' @ U),
Jjw : Hom(V,V’) ® End(W) — Hom(V @ W, V' @ W).
THEOREM 2.29. For finite-dimensional V and V',
Try,uw(Boe (ju(A®Idy))) = Tryiow((jw(A® Idw)) o B).
PROOF. In the following diagram,

ail

M11 M12 M13
ljl lji’ lji
Moy o Moo “ Mo

Hom(jz,z#)HHom(j;l,h) Hom(j;’,l#)“Hom((a‘é’)‘%m Hom(j5, ;UHHom((j&)‘%h)

M3, = M3 = Ms3
the objects are
M1 = End(V)" ® End(Hom(U, W))
My = Hom(End(V) ® Hom(U, W), K ® Hom(U, W))

(
Mz = Hom(Hom(V @ U,V @ W), Hom(U, W))
M;> = Hom(V',V)* ® End(Hom(U, W))
My = Hom(Hom(V', V) ® Hom(U, W), K @ Hom(U, W))
M3y = Hom(Hom(V'®@ U,V @ W), Hom(U, W))
M3 = End(V')* @ End(Hom(U, W))
M3 = Hom(End(V') @ Hom(U, W), K @ Hom(U, W))
M3 = Hom(Hom(V'® U,V' @ W), Hom(U, W)),
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where the left and right columns are the maps from the definition of trace and the
horizontal arrows in the diagram are

ap = [Hom(A,Idv)" @ Idgnasomu,w))]

az = [Hom(Idy/, A)* @ Idgnd(Homu,w))

az = Hom([Hom(A, Idy) ® Iduomw,w)l, [dxetomw,w))
ay = Hom([Hom(Idy/, A) ® Iduomw,w)l, I dxgtomw,w))
as = Hom(Hom(jy(A® Idy), Idvew), Iduomw,w))

ag = Hom(Hom(Idy gu,jw(A® Idw)), [daomw,w))-

The two quantities in the statement of the Theorem are

Trvuw(Bo (ju(A®Idy)) = (as(Trviow))(B),
Tryiow((Gw(A® Idw)) o B) = (as(Trviuw))(B).

Each of the squares in the diagram is commutative, by Lemma 1.6 and Lemma
1.37. By Lemma 2.6, Hom(A, Idy )*(Try) = Hom(Idy, A)*(Try+), so

al(TTV ® IdHom(U,W)) = (HOHI(A, Idv)* (TTV)) & IdHom(U,W)
= (Hom(Idy, A)*(Trv)) @ Iduomw,w)
= as (T?"V/ ® IdHoIn(U,W))'

The Theorem follows from the commutativity of the diagram:

as o Hom(jgl, I1) 0 j1)(Try @ Idyomu,w))
Hom((j3) ™", 1) 0 7 0 a1)(Try @ Idyom,w))
Hom((j5) ™", 11) 0 ji' 0 az)(Try: @ Idyom(u,w))
ag o Hom((j3) ™", 1) 0 j1)(Try: @ Idyom(w,w))
= as(Try.uw).

as(Trvow) =

~ o~ o~ o~

The general strategy for the preceding proof will be repeated in some subse-
quent proofs. To derive an equality involving the generalized trace, a diagram is
set up with the maps from Definition 2.24 on the left and right. The lowest row
will be the desired theorem, and the top row is the “key step,” which is either
obvious, or which uses the previously derived properties of the scalar valued trace.
There will be little choice in selecting canonical maps as horizontal arrows, and the
commutativity of the diagram will give the theorem as a consequence of the key
step. We remark that the canonical maps m, n, and ¢ will not be needed until
Section 2.3.
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THEOREM 2.30. If V is finite-dimensional, then for any maps A :V @ U —
VoW, B:W —= W, and C: U — U, the composite [Idy @ Bl o Ao [Idy & C] :
VeU — VW' has trace

Trv;UQW/([IdV ® BloAo[ldy ®C])=Bo (Trv;Uyw(A)) oC.

PROOF. In the following diagram,

ai

My Mo M3
ljl ljil lji
Moy o Moo “ Mo

HOIn(jmlfl)“Hom(Jz ,01) Hom(ja2,(19)~ I)NHOIH(J'{lJ/l) HOHI(J’}(ZQ)I)NHOIH((J'Q)IJQ)
M3y © M3z . M33

the objects are

M;; = End(V)* ® End(Hom (U, W))

My, = Hom(End(V) ® Hom(U, W),K @ Hom(U, W))
Mz, = Hom(Hom(V @ U,V ® W), Hom(U, W))

M2 = End(V)* ® Hom(Hom(U, W), Hom(U', W"))

My, = Hom(End(V) ® Hom(U, W),K ® Hom(U', W"))
M3z, = Hom(Hom(V @ U,V @ W), Hom(U',W'))

Mz = End(V)" ® End(Hom(U', W)

M3 = Hom(End(V) ® Hom(U',W'),K @ Hom(U', W"))
Ms3 = Hom(Hom(V @ U,V @ W'),Hom(U',W")),

where the left and right columns are the maps from the definition of trace and the
horizontal arrows in the diagram are

ar = [Idgnavy- @ Hom(Idpomw,w), Hom(C, B))]

az = [Idgnaevy- ® Hom(Hom(C, B), Idyomu:,wy)]

a3 = Hom(Idgna(v)gHom(w,w), [[dx ® Hom(C, B)])

ay = Hom([Idgnq(vy® Hom(C, B)], Idkgtomw’,w))
as = Hom(Idnemveuv,vew), Hom(C, B))

ag = Hom(Hom([Idy @ C,[Idy ® B), Iduomw:,w))-

The two quantities in the statement of the Theorem are
T?“\/;U/’W/([Idv ® B] oAo [Idv ® C]) = (ag(Trv;U/’W/))(A)
Bo(Tryuw(A))eC = (as(Trvuw))(A).
Squares except the lower left commute by Lemma 1.6 and Lemma 1.37; for the
remaining square, let A € K, E € Hom(U, W):
(I} o [Idx ® Hom(C,B))(A® E) = l'()\®(BoE C)=X-(BoEoQ)
(Hom(C,B)ol1)(A®E) = Bo(A-E)oC=A-(BoFEoC().
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The “key step” uses a property of the identity map, and not any properties of the
trace:

a1(Try @ Iduomw.w)) = Trv @ Hom(C, B) = ax(Try @ Iduom@: wr))
The Theorem follows from the commutativity of the diagram:
as(Trv,uw) = (asoHom(jy ', 11) o j1)(Try @ Iduomw,w))
(Hom(jy ', 11) 0 41 © a1)(Trv @ Idyomu,w))
(Hom(j5 ', 1)) 0 j1 0 a2)(Trv ® Iduom w))
= (ag o Hom((j3) ™", 1) 0 j1)(Trv @ Iduom(u,w))
as(Trv,urwr)-

COROLLARY 2.31. If V and V' are finite-dimensional then for any maps A :
VoV ,B:W—=W,6C:U — U, the following diagram is commutative.

Trv.uw

Hom(V @ U,V @ W) Hom(U, W)
Hom([A®1du],1dv®W)T
Hom(V' @ U,V @ W) Hom(C,B)

Hom([Idyr®C], [A®B])l

T""V/-,U’,W’

Hom(V' @ U, V' @ W') Hom(U’, W’)
ProoOF. This follows from Theorem 2.29 and Theorem 2.30. [
LEMMA 2.32. The following diagram is commutative.
Vi Ve W, @ W u VW @ Vs @ W
l[j@fdm@wz] l[kvl wy ®kvywy)
Hom(V; ® Vo, K@ K) @ Wi @ W, Hom(V1, W) ® Hom(Va, W2)
l[Hom(Idv1®v2,l)®IdW1®W2] l/j
(Vi @ Va)" @ Wy @ Wy —— 820wy (11 @ Wy, Wh @ W)

PROOF. The map s switches the middle two factors of the tensor product (as
in Example 1.29), and [ is multiplication of elements of K.
P @Pp2@w1 @wz = (jolkyw, @ kyws,] 08)(d1 ® d2 @ w1 @ w2)
= [(kviw, (o1 @ w1)) @ (Fvyws (¢2 @ w2))] -
v1®@vz = ((B(v1)) - wi) @ ((¢2(v2)) - w2),
P11 ®PR@u1 w2 = kviev,wiew,(([o[P1® ¢2]) ®w @ ws) :
v ®v2 = P1(v1) - P2(v2) w1 @ wa.
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REMARK 2.33. The above result appears in [K] §I1.2, and is related to a matrix
algebra equation in [Magnus] §3.6.

THEOREM 2.34. For finite-dimensional V and U, and A:V QU -V U,
T?“U (T?“\/;U’U(A)) = TT\/@U(A).

PRrROOF. As in Lemma 2.6, the maps kyy and kypy are abbreviated k and &/,
and the corresponding map for VU is denoted £ : (VQU)*®@VeU — End(VaU).
By Lemma 2.32, these & maps are related by the following commutative diagram.

V' eVeU el — | gud(v) @ End(0)

S

ViU VU
®Idvgul J2
Hom(V @ U K®K) @V @ U

Hom(Idvgu,l)®Idveu]

k!

VeoU)yeVeU End(V @ U)

The composite of maps in the left column is abbreviated a;. In particular, since U
and V are assumed finite-dimensional, all the arrows in the square are invertible.
In the following diagram,

az

End(V)* @ End(End(U)) - (V*eV)*@End(U*®U)

ay
l/jl l]i

Hom(End(V)®End(U), K& End(U)) —2— Hom(V*@VeU*QU, KQU*QU)

Hom(jz,ll_l),H/Hom(jz_l,ll) Hom(a1,(lll)_lo(k')_l),H/Hom(al_l,k'ol'l)
Hom(End(V ® U),End(U)) Y Hom((V®U)*®V @ U,End(U))

\LHOHI(IdEnd(V®U) Try) Hom(Id(vguygveu,TTu) l/

End(V @ U)* K (VelU) eVeU)
the horizontal arrows are
a; = [k*@Hom(K, (k"))
ay' = [(k*)"' @ Hom((k")™ k)]
a3 = Hom([k® K], [Idx ® (k"))
ay = Hom(k", Idgna));

and the statement of the Theorem is that

HOI?(I(IdEnd(V@)U)7 T’I“U)(TTv;aU) = TT\/@U.
The upper square is commutative by Lemma 1.37, and Lemma 1.6 applies easily
to the commutativity of the lower square, and to that of the middle square using
k" oa; = joo[k®E'], from the first diagram, and [; o [Idg ® k'] = k' ol}, by Lemma
1.38.
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The commutativity of this square,

U o(f, (Boy @Idy»
VieVeU ol (J1(Evy vreu)) U o U

EUV®U

(VelU)yeoVeU K
(Bvyguoa)(p@v®®@u) = FEuygu((lofp®E&])®@v®u)
= ¢(v)-&(u)
(Bvy oly o (j1(Boy @ Idy-gu))) (¢ @v@E@u) = Evg(p(v)-€@u)
= ¢(v) - &(u),

implies that the distinguished elements Fvy ® Idy-gy and Fvygu are related by
the right column of maps in the second diagram:

E’UV X IdU*®U — T?“U @) kjl (@) lll (@) (]i(EUV X IdU*®U)) o al_l
= FEuvyoljo (ji(Bvy @ Idy-gu)) © afl

= E’UV®U.

The above equation used the definition of Try. Along the top row, the key step
uses the definition of Try :

ay ' (Bvy @ Idy-gu) = (k)" (Bvy)) ® (K o Idy-gu o (K')™") = Try  Idgaaw)-

The Theorem follows:

T’I“U o TTV;U7U = (Hom(IdEnd(V®U), T’I“U) o I{OHl(jQ_l7 ll) o jl)(TrV ® IdEnd(U))
= (Hom(Idgna(veu) TTU)OHom(jz_l, ly) ojloaz_l)(Evv@)IdU*@U)

(K"™) " (Buveu)
= TTV@U-

REMARK 2.35. The previous Theorem appears in slightly different form in [K]
§IL.3. The following Corollary is a well-known identity for the (scalar valued) trace
([B] §11.4.4, [Magnus] §1.10, [K] §11.6).

COROLLARY 2.36. For finite-dimensional V and U, and A:V =V, B:U —
U,
T7“V®U(j2 (A X B)) =Try (A) . T?“U(B).

PROOF. As in Example 2.25,

Tryeu(j2(A®@ B)) = Tru(Trv,uu(j2(A® B)))
TTU (T’I“V (A) . B)
= T?“V (A) . T?“U (B)
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The result of Corollary 2.36 could also be proved directly using methods similar
to the previous proof, and could be stated as the equality

j; (TTV®U) = (Hom(IdEnd(V)(@End(U),l) 9 j)(T?“V X TTU) S (End(V) ® End(U))*,
or
TTV@U 0o = lo [T?“V X T’I“U].

COROLLARY 2.37. ([G] §L.5) For finite-dimensional V and U, and A: V — V,
B:U—-U,
TTHom(V,U) (Hom(A, B)) = Try(A) - Try(B).

Proor. By Lemma 1.62, Hom(A, B) = kyy o [A* ® B] o k;llj, so Lemma 2.6,
Corollary 2.36, and Lemma 2.5 apply:
TrHom(V,U) (I{OIH(A7 B)) = TTHom(V,U)(kVU e} [A* ® B] e} k;[l])
= Try«(A")-Try(B)
= T?“\/(A) . T?“U(B).
i
THEOREM 2.38. For finite-dimensional V and V', and A : V@ V' @ U —
VeV oW,
Trveviow(A) = Tryiow (Trvivieuview (4)).
PROOF. In the following diagram,

ay

My, M2
lji lj?
My, = Mss
Hom(jé,lll)“/Hom((jé)l,ll) Hom(jé’,llI)T\LHom((jé’)l,ll)
M3, % M3,
the objects are
M;; = End(V')* @ End(Hom(U, W))
My = Hom(End(V')@Hom(U, W), K@Hom(U, W))
M3z, = Hom(Hom(V'® U,V @ W), Hom(U, W))
M = End(V®V')* @ End(Hom(U, W))

My = Hom(End(V ® V') @ Hom(U, W), K® Hom (U, W))
Ms; = Hom(Hom(V@V'®@U, V@V @ W), Hom(U,W)),

the horizontal arrows are

ar = [(Trv,v,v)* @ ldgnd(tomw,w))]
a2 = HOD’I([TT\/;V!’V( & IdHom(U,W)]a IdK@Hom(U,W))
asz = Hom(T’rV;V'Q?U,V’@Wa IdHom(U,W))7

and the statement of the Theorem is that

az(Try.uw) =Trvev.uw.
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The commutativity of this square,

/11

[ 2 ®Id om(U,W ]
End(V)@End(V') @ Hom(U, W) " End(V V') @ Hom (U, W)

l dEnacv)®7s] Vi l
End(V)®Hom(V'@U, V'@ W) ——2 Hom(VaV'@U, VeV W)

is easy to check, and together with that of the diagram:

/11

[ 2 ®Id om(U,W ]
End(V)@End(V') @ Hom(U,W) — """ 5nd(V @ V") @ Hom(U, W)

l[IdEnd(V)®j;] [TT'V-,V’,V/®IdHom(U,W)]l
End(V)@Hom(V'@U, V'@W) End(V’) ® Hom(U, W)
ljl(TT'V@IdHom(V/®U,V/®W)) ljé

1

K ® Hom(V' @ U, V' @ W)

Hom(V' @ U, V' @ W)

DRE®F — (jyo[(Trviviv o)) @ Iduomw,w)])(DRESF)
= js(Trv,y v (33 (D ® E)) @ F)
= (Trv(D)) ja(E®F)
DRE®F — (lo(j(Try @) (D®E®F)
= UL((Trv(D)) ® (j2(E ® F)))
= (Trv(D)) jy(E® F),
implies
I o (1(Try & Iduom(viau,view))) © da ' 0 j5
= 1o (i(Try @ Iduomv'au,view)))
o[Idgnav) ® ja) © [(j5") " © Idyomw,w)]
= jho[Trvyv v ® Idgomw,w)),

-1
Trv.vieuview © ja

which is what is needed to show that the lower square of the first diagram is com-
mutative. Its upper square is commutative by Lemma 1.37, and the distinguished
elements in the top row are related by Theorem 2.34:

ar(Try: @ Idgomw,wy) = (Try: o Try.viv) @ Idgomw,wy = Trvev: @ Idomw,w)-

The Theorem follows:

ag(Tryyw) = (azoHom((j5) ™", 1) 0 j)(Try: @ Iduem(w,w))
(Hom((j3) ™", 11) 0 j1 0 a1)(Try: & Idiomw,w))
= (Hom((j5) ™" 1) o ) (Trvev: @ Idyomw,w))
= Trveviuw.
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REMARK 2.39. The result of the above Theorem is another “vanishing” prop-
erty of the generalized trace ([JSV]).

The maps
js+ Hom(V; @ Uy, Vi ® Wh) @ Hom(Va @ Us, Vo @ W)
— Hom(Vi @ Uy @ Vo @ Us, Vi @ W1 @ Vo @ W),
Ja : HOHl(Ul, VVE)@HOHI([]Q7 WQ) — Hom(U1 RUy, Wi ® WQ)

appear in the following Theorem comparing the trace of a tensor product to the
tensor product of traces. There are also some switching maps, as in Theorem 2.34,

s1:VioW i@ Ve Wy - Vi@ Vo® W, @ Wy
$2:V1@VeU U - ViU ®@ Ve ® Us.

THEOREM 2.40. For finite-dimensional Vi and Vo, and maps A : Vi, @ Uy —
VioWy and B : Vo @ Us — Vo @ W,

Trvieve:U@Us, Wi oWs (510(J3(ARB))os2) = ja((Trvi vy, w, (A) R(Trvy,u,, w, (B)))-

PrOOF. In the following diagram,

My M3 M3 My
l]l ljs ljfs l[hl@jf]
as as Hom(s4,s5)0j7
My Mya M3 Moy
as“%l as“%l 117“(171 (ls,H/asl
M3y - M3s ae M33 I M3y
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the objects are

My,
Moy

M3,

My

M3z

Mog

M33

Moy

M3y

End(V; ® Vo)* @ End(Hom(U; @ Uz, W1 @ Ws))

Hom(End(V4 ® V2) @ Hom(U; ® Uy, W1 @ Wa),

K ® Hom(Uy ® Uy, W1 @ Wa))

Hom(Hom (Vi @ Vo @ Uy @ Uz, Vi @ Vo @ W1 @ Wa),

Hom(U; ® Uz, W1 @ Wa))

(End(V1) @ End(12))" ®

Hom(Hom (Uy, W1) ® Hom(Us, Wa), Hom(U; ® Uz, W1 @ W3))
Hom(End(V1) ® End(Va) ® Hom(Ur, W1) @ Hom(Us, Wa),

K ® Hom(U; ® Uz, W1 ® W3))

Hom(Hom(V; ® Uy, V1 @ W) @ Hom(Va @ Us, Vo @ W),

Hom (U ® Uy, W1 @ Wa))

Hom(End(V1) ® End(V2), K ® K) ® End(Hom(U:, W1) ® Hom(Us, Wa))
Hom(End (V1) ® End(Va) ® Hom(Uy, W1) @ Hom(Us, W),

K ® K ® Hom(Uy, W1) @ Hom(Uz, W3))

Hom(Hom(V; @ U, Vi @ W1) ® Hom(Va ® Us, Vo @ Wa),

Hom(U, W1) ® Hom(Us, Wa))
End(V1)* ® End(Hom(U;y, W1)) ® End(V2)* @ End(Hom(Us, W3))
Hom(End (V1) ® Hom(Uy, W1), K @ Hom(Uy, W1)) ®
Hom(End(V2) ® Hom(Us, W2), K @ Hom(Uz, Ws))

Hom(Hom(Vy ® Uy, Vi @ Wh), Hom(Uy, Wh)) ®
Hom(Hom(Vz @ Us, Vo ® Wa), Hom(Us, W2));

the left, right columns define Trv, gvy,t0, 00U, wiew, and Try .o, wy, @ Trvy.u, w,-
The arrows are

a
a
as
a4
as
ag
az
as

ag

a10

= Hom

= Hom

= [(45)" ® Hom(jis, Idnom(u, ovs, w1 0Wa))]
= [Hom(Idgnda(vi)@End(va), lx) @ Hom(Iduomw, ,w,)@Hom (Us, W) J4)]

Hom([j5 ® ja, Idx@Hom (U, 0Us, w1 0 W2))

(
= Hom(Idgna(v,)@End(vs)@Hom(Us, W1 )@ Hom(Us,Wa)» [K @ ja])
= Hom(jo, h
(
(

[js ® j3] 0 s4,157")
[ja ® j3] o sa, (Lo 1)™1)

= [Hom(js, (1)) ® Hom(j3, (13) )]
= Hom(Hom(sz, s1) © j3, Idtom(u, U, wyaWs))

= Hom(Iduom(v, oU,,vi@Wy ) @Hom (Va@Us, Va@Wa)» J4)-

The Theorem claims the two maps

TTV1®V2;U1®U27W1®W2 © HOHI(SQ, 81) oj3 = a9(TTV1®V2§U1®U2,W1®W2)7
Jao (s(Trviuywy @ Trvguew,)) = (a0 © Js)(Trvio,wy @ Trveus,ws)
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are equal. The diagram is commutative— all six squares are easy to check, for
example, the upper left and upper middle follow from Lemma 1.37, and each of the
remaining four involves two arrows with switching maps. The equality along the
top row,
a1 Trviev, ®@ lduemu,ets.wiews) = (TTview, © jz) © ja,
azolj®@jloss : Try, @ Iduomw,,w,) ® TTvy ® Idtomu,,wy)
= (ko [Ty, @ Try)) @ ja,

follows from Corollary 2.36. This key step, together with the commutativity of the
diagram, proves the Theorem:

ag (TTV1®V2,U1®U2,W1®W2)
(ag 0 az ' 0 j1)(Trviev, ® Idiom(u,evs, wiews))
(ag "' 0 js 0 a1)(Trviev, ® Idiom(u,ovs, wiews))

= (ag'ojsoazo[j®j]oss)(Try, ® Iduomw, wy) ® Trvy ® Idgomw,,ws))
(a10 0 js 0 ag "o [j1 ® j)(Trv, @ Iduom,,wr) ® Trvy @ Idgom,,ws))
(a10 0 J8)(Trvi,on,wy @ Ty, ws)-

REMARK 2.41. The maps j4, from the previous Theorem, and
Jo : Hom(V @ Uy, V @ W1) ® Hom(Us, W) — Hom(V @ Uy @ U, V @ Wi @ Wa)

appear in the following Corollary about the compatibility of the trace and the tensor
product, related to a “superposing” identity of [JSV].

COROLLARY 2.42. For finite-dimensional V', and maps A:V Uy — V @ Wh,
B : U2 — Wz,

Trv.v,0U.,wrew. (Jo(A ® B)) = ja((Trv,u,,w, (A)) @ B).
PROOF. It can be checked that the following diagram is commutative.

J3(A@ (L, 0 Bolu, )

Vol @ Ko Us VoW @Ko W,
VoKe U ®Us VoKW, @ Ws
l[lv@dulmz] l[lv®1dwl®wz]
Vel el i VoW oW,
Theorem 2.29, the diagram, the previous Theorem, and finally Theorem 2.26 apply:
LHS = Trvuev,wiew:((jo(A® B))o[lv ® Idy,eu,] o Iy ® Idv,eu,))

= Trveruevs,wiews (' @ Idw,ew,] o (jo(A® B)) o lv @ Idy,su,])
= Trvexu,etswiew,(s1 0 (j3(A® (I o Boly,))) o s2)

= u((Trv,u,w, (A) @ (Trsu,,w, Hom(ly,, 11 ) (B))))

= Jja((Trv,u,,w, (4)) ® B).
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NOTATION 2.43. Denote the composite maps
Juv = Hom(Idygu,l)oj : V'@U*—= (VeU)"
Jw = Hom(Idygw,l)oj : V'@W"—= (Ve W),
where [ is multiplication K ® K — K.

If V is finite-dimensional then these 7 maps are invertible. A composition like
this already appeared in Lemma 2.32, and these maps appear in the next Theorem
2.44, relating the trace of the transpose to the transpose of the trace, using ¢ maps
as in Notation 1.9. The j maps appear again in the next Chapter, but the tilde
notation will only be used when abbreviating is more useful than not.

THEOREM 2.44. For finite-dimensional V and a map H:V U -V Q W,
Tryew-u-(y ' o (tvevvew (H)) o jw) = tow (Trvuw (H)).

PrROOF. In the following diagram,

ay

M11 M12 M13
ljl ljf lji
My — Mss “ M3

Hom(jmlll)“Hom(jgHm Hom(p,(l’l)1>”Hom(j2%li> Hom(j;,u’l)1)“Hom((j§)%li>
M3, - M32 = M3
the objects are
My = End(V)" ® End(Hom(U, W))
My, = Hom(End(V)® Hom(U, W), K ® Hom(U, W))
Mz, = Hom(Hom(V @ U,V @ W),Hom(U, W))
Mo = End(V)* @ Hom(Hom (U, W), Hom(W*,U™))

My = Hom(End(V)® Hom(U, W), K ® Hom(W™*,U™))
M3 = Hom(Hom(V @ U,V @ W), Hom(W*,U™"))
Mz = End(V*)" @ End(Hom(W™*,U™))

M3 = Hom(End(V*)® Hom(W*,U*),K ® Hom(W*,U™))
M3 = Hom(Hom(V* @ W* V* @ U*), Hom(W*,U")),

the arrows are

a1 = [Idgnavy ® Hom(Idyom@,wy, tvw)]

az = [tyy @ Hom(tuw, Iduomw+,u+))]

az = Hom(Idgna(v)eHomw,w), [[dx @ tuw])

ay = Hom([tvv @ tuw], Idxkgtomw=,u+))

as = Hom(Iduomveu,vew) tuw)

ag = Hom(Hom(jyy,j; ") o tvau,vew, Tdyomw=,u+)),
and the two quantities in the statement of the Theorem are

tow (Trviow(H)) = (as(Trv,o.w))(H)

Try-w- v+ (Hom(Gy  jiy ) (tvevvew (H))) = (a6(Trv-wsu+))(H).
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The diagram is commutative, for example, the lower right square:

E®F — (Hom(Idyv-gw+,jy) o jso [tvv ® tuw])(E & F)
Ju © Ga((tvv (E)) @ (tow (F)))) :

P& = Ju((E™(¢) @ (F*(€))) :
veu = ¢(E()) - E(F (u)),
E®F +— (Hom(jy,Idv-gu+)otveu,vew ©j2)(E® F)
= (tvevvew(j2(E® F))) oy :
P& = (w(@®E))o(j2(E®F)):

v@u = ¢(E()) - E(F(u)).

Lemma 2.5 implies the equality of the outputs of the distinguished elements in the
top row:

ar(Try @ ldgomw,wy) = Try @tuw
as (T?“V* & IdHom(W*,U*)) = (ﬁ/v (T?“V*)) R tvw
= Try Qtuw,

and the Theorem follows from the commutativity of the diagram:
as(Trv,uw) = (asoHom(jy ', 11) 0 j1)(Try @ Idpomw,w))
(Hom(jy ', 14) © ji 0 a1)(Trv @ Idom(w,w))
(Hom(j, ', 14) 0 ji’ © az)(Trv+ @ Idpom(w-0-))
= (ag oHom((j5)™",17) 0 7)) (Trv+ @ Idgom(w= u+))
= as(Tryew~u~).

EXERCISE 2.45. Given a direct sum V =V, ® Vo, and A: Vi QU - Vi @ W,
and B: Vo U = Vo@ W, define A® B:V®U — V®W using the projections
and inclusions from Example 1.81:

A®B=[Q1®Idw]o Ao [P ®Idy]+ [Q2® Idw]o Bo [P, ® Idy].
If V is finite-dimensional, then
T?“V;Uy[/(A D B) = TTVuU,W(A) + T?“VQ;UJ/[/(B).

HiNT. The proof proceeds exactly as in Proposition 2.12, using Theorem 2.29.

EXERCISE 2.46. For V =V ® V5 as above, and K : VU - VW,

T?“V;Uy[/(K) = T'r\/l;U,W([Pl ® Idw] oK o [Ql ® IdU])
+Try,.uw ([Pe @ Idw] o K o [Q2 ® Idy]).

HiNT. Using Theorem 2.29 and Lemma 1.36,
TTW;U,W([Pi X IdW] oKo [Qz X IdU]) = TTV;U,W([(Qi o B) ® Idw] o K)

The proof proceeds exactly as in Proposition 2.13. [ |
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PROPOSITION 2.47. For finite-dimensional Vi and Vo, maps A : Vi @ Uy —
Vo@Wsy, B:Vo®Us — Vi @ Wy, and switching maps as in the following diagrams,

ViU ® U Vo @ Us @ Uq
s1 [BRIdy,]

Vi®U @ Us Vi@ Wh @ Uy
[A®Idu,] 53

Vo @ Wo ® Us VieoU W,
S0 [ARTdw, ]

Vo @ U @ Wo Vo @ Wo @ W4
[BRIdw,] 54

VieoW, @ W, VoW, @ Ws

the traces of the composites are equal:

Trvyv,00, Wiew, ([B ® Idw,] 0 520 [A® Idy,] o s1)
= Trv,u,00;, Wiew, (810 [A® Idw,] o s3 0 [B® Idy,]).

PROOF. The canonical map
j : Hom(Va2, V1) @ Hom(Us, W1) — Hom (Vo ® Us, V1 @ Wh)

is invertible by the finite-dimensionality hypothesis and Claim 1.34. Also consider
a map

Q7 : K — End(Wa) : 1+ Idw,,

as in (2.4) (and again not necessarily from some direct sum as in Example 2.9),

and analogously

QK — End(U)) : 1 — Idy,.
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The claim of the Proposition is that the lower block of this diagram is commutative,
starting with B ® 1 in the upper right.

i®Id
Hom(Va, Vi) @ Hom(Uz, W1) © K 221 Hom(Vy @ Us, Vi @ W1) © K

o UdHom(va 0y, vy @ W) ®Q1]
@] [IdHom(V2®U2,V1®W1)®Q%]

HOHl(Vé QKU VI ® Wl) (24 End(Ul) HOHl(Vé QKU VI ® Wl) (24 End(Wg)
j// j/
Hom(V, @ Uy @ Uy, V4 ®W1®U1) Hom(%®U2®W27‘/1®W1 ® Wa)

Hom(Idvyu,@u, »54aQ[AQIdw, Joss)
Hom(s2®[ARIdy,]osi,Idv, gw, ows)

Hom(Va @ Uy @ Uy, Vo @ W1 @ Wa) Hom(V; @ Us @ Uy, Vi @ Wi @ W)

Trvyuseuy,wigw,
Trvy;Us®@U;, Wi @Ws

HOIII(UQ QUL, W1 ® WQ)

The upper triangle of the above diagram is commutative, so to prove the claim
it is enough, by the invertibility of the upper arrow [j ® Idx], to check the outside
of the diagram, starting with By ® By ® 1 in the upper left, for By : Vo — V7,
By : Uy — Wi, so that the downward composite on the left side is equal to the
composite path going clockwise around the right.

The following easily checked diagram shows how the Bs factor commutes with

A.
Idy, ®[B2®Idy, ]
Vi@ Up @ Uy — @Bl oo e 0,
S1 83
1d ®B
Vi@ Uy @ Uy —20en @8] o e
[ARIdy,] [A®Tdw, ]
[Idvy@w, ®B2]
Vo @ Wo @ Us Voo Wy W,
S2 S4
[Idv2®[BQ®IdW2H
Vo @ Us @ Wa Voo Wiy @ Wa

Using Theorem 2.29,

Trvvaeu,, wiews, ([[B1 ® B2] @ Idw,] 0 s3 0 [A® Idy,] o s1)

[B1® Idw,ew,|o [Idy, ® [B2 @ Idw,]] 0 s20 [A ® Idy,] o s1)
[B1® Idw,ow,| © s40 [A® Idw,] o s30 [Idy, ® [Bz ® Idy,]])

$40 [A® Idw,] o s30 [Idy, ® [B2® Idy,]] o [B1® Idy,eu,])
10[A® Idw,] o s30|[[B1 ® Ba] @ Idy,]).

= Trvi,0,0U,,WiaW,
= Trvi,0,0U,,WiaW,
= TTVz;U2®U1,W1®W2

(
(
(
(

= TTV2§U2®U1 Wi@Wo (S
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EXERCISE 2.48. Using various switching maps, Proposition 2.47 can be used
to prove related identities. For example, given maps:
AUV — VoW,
B UV, — ViaW
ss:Vi@loU; — U2eU;eV;
s : VoRUs@U; — U @Uy® Vs,

the following identity can be proved as a consequence of Proposition 2.47:

Ty, v,00,Wiew, ([B' ® Idw,] o [Idy, ® Al o s5)
(2.7) = Trv, e, wiew,(sio [A'® Idw,] o [Idy, ® B'] o s6).

HINT. Let A= A’ os and B = B’ o s for appropriate switching maps s. [ |

REMARK 2.49. Equation (2.7) is related to [PS] Proposition 2.7, on the “cyclic-
ity” of the generalized trace.

2.3. Vector valued trace

In analogy with Definition 2.24, but with no space U, the “vector valued” or
“W-valued” trace of a map V' — V ® W should be an element of W. The results on
the generalized trace have analogues in this case, but the construction uses different
canonical maps.

2.3.1. Defining the vector valued trace.
The following Definition 2.50 applies to an arbitrary vector space W and a
finite-dimensional space V' to define the W-valued trace

Try,w : Hom(V, V@ W) — W,
in terms of the previously defined (scalar) trace T'ry, and canonical maps
n : End(V)® W — Hom(V,V @ W)
ji ¢+ End(V)* @ End(W) — Hom(End(V) @ W, K @ W),

where j1 is another canonical j map in analogy with j; from Definition 2.24, and
n is invertible by Lemma 1.44.

DEFINITION 2.50. For finite-dimensional V',

Trvaw = (Hom(n ', lw) o)) (Try @ Idw)
= lyo[Try @ Idw]on™ "
EXAMPLE 2.51. A map of the form n(A®@ w) : V — V @ W, for finite-
dimensional V., A:V — V, and w € W, has trace

Trvw(n(A@w)) =lw((j1(Try @ Idw))(A @ w)) = Try(A) - w.

The vector valued trace is related to the generalized trace in two different ways
by Theorem 2.52 and Theorem 2.53, which use the two different variants of the
q maps from Notation 1.49. Theorem 2.52 relates Definition 2.24 to the case of
Definition 2.50 where W is replaced by the vector space Hom (U, W).
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THEOREM 2.52. For finite-dimensional V', and a map K : V — V@Hom(U, W),
Trysomw,w)(K) = Try.ow(q(n o K)).
PROOF. The maps
¢ : Hom(V,Hom(U,V®W)) — Hom(Ve@U,V W),
n':V®@Hom(U,W) — Hom(U,V&@W)

are as in Definition 1.46 and Notation 1.41.
In the following diagram,

Hom(n~1,11)

My, Mo
Hom(n,17")
Hom(jz,z;l)HHom(jgl,zl) THom(Hom(Idv,n’),IdHom(UYW))
My, Hom(q,IdHomu,w)) Mo
the objects are

M1 = Hom(End(V)®@Hom(U,W), K@Hom(U,W))

My = Hom(Hom(VeU,VeW),Hom(U,W))

My = Hom(Hom(V,V @ Hom(U, W)), Hom(U, W))

M = Hom(Hom(V,Hom(U,V @ W)), Hom(U, W)).

The square is commutative by Lemma 1.6 and Lemma 1.52.
Definition 2.24 and Definition 2.50 are related in this case by ly = [; and
ji = j1. The Theorem follows:

Tryaomww) = (Hom(n™ 1) o j1)(Try @ Idgom@,w))
= (Hom(j; " o go Hom(Idy,n'),11) 0 j1)(Try @ Idyom(u,w))
(2.8) = Hom(q o Hom(Idy,n'), Idgomw,w))(Trvio,w).

Considering that ¢ and n’ are invertible by Lemma 1.47 and Lemma 1.44, line (2.8)
can be written as:

(2.9) Trv.ow = Tryomw,w) © Hom(Idy, (n') ™) o g7t
|
THEOREM 2.53. For finite-dimensional V, and a map F: VU -V W,
Tryw o (g ' (F)) = Trv.uw(F).
Proor. The map
(2.10) ¢ : Hom(U,Hom(V,V @ W)) - Hom(V @ U,V @ W)

is as in (1.5) from Notation 1.49.
In the following diagram, the map n is as in Definition 2.50, so that the down-
ward composite in the right column is
Hom(Idy, Try,w) : Hom(U, Hom(V,V @ W)) — Hom(U, W).

The downward composite in the left column is Try.y,w as in Definition 2.24. The
other maps n; and no are as indicated in the diagram. The claim can be re-written
in a way analogous to Equation (2.9) from Theorem 2.52:

(2.11) Trv.uw = Hom(Idy, Trv.w)oq *,
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which will follow from the commutativity of the diagram.

Hom(V@ U,V W)

Hom(U, Hom(V,V @ W))

jo THom(IdU,n)
End(V) ® Hom (U, W) - Hom(U,End(V) @ W)
[Trv @ Idpomw. w)) lHom(IdU,[Trv(@IdW])
K ® Hom (U, W) — Hom(U,K® W)

I
HOm(Idu,lw)

Hom (U, W)

The upper square is commutative by a version of Lemma 1.52 with some re-ordering;
we briefly re-state its Proof for this case: for A € End(V'), B € Hom(U,W), v € V,
ue U,

(goHom(Idy,n)ony) : A®B — qg(no(ni(A® B))):
v@u = ((no(ni(A® B)))(u))(v)
(n

(A& (B(w))))(v) = (A(v)) ® (B(u))
= (j2(4® B))(v®u).

The commutativity of the middle square uses Lemma 1.42 and Idyomw,w) =
Hom(Idy, Idw), but not any special properties of T'ry . The lower triangle is easily
checked. [

Definition 2.50 is related to the scalar trace, as in Definition 2.3, when W = K.
THEOREM 2.54. For finite-dimensional V and H :'V -V @ K,
Trv(lv e} H) = T’I‘V;K(H).

PROOF. Let I3 : End(V)* @ K — End(V)* be another scalar multiplication
map. The following diagram is commutative.

End(V)* @ K* End(V)* @ K
l/ [Idgnd(vy=®@m]

Hom(End(V) ® K, K ® K) I
Hom(n,l, ),H/Hom(n k)

Hom(V,V @ K)* End(V)*
Hom(Idy,lyv)™*

For A\, p € K, ® € End(V)*, A € End(V),

PN = (j1 0 Udpnav)- @ m])(@ @A) = ji (2 ® (m(N))) :
(
(

Aop = (2(A4) @ (k- A),
PN = (Hom(n,lx') o Hom(Idy,ly)* ols)(® @ \)
= Iz'o ((A\-®) o Hom(Idy,ly))on
Aop = A2y o (n(A®p)) =10 (A @(u-A)),
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since (Iy o (M(A @ p))) : v = ly((A(w)) @ u) = (u- A)(v). The Theorem follows
from [Idgnqvy- @ m|(Try ®@ 1) = Try @ Idx:

Hom(Idy,ly)" (Trv) = Hom(Idy,ly)* ol)(Try 1)

= (Hom(n_l, lK) o j{ o [IdEnd(V)* X m])(TrV (24 1)
= TTV;K~

Definition 2.24 and Definition 2.50 are related in the case U = K:
THEOREM 2.55. For finite-dimensional V and H :V -V @ W,
Trv;Kw(H oly): 1w Try.w(H).

PRrROOF. The following diagram is commutative:

End(V)* ®End(Hom(K,W)) “ End(V)*@End(W)
Hom(End(V)®Hom(K,W), K& Hom(K,W)) —= Hom(End(V)@ W, K@ W)

Hom(jz,ll_l),H/Hom(jz_1 A1) Hom(n,l;v1 ,H/Hom(nl,lw)
Hom(Hom(V @K, V@ W), Hom(K,W)) —— Hom(Hom(V, V@W),W)

where the horizontal arrows are

a; = [Idgpav)- ® Hom(m, m~1)]
az = Hom([ldEnd(V) ® m]a [IdK ® m_l])
a3 = Hom(Hom(ly, Idygw),m ).

The statement of the Theorem becomes

az(Trvew) = Trv,w.
The top square is commutative by Lemma 1.37. The lower square is commutative
by Lemma 1.6, Lemma 1.38, and Lemma 1.43. The Theorem follows from a1 (T'ry ®
Idyomm,wy) = Try @ Idw:
as(Tryxw) = (azoHom(jy ", 11) 0 j1)(Try @ Iduomxk,w))
(Hom(n_l, lw)ojioa)(Try ® IdHom(K,W))
= (Hom(n %, lw) o)) (Try @ Idw)
Tryv.w.

EXERCISE 2.56. The result of Theorem 2.27,
Try(H) = (T?“\/;K’K(l‘;l o Holy))(1),
can be given a different proof using the vector valued trace as an intermediate step.
HinT. By Theorem 2.54 and Theorem 2.55,
Try = Hom(Idy,ly,")* (Hom(Hom(lyv, Idvex),m ) (Tryxx)).
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COROLLARY 2.57. For H: K - K@ W, Trg.w(H) = lw(H(1)).
PROOF. Theorem 2.55 applies, with lgx : K® K — K:
Trow (H) = (Trrg,w (H olk))(1).
By Theorem 2.26, this quantity is equal to
(Hom(ly ' lw)(H © 1)) (1) = bw (H(1)).
|

2.3.2. Properties of the vector valued trace.

The following results on the W-valued trace are corollaries of results from
Section 2.2. In most cases, Theorem 2.55 applies, leading to a straightforward
calculation.

COROLLARY 2.58. For finite-dimensional V and V', and A : V. — V', B :
Vi VeW,
T?“\/;W(B e} A) = TTV’;W((jW(A X Idw)) (@) B)
PROOF. Theorem 2.29 and Theorem 2.55 apply, using the map Iy : V' @ K —
V', and the equation A oly = Iy o (jx(A ® Idk)), a version of Lemma 1.38.
Tryw(BoA) = (Trysgw(BoAoly))(1)
= (Trv;]Kyw(B e} lV/ o (]K(A ® IdK))))(].)
= (Trview((w(A® Idw))o Boly))(1)
= Trvw((w(A® Idw)) o B).
i
COROLLARY 2.59. For finite-dimensional V, and A:V - VW, B: W —
w’,
T?“V;W/([Idv & B] o A) = B(Trvyw(A))
PrOOF. By Theorem 2.30 and Theorem 2.55,
T?“\/;WI([IdV ® B] o A) = (TTV;K,W’([IdV ® B] oAo lv))(].)
= Bo(Trygw(Aoly)))() =B(Try,w(A)).
i

COROLLARY 2.60. If V and V' are finite-dimensional then for any maps A :
V = V', B:W — W/, the following diagram is commutative.

Hom(V, V & W) — % w
Hom(A,Idv@W)T
Hom(V',V @ W) B
HorIl(IdV/JA@B])l
Tryr

Hom(V', V' @ W) W

ProOF. This follows from Corollary 2.58 and Corollary 2.59. [
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LEMMA 2.61. For a direct sum W = Wy & Wy with data P;, Q;, there is
also a direct sum Hom(V,V @ W) = Hom(V,V @ W1) ® Hom(V,V @ W), with
projections Hom(Idy, [Idy @ B;]) and inclusions Hom(Idy, [Idy ® Q;]). If V is
finite-dimensional, then the map Try.w : Hom(V,V @ W) — W respects the direct
sums, and each induced map is equal to a W;-valued trace:

Try.w, = PioTry.w o Hom(Idy, [Idy ® Q;]) : Hom(V,V @ W;) — W,.

PROOF. The projections and inclusions are as in Example 1.81 and Example
1.82. The claims follow from Definition 1.88 and Corollary 2.59.

COROLLARY 2.62. For finite-dimensional V and V', and A : V V' -V ®
VoW,
Trveviw(A) = Trysw (Trvv view (A)).
ProoF. Using Theorem 2.30, Theorem 2.38, and Theorem 2.55, and the scalar
multiplication identity ly gy, = [Idy @ ly/] : VRV @ K -V @V,
Trvegviw(A) = (Trvegvixw(Aelvey))(1)
= (Trvevigw(Ae [Idy @1y]))(1)
= (Trvigw (Trvivekview(Ae [Idy @1y])))(1)
= (Trvixw(Trv,v vigw(A)) oly:))(1)
= Trysw(Trvv view(A)).

EXERCISE 2.63. Let V be finite-dimensional and denote by n” the map
n' : W &Hom(U,W') — Hom(U,W @ W')
wRE— (u—w® (E(u))).
For A:V VoW, B:U— W,
Trvowew (jo(A® B)) = n"((Trv,w(A)) ® B).
HINT. By Theorem 2.30, Theorem 2.55, Corollary 2.42, and the equations
(Jo(A® B))o[ldy ®ly] =[A® (Boly)| = [(Aoly) ® BJ,

(Trvowew (jo(A® B)))oly = Tryxevwew ([A® (Boly)])
= Trvksvwew ([(Aoly)® B])
= Jja((Trvew(Aoly))® B)
= Trvowew (ih(A®B) = (1i(Trvaw(Aoly)® B))olg':
u = (Trvxw(Aoly))(1)) ® (B(u))
Trv.w(A4)) ® (B(u))
n"((Trv,w(A)) @ B))(u).

~ o~~~
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COROLLARY 2.64. For finite-dimensional Vi and Va, and maps A: Vi — V1 ®
Wi, B: Vo — Vo ® Wa, the following identity holds:

Trvieve:w,ow, (51 0 (J5(A® B))) = (Trvy.w, (A)) @ (Trvy.w, (B)) € W1 @ Wa.
PROOF. The canonical j3 map is as in Theorem 2.40,
Js : Hom(V1, Vi @ W1) @ Hom(Va, Vo @ Wa) — Hom(V1 @ Vo, Vi @ Vo @ W1 @ Wa),
and s; is a switching map. In the following diagram,

ai J3

My Mo M3
| |-
My —=> Moy —2> Mo

the objects are

My = Hom(Vi, Vi ® W) ® Hom(Va, Vo @ Wa)

My = Hom(Vi @ Vo, V1 @ W1 ® Vo ® Wa)

M, = Hom(Vi @K, V; @ W) @ Hom(Ve @ K, V5 @ Wa)
My, = Hom(Vi @ Va@K, Vi @ Wi @ Vo ® Wa)

Mz = Hom(Vi @K@ WK, Ve W, ® Ve, W)
Mys = Hom(Vi @ Va @K@K, Vi@ W, @ Vo @ Wa),

and the arrows are

ar = [Hom(ly,, Idy,ew, ) ® Hom(ly,, Idyv,ow,)]
az = Hom(ss, Idy,ew,ev.aWs)

as = Hom(lv,gv,, [dv,ew,eveews,)

ay = Hom([Idv,gv, ® k], [dv,ew,evaeWs)-

The diagram is commutative, by Lemma 1.37 and a scalar multiplication identity.
By Theorem 2.55, Theorem 2.30, Theorem 2.40, and the diagram,

LHS = (Trviev,xwiews (510 (j3(A® B)) o lvigw,))(1)
= (Trvigverwiews(s10(j3((A oy, )@ (B oly,)))oss o [Idv,ev, @ Ix'1))(1)
= (Trviovsikex,mew, (s1 0 (j3((Aoly) @ (Boly,))) o s2)) ol H)(1)
Ua((Trvigws (Ao ly)) @ (Trvyrw, (B olw))))(1®1)
(Tryv,.w, (A) @ (Try,.w,(B)) = RHS.

EXAMPLE 2.65. If L is finite-dimensional and Fvy, : L* ® L — K is invertible,
as in Lemma 2.21, then T'rr.w is invertible, because it is a composite of invertible
maps by Definition 2.50:

Tri.w =lwo [Try @ Idw]on™' : Hom(L,L @ W) — W.
Also by Lemma 2.21 and Example 2.51, for any w € W,

Triw(n(Id, @w)) =1-w = w.
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EXERCISE 2.66. For a direct sum V = V; @ V5 as in Definition 1.77, and maps
A: Vi > Vi@W, B: Vo, - VoW, define A B :V — V®W, using the
inclusions from Example 1.81:

A®B= [Ql ®Idw] oAo P + [QQ@ICZV[/]OBOPQ.
If V is finite-dimensional, then
T?”V;W(A D B) = TTVuW(A) + T?“VQ;W(B).

HiNT. The proof proceeds exactly as in Proposition 2.12, using Corollary 2.58.

EXERCISE 2.67. If V is finite-dimensional and V = V; @ V5, then for K : V —
VoW,

TTv;W(K) = Trvl;W([Pl (24 Idw] oK o Ql) —+ TTV2;W(|:P2 (24 Idw] oK o Qg)
HiNT. Using Corollary 2.58 and Lemma 1.36,
T’I“V“[/V([Pz ® Idw] (o) K o Qz) = TTV;W([(Qi O Pz) ® Idw] (o) K)

The proof proceeds exactly as in Proposition 2.13. [ |

2.4. Equivalence of alternative definitions

In [JSV] §3, the canonical trace of a map F: V@ U — V ® W is defined in
terms of category theory. In the context and notation of these notes, the definition
of [JSV] can be interpreted as saying that Try.pw (F) is the following composite
map from U to W:

(212) U S VRV eU [Ldy+®F] VFoVeWw lwo[Evy ®@Idw] W

where the first arrow is defined for u € U by:
u (K7 (Idy)) ® u.

As mentioned after Theorem 2.10, this map could be expressed in terms of maps
ly :K®@U — U and an inclusion Q} : K — End(V) : 1 = Idy as in Example 2.9
and Equation (2.4).

NoTAaTION 2.68. For finite-dimensional V', k: V* @ V — End(V), a switching
map s: V*®@V — V ® V* and the map Q1 : K — End(V) : 1 — Idy, define
ny :K—=V®V* by:

v =sok loQi.
The switching map is included for later convenience in Theorem 2.96. The
arrow in (2.12) can then be described as follows:
[s' @ Idy] o [pv ® Idy] o'
(2.13) =k '®ldylo[Qi®@Idylol;' U — V'@VeU
cu o (KTNIdy)) @ .

The following Theorem shows that the formula (2.12) for Try.y,w (F) coincides with
Definition 2.24. V must be finite-dimensional, but U and W may be arbitrary.
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THEOREM 2.69. For finite-dimensional V., F: VU -V W, andu € U,
(Try.ow(F))(w)=(lw o [Evy @ Idw] o [Idy- ® F]o [k~ '@ Idy])(Idy & u).

ProOOF. The following diagram is commutative, where the top arrow is a; =
[IdEnd(V*) & ,72]

End(V*) @ Hom(V @ U,V @ W) <o End(V*) ® End(V) ® Hom(U, W)
J [j®IdHom(U,W)]

Hom(V*@VeU V' eV e W)

End(V* ® V) ® Hom(U, W)

Hom([k™'®Idy],[Evy @Idw]) [Hom(k ™Y, Evv )®Idyom(u,w]

Hom(End(V) @ U, K® W) End(V)* @ Hom(U, W)

Hom(IdEnd(V)®leW) [(dEnd(V)(IdV))®IdHom(U,W)]
Hom(End(V) @ U, W) K @ Hom(U, W)
dEnd(vygu,w (Idv @u) Iy
w Hom(U, W)
duw(u)

The upper and lower squares are easy to check (the maps dyw, dgna(v)ou,w are as
in Definition 1.13), and the middle square is commutative by Lemma 1.37. Starting
with Idy+ ® F' in the upper left corner, the RHS of the Theorem is the output of
the composition in the left column. The top three arrows in the right column come
from the construction in Theorem 2.10,

Trv(A) = ((dpaacv)(Idv)) o Hom(k™", Evy) o j)(Idy- ® A),
so that the composite of al_1 = [Idgnav+) ® j{l] with the right column of maps
takes Idy+ @ F to Try,uw(F) =l ((71(Try ®IdHom(U’W)))(j;1(F))). The lowest,
arrow plugs u into Try,u,w (F), giving the LHS of the Theorem, so the equality
follows directly from the commutativity of the diagram. [ |
COROLLARY 2.70. For finite-dimensional V and A:V -V @ W,
Trv.w(A) = (Iw o [Evy @ Idw] o [Idy- ® Al o k™) (Idy).
PRrOOF. By Theorem 2.69 and Theorem 2.55,
LHS = (T?“\/;Kﬁw(A @) lv))(l)
= (lwo[Bvy ® Idw] o [Idy- @ (Aoly)] o [k~' @ Idg])(Idy 1)
= rus. 1
This shows, in analogy with Theorem 2.10 and (2.12) from Theorem 2.69, that

the W-valued trace of A is the output of the distinguished element k~1(Idy ) under
the composite map

(214) V* ® V [IdV* ®A] V* ® V ® W ZWO[EUV®I(1W] W

So, Corollary 2.70 could be used as an alternative, but equivalent, definition of
vector valued trace. This Section continues with some identities for the vector
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valued trace, some of which (Theorem 2.74, Corollary 2.88, Corollary 2.108) could
also be used in alternative approaches to the definition of Try.y .

2.4.1. A vector valued canonical evaluation.
DEFINITION 2.71. The distinguished element
Evyw € Hom(Hom(V, W) ® V, W)

is the canonical evaluation map, defined by

Evyw(A®v) = A(v).

In the W = K case, Fvyk is the distinguished element Fvy € (V* @ V)* from
Definition 2.2. The scalar evaluation Evy and vector valued evaluation Evyyy are
related as follows.

LEMMA 2.72. For anyV and W, let s : VW — WV be a switching map.
The following diagram is commutative.

VipVeW KW
[E’Uv®ldw]
l[ldv*(@s/] .
VieWeV
l[kvw®1dv]
Hom(V,W)®V = w

PROOF.

p@vew = (lo[Evy @ Ildw])(¢®v@w)

o(v) - w,

pRvew — (Bvywolkyw @ Idy]o [Idy- ® s'])(¢ @ v®w)
Evyw ((kyw (¢ @ w)) @ v)

o(v) - w. [

The canonical evaluation maps have the following naturality property.

LEMMA 2.73. For any vector spaces U, V, V', W, and any maps G : V' =V,
B :U — W, the following diagram is commutative.

EUVU

Hom(V,U)® V U
Iduomu,v)®G] T
Hom(V,U) @ V' B
[Hom(QB)@IdV,]l
Hom(V/, W) @ V! — v W



2.4. EQUIVALENCE OF ALTERNATIVE DEFINITIONS 83

ProoOF. For A € Hom(V,U), v € V',

B o Evyy o [Idygomv,uy ® G

A0 o BEwo(A® (GW) = BAGW)),
Evyw o [Hom(G, B) ® Idy/] :

AQuv — EUV/W((BOAOG)®U) = (BOAOG)(U).

THEOREM 2.74. For a map
n’: Hom(V,W)® V — Hom(V,V @ W),
if V is finite-dimensional, then
Try.won' = Evyw.

PROOF. The map n’ is as in Notation 1.41. The conclusion is equivalent to the
formula Try.w(n'(A®v)) = A(v), for A € Hom(V, W) and v € V.

The claimed equality Try,w on’ = Evyw appears in the lower triangle in the
following diagram, so it follows from the commutativity of the rest of the diagram.

[kvv@Idw]

End(V) VeVeWw
de E'L)W
Ko W [Idy+®s']
kvivew V*eWeV
l
[kvw®Idv]
Hom(V,V @ W) Hom(V,W)®V
W

The front left square is Definition 2.50, and the upper triangle is Definition 2.3,
together with Lemma 1.36. The front right square is exactly Lemma 2.72. The
back square is commutative, where the back left triangle is exactly Lemma 1.65,
and the back right triangle is a variation on Lemma 1.65, with an extra switching
s" and the differently ordered n’, checked by the following calculation.

(2.15) pveaw — (nolkyw @ Idy]o [Idy- ®s']) (¢ ®@v@w)
= n((kvw(¢®w)) ®0):
u = v®(du) w) = (kvvew(d®@v®w))(u).

Recall the canonical map €%, : End(V) — Hom(Hom(V,W) @ V,W) from
Definition 1.56. In the following diagram (adapted from part of the diagram from
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Lemma 2.5), the left triangle is commutative by Lemma 1.58.

HomHomVW @V, W)

End Hom(Hom(V,V ® W), W)

tVV

End(Hom(V, W))

The three spaces on the left side of the diagram each contain a distinguished ele-
ment, giving an analogue of Equation (2.1):

(216) Evyw = Q(IdHom(V,W)) = Q(t{//VV(IdV)) = e{//VV (Idv)
For finite-dimensional V', Theorem 2.74 gives:

(2.17) Tryw = Buywo (n')™!
(2.18) = ((Hom(n/7 IdW))_l o q)(IdHom W)))
= ((Hom(n', Idw)) " o ey )(Idy).

where line (2.18) is an analogue of Equation (2.2) from Lemma 2.5.

Using Equation (2.17) as a definition for the vector valued trace allows some
proofs to be simplified and avoids scalar multiplication. For example, the following
result re-states Corollary 2.59 but gives a simpler proof.

COROLLARY 2.75. For any V., W, W', if V is finite-dimensional and B €
Hom (W, W') then

Try.w: o HOHl(Idv, [Idv & B]) =BoTryw: HOHI(‘/7 V& W) — W

PROOF. For n’ as in Theorem 2.74 and an analogous map n”, the downward
composite in the left column of the following diagram is Try,w = Evyw o (n/)~1,

and in the right column is T'ry.yy-.

Hom(Idv,[Id B
Hom(V, V @ W) —2tUIVERD _ yo (v, V @ W)

[Hom(Idy,B)®Idy]

Hom(V, W)@V Hom(V,W') @V
Evvwl lEUVW,
W b W’

The blocks are commutative; the upper by Lemma 1.42 and the lower by Lemma
2.73 (in the case G = Idy). [
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COROLLARY 2.76. For finite-dimensional V', and maps
n' :Hom(V,W)®V — Hom(V,V@W)
g : Hom(U,Hom(V, V@ W)) — Hom(V U,V W)
F: VU — VeoWw,
the following diagram is commutative.

U Trv,u,w(F)

W
E
(n')"o(g (F)) T v

Hom(V, W)@V

ProOF. The invertible map ¢ is as in Theorem 2.53, where Equation (2.11)
states the commutativity of the upper triangle in the following diagram. The com-
mutativity of the lower triangle follows from Lemma 1.6 and Theorem 2.74, and
the claim follows.

Hom(V @ U,V @ W)

Hom (U, Hom(V,V @ W))

q

Hom(IdU ,TTv;W)

Trv,uw Hom(Idy,n')

Hom (U, W) Hom (U, Hom(V, W) @ V)

HOm(Idu,E’va)

THEOREM 2.77. Denote
ny : End(V)® U — Hom(V,V @ U).
If V is finite-dimensional then, for any F': VU -V W and u € U,
(Trvow (F)(w) = Tryw (F o (ni(Idy @ u))).
PrOOF. Consider the following diagram.

Idy+«QF FEv Id
U Viavel L veg vy e Wk o

lUT / l/[k@]du]
[Qi®Idy]

l[ldv* ®s']

KoU-———"=Eud(V)aU  V'oWgV lw
V,VeWw

w

Hom(V,V@U) ——— Hom(V,V&®W)<—— Hom(V,W)®V

Hom(Idy,F) Evyw

The composition from U to W clockwise along the upper row gives Try.p,w (F) by
Theorem 2.69. The left square is from (2.13), and the right block is Lemma 2.72.
The center left triangle with the n; map is exactly Lemma 1.65, and the center
right triangle with the n’ map is the variation on Lemma 1.65 copied from (2.15)
in the Proof of Theorem 2.74. The center block is commutative by Lemma 1.62.
The claim follows from Theorem 2.74:

LHS = Evyw ((n') " (F o (ny(Idy ®u)))) = RHS. [



86 2. A SURVEY OF TRACE ELEMENTS

Although Corollary 2.76 and Theorem 2.77 have arrived by different approaches,
their formulas for the generalized trace are closely related. For F : VU — VW,
from Corollary 2.76,

Try.uw(F) = Evyw o (n/) "' o (¢ H(F)).
From Theorem 2.77,
TT\/;Uﬁw(F) = Foyw o (n')_l o HOIn(Idv, F) onyo [Q% (24 IdU] o l{,l

Using Lemma 1.47, the composite Hom(Idy, F) o ny o [Q} ® Idy] o 151 is equal to
—1
g (F):

Hom(Idy,F)ony o [Qi® Idy|oly' tu = Fo(ni(ldy ®@u)):
v = Flv®u),
CUF) u o ()W)
(2.19) v = Flveu).

Similarly for the vector valued trace formula, Corollary 2.70 and Theorem 2.74
are related by the following commutative diagram.

Idy+Q®A E Id
Viey LA gy g EVEIWL oy vy

EUVW
k kv,vew

End(V) Hom(V,V @ W) =—— Hom(V, W)@V

Hom(Idy,A)
_—

The left square is commutative by Lemma 1.62, and the right block is from the
Proof of Theorem 2.77. Starting with Idy € End(V'), the composition clockwise
along the upper row gives Try.w(A4) € W as in (2.14) from Corollary 2.70, and
counterclockwise along the lower row gives Evyyy ((n')~1(A)), which also equals
Try.w(A) by Theorem 2.74.

LEMMA 2.78. For any U, V, W, the following diagram is commutative.

U ® Hom(V, W) @ V — 20wl oy

[n@[dv] l

Evv,ugw

Hom(V,U @ W) @ V

PRrOOF. Both paths take u ® A®@v € U @ Hom(V,W) ® V to u® (A(v)) €
UoW, |

THEOREM 2.79. For any V, U, W, and F : V@ U — V@ W, if V is finite-
dimensional then the n maps in the following diagram are invertible:

F

VeU Vew
[IdV®EUVU]T T[Idv@Eva]
V@Hom(V,U) @V V@Hom(V,IW)®V
[n2®1dv]l l[n’2®1dv]
Hom(V,V@U)®V Hom(V, Vo W)V

[Hom(Idy,F)®Idy]
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and the diagram is commutative, in the sense that
Fo[Idy ® Boyy|o[ng ® Idy] ™!
= [Idv@Evvw] o [’I’LIQ ®Id\/]_1 o [HOm(Id\/,F) ®Id\/]
PROOF. The ng, n, maps are defined as they appear in the diagram, with
subscript notation used to avoid duplication with the labels appearing elsewhere in
this Section; they are invertible by Lemma 1.44.

By Lemma 2.78, the upward composite on the left, [Idy @ Evyy]o[ne @ Idy]| 1,
is equal to Fvy,vgy, and similarly the upward composite on the right is equal to

Evyyew. The claim then follows from Lemma 2.73. [ |
In the following Theorem 2.80, diagram (2.20) is a generalization of the diagram
from Theorem 2.79.
THEOREM 2.80. Given maps
F: VU — VoW
a1 :V@Hom(X,U)@V — VU
az: V@Hom(X, W)@V — VeW,
if Vs finite-dimensional then the following are equivalent.
(1) The diagram (2.20) is commutative, in the sense that
Foajolny®Idy]™"
= agonh®Idy]~ ! o [Hom(Idx, F) ® Idy].

(2) The diagram (2.21) is commutative, in the sense that

Foayol[ldy ®@ns] tony!
= ago[ldy ®nj) o (n}) o Hom(Idy, [F ® Idy]).

F

VeU VeWw
(2.20) V @Hom(X,U)®V V @ Hom(X, W)@V
[n2®1dv]l l[né@dv]

Hom(X, Ve U)oV Hom(X, Ve W)V

[Hom(Idx,F)®Idy]

F

VeU Vew
V @Hom(X,U)®V V @ Hom(X, W)@V
(2.21) [Idy ®ns] [Idv®n;]
V@Hom(X,U®V) V @ Hom(X, W ®V)

Hom(X,Ve@U®V) Hom(X, Ve W V)

Hom (Idx,[F®Idy))
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PROOF. The four n maps are defined as they appear in the diagram; they are
invertible by Lemma 1.44. The diagrams have the same arrows aq, as, F', so showing
the composite maps counter-clockwise from V@Hom(X, U)®V to V@Hom(X, W)®
V' are equal to each other is enough to establish the claimed equivalence. The left
arrow in the following diagram is copied from the left column of (2.20) and the
upper and right arrows match the left column of (2.21). Introducing the lower
arrow ns gives a commutative diagram by Lemma 1.45.

Ve@Hom(X,U)®V V@Hom(X,U®V)

|

Hom(X,VoU®V)

[Idv ®7L3]
[TLQ ®Idv] l/

Hom(X,VeoU)oV

ns

With an analogous diagram for right column arrows of (2.20) and (2.21), replacing
U with W and introducing nf : Hom(X,V @ W) @ V — Hom(X, V@ W @ V),
Lemma 1.45 gives the equation n} o [Idy ® ns] = nf o [nh ® Idy]. The equality
follows,

[nh ® Idy] ™" o [Hom(Idx, F) ® Idy] o [ne ® Idy]

[Idy® nh)~to (n}) tonko [Hom(Idx, F) @ Idy]ong o ngo [Idy @ ns]
(2.22)= [Idy @nj] o (n}) " o Hom(Idx, [F ® Idy]) o ng o [Idy ® n],
line (2.22) using Lemma 1.42. [

LEMMA 2.81. For a switching map s : VRV = VeV, ifk: V*QV — End(V)
is invertible, then the following map:

v (ly o [BEvy @ Idy] o [Idy- ® s] o k™! @ Idy])(Idy @ v)
is equal to the identity map Idy .

PROOF. For the special case of Lemma 2.72 with W = V| s’ = s, the above
composite map is Fvyy, so the given expression is

v = Bvyy (Idy @ v) = Idy (v) = v.
|

ExamMpLE 2.82. If V is finite-dimensional, then the generalized trace of the
switching map s : V@V = V@V is:

(2.23) Try.vv(s) = Idy,
by the formula from Theorem 2.69 and Lemma 2.81:

Tryvvv(s): v (ly o [Bvy @ Idy] o [Idy- ® s]o [k~ @ Idy])(Idy ®@v) = v.
REMARK 2.83. Equation (2.23) is related to the “yanking” property of [JSV].
The following Lemma is analogous to Lemma 2.81.

LEMMA 2.84. For a switching involution
STVIRQVAVI s VIRVeV 1 puy » 1P Qv ¢,
ifk:V*®V — End(V) is invertible, then the following map:
¢+ (ly- o [Boy @ Idy)os” o [k @ Idy-))(Idy @ ¢)
is equal to the identity map Idy~.
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ProOOF. The following diagram is commutative; the calculation is similar that
in the Proof of Lemma 2.72. Abbreviate t = tyy as in Lemma 2.5.

Vievev: [Bvy ®@Idy«] Ko v
s

VFeVeV: by
(k@Idy ]

End(V) @ V*
[t@Idy +]

End(V*) @ V" ———— v

Starting with Idy ® ¢, the commutativity of the diagram and the existence of k~!
give:

(2.24) (Iy- o [Bvy @ Idy] o s” o [k @ Idy-])(Idy ® ¢)
= EBvy.v-((t(Idv)) ® ¢) = Idy,(¢) = ¢.

THEOREM 2.85. Ifk: V* @V — End(V) is invertible, then dy : V — V** is
invertible.

PRrROOF. The following map, temporarily denoted B : V** — V| is an inverse:
B:®— lv([q) ® Idv](k‘il(_[dv)))

For any V, W, and v € V, the following diagram is commutative (the two paths
V*@W — W are equal compositions).
Ve @ W 2% Hom(V, W) =<—— Hom(V, W) ® K

[(dv(v))®1dw]l l[ldHom(v,W)(@(m(v))]

EUVW

Ko W —Y W Hom(V, W) @ V

In the case W = V| starting with Idy in the top middle gives the following equality:

(Bodyv)(v) = Iv([(dv(v))®Idv](k~'(Idv)))
E’l)vv([dv ® U) = V.

To check the composite in the other order, in the second diagram, s”’ is another
switching map as indicated in the diagram, ny and s are as in (2.13), the block is
commutative, and the composition in the left column acts as the identity map, by
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(2.24) from Lemma 2.84.

v
Ih
KeV*
[nv @Idy~]
VeV eV*
[s@Idy+]
Vre VeV S g oy gy
V*eVeV* V*oKeV
[BEvy @Idy«] [Tdy«®ly]
Ko V* VeV
lys Euy
v ° K

The conclusion is:

d(¢p) = (Buyolldy-@ly]os” o[[®® Idy]® Idy-])((k~(Idy)) @ ¢)
Evy (¢ @ (ly([® @ Idv] (k™' (Idv)))))
= Gy ([ ® Idy](k™ ' (Idv))))

#(B(®)) = ((dv o B)(®))(9)-

PROPOSITION 2.86. Given U, V, W, a map G : U — Hom(V, W), and the
canonical map
¢ : Hom(U, Hom(V, W)) — Hom(U & V, W),

if V' is finite-dimensional then
(225) q(G) = Trv;w ] n' ] [G ® Idv]
PROOF. g is as in Definition 1.46, and n’ is as in Theorem 2.74, which gives,
foru@vel®V,
(Try,won' o[G® Idy])(u®v) = (Evywo[G® Idy])(u®wv)
= (G(u)(v)
(¢(@)(u®w).
|
Equation (2.25) from Proposition 2.86 can also be re-written, for F' = ¢(G) €
Hom(U @ V, W),
F = Bvyw o [(¢"(F)) @ Idy] = Try.w on’ o [(¢"*(F)) ® Idy].
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THEOREM 2.87. For vector spaces V and Z, let s1 : V@V — V QV be the
switching map and denote
n:End(V)@V®Z - Hom(V,VeV®Z).
If V is finite-dimensional then for any B €V ® Z,
Try.vez([s1 ® Idz] o (n(Idy ® B))) = B.

PrOOF. The following diagram is commutative, the lower triangle by Lemma
1.65 and the upper block in a variation on Lemma 1.65 that is straightforward to
check.

k Id
End(V) @V e 2 <210z e oy ov ez
nl l[[ldv*®sl]®ldz]
Hom(V,V®V & Z) V*RVeVeZ

Hom(Idv,[sl®Idz])l / l[kVV®1dv®Z]
V.VRV®Z

Hom(V,Ve@V ® Z) End(V)@V®Z

So the LHS of the claim is:
Trvyvez([si ® Idz] o (n(Idy ® B)))
= (Trv.vezoHom(Idy,[s1 ® Idz]) on)(Idy ® B)
(Trvivez ono[kvy ® Idvez]
o[[Idv- ® s1] @ Idz] o [kyy, @ Idygz])(Idy @ B).

Let s3:V®Z — Z®V be another switching, and let s and s4 be the switchings
as indicated:

(2.26) So=[Idy-®s84]: V' QVRVRZ)=V'a(VeZ) aV.

Using W =V ® Z and this s4 in the role of s’ from the diagram from the Proof of
Theorem 2.74, the commutativity of that diagram continues the chain of equalities:

= (Bvyyvegzokvvez @ Idy]o [Idy- ® s4]
o[[Idy+ ® s1] ® Idz] o [kyy, @ Idvez])(Idy @ B)
= (Bvyvezo kvvez @ Idy] o [Idyv-gv o s3] o [kyy @ Idvez])(Idy @ B)
(2.27)= (Bvvyvezo [kvvez ® Idy]o [kyy ® s3])(Idy @ B).

The commutativity of the following diagram, using Lemma 1.36, Lemma 1.65, and
a variation on Lemma 2.78,

lkv,vez®Idy]

VeVezZeV Hom(V,V®@ Z)oV
[kvv®1dz®v]l Mr
End(V) RILRXV Evvyvgz

[Idgnacv)®ss] T

End(V)®V ® Z [Fov.y @1zl VeZ
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brings line (2.27) to the conclusion:
= [EUV’V ® Idz](_[dv & B) = B.
|

The switching s3 : V® Z — Z®V from Theorem 2.87 appears in the following
Corollaries, which are related to constructions in [Stolz-Teichner].

COROLLARY 2.88. Given vector spaces V., W, and a map A:V -V W, if
V' is finite-dimensional and there exist a vector space Z and a factorization of the
form
A= [Idy ® By o[B; ® Idy]ol™ !,
forl : K@V =V, B :K—=V&®&Z, and Bs: Z®V — W, then
Try.w(A) = (Bzoszo By)(1).

PROOF. It is straightforward to check that the following diagram is com-
mutative. The s; is the switching from Theorem 2.87, and temporarily denote
Vi = Vo = V, to keep track of switching, so that as in Equation (2.26), s4 :
Vio(V®Z)—= (Ve®Z)@ V.

\ %] p Ko W
[Bl®1dv]
n(ldy®(B1(1))) Vo Z®W
>
VieVe®Z [Idy ®s3]
m
VoaoVi®Z

The following equalities use the commutativity of the diagram, Corollary 2.59 (or
Corollary 2.75) twice, and Theorem 2.87 applied to B = B;(1) e V @ Z.

Trv.w(A) = Try.w([Idy @ By]o[By ® Idy]ol™")
= Bo(Trv.zev([B1 ® Idy]ol™))
= Ba(Trvizev([Idv @ ss|o[s1 @ Idz] o (n(ldy @ (Bi(1))))))
= (B2oss)(Trvvez([si ® Idz] o (n(Idy @ (Bi(1))))))
= (Bgos3)(B1(1)).
i

COROLLARY 2.89. Given a vector space V and a map A :'V — V, if V is
finite-dimensional and there exist a vector space Z and a factorization of the form

A=lyo[ldy @ By)o[By ® Idy]ol™},
forly . VoK—=V, KV =V, B :K=>V&®Z and By: ZRV — K, then
TT\/(A) = (BQOSgOBl)(l).

PrOOF. Theorem 2.54 and Corollary 2.88 apply. [
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COROLLARY 2.90. Given vector spaces V., W, and a map A: VU - VW,
if V' is finite-dimensional and there exist a vector space Z and a factorization of
the form

A= [Idv X BQ] o [Bl X Idv] o S5,

forss : VU —-URV,B:U—=V®Z, and By : Z®@V — W, then
Try.uw(A) = By oszo Bj.
PRrROOF. Theorem 2.30 applies:
Tryww(A) = Tryww([Idy @ Ba]o[By @ Idy]o ss)
= Byo(Trv.uzev([B1 @ Idy]oss)),
so to prove the claim it is enough to check
(2.28) Trv.u.zev([Br @ Idy] o s5) = s30 By

for B; € Hom(U,V ® Z). In the following diagram, temporarily denote by a; the
following map,

ap = ] o [IdHom(U,V®Z) ® Q}] © lﬁ;m(U,V@Z) :
Bl — [Bl 29 Idv],
for Q1 : K — End(V) as in Example 2.9.

V ® Hom(U, Z) Hom(U, Z) @ V

Hom(U,V ® Z) Hom(U, Z® V)

Hom(Idv,s3)

Trv . Hom(U,zeV)
Hom(U @ V.V ZeV) Hom(V,V @ Hom(U,Z @ V))

Hom(ss,Idvgzeov) Hom(Idy,n")

Hom(V,Hom(U,V®@ Z®V))

Hom(Ve@U VR ZeV)

The maps n’, n’, ny, as in Definition 1.40 and Notation 1.41, are all invertible,
by the finite-dimensionality of V' and Lemma 1.44. The commutativity of the top
block, with the switching maps, is easily checked. The commutativity of the lower
right triangle is Theorem 2.52. So, the claim of (2.28) is that the lower left triangle
is commutative, and this will follow from showing that the outer part of the diagram
is commutative, starting with vp ® Bs € V @ Hom(U, Z).

For v € V, u € U, the following maps are equal. The first step uses the formula
for the inverse of the canonical map ¢ from Lemma 1.47.

(g ((ar(n" (vo ® B3))) 0 55))(v) s u = ((ar(n”(vo ® B))) 0 55)(v ® u)
= [(n"(vo ® Bs)) ® Idv](u®v)
= v ® (Bs(u)) ®@w,

n'([Idy @ ni](vo @ B3 ®@v)) :u vy ® ((n1(Bs ®@v))(u))
(2.29) = v @ (Bs(u)) @wv.
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Denote, as in Definition 1.20,
m(vg® B3) : K=V @Hom(U,Z) : 1 — vy ® Bs,
so that
v ® B3 ®@ v = ([(m(vo ® Bs)) @ Idy] o l™")(v),
and from (2.29),
g ((a1(n"(vo ® B3))) 0 s5) = n' o [Idy @ na] o [(m(vo ® B3)) @ Idy]ol™".
The conclusion uses Corollary 2.88:
w®Bs = TrvHom@,zev)((n) 7! o (a7 ((a1(n” (vo ® Bs))) o 55)))
Try som(u,zev) (Idy ® ni] o [(m(vg ® B3)) @ Idy]ol™")
= (n1os50(m(vg® Bs)))(1) = (n1 0 s5)(vo ® Bs).
|
EXAMPLE 2.91. Consider V=V, =Voand s4 : V1 ®@ (Va®Z) = (1@ Z)®@V;
as in Equation (2.26) and the Proof of Corollary 2.88. Then
Trv.vezzev(sd) = Ss.
This is a special case of Corollary 2.90, with U =V ® Z, W = Z®V, s5 = s4,
By =Idygz, and By = Idzgy.
ExaMpLE 2.92. Using Theorem 2.30 and Example 2.91,

Trv.zevyvez(si') = Trvzevvez(Idy ®s3']osso[ldy @ s3'])
= 53 o (Trvvezzev(si))oss '
—1
= 83 .

EXAMPLE 2.93. Formula (2.23) from Example 2.82 also follows as a special
case; for the switching map s1 : V@V — V@V asin Theorem 2.87, Try.v.v(s1) =
Idy. This is the case of Corollary 2.90 with U =V, Z = K, B; = l‘_,l7 By =1,
A=35 =55 = [Idv®l]0[l‘_,1®fdv]085, and s3: VRK—=K®V, so

Try.wy(ss) =losso l;l = Idy.
THEOREM 2.94. For finite-dimensional V and U, a switching map s : WU —
UW,and A: VU -V W,
Try.ow(A) = Trvguow ([[dv @ s] o [A® Idy]).
PRrROOF. Using Theorem 2.38, Theorem 2.30, Corollary 2.42, an easily checked

equality relating the switching maps s and s’ : U @ U — U ® U, Theorem 2.30
again, and finally Example 2.82,

RHS = Truuvw(Trvusvvew ([[dy ® s]o[A® Idy]))
= Trupw(so (Trviveuweu([A® Idu))))
= Tryouw(so[(Trvuw(A4)) @ Idy])
= Troow(ldv @ (Trv,uw(A))] o s')
= (Trviow(A)) o (Trouu(s'))
= Try.uw(4).
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EXERCISE 2.95. For finite-dimensional V' and W, a switching map s : W®U —
UW,and A: VU - VoW,

T?“\/;Uyw(A) = TTV@W;U,W([A X Idw] X [Idv X S])

HINT. The steps are analogous to the steps in the Proof of Theorem 2.94. If U
and W are both finite-dimensional, then the equality of the RHS of this equation
with the RHS from Theorem 2.94 follows directly from Theorem 2.29. [

2.4.2. Coevaluation and dualizability.

THEOREM 2.96. For finite-dimensional V, ny : K = V ® V* as in Notation
2.68, and scalar multiplication maps Iy : K@V = V, Iy« : Ko V* = V¥,
L: VK=V, h: V@K - V*,

ly o [Idy @ Evy]o[ny ® Idy] ol‘_/1 = Idy,

and

ly- o [Bvy ® Idy-] o [Idy- @nv]olyt = Idy-.

PrOOF. In the following two diagrams, V =V} = V5 = V3 — the subscripts are
added just to track the action of the switchings and other canonical maps. In the
first diagram, the upper left square uses the formula (2.13) with k~! from Notation
2.68, and is commutative by Lemma 1.36. The s5 notation in the right half is from
Corollary 2.90 and Example 2.93. The first claim is that the lower left part of the
diagram is commutative.

k@Id Idy+®s
Hom(Va, V1) Vs~ vravioVs — 2 veovien
T[Q}@Idv] [s®Idv] [Evv®ldv]l
[nv®Idy] %
K® Vs NeVyeVs KoV
[Idv@EUv]
3% Vi ® K lv

51

Vv

The commutativity of the right half of the diagram is easy to check. The first claim
follows from checking that the identity map is equal to the composite of maps
starting at V' and going clockwise. Lemma 2.81 applies.

ly o [Idy ® Bvy] o [ny @ Idy] ol
(2.30) = Iy o[Bvy ®Idy]o [Idy- @ ss]o[k™' @ Idy]o[Q] ® Idy] ol
= Idy.
The expression (2.30) is also equal to Try.vv(s5) = Idy as in Examples 2.82 and
2.93.

For the second claim, consider the second diagram, where s’ is the switching
involution from Lemma 2.84 and s is another switching map so that the upper
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block is easily seen to be commutative.

Hom(Vs, V1) @ Vi <V 0 Vi 9 V5

Idy+Q®k
Vi @ Hom(Va, Vi) <2 vr o vy ov g
T[Idv* ®Qi] [Idv*®s]
Idy
Vi ®K HvBmvl | e ovio vy
[EUV®IdV*]
l2
K Vy
Iy«
V*

As in the first diagram, the definition of 7y is used in the left square, and the
second claim is that the lower left part of the second diagram is commutative. The
calculation is again to check the clockwise composition, and Lemma 2.84 applies.

Iy o [Buoy ® Idy-] o [Idy- @ nv] o l3"
— Iy o[Boy ® Idy-]os” o [k @ Idy-] 05" o [Idy- ® Q] o 3"
= ly-o[Bvy @ Idy-]os" o [k™' @ Idy-] o [Q] ® Idy+] o 1‘71

DEFINITION 2.97. A vector space V is dualizable means: there exists (D, €, 7),
where D is a vector space, and e : D®V — K and n: K — V ® D are linear maps
such that the following diagrams (involving various scalar multiplication maps) are
commutative.

[n®Idy [Idp®n]

KoV —"'"_ vepev Dok —L"_ peveD
l l[ld‘/@e] l l[e@IdD]
v VoK D Ko D

ExXAMPLE 2.98. Given V as in Theorem 2.96, the space D = V* and the maps
e = Evy and = ny = so k! o Q1 satisfy the identities from Definition 2.97.

REMARK 2.99. In category theory and other generalizations of this construction
([Stolz-Teichner], [PS]), n is called a coevaluation map. A more general notion,
with left and right duals, is considered by [Maltsiniotis].
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LEMMA 2.100. If V is dualizable, with duality data (D,e€,n), then there is an
invertible map D — V*.

PROOF. It is equivalent, by Example 1.28 and Lemma 1.22, to show there is
an invertible map Hom(K, D) — Hom(K ® V,K). Denote:
(2.31) A:Hom(K,D) — Hom(K® V,K)
0 = A@v—e((0(N) @),
B:Hom(K® V,K) — Hom(K, D)
¢ = (A= (lo[p®Idp]ol™ton)(N),

where [ denotes various scalar multiplications. The following diagrams are commu-
tative, where unlabeled arrows are scalar multiplications or their inverses.

K g D KoV
ln [m®Idv]
V&D D®K VDRV —KQVaDV
l [Idp®n) [Tdv ®e] [¢®Idp]l@Idy]
KoV epl&delsl b oy en VoK K DoV
\ [e®Idp]
[(A(9))®Idp]
K® D 14 DoV
¢
D KoV K

In the left diagram, the top square is easily checked and the lower triangle uses the
formula for A. The composition in the right column gives the identity map for D
by Definition 2.97, so Idp o6 = B(A()) : K — D.
In the right diagram, the left column gives the identity map for K ® V by
Definition 2.97. For A@v e K® V,
(Ao B)(¢) : A®v = e(((B(9)(A) ®@v)
= e(((lofp®Idp]ol™ton)(N) ®v)
= (eo[(lo[p®Idp]o I=ton) ®@ Idy]) (A ®v)
= ((ﬁOIdK@V)()\@U).

LEMMA 2.101. If V is dualizable, with two triples of duality data: (D1, €1,m)
and (Da, €2,m2), then the map aio : D1 — Da,

[(Idp, ®n2] [e1®1dp,]
Di——=DiK——= D1V ® Dy

K (24 D2 —_— D2
has inverse given by the map as1 : Do — D1,

[(Idp,®m] [e2®1dp,]
Dy——=Dy@K— =DV ® Dy

K®D1—>D1

and ays satisfies the identities [Idy @ a1a] om =n2 and €z 0 [a12 @ Idy] = €;.
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PROOF. Some of the arrows in the following diagram are left unlabeled, but
they involve only identity maps, scalar multiplications and their inverses, and the
given 7,12, €1, €2 Maps.

D,
D;®K D1 ®V ® Dy
| T~
DioKe®V®D; Di®@VeDoK K ® Do
Di®@VeD DieVeDeVeD Dy
I |
D @VeK® D, K® Dy ®V ® Dy Dy ® K
|
K® D Dy @V ® Dy
D,

The composition in the left column gives the identity map D; — D;, and the
middle left block is commutative, involving the composite [I[dy ® €3] o [n2 ® Idy].
The commutativity of the upper, right, and lower blocks is easy to check. The
composite D1 — Dy — D; clockwise from the top is equal to as; o a12, and the
commutativity of the diagram establishes the claim that as; ca12 = Idp,; checking
the inverse in the other order follows from relabeling the subscripts.

For the identity [Idy ® a12] o 1 = 12, consider the following diagram.

72

K V ® Dy K®V ® Dy
[Tdv ®asz] T (lm®Idv]@ldp,)
n1 VeK® Dy

[Idv®[61®[dp2]]

VoD —= VDI K——— =V ®®D1 QV ® Dy
[Idv®[Idp, ®n2]]

The lower block uses the definition of a15. The right block involves 17 and €1 so
that one of the identities from Definition 2.97 applies. The claim is that the left
triangle is commutative, and this follows from the easily checked commutativity of
the outer rectangle.
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Similarly for the identity €3 o [a12 ® Idy| = €1, consider the following diagram.

[Ile Idv®62

DiVeDeV D1®V®K—>D1®V
W
Dy ®K® \%
[[61®IdD2]®Idv]
l[a12®Idv]
K® Dy, ®V Do®V

The left block uses the definition of a;2. The top block involves 772 and €5 so that one
of the identities from Definition 2.97 applies. The claim is that the right triangle is
commutative, and this follows from the easily checked commutativity of the outer
rectangle.

In the case D = V* from Example 2.98, the maps from Lemma 2.100 and 2.101
agree (up to composition with trivial invertible maps as in the following Exercise)
and so they are canonical.

EXERCISE 2.102. Applying Lemma 2.100 to the triple (V*, Evy,ny) from Ex-
ample 2.98 gives a map A such that the left diagram is commutative. If V is also
dualizable with (Da,€2,72), then the maps B from Lemma 2.100 and aj2 from
Lemma 2.101 make the right diagram commutative.

Tdy~

v v Dy - v

B ———
lm lHom(l,IdK) lm lHom(l,IdK)

Hom(K, V*) —2> Hom(K ® V, K) Hom(K, Dy) <2~ Hom(K ® V,K)

HINT. The first claim is left as an exercise. For the second claim, consider
¢ € V* X € K, the following quantities agree, showing the right diagram is com-
mutative.

(moai2)(¢) : A = (m(a12(¢)))(A) = A~ a12(9)
o [Bvy @ Idp,] o [Idv- @ 1] 017")(9)

(1
(Lo [Bvy ® Idp,])(¢ ® (12(1))),

—~ o~

(B oHom(l, Idg))(¢) : A+
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LEMMA 2.103. If V is dualizable, with (D,e,n), then D is dualizable, with
duality data (Vieos,son), where s:V® D — D®V is a switching map.
PrOOF. In the following diagram, V = V; = V5.

Id Id s
ek — v ev, e DN e pe v,

l lﬁ l[s@[dv]
[n®Idyv]

KoV ——=1heDeVi=—Da VoV,

l l/[]dv@ﬁ] l[ﬁ@]dv]

14 V@K Ke W,

Unlabeled arrows are obvious switching or scalar multiplication. The s;, so switch-
ings are as indicated by the subscripts. The lower left square is commutative, by
the first identity from Definition 2.97, and the other small squares are easy to check,
so the large square is commutative, which is the second identity for (V,eos,s0n)
from Definition 2.97 applied to D.

Similarly, in the following diagram, D = Dy = Ds.

K®D1MV®D2®D1[%]D2®V®D1

l ls’l l [ITdp®s]
[Idp®n)]

DiK—————-D1@V @Dy <D0 D1 @V

Sa
l l[e@ldp] l[ldp®e]

D K ® Dy DaK

Again, the lower left square is commutative by hypothesis, and the commutativity
of the large square is the first identity for (V, eos, son) from Definition 2.97 applied
to D.

LEMMA 2.104. If V is dualizable, then dy is invertible.

PROOF. Let a; : D — V* be the invertible map from Lemma 2.100, defined in
terms of € and A7 = A from (2.31). The transposes of these maps appear in the
right square of the diagram.

By Lemma 2.103, D is also dualizable, with an evaluation map € o s, which
defines Ay as in (2.31) and an invertible map as : V' — D* from Lemma 2.100
again. These maps appear in the top square of the diagram.

Az

Hom(K, V) (K ® D)*
N
1% z D* (Hom(K, D))*
\GIT TA“{
dy
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The two squares in the diagram are commutative by construction. The follow-
ing calculation checks that aj ody : V — D* is equal to as.

lhoaiody = Ihompodfo (i) ody

= ((Iy") oA1ompolp) ody:

v (dv(v))O((l‘_,l)*OAl ompolp):

A@u = (dv(©))((Ai(mp(X-u)))olyt)

= (Ai(mp(A-u)))(1 @)
e(((mp(A-u))(1)) @)
= (A u)®v),
Asomy v —  As(my(v))

A@u = (eos)(((my(v))(A) @u)
= (eos)(A-v)®u)
= e(u®(\-v)).

It follows that dy = (a})~! o as is invertible. [

THEOREM 2.105. Given V, the following are equivalent.

(1) k:V*®@V — End(V) is invertible.
(2) V is dualizable.

(3) d:V — V** is invertible.

(4) V is finite-dimensional.

ProOOF. The Proof of Theorem 2.96 only used the property that k is invertible
to show that V is dualizable, with D = V*, ¢ = Evy, and n =y = so k™t o Q};
this is the implication (1) = (2). Lemma 2.104 just showed (2) = (3), and
Theorem 2.85 showed directly that (1) = (3). The implication (3) = (4) was
stated without proof in Claim 1.16 and the implication (4) = (1) was stated in
Lemma 1.64, which was proved using Claim 1.34. [

REMARK 2.106. In the special case where (D,e,n) = (V*, Evy,ny) from Ex-
ample 2.98, the map a; from Lemma 2.104 is Idy+ as in Exercise 2.102, and the
map ag is exactly dy. This shows that Lemma 2.100 (establishing that A, has an
inverse, B) is related to Theorem 2.85 (showing that dy has an inverse); the second
diagram from the Proof of Theorem 2.85 is similar to the right diagram from the
Proof of Lemma 2.100.

The following result is a generalization of Theorem 2.69.

THEOREM 2.107. If V is dualizable, with any duality data (D2, e€2,12), and
S$2:V® Dy — Doy ®V is the switching map, then for any F: VU —V @ W,

(Trv.o.w(F)(u)=(lw o [e2 @ Idw] o [Idp, ® F]o[(s2 0 n2) @ Idy] o ly;")(u).

PrOOF. By Theorem 2.105, V' must be finite-dimensional, so the trace exists.
By Theorem 2.96 (the Proof of which uses Theorem 2.69) and Example 2.98, there
is another triple (D1, e1,m1) = (V*, Evy, nv) satisfying Definition 2.97. There is an
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invertible map aj2 : V* — Dy by Lemma 2.101. Consider the following diagram.
w

lw

Idy+«QF E Id
End(V) @ U —— Viaver Ly yopZV @) p o

[k®1dy]
[Qi@ldU]T l[s@]du]
[nv®Idy]
K@U ———VeVeU ([a12®@Tdv]@Tdw] [e2®@Tdw]
lulT @,\ l[[ldv®a12]®1du]
U VD QU —= D@V RQU —= DV QW

[32®IdU] [IdD2®F]

The composition from U to W along the top row gives Try.yw (F) by Theorem
2.69. The left square is from Theorem 2.96 and the left and right triangles are
commutative by Lemma 2.101. The RHS of the Theorem is the path from U to
W along the lowest row, so the claimed equality follows from the easily checked
commutativity of the middle block. [

COROLLARY 2.108. If V is dualizable, with any duality data (D,e,n), and s :
V®D— D®YV is the switching map, then for any A:V -V W,

Trv;w(A) = (lW o [6 ® Idw] o [IdD ® A] oSso 7])(1)

PRrROOF. This follows from Theorem 2.107 in the same way that Corollary 2.70
follows from Theorem 2.69. By Theorem 2.55,

LHS = (Tryvxw(Aoly))(1)
= (lwole®Idw]o[Idp @ (Aoly)]o[(son) ® Idx] ol )(1)
= RHS.

This generalizes Corollary 2.70 by showing that, for any duality data (D,e€,n),
the W-valued trace of A is the output of 1 under the composite map

R Idp®A lwole®ld
K—n>V®D—>D®Vﬂ>D®V®WM>W

COROLLARY 2.109. If V is dualizable, with any duality data (D,€,n), and s :
V®D— DRV is the switching map, then for any A:V —V,

Try(A) = (co[Idp @ AJoson)(1).
ProoF. By Theorem 2.54 and Corollary 2.108,

LHS = Trv;K(l‘_/l o A)
= (lKo[e®IdK]o[IdD®(l‘;10A)]oson)(1)
= RHS.
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This generalizes Theorem 2.10 and the map K — K from (2.6) by showing that
for any (D, €,n), the trace of A € End(V) is the output of 1 under the composite
map

n s [IdD@A] €
K—V®D—D®V DRV —K.

As mentioned at the beginning of this Section, the above results can be used
as definitions of the trace: Theorem 2.107 for Try.y,w, Corollary 2.108 for Try.w,
and Corollary 2.109 for T'ry. The proofs that these formulas are equivalent to the
definitions from the previous Sections show that the trace can be calculated using
any choice of duality data (D, ¢,n), and that the output does not depend on the
choice. Using this approach can also lead to simpler proofs of some properties of
the trace.

EXERCISE 2.110. The result of Theorem 2.27,
TT\/(H) = (Trv;K7K(l‘71 oHo l\/))(l),
can be given a different (and simpler) proof using a choice of duality (D, €,n).

HINT. In the following diagram,

s Idp® I15YoHol
ve DoKX pevek [Hdp@(ty oHolv)] Do VaK
[n®Idk] \
T [[dD®lV] [E®IdK]
K® K dp@ly] K ® K

: |
n [[dp®H]

K VoD —>DQV——— >DV < K

the lower row is copied from Corollary 2.109, corresponding to Try (H) - Idk as in
(2.6) from Theorem 2.27. The clockwise path from K to K is Try.x k(l;;' o Holy),
by Theorem 2.107, in the case U = W = K. The middle block in the diagram is
commutative by Lemma 1.36, and the left and right blocks by versions of Lemma
1.38, and the claim follows from the commutativity of the diagram. [

REMARK 2.111. Theorem 2.27, Exercise 2.56, and Exercise 2.110 give some
details omitted from [C,] Example 2.13.

Bia EXERCISE 2.112. Theorem 2.30, and some of the other results of Section
2.2.2, can be proved starting with Theorem 2.107 as a definition of the generalized
trace.

EXERCISE 2.113. For any spaces D, U, V, the arrows in this diagram are
invertible.

q

Hom(U ® D,Hom(V,U)) Hom(U ® D @ V,U)
Hom(svldHom(V,U))T THom(ldUQZJD@VJU)
Hom(D @ U, Hom(V,U)) Hom(U ® D@ V,U @ K)

If V is dualizable with data (D, €,n), then on the right, there is a distinguished ele-
ment [Idy ®¢] € Hom(U®@D®V,U®K). In the case (D, e,m) = (V*, Evy,ny) from
Example 2.98, there is a distinguished element kv € Hom(V* @ U, Hom(V,U)) on
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the left, and the two elements are related by the composition of arrows in the path.

Bia EXERCISE 2.114. For a dualizable space V', define (as in [PS] §2) the mate
ofamap A: V®U — V ® W with respect to duality data (D,e,n) as the map
A™: DU — D ®W given by the composition in the following diagram.

DeVeUeDp 2L o v oW e D
[Idp®[s®Idp]] [e®Idwep]
DeU®V®D K®W D
[Idpeu®mn] l

DoU®K W& D
- ;
DU A7 DeW

Then (as in [PS] §7),
T’I‘D;Uy[/(Am) = T?”V;Uy[/(A).
In particular, LHS does not depend on the choice of (D, ¢, 7).

HiNT. By Lemma 2.103, D is dualizable, so by Theorem 2.107, LHS exists.
The formula from Theorem 2.107 does not depend on the choice of duality data
for D; it is convenient to choose to use (V,e o s,s0on) from Lemma 2.103. In the
following diagram, the lower middle block uses maps from the above definition of
A™ including

a = [Idy ® [Idp ® [A® Idp]]].

s A €
VeDoU L pover —12%Y | pevew MY geow

(n®Idy]

KU DKoV eU KDeVeW

DRVIDRVU DVeDVeW
S0
U VoeDVU®D—2-VeDVW®D W

VeoDU®RV ®D VeKeoW®D

KeU VeDeUK VeWe®D

[(som)®Idy]

sTi®Id Idy @A™ e®s)®Id
PaveU " veopey TV |y pew @M g ooy
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By Theorem 2.107, the path from U to W along the top row is Try,uw(A), and
from U to W along the lowest row is Trp.u,w (A™). The claimed equality follows
from the commutativity of the diagram. The maps in the top middle block are as in
the next diagram, with notation D = D1 = Dy and V = V; = Vo = V3 to indicate
various switching maps.

Idp®A]
Dy@Vo®@U D1V W
y
[l®[dv®u] [l®1dw]
Dy @ K@V, @U K®D @ VzeW
[[E@Idp]®A
[Idp@n®Ildyvgu] [e®Idpevew]
D@V @D @VaU Dy@Vi®@DI @ Vs W
[Idpevep®A]
So S
Vi®eD,@Vea®U® Dy £ Vi®eD®@Vs@W ® Dy

The above diagram is commutative; the middle block involving both 1 and € uses one
of the properties from Definition 2.97. Using these maps as specified in the above
right column, it is also easy to check that the right block from the big diagram is
commutative.

To check that the left block from the big diagram is commutative, note that
the path going up from U to D@V ®@ U takes input u to output ((son)(1)) ®u, and
the downward path also takes u to ((s on)(1)) ® u. So, it is enough to check that
((som)(1))®wu has the same output along the two paths leading to V@ DVU®D.
This is shown in the next diagram, where the numbering V' = V; = V5 and D =
Dy = D5 is chosen to match the left column of the previous diagram.

Vi®oDi®@Va®@U® Do

[Idvgp®s] [Idv®[Idp®[s®Idpl]]

D2®‘/1®D1®‘/2®U[v'§ﬂd—‘]/1®l)l®l)2®‘/2®[] VieD@U®Va® Dy
S VU
qfl
[Hdvep®s; 7] W
Vi®DL®@U® Dy ® Vs
[Tdp®n|®@Idveul [Idy®[Idpgv@n]]
[n®s1]
DRIKQVQIU =——KIDQIV QU VeoDU®K
[S®Idv®u]
[Hdx®s|®@Idy] /
[®Idvgul KeVeDeU [Tdv®l]
\
DeVeU VeoDU

[S®Idu]
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All the blocks in the last diagram are commutative, except for the center right
block. However, starting with (n(1)) ® u € V@ D® U in the lower right corner, all
paths leading upward to V@ D ® V ® U ® D give the same output. The upward
right column, and the clockwise path around the left side, correspond, respectively,
to the lower half and the upper half of the left block in the big diagram.



CHAPTER 3

Bilinear Forms

As a special case of Definition 1.23, consider a bilinear function V' x V ~» K|
which takes as input an ordered pair of elements of a vector space V and gives as
output an element of K (a scalar), so that it is K-linear in either input when the
other is fixed. Definition 3.1 encodes this idea in a convenient way using linear
maps, as described in Example 1.55. This Chapter examines the trace of a bilinear
form on a finite-dimensional space V', with respect to a metric g on V.

3.1. Symmetric bilinear forms

DEFINITION 3.1. A bilinear form A on a vector space V is a K-linear map
h:V —V*.

For vectors u, v € V', a bilinear form h acts on u to give an element of the dual,
h(u) € V*, which then acts on v to give (h(u))(v) € K.

DEFINITION 3.2. The transpose map, Ty € End(Hom(V,V*)), is defined by
Tv = Hom(dv,fdv*) otyyx : h— h*o dv.

LEMMA 3.3. Ty is an involution.

PROOF. The effect of the map Ty is to switch the two inputs:

(3.1) ((Tv (1)) (u))(v) = (A" o dv)(u))(v) = (dv (w))(h(v)) = (h(v))(w),

so the claim is obvious from Equation (3.1). This is also a corollary of Lemma 4.4
from Section 4.1, which considers some other approaches to bilinear forms and the
definition of transpose, using different spaces and canonical maps. [ |

DEFINITION 3.4. A bilinear form % is symmetric means: h = Ty (h). h is
antisymmetric means: h = =Ty (h).

If h is symmetric, then (h(u))(v) = (h(v))(u), and if h is antisymmetric, then

(h(w))(v) = —(h(v))(u).

NotaTION 3.5. If % € K, then the involution Ty on Hom(V,V*) produces, as

in Lemma 1.119, a direct sum of the subspaces of symmetric and antisymmetric
forms on V, denoted Hom(V, V*) = Sym(V) @ Alt(V).

In particular, any bilinear form A is canonically the sum of a symmetric form
and an antisymmetric form,
1

(3.2) h=3

(h+ Ty (h)) + 5 - (b = Ty (h)

107
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LEMMA 3.6. If% € K, then the canonical map kyy~ : U* @ U* — Hom(U, U*)
respects the direct sums:

kyu- : S2(U*) @ A2(U*) — Sym(U) @ Alt(U).

PROOF. The direct sums are from Example 1.124, produced by the involution
son U*®U*, and Notation 3.5, produced by the involution T;. It is easily checked
that the following diagram is commutative.

U@ U* u U@ U*
lkUU* lkUU*
Hom(U, U*) v Hom(U, U*)
So kyy- respects the direct sums by Lemma 1.126. [

DEFINITION 3.7. For a map H : U — V, and a bilinear form h : V' — V*, the
map H* o ho H is a bilinear form on U, called the pullback of h.

LEMMA 3.8. For any vector spaces U, V, and any map H : U — V, the
following diagram is commutative.

Hom(V, V*) —Y> Hom(V, V*)
Hom(H,H*)l lHom(H,H*)
Hom (U, U*) —%= Hom(U, U*)
If, further, % € K, then the map h — H* o ho H respects the direct sums:
Hom(H, H*) : Sym(V) @ Alt(V) — Sym(U) @ Alt(U).

PRrROOF. Using Lemma 1.6 and Lemma 1.14, the transpose of the pullback of a
bilinear form h : V' — V* is the pullback of the transpose:

Ty(H*ohoH) = (H*ohoH) ody=H"oh*oH"™ ody
H*oh*odyoH =H"o(Ty(h))o H.

The claim about the direct sums from Notation 3.5 follows from Lemma 1.126.

So, if h € Sym(V), then its pullback satisfies H* o ho H € Sym(U). The

pullback of an antisymmetric form is similarly antisymmetric

NOTATION 3.9. If an arbitrary vector space V is a direct sum of V; and V5, as
in Definition 1.77, and hy : Vi — Vi*, hy : Vo — V5, then

(33) Pf0h10P1+P;OhQOP21V—>V*
will be called the direct sum hy @ hg of the bilinear forms h; and hs.

The expression (3.3) is the same construction as in Lemma 1.86, applied to the
direct sum V* = V{* @ V5" from Example 1.84.
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THEOREM 3.10. Ty (hy @ ha) = (Tv, (h1)) ® (Tv, (h2)).

PROOF.
LHS = (PfohyoPi) ody+ (PyohyoP,) ody
= PfohloP™ody+ PyohsoPy* ody
= Pfohlody, oPi+Pyohiody, oD
= Pl* o (TV1 (hl)) o P + PQ* o (TV2 (hg)) o Py = RHS,
using Lemma 1.6 and Lemma 1.14. [ |

It follows that the direct sum of symmetric forms is symmetric, and that the
direct sum of antisymmetric forms is antisymmetric.

The following Lemma will be convenient in some of the theorems about the
tensor product of symmetric forms.

LeEMMA 3.11. ([B] §11.4.4) For A : Uy — Uz and B : Vi — Va, the following
diagram is commutative.

Us @ V3 Urewn
Jl lj
Hom([A®B],Id
Hom(Us @ Vi, K @ K) — oA o) g0, @ Vi, K @ K)
HOm(IdU2®V2,l)l l/HOIn(IdU1®V17l)
[A®B]*

(U @ Vo)* (U@ V1)*

PROOF. The scalar multiplication K ® K — K is denoted [. The top square is
commutative by Lemma 1.37, and the lower one by Lemma 1.6.

THEOREM 3.12. If hy : U = U* and he : V — V™, then
Hom(Idygy,l)ojohi ®@ho]: (U V)= (U V)"
is a bilinear form such that
Tugv(Hom(Idygy,l) o j o [h ® hsl)
is equal to
Hom(Idygv,l)ojo [(Tu(ht)) @ (Tv(h2))]-
PRrROOF. First, for any U, V, the following diagram is commutative:

dU®V HOm(IdU@)V,l)*

UeVv (U & V)* Hom(U ® V,K ® K)*

[du®dy] lj*

Hom(Idy* gy =,l) (U* ® V*)*

U™ @ V* — > Hom(U* ® V*, K ® K)
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uv — (j*oHom(Idygy,!)" odygy)(u®v):
¢®& = (dugv(u®v))(Hom(Idugy,!)([¢ ®¢]))
l([¢ @ E](u®v))
o(u) - £(v),
u®uv +— (Hom(Idy-gv,l)ojo[dy ®@dy])(u® v)

= lo[(dy(u) @ (dv(v))] :
P& — ou)-£(v).
Note that the bottom row of the diagram is one of the columns of the diagram in
Lemma 3.11 in the case Uy = U*, Vo = V*. The statement of the Theorem follows,
using the above commutativity and Lemma 3.11.
Tugv(hi @ he) = (Hom(Idygv,l)ojoh @ ha])* odugy

= [ ®ha]* 0j* o Hom(Idygv,l)" o dugyv

= [h1 ® ho]* o Hom(Idy+gy+,1) o jo[dy ® dy]

= Hom(Idygy,l)ojolhi®hsoldy @dy]

= Hom(Idugv,l)ojo [(Tu(h1)) ® (Tv(h2))].

|

NOTATION 3.13. The bilinear form Hom(Idygv,!)ojo[h1 @ ha] from the above
Theorem will be called the tensor product of bilinear forms, and denoted {h1 ® ha},
in analogy with the brackets from Notation 1.35. As defined, the tensor product
bilinear form acts as

({h @ ha}(u1 @ v1))(uz @ v2) = (h1(u1))(uz2) - (ha(v1))(v2).

When hy and hs are symmetric forms, it is clear from this formula that {h1®ho}
is also symmetric, but the above proof, using Definition 3.4, makes explicit the
roles of the symmetry and the scalar multiplication. It also follows that the tensor
product of antisymmetric forms is symmetric.

There is a distributive law for the direct sum and tensor product of bilinear
forms. Let V be a direct sum of V; and V5, and recall, from Example 1.81, that
V ®@U is a direct sum of V; ® U and V, ® U, with projection maps [P; @ Idy].

THEOREM 3.14. For bilinear forms hy, ha, g on arbitrary vector spaces Vi, Va,
U, the following bilinear forms on V @ U are equal:

{(h1®h2) ® g} ={h1 ®g} @ {h2® g}

PRrROOF. Unraveling the definitions, and applying Lemma 3.11 and Lemma 1.36
gives the claimed equality:

RHS = [P, ®Idy]* oHom(Idvy,gu,l)ojo[hi ®glo[P® Idy]
+[P2 ® Idy]* o Hom(Idvy,gu,1) 0 j o [he ® g] o [P2 ® Idy]
= Hom(Idvgy,l)ojo [P ®Idy]o[hi ®glo [P ® Idy]
+Hom(Idygu,l) o jo [Py @ Idy]olhe ® g]o [P ® Idy]
= Hom(Idygu,l)ojo[(PfohioP;+ PyohsoPs)®g]
= LHS.
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3.2. Metrics
THEOREM 3.15. Given a bilinear form g : V. — V*, if g is symmetric or

antisymmetric then the following are equivalent.

(1) V is finite-dimensional and there exists P : V* — V such that Pog = Idy .

(2) V is finite-dimensional and there exists Q : V* — V such that go Q =
Idy-.

(3) g is invertible.

PROOF. Let g be symmetric; the antisymmetric case is similar.
If ¢ is invertible, then from ¢* o dyy = g and Lemma 1.12,
(97 og=(9")""og=dv

is invertible, so V' is finite-dimensional by Claim 1.16, which implies (1) and (2).

Assuming (1) and using Claim 1.16,

Idy- =1dj = (Pog)* =g* o P* =god,'oP",

so g has a left inverse and a right inverse, and (3) follows, as in Exercise 0.54.
Similarly, assuming (2),

Idy-- = Idj. = (g0 Q)" = Q" og" = Q" ogody’,
sody = Q" og = Idy = d(/l 0 @Q* og, and g has a right inverse and a left
inverse. i
The invertibility condition in Theorem 3.15 implies a non-degeneracy property:
for each non-zero v € V, there exists a vector v € V so that (g(v))(u) # 0.
DEFINITION 3.16. A metric g on V is a symmetric, invertible map g : V. — V*.
By Theorem 3.15, a metric exists only on finite-dimensional vector spaces.

THEOREM 3.17. Given a metric g on 'V, the bilinear form dyog=!: V* — V**
is a metric on V*.

PRrROOF. To show dy o g~ ! is symmetric, use the definition of T+ and Lemma
1.17:

Ty-(dvog™) = (dvog ) ody- = (g7") ody ody- = (¢") " =dvog™"
The last step uses the symmetry of g. This map is invertible by Theorem 3.15 and
Claim 1.16. [ |
The bilinear form dy o g~! could be called the metric induced by g on V*, or
the dual metric. It acts on elements ¢, £ € V* as

((dv o g™")(@)(E) = &g~ ().
This construction can be iterated to define metrics on V**, etc.

COROLLARY 3.18. If g1 is a metric on V1 and go is a metric on Va, then g1 ® go
is a metric on V =V, @ V5.

PRrROOF. The direct sum g; & g2 as in Notation 3.9 is symmetric by Theorem
3.10, and is invertible by Lemma 1.86. Specifically, the inclusion maps @1, Q2 are
used to construct an inverse to the expression (3.3):

(34)(Qiog; o Qi +Q209;'0Q3) 0 (Pfogio P+ PyogyoPy) = Idy,
(PfogioPi+PfogroP)o(Qiog oQf +Q20g5'0Q3) = Idy-. 1
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COROLLARY 3.19. If ¢1 and g2 are metrics on U and V, then {g1 ® g2} is a
metric on U @ V.

Proor. The bilinear form

{91 ® g2} = Hom(Idygv,1) o j o [g1 ® g2]
as in Notation 3.13 is symmetric by Theorem 3.12, j is invertible by the finite-

dimensionality (Claim 1.34), and the inverse of Hom(Idygy,l) o j o [g1 ® go] :
UV = (UeV)*is

l9; ' ® g5 0" o Hom(Idygv,1 ™).
|

EXERCISE 3.20. If hy, ho, and g are metrics on Vi, Vo, and U, and h = hy @ ho is
the direct sum bilinear form on V' = V; @& V5, then the induced tensor product metric
{h®g} on VU coincides with the induced direct sum metric on (V1 @U)®(V2®@U),
as in Theorem 3.14. |l

3.3. Isometries

ExaMPLE 3.21. If h is a metric on V', and H : U — V is invertible, then the
pullback H* o ho H (as in Definition 3.7) is a metric on U, since it is symmetric by
Lemma 3.8, and has inverse H ' oh~!o (H*)"L

REMARK 3.22. The pullback of a metric h by an arbitrary linear map H need
not be a metric, for example, the case where H is the inclusion of a lightlike line in
Minkowski space. See also Definition 3.106.

DEFINITION 3.23. A K-linear map H : U — V is an isometry, with respect to
metrics g on U and h on V', means: H is invertible, and ¢ = H* o h o H, so the
diagram is commutative.

U Vv

P

Ur <—V~
a

This means that the metric g is equal to the pullback of h by H, and that for
elements of U,
(g(u1))(u2) = (h(H (u1)))(H (uz))-
It follows immediately from the definition that the composite of isometries is an
isometry, that the inverse of an isometry is an isometry, and that Idy and —Idy
are isometries.

REMARK 3.24. The equation g = H* o h o H does not itself require that H !
exists, and one could consider non-surjective “isometric embeddings,” but invert-
ibility will be assumed as part of Definition 3.23, just for convenience.

EXERCISE 3.25. If h: V - V*and H :U - V,and H*oho H : U — U" is
invertible, then H is a linear monomorphism. [ |

THEOREM 3.26. Any metric g : U — U™ is an isometry with respect to itself,

g, and the dual metric, dy o g™ ?'.
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PRrROOF. The pullback by g of the dual metric is
gtodyog log=y,

by the symmetry of g. [ |

THEOREM 3.27. Given a metric g on U, dy : U — U™ is an isometry with
respect to g and the dual of the dual metric dy- o (dy o g~ ')t =dy-ogo d[;l on
U**.

ProOOF. By the identity dj; o dy« = Idy+ from Lemma 1.17,
g =dj; ody-~ ogodalodU,

THEOREM 3.28. Given metrics g1, g2, h1, and hy on Uy, Us, Vi, and Vs, if
A:Uy — Uz and B : Vi — Va are isomelries, then [A® B] : Uy @ Vi — U @ Vy is
an isometry with respect to the induced metrics.

PROOF. The statement of the Theorem is that
{91© 1} = [A B]* o {9 ® hy} o [A® B].
The RHS can be expanded, and then Lemma 3.11 applies:

RHS = [A® B oHom(Idy,gv,,l)ojo[ge ® hs]o[A® B]
Hom(Idy, v, ,1)0jo[A" ® B*]olga ® ha] o [A® B]
Hom(IdU1®V1,l) Oj o [gl X hl] =LHS.

The last step uses Lemma 1.36 and g1 = A* o go 0 A, hy = B*ohyo B. [

LEMMA 3.29. For wvector spaces Uy, Uz, Vi, Vo, and maps F : Vi — V5,
E :Uf — Us, if V1 is finite-dimensional then the following diagram is commutative.

Ur @ Vi LVF@U{
l[(dmoE)@F] l[(Fodvf)eaE]
U;* @ Vy Pvats Vo @ Us

PROOF. The p maps are as in Notation 1.72.

$@v = (P, o [(Fody) ® Elopy,v, ) (¢ @ v)
= (pww o [(Fody) ® E))((dv (v) @ ¢)
= ne((F)® ( (@)
= (dv,(E(9))) ® (F(v)) = [(du, © E) ® F|(¢ @ v).
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THEOREM 3.30. Given metrics g and h on U and V', the canonical map fyy :
U@V — (V*®@U)* is an isometry with respect to the induced metrics.

PROOF. The diagram is commutative, where the compositions in the left and
right columns define the induced metrics.

U@V Jov (V* @ U)*
Hom(Idy+gu,l) || Hom(Idy+gy ")
[(duog™")®h] Hom(V* @ U, K @ K)
Jlli—t
UV Ve U*
[(dvoh™")@g] | | [(hody")®g ]
] pvu
Hom(U* @ V,K ® K) VreU
Hom(Idy gy ,l) dy*gu
fvu
(U* ® V)* - (V* ® U)**
uv

The lower triangle is commutative by Lemma 1.71. The two blocks with f and p
maps are commutative by Lemma 1.74, and the block in the middle is commutative
by Lemma 3.29. [ |

LEMMA 3.31. Given metrics g and h on U and V', let U = Uy @ Us, with direct
sum data Q;, P;, and let V. =V1 & Vi, with data Q}, P]. Suppose that for i =1 or
2, the bilinear form (Q})* o ho Q) is a metric on V;. If H : U — V is an isometry
that respects the direct sums, then the bilinear form QF o g o Q; is a metric on U;,
and the induced map P} o H o Q; : U; — V; is an isometry.

PRrOOF. The induced map P/ o H o Q; is invertible, as in Lemma 1.89. The

3
following calculation (which uses the property that H respects the direct sums)

shows that the bilinear form Q} o g o @; is equal to the pullback of (Q})* o ho Q)]
by the map P/ o H o (;, so it is a metric as in Example 3.21, and P/ o H o (); is an
isometry, by Definition 3.23.

(P{oHoQ:)"o((Qf)" ohoQ)o(PoHoQ;)
= QfoH"o(P) o(Q)) ohoQioP oHoQ;
= (QioP/oHoQ;)* ohoQ,oP ocHoQ;
= (HoQ;oP0Q;)*ochoHoQ;oP,0Q;
= QfoH"ohoHoQ;

QiogoQ;.
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3.4. Trace with respect to a metric

DEFINITION 3.32. With respect to a metric g on V', the trace of a bilinear form
h on V is defined by
Try(h) =Try(g* oh).

By Lemma 2.6, this is the same as Try«(h o g=!), and another way to write
the definition is
Try = Hom(Idy, g ')*(Try) € Hom(V,V*)*.
THEOREM 3.33. Given a metric g on 'V, if h is any bilinear form on V', then
Try(Ty () = Try(h).

PROOF.
Try(h*ody) = Try-(h*odyog™)=Try-(h*o(g7")")
= Trv-((g" o h)*) =Try(g " oh) =Try(h),
using the symmetry of g and Lemma 2.5. [

COROLLARY 3.34. [f% € K, then the trace of an antisymmetric form is O with
respect to any metric g. | |

THEOREM 3.35. Given a metric g on V., if Try(Idy) # 0, then Hom(V,V*) =
K& ker(Try).

PRrROOF. Since Try(g9) = Trv(Idy) # 0, Lemmas 1.100 and 1.101 apply. For
any h : V — V™ there is a canonical decomposition of h into two terms: one that
is a scalar multiple of g and the other that has trace zero with respect to g:

__Try(h) Try(h)
h= Trv(_[dv) g+ h Trv(_[dv) '

i

COROLLARY 3.36. Given a metric g on V', if both % € K and Try(Idy) # 0,

then Hom(V, V*) admits a direct sum K @ Symo(V, g) ® Alt(V'), where Symo(V, g)
is the kernel of the restriction of Try to Sym(V).

Proor. Using Theorem 3.33, Theorem 1.125 applies. The canonical decom-
position of any bilinear form h into three terms, corresponding to (1.13) with
w=v =g, is:

Try(h) 1 Try(h) 1
h=—2—_. —(h+Ty(h) — —L—+—- —(h —Ty(h)).
et o+ (5 1) = ) 4 500 = Tu(h)
|

ProPOSITION 3.37. Given a metric g on'V, the trace is “invariant under pull-
back,” that is, for an invertible map H : U — V,
Tracogorr(H* o ho H) =Try(h).
PROOF.
Tripeogo(H*ohoH) = Try(H tog to(H*) ' oH*ohoH)
Try(H *og tohoH)
= Try(g " oh)=Try(h),
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by Lemma 2.6. [

PROPOSITION 3.38. Given metrics g1, g2 on Vi, Vo, if V.=V & Vs, then for
any bilinear forms hy : Vi — V¥, hy : Vo — V5,

Tr!h@gz (hl D h2) = Tr!h (hl) + Tng (hQ)

PRrOOF. Using the formula (3.4) for (g1®gs) ! from Corollary 3.18, and Lemma
2.6,

LHS = Try((Quogi'oQi+@sog5 0 Q8)o (P oho Py + B ohyo By))
Trv(Qiogy ' ohioPr+Qo0g; ohyoPy)
= Try,(PLoQiogitohy) +Tri,(PaoQa0gy ' ohy) = RHS.

PRrROPOSITION 3.39. Given metrics g and h on U and V', for bilinear forms
E:U—->U"and F:V — V*,

Trigeny({E ® F}) = Try(E) - Trp(F).

ProOF. Using the formula from Corollary 3.19, there is a convenient cancella-
tion, and then Corollary 2.36 applies:

TTU®V([971 ® hil] Oj71 o Hom(IdU®v, lil)
oHom(Idygy,l)ojo[E ® F])
Trugv(j2((g™" 0 E) @ (h™' 0 F)))

Try(E) - Try(F).

Trigeny({£® F})



3.5. THE INDUCED METRIC ON Hom(U, V) 117

3.5. The induced metric on Hom(U,V)

DEFINITION 3.40. Given metrics g and h on U and V, define a bilinear form b
on Hom(U, V), acting on elements A, B: U — V as:

(b(B))(A) =Try(Aog toB*oh).
b can be written as a composite:
b = Hom(Idyom(v,v), Trv) o tyyy o Hom(h, g~ ') o tuv,

using the generalized transpose t\,; from Definition 1.7. By Lemma 2.6, b can also
be written as a trace with respect to g:

(b(B))(A) = T7"U(971 oB*ohoA)= Trg(B* ohoA).

THEOREM 3.41. Given metrics g and h on U and V', the induced tensor product
metric on U* @ V is equal to the pullback of the bilinear form b by the canonical
map kyvy .

PROOF. The diagram is commutative, where the composition in the left column
defines the induced metric (as in Theorem 3.30), and the composition in the right
column defines the bilinear form b.

U* Q V kuv HOIII(U, V)
puv
tuv
[(dUOg71)®h] V** ® U* % HOIII(V*7 U*)
l[(hOdvl)t@gl] Hom(h,g~ ")
U™ @ V* VieU U Hom(V,U)

v
tyu

Hom(Hom(U, V), End(V))

Hom(U*® V,K®K) f

vu

Hom(Idy gy ,l) Hom(ldHom(U)v),Trv)

(U V)* Hom(U, V)*

*
kUV

The three squares in the upper half of the diagram are commutative, by Lemma
3.29, Lemma 1.75, and Lemma 1.62 (with hOd‘_,1 = h* because h is symmetric). The
left triangle in the lower half is commutative by Lemma 1.74, and the middle triangle
is just the definition fy ¢y = eyyokyy from Notation 1.69. Checking the lower right
triangle, starting with D € Hom(V, U), uses (kyv (¢ ®@v)) o D = kyy ((D*(¢)) @ v),
which follows from Lemma 1.62:

HOm(D, Idv) okyy = kyy o [D* & Idv],



118 3. BILINEAR FORMS

and the definition of the trace (Definition 2.24):
D (ki o Hom(Iduom(w,vy, Trv) oty )(D)

= Tryo(tyy(D))okyy :

p@v = Try((tyy(D))(kuv (6 ®v)))
= Trv((kuv(¢®v))oD)
= ((kyy)" (Boy)) (kv (D*(9)) ® v))
= FEuy((¢poD)®wv)
= ¢(D(v)) = (evu(D))(¢ @ ).

|

In particular, the pullback k7, obokyy = {(dyog™')®h} from Theorem 3.41
acts on ¢, € U* and v,w € V as:

Y(gH9) - (h()(w) = ({(drog ") @h} o)) (¥ @w)
(3.5) = (b(kuv (¢ @) (kuv (¥ @ w))
= Tru(g~' o (kuv(¢ ®v))* o ho (kyy (¥ ®w))).

COROLLARY 3.42. Given metrics g and h on U and V, b is a melric on
Hom(U, V).

Proor. This follows from Example 3.21, where k‘l}‘l, is the invertible map
relating the metric on U* ® V to the bilinear form b, proving that b is symmetric
and invertible, and kg and k:[}‘l/ are isometries. [ |

COROLLARY 3.43. Given metrics g and h on U and V', the canonical map
evy : Hom(U, V) — (V* @ U)* is an isometry with respect to the induced metrics.

PrOOF. This follows from Theorem 3.30, since eyy = fyy o k:l}‘l, [ |

REMARK 3.44. Historically, the b metric involving the trace has been called
the “Hilbert-Schmidt” metric; we will just refer to it as the metric on Hom(U, V)
induced by metrics on U and V and will usually use the b notation. The relation-
ship between the metric b and the tensor product metric seems to be well-known,
although possibly not in this generality. A special case of a Hermitian version of
Theorem 3.41 appears in [Bhatia] §1.4, and a positive definite version for endomor-
phisms in [G»] §II1.4. Matrix versions of Theorem 3.41 appear in [Neudecker],
[L], and [HJ] §4.2.

THEOREM 3.45. If A : Uy — Uj is an isometry with respect to metrics ga, g1,
and B : Vi — Va is an isometry with respect to metrics hy, ha, then Hom(A, B) :
Hom(Uy, Vi) — Hom(Us, Va) is an isomelry with respect to the induced metrics.

PROOF. The hypotheses are hy = B* o hs o B, and go = A" o g1 0 A. For E,
F € Hom(Us, V), the pullback of the induced metric on Hom(Us, V3) is
(((BoFoA)(BoEoA) = Try,(BoEoAogy'oA*oF*oB*ohy)
= Try,(Eogy*oF*oB*ohyoB)
= Try,(EogytoF*oh).
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THEOREM 3.46. With respect to the b metrics induced by g1, g2, h1, ha on Uy,
Us, Vi, Va, the map j : Hom(Uy, Vi) @ Hom(Us, Va) — Hom(U; ® Uz, Vi @ V2) is
an isometry.

Proor. For Ay, By : Uy — Vi, As, By : Uy — V5, the statement of the
Theorem is that the tensor product metric and pullback metric are equal:
(b(B1))(A1) - (b(B2))(A2) = (b(j(B1 ® B2)))(j(A1 ® Az)).
Computing the RHS, using the metrics {g1 ® g2}, and {h; ® ha}, gives:
RHS = TTV1®V2 ([Al & AQ] © [gfl ® 951] © j_l © Hom(IdU1®U27 l_l)
o[B1 ® Bs]" o Hom(Idv,gv;,1) 0 j o [h1 @ ha])
= Trvev([41 ® As]o g7 @ g5 '] o [Bf ® B;] o [h1 ® h)
= Tryewn([(Aiogr o Bf oh) @ (Az0g; " o By o hy)])
= Try,(Ayo gfl oBfohy) -Try,(Aso g;l o B3 o hs).

The first step uses Lemma 3.11, and the second step uses Lemma 1.36, and finally
Corollary 2.36 gives a product of traces equal to LHS. [

THEOREM 3.47. Given metrics g and h onU and V', the map tyy : Hom(U,V) —
Hom(V*,U*) is an isometry with respect to the induced metrics.

PRrROOF. Calculating the pullback, for A, B € Hom(U, V) gives
(b(B*))(A*) = Try-(A*o(dyoh )" toB* odyog™t)
Try-(A*ohody' o B odyog™t)
= Try«(A*ohoBo gil)
= Try(Bog toA*oh)
(b(B))(A).

COROLLARY 3.48. Given a metric g on V, Ty : Hom(V,V*) — Hom(V, V*) is
an isometry with respect to the induced b metric.

PROOF. By Definition 3.2, Ty, = Hom(dy, Idy~)otyy«, which is a composition
of isometries, by Theorem 3.27, Theorem 3.45, and Theorem 3.47. [

3.6. Orthogonal direct sums

DEFINITION 3.49. A direct sum U =U; ® Uy & - -+ @ U, with inclusion maps
Qi is orthogonal with respect to a metric g on U means: Q7o g0 Q; = Ogom(u,,u;)
for i # 1.

Equivalently, the direct sum is orthogonal if and only if g : U — U™ respects
the direct sums (as in Definition 1.88), where the direct sum structure on U* is as
in Example 1.84.

LEMMA 3.50. Given U with a metric g, if U = Uy @ Uz and U = U] ® U} are
equivalent direct sums, and one is orthogonal with respect to g, then so is the other.

PRrROOF. This follows from Lemma 1.98. [ |
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ExaMpPLE 3.51. Given metrics g1, g2 on Uy, Us, if U = Uy @ Us, then the
direct sum is orthogonal with respect to the induced metric from Corollary 3.18,
g=g1®g2=PogioP+ PjogsoPs.

THEOREM 3.52. Given a metric g on U, if Try(Idy) # 0, then any direct sum
End(U) = K@ Endo(U) from Example 2.9 is orthogonal with respect to the b metric
induced by g.

PROOF. As noted in Lemma 1.100 and Example 2.9, any such direct sum is
technically not unique, but equivalent to any other choice, so the non-uniqueness
does not affect the claimed orthogonality by Lemma 3.50.

If A € Endo(U) = ker(Try), then the b metric applied to A and any element
of the line spanned by Idy is Try(Aog o (A-Idy)*og) = A-Try(4)=0. N

THEOREM 3.53. Given a metric g on U, if Try(Idy) # 0, then the direct sum

Hom(U,U*) = K @ ker(T'ry) from Theorem 3.35 is orthogonal with respect to the
induced metric.

PROOF. Such a direct sum is as in Lemmas 1.100 and 1.101.
If E € ker(T'ry), then the b metric applied to E and any scalar multiple of g is

Try-(Eog~to(A-g)*odyog™) =A-Try-(Eog™) =0. |

LEMMA 3.54. Given a metric g on U, if U = Uy @ Uy is an orthogonal direct
sum with respect to g, then the involution on U from Fzample 1.122, K = @1 o
P — Q2 0 Py, and similarly — K, are isometries with respect to g.

Proor. Using the orthogonality,
(£K)"ogo(£K) = (QioP1—Q20P)" 0go(QioPr—Q20P)
= (QioPi+Qe0P) 0ogo(QioP+Q20P)=yg.
[ |

LEMMA 3.55. Given a metric g on U, if 3 € K and K € End(U) is an invo-
lution and an isometry with respect to g, then the direct sum produced by K, as in
Lemma 1.119, is orthogonal.

ProOF. Using the isometry property, K* o go K = g, so using the involution
property, K* og = go K. To check that g respects the direct sum, as in Definition
1.88, use Q; o P; = % -(Idy + K) as in Lemma 1.119:

1
goQioP,=go-(Idy +K) =

1 * * * *
5 5-(IdU*j:K)og:(QiOPi) og=PF oQjoy.

|
THEOREM 3.56. Given a metric g on U, zf% € K, then the direct sum
Hom(U,U*) = Sym(U) & Alt(U)
is orthogonal with respect to the induced metric.
Proor. This follows from Lemma 3.55, Lemma 3.3, and Corollary 3.48. [

COROLLARY 3.57. Given a metric g on U, If% € K and Try(Idy) # 0, then
the direct sum
Hom(U,U™*) = K ® Symo(U, g) @ Alt(U)

is orthogonal with respect to the induced metric. [ |
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There is a converse to the construction of Example 3.51: if a direct sum is
orthogonal with respect to a given metric g, then metrics are induced on the sum-
mands.

THEOREM 3.58. Given a metric g on U and a direct sum U = Uy & Us with
projections and inclusions P;, Q;, if the direct sum is orthogonal with respect to g,
then each of the maps g; = Q; 0cgo Q; : Uy = U] is a metric, and g = g1 ® ga.

PROOF. The pullback g; has inverse P; o g~! o P¥ by Lemma 1.89, and is
symmetric by Lemma 3.8, so it is a metric. Since g respects the direct sums,
ProQfog=goQ;oP;, so using the definition of direct sum of bilinear forms,

g1Dgs = PfoQiogoQioP+PyoQRiogoQyo Py
= go(QioPi+Q20P)=yg.
[ |

EXAMPLE 3.59. Theorem 3.58, applied to the above direct sums, demonstrates

that under suitable hypotheses, a metric ¢ on U induces metrics on Endg(U),
ker(Tr,), Sym(U), Symo(U, g), and Alt(U).

THEOREM 3.60. Given metrics g and h on U and V, if U = Uy @ Us is an
orthogonal direct sum with respect to g, then the direct sum U @V = (U1 @ V) @
(U2®V), as in Example 1.81, is orthogonal with respect to the tensor product metric
{g®h}, and the metric on U; @V induced by the direct sum coincides with {g;®@h}.

PRrROOF. Using Lemma 3.11, and the inclusion maps [@; @ Idy] : U; @ V —
UV,

[Qr ® Idy]" o Hom(Idygv,l)ojo[g® h]o[Q; ® Idy]
= Hom(Idy,ev,l) 0 jo[Q7 @ Idy]e[g®h]o[Qi® Idy]
= Hom(Idy,gv,l)ojo[(Q]ogoQ;)® hl.
For i # I, the result is zero, showing the direct sum is orthogonal, and for ¢ = I,
the calculation shows that the tensor product of the induced metric g; = Q ogoQ;
and h is equal to the metric induced by {g ® h} and [Q; ® Idy] on U; @ V. i

THEOREM 3.61. Given metrics g and h on U and V| if V.= V1 @ Vs, with direct
sum data Q%, P!, is an orthogonal direct sum with respect to h, and U = U1®Us, and
H : U — V is an isometry with respect to g and h which respects the direct sums,
then the direct sum Uy @ Us is orthogonal with respect to g, and PloHoQ; : U; — V;
is an isometry with respect to the induced metrics.

PrROOF. It is straightforward to check that H* : V* — U* respects the direct
sums. It follows that ¢ = H* o h o H is a composite of maps that respect the direct
sums, so Uy @ U, is orthogonal with respect to g. The induced metrics on U; and
V; are as in Theorem 3.58, and the last claim is a special case of Lemma 3.31. [

3.7. Topics and applications

The following facts about the trace, metrics, and direct sums are left as exer-
cises; their proofs are short and lend themselves to the methods and notation of the
previous Sections. Some of the results generalize well-known properties of metrics
on real vector spaces that appear in topics in geometry, algebra, or applications. A
few of the results, labeled Lemmas, will be needed later.
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3.7.1. Foundations of geometry.

PROPOSITION 3.62. Let U and V' be vector spaces, and let h : V. — V* be an
invertible K-linear map. Suppose H is just a function with domain U and target
V', which is not necessarily linear, but which is right cancellable. If there is some
K-linear map g : U — U™ so that

((ho H)(u)) o H = g(u)
for all w € U, then H is K-linear.

PROOF. The right cancellable property in the category of sets is as in Exercise
6.18: Ao H=BoH = A= B, for any, not necessarily linear, functions A and
B.

For K-linearity, two equations must hold. First, for any A € K, u € U,

(hoH)(A-u))o H =g\ u) A-g(u)=X-((hoH)(u))o H
= (hoH)A-u) = X-(hoH)(u)
= h(H(A-u)) = h(\-H(u))
= H(\-u) A H(u).

Second, for any uq, us € U,

((ho H)(u1 +uz)) o H = g(u1 + u2) (u1) + g(u2)

g
= ((hoH)(u1))o H + ((hoH)(uz)) o H
= ((hoH)(u1)+ (hoH)(uz))o H
= (ho H)(uy +u2) = (hoH)(up)+ (hoH)(us)
= h(H(ui +u2)) = h(H(u1)+ H(u2))
= H(ui +u2) = H(ui)+ H(ua).

PROPOSITION 3.63. Let U and V' be vector spaces, and let g : U — U™, h :
V — V* be symmetric bilinear forms. Suppose H is just a function with domain
U and target V', which is not necessarily linear. If% € K and H(Oy) =0y and H
satisfies

(h(H(v) = H(u)))(H(v) — H(u)) = (9(v —u))(v — u)
for all w,v € U, then H also satisfies
((hoH)(u)) o H = g(u)
forallueU.

PrOOF. Expanding the RHS of the hypothesis identity using the symmetric
property of g,

(glv—u))(v—u) = (9(v))(v) = (9(v))(u) = (9(w))(v) + (g(u))(u)



3.7. TOPICS AND APPLICATIONS 123

Expanding the LHS, using the symmetric property of h and H(0y) = Oy,
(h(H(v) — H(u)))(H (v) — H(u))
(h(H (v)))(H (v)) = (h(H (v)))(H (u)) — (h(H (u)))(H (v)) + (h(H (u)))(H (u))
(h(H (v) = H(0v)))(H (v) — H(0v)) — 2(h(H (u)))(H (v))
+(h(H(u) = H(0v)))(H (u) — H(0u))
= (9(v—="00))(v—00) = 2(h(H (u)))(H(v)) + (9(u — Op))(u — O).
Setting the above quantities equal, cancelling like terms, and using % € K, the
conclusion follows. [ |

PROPOSITION 3.64. Let U and V' be vector spaces, and let g : U — U™ be a
metric on U. Suppose h is just a function with domain V and target V*, which is
not necessarily linear. If% cK and H : U =V is a K-linear map satisfying

((ho H)(u))(H(u) = (g(u))(u)
for allw e U, then H satisfies

(h(H (v) — H (w))) (H (v) — H(w)) = (g(v — u))(v — )
for all u,v € U, and ker(H) = {0y }.
PrROOF. To establish the claimed identity, use the linearity of H:
LHS = (h(H(v—u)))(H(v—u)) =RHS.
Suppose H(u) = 0y. Then, for any v € U,

((h o H)(v))(H(v)) (h(H(v) = H(w)))(H(v) — H(u))

(9(v —wu))(v—u)

= (9(0)(v) = (9(v))(u) = (g(w))(v) + (g(u))(u)

((ho H)(v))(H(v)) = 2(g(w))(v) + ((h o H)(uw))(H (u)),

the last step using the symmetric property of g. Using h(H (u)) € V* and H(u) =

Oy, the last term is 0, so cancelling like terms and using % € K, the conclusion is

that (g(u))(v) = 0. Since this holds for all v, g(u) = Op~, and g is invertible, so
u = OU. l

COROLLARY 3.65. Given a vector space V and metrics g and h on V, zf% ek
and H is just a function with domain V and target V', which is not necessarily
linear, then the following are equivalent.

(1) H:V ~V is right cancellable, and for all u €V,
((hoH)(u)) o H = g(u).
(2) H:V ~~V is right cancellable, H(Oy) = Oy, and for all u,v € V,
(h(H(v) — H(u)))(H(v) = H(u)) = (9(v —u))(v — u).
(3) H:V =V is K-linear, and for allu € V,
((ho H)(u))(H(u) = (g(u))(u).

(4) H:V =V is an isometry with respect to g and h.
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PrOOF. For (1) = (3), the linearity is Proposition 3.62 and the identity
obviously follows. Since V is finite-dimensional, a K-linear map V' — V with
trivial kernel must be invertible by Claim 0.56 (and therefore right cancellable),
so Proposition 3.64 gives (3) = (2). (2) == (1) is Proposition 3.63. It
is immediate from Definition 3.23 that (4) == (1), and also (4) = (3).
Finally, the linearity of (3), the identity of (1), and the above mentioned invertibility
together imply (4). The implications (1) <= (4) = (3) did not require
: ek

3.7.2. More isometries.

EXERCISE 3.66. Given metrics on U and V', the switching map s : U ® V —
VeoU:u®v— v®u, as in Example 1.29, is an isometry with respect to the
induced tensor product metrics. [ |

LEMMA 3.67. FEvery map h : K — K* is of the form h¥, where for v € K,
(R*(A\) (1) = v-A-p. If v #0, then h” is a metric on K, with inverse map + - Trx.

Proor. For any h, let v = (h(1))(1); then (h(A))() = A p- (h(1))(1). For
any v, h¥ = v-h', and h” is clearly symmetric. If v = 0 then h = Offom(K,k*)- If
v # 0, then h¥ is invertible, with inverse % -Trg, by Example 2.7:

(5 Tre) o W) A) = - Tre(h*(\) = = (P O))(1) = 5 v A 1=
(o (L - Tr))(A) = h*(1 - AQD) s v+ - A1) - 1= Alu).

A canonical such metric on K is h' = (Trg)~!. h' is also equal to the map

m : K — Hom(K, K) as in Definition 1.20, with inverse dg(1) = Trk as in Lemma
1.22 and Example 2.7. In particular, h¥ = v - m.

EXERCISE 3.68. For three copies of the scalar field, K, Kg, K,, with metrics
he, hP, b7, if B = o+ € K, then the map Trx : Hom(K,, Kg) — K, is an isometry
with respect to the induced b metric and h”.

HINT. For A, B € End(K), the pullback metric is, by Example 2.7,
(W (Tre(A)(Tre(B)) = (R (A(1))(B(1)) =~ - A(1) - B(1).
The induced metric b on Hom(K,, Kg) gives
Tre(Ao (k) toB*oh?) = (Ao (h*)"'oB*oh?)(1)
= Ala™t- Tre(B*(h7(1))))
= Ala™t- (F(1)(B(1)
(@'~ 5-1-B(1))
~A(1) - B(1).

Ol »
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LEMMA 3.69. Given a metric g on U, the scalar multiplication map from Ez-
ample 1.28, ly : U ® K — U, is an isometry, with respect to the tensor product
metric {g@ h"} and v - g.

PRrROOF. Calculating the pullback of v - g gives:
(v - glu(ur @ N)(lw(ue @ @) = A~ - v - (g(u1))(uz),
and the tensor product metric is
{g @ h"Hur @A) (ug @ p) = v - A= - (g(ua))(us).
|

EXERCISE 3.70. Given a metric g on U, the canonical map m : U — Hom(K, U)
from Definition 1.20, m(u) : A — A - u, is an isometry with respect to g and the
metric b induced by h' and g.

HiNT. The pullback of the metric b induced by the more general map h” is,
using Lemma 3.67,

(b(m(u1)(m(u2)) = Tre((h")™ o
= (1) ((m(u1))* (g((m(u2))(1))))
o (m(

= v Tre((9((m(u2))(1))) o (m(u1)))
= v (g((m(u2) (1)) ((m(u1))(1))
= v (g(uz))(w).
If U # {0y}, then v = 1 is necessary for equality. [

LEMMA 3.71. Given a metric g on V., and a direct sum V = K & U with
inclusions Q;, if the direct sum is orthogonal with respect to g, then the induced

metric Q7 o go Q1 on K is equal to h¥, for v = (g(Q1(1)))(Q1(1)).
PROOF. Q7 ogo@1 = h" for some v # 0, by Lemma 3.67 and Theorem 3.58.
v=(h"(1))(1) = (@7 0 g Q1)(1))(1) = (9(Q1(1)))(Q1(1))-
|

EXERCISE 3.72. Given a metric g on V' and an orthogonal direct sum V' = KgU
as in Lemma 3.71, if a € K satisfies

(9(Q1()))(Q1(a)) =
then
dgu(a) : Hom(K,U) - U : A — A(a)

is an isometry with respect to the induced metrics.

HINT. Let A” and gy be the metrics induced by g on K and U from Lemma
3.71, so v = (g(Q1(1)))(Q1(1)). For A, B € Hom(K,U), the pullback of gy by
dgu () gives:

(9 ((div () (A)((dxv (@))(B)) = (9u(A(e)))(B(a))
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The calculation for the induced metric on Hom(K, U) is:

(b(A)(B) = Trx((h") ' oA*ogyoB)
= (1) ((gu(B(1))) 0 4)
= v (gu(BMW))(AQ)).

If o®v = 1, then the outputs are equal; the converse holds for U # {0y}. The
above calculation works for any metric on U, and is similar to that from Exercise
3.70. |

LEMMA 3.73. Given metrics on U, V, and W, the canonical map n : Hom(U, V)®
W — Hom(U,V @ W) is an isometry with respect to the induced metrics.
PRrOOF. This follows from the fact that j, Iy, and m are isometries, Lemma

1.43, where n = [Idyom,v) ® m~ '] o joHom(ly, Idygw ), and Theorems 3.28 and
3.45. Tt could also be checked directly. [

EXERCISE 3.74. Given a metric g on U, the dual metric on U* and the metric
b on Hom(U, K), induced by g and h', coincide.

HINT. For ¢ € U*, and the more general metric k¥ on K, the identity

(R"(1)) 0 p)(A) =v-1-9(A) = (- 9)(N)

is used in computing the b metric for ¢, € € U*:

Trg(Sogtog*oh”) = &g~ (¢"(h(1)))) =&(g (R (1)) 0 )
= &g M v-9) =v-E(g ' (9)

The dual metric on U* results in the quantity £(g71(¢)), so v = 1 is necessary for
equality in the case U # {0y}, and, in general, if h” is the metric on K, then the b

metric on Hom (U, K) is equal to v - dy o g~ . [

EXERCISE 3.75. Given metrics on Uy and Us, if A : Uy — Uj is an isometry,
then A* : Uy — Uy is an isometry with respect to the dual metrics. | |

EXERCISE 3.76. Given metrics on U and V', the mapp: U®V = V* ®U, as
in Notation 1.72, is an isometry with respect to the induced tensor product metrics.
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EXERCISE 3.77. Given metrics g, h, and y on U, V, and W, the map ¢ :
Hom(V, Hom(U, W)) — Hom(V ® U, W), as in Definition 1.46, is an isometry with
respect to the induced metrics.

HINT. All the maps in the following commutative diagram are isometries.

Ve oW —22" L Hom(VeUKeK) oW
l[ldv*(@kUW] l[Hom(ldV@)U,l)@IdW]
V* @ Hom(U, W) VeU)yew
lkv,mmw,m lkvw
Hom(V, Hom (U, W)) ! Hom(V ® U, W)

LEMMA 3.78. Given finite-dimensional vector spaces V' and L, if
Ev,:L*®@L - K
is invertible, then dvy, : V — Hom(Hom(V, L), L) is invertible.

ProOOF. Recall dy 1, from Definition 1.13.

v dvi Hom(Hom(V, L), L)
dvl lHom(kvL,IdL)
Ve Hom(V* ® L, L)
Hom(Idy « E)T Hom(Idy+,Q7) Tq
Hom(V*, L* @ L) Hom(V*, End(L))

Hom(Idy«,krr)

The lower triangle is commutative, by the calculation from the Proof of Proposition
2.21, and so is the upper part of the diagram:

v = (goHom(Idy-,QL) ody)(v)

— 4@} o (dv(v))) :

pou = (QHOW))(u) = (6(v) - IdL)(u) = $(v) -,

v +— (Hom(kyr,Idr)odyr)(v)

= (dvp())okyy:

pu = (kvr(¢@u))(v) = (V) u.

dy 1, is invertible because all the other maps in the outer rectangle are invertible. [ |
PRrROPOSITION 3.79. For V', L, and Evy, as in Lemma 3.78, if there is some

metric y on L, and Evy, is an isometry with respect to the induced metric on L*® L

and h' on K, then dyr, is an isometry with respect to any metric g on 'V, and the
induced metric on Hom(Hom(V, L), L).

PROOF. By Theorem 3.45 and the hypothesis on Evy, Hom(Idy«, Evr) is an
isometry with respect to the b metric on Hom(V*, L* ® L), and the b metric on
V** = Hom(V*,K), induced by dy og~! on V* and h'! on K. By Theorem 3.27, dy
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is an isometry from V to V** with respect to the dual metric, which by Exercise
3.74, is the same as the b metric on Hom(V*,K). Referring to the diagram from
Lemma 3.78, dy 1, is equal to a composite of isometries. [ |

3.7.3. Antisymmetric forms and symplectic forms.

EXERCISE 3.80. Given a bilinear form g : V. — V*, if ¢ satisfies (g(v))(v) =0
for all v € V, then g is antisymmetric. If % € K, then, conversely, an antisymmetric

form g satisfies (g(v))(v) = 0. 1l

Bic EXERCISE 3.81. Given a bilinear form g : V. — V*  the following are
equivalent.

(1) For all u,v € V, if (g(u))(v) = 0, then (g(v))(u) = 0.
(2) g € Sym(V)U Alt(V).

HINT. (2) = (1) is easy; a proof of the well-known converse is given by [J]
§6.1. A bilinear form satisfying either equivalent condition is variously described
by the literature as “orthosymmetric” or “reflexive.” [

DEFINITION 3.82. A bilinear form h : U — U™ is a symplectic form means: h
is antisymmetric and invertible.

Recall from Theorem 3.15 that the invertibility implies U is finite-dimensional.

EXERCISE 3.83. Given a symplectic form h on V, the bilinear form dy o h~! :
V* — V** is a symplectic form on V*.

HinT. This is an analogue of Theorem 3.17. The antisymmetric property im-
plies the equality dy o h=t = —(h*)~ L

Given a symplectic form h on V', the above Exercise suggests there are two
opposite ways h could induce a symplectic form on V*:

(3.6) dyoh™ = —(h")71,

(3.7) —dyoh™t = (")
EXERCISE 3.84. The tensor product of symplectic forms is a metric. [ |
The following Definition is analogous to Definition 3.23.

DEFINITION 3.85. A map H : U — V is a symplectic isometry, with respect to
symplectic forms g on U, and h on V', means: H is invertible, and g = H*oho H.

LEMMA 3.86. A symplectic form h : U — U* is a symplectic isometry with
respect to itself and the symplectic form —dy o h=1 from (3.7). [ |

EXERCISE 3.87. Given V with metric g and symplectic form h, the following
are equivalent.

(1) g is a symplectic isometry with respect to h and the symplectic form
dy o h~! from (3.6).
(2) h='og € End(V) is an involution.
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EXERCISE 3.88. Given V with metric g and symplectic form A, the following
are equivalent.
(1) g is a symplectic isometry with respect to h and the symplectic form
—dy o h™! from (3.7).
(2) h is an isometry with respect to g and the dual metric dy o g~ 1.
(3) g7t oh € End(V) is an isometry with respect to g.
(4) g~toh € End(V) is a symplectic isometry with respect to h.

HINT. The equivalence of (2) and (3) follows from Theorem 3.26. i

EXERCISE 3.89. Given a symplectic form h on U, using either method (3.6)
or (3.7) to induce a symplectic form on the dual space, the double dual U** has a
canonical symplectic form

dy+ o (dy o h™ )™t = —dy o (=dy o h™1) ™! = dyr o hodyt.

The map dy : U — U™** is a symplectic isometry with respect to A and the above
symplectic form. [ |

Bia EXERCISE 3.90. Several more of the elementary results on metrics can be
adapted to symplectic forms. [ |

3.7.4. More direct sums.

EXERCISE 3.91. Given linear maps H : U — V and h:V — V* if H*oho H :
U — U* is invertible, then there is a direct sum V' = U @ker(H*oh). If, in addition,
h is symmetric (or antisymmetric), then h : V' — V* respects the induced direct
sums and H*oho H : U — U* is a metric (respectively, symplectic form) on U. If,
further, h is invertible, then & also induces a metric (respectively, symplectic form)
on ker(H* o h).

HINT. H is a linear monomorphism as in Exercise 3.25. Let Q1 = H, and let
P =(H*ohoH) YoH*oh. Then PioQ; = Idy, and Q10 P, = Ho(H*oho
H) 'oH*oh is an idempotent on V. The kernel of Q1 o P is equal to the kernel of
H* o h; let Q2 denote the inclusion of this subspace in V', and define the projection
Ps onto this subspace as in Example 1.113: P, = Idy — Q10 P, = Q20 Ps.

The direct sum V' = U @ ker(H* o h) induces a direct sum V* = U* @ (ker(H* o
h))* as in Example 1.84. If h is symmetric (or antisymmetric), then H*oho H is also
symmetric (respectively, antisymmetric) by Lemma 3.8, and a metric (respectively,
symplectic form) on U, so U is finite-dimensional and dy is invertible. Consider
the two expressions:

hoQioP = ho[{o([{*ohoH)floI{*oh7
PfoQioh = h*oH™o(H*oh*oH*") 'oH*oh.
If h = £h* o dy, then, using Lemma 1.14,
hoQioP, = =+h*odyoHo(H"o(+h*ody)oH) *oH*oh
h*o H* ody o (H* oh* o H** ody) o H* o h,
so hoQio P =P/ oQ7}oh, and h respects the direct sums.
If, further, h is invertible, then h is a metric (respectively, symplectic form)

that respects the direct sums V' — V* so V = U @ ker(H"* o h) is an orthogonal
direct sum with respect to h, and Theorem 3.58 applies. [
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EXERCISE 3.92. Given V = V1@ Vs, U = U; ®U,, with projection and inclusion
maps P;, Q; on V, P/, Q. on U, if A:U; — V; and B : Uy — V4 are isometries
with respect to metrics g; on U;, h; on V;, then

ADB=Qio0AoP+Qs0BoPy:U—V
is an isometry with respect to the induced metrics.
HiNT. The invertibility is by Lemma 1.86. The rest of the claim is that
g1®g2=(A® B)" o(h1 & h2)o (A& B).
The RHS can be expanded:
RHS = (P*oA"oQi+ Py oB"0Q})
o(PfohyoPy+ Pyohyo P)
o(Qio Ao P{+Qy0BoP)
= PfoA*ohioAoP +PyfoB*ohyoBoP,
= PfogioP|+PyogyoPy=LHS.
The last step uses g1 = A*ohj o0 A, go = B*ohs o B. [ |

EXERCISE 3.93. Given metrics g7 and g2 on Vi and Vs, if V = Vi @ V5 and
W = Vi @ V; are direct sums with data P/, Q; and P;, Q;, respectively, then the
map Q) o P+ Q40 P, : W — V is an isometry with respect to the direct sum
metrics from Corollary 3.18.

HiNT. This is a special case of Exercise 3.92. The construction of the invertible
map Q) o P+ Q40 Py : W — V is a special case of the map from Lemma 1.86. [

EXERCISE 3.94. Given metrics g1 and g on V; and Vs, if V. = V; & V5, then
the dual of the metric g1 @ g2 from Corollary 3.18 is dy o (g1 @ ge) ™! : V* — V**  as
in Theorem 3.17. For the direct sum V* = V;* @ V5" from Example 1.84, the direct
sum of the dual metrics is (dy, o g7 ') @ (dy, © g5 *). These two metrics on V* are
equal.

HINT. Lemma 1.14 applies to the direct sum formula (3.3) and the inverse
(3.4). [

ExampLE 3.95. Given % € K, and given V with metric g and an involution
Ky, : V. — V| producing a direct sum V; @ V5 as in Lemma 1.119, suppose the
bilinear forms Q} o g o Q; are metrics for ¢ = 1,2 (this is the case, for example,
when K3 is an isometry, by Lemma 3.55 and Theorem 3.58). If K, is another
involution on V' that is an isometry and anticommutes with K, then K5 respects
the direct sums Vi @ Vo — V5 @ Vi as in Lemma 1.127, and the induced maps
PooKsoQr : Vi — Voand Py o Koo @y : Vo — Vi, as in Theorem 1.136, are
isometries by Lemma 3.31.

LEMMA 3.96. Given % € K, and given V with metric g and an involution

K :V =V, producing a direct sum V = Vi @& Vo with data P;, Q; as in Lemma
1.119, suppose the direct sum is orthogonal with respect to g (this is the case, for
example, when K is an isometry, by Lemma 3.55). Let K' be another involution
on V that is an isometry and anticommutes with K, and which produces a direct
sum V = V| ® V3, with data P!, Q). If B € K satisfies 3> = 2, then fori = 1,2,
I=1,2, the map B- P} oQ;:V;— V] is an isometry.
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PRrROOF. The map (- P;oQ; : V; — V] is invertible by Theorem 1.137. The
induced metric on V; is Qf o go @; and on V] is (Q})* 0 g 0 Q%, by Lemma 3.55 and
Theorem 3.58. From the Proof of Lemma 3.55, g o Q} o P} = (P})* o (Q})* o g.
(8- PhoQ)" o (@) 090 Q}) o (8- PfoQ)

B2-Qi o (Pp) o (Q)) 0goQioProQ;
— B.QiogoQioPloq:

1
= ﬁQ-Qz‘ogoa “(Idy £+ K') 0 Q;.

By hypothesis, g respects the direct sum Vi @ Va, but K’ reverses the direct sum
as in Lemma 1.127. So, Qf ogo K' 0 Q; = Ofom(v;,v+) and the second term in the

last line drops out. [ |

EXERCISE 3.97. Given metrics g and h on U and V, let U = U; ® Uy and
V = Vi @ Va2 be orthogonal direct sums with respective data P;, Q;, P/, Q. If
H : U — V is an isometry such that Py o H o Q1 = Ogom(u,,v3), and P{ o H o Qy
is a linear epimorphism, then Py o H o Q2 = Onom(u,,v4), S0 H respects the direct
sums.

HiNT.
Otom(ty,uz) = @3090Q1
= Qi0H"ohoHo@
= Q30H%(Q)oP+Qy0Py) oho(QioP{+Qy0P;)0H o
— (PloHoQu) o Qf ohoQloPloHoQ.
T o ho@] is invertible by Theorem 3.58, so P{ o H 0 Q2 = Opom(vs,,v;) by the
linear epimorphism property (Definition 0.52).

EXERCISE 3.98. If U; = V; in Exercise 3.97, then the epimorphism property is
not needed in the hypothesis.

HinT.
(ProH 'oQ))o(PloHoQy) = PioH 'o(QioP +QhoPs)oHoQ
= Plle ZIdvl.
Claim 0.56 applies. [ |

EXERCISE 3.99. Given any vector space V, if U = Uy @ Us is a direct sum with
projections P; and inclusions @);, then as in Example 1.83,

Hom(U, V) = Hom(U;, V) @ Hom(Us, V),

with projections Hom(Q;, Idy ) and inclusions Hom(P;, Idy ). Given metrics g and h
on U and V| if Uy ®Us is an orthogonal direct sum, then Hom (U3, V') @Hom(Us, V)
is an orthogonal direct sum with respect to the induced b metric.

HinT. Consider A:U; -V, B:U; —» V.
((Hom(Py, Idy)*oboHom(P;, Idy))(A))(B)

(b(A o F;))(Bo Pr)
= Try(BoP; og_lo(AoPi)*oh)
= Try(BoP; ogiloPi*oA*oh).
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By Lemma, 1.89, since g : U — U* respects the direct sums, so does ¢~ ' : U* = U,
so for i # I, Prog™" o P} = Onom(u+,u,)- This makes (b(A o P;))(B o Pr) equal to
zero, proving orthogonality.

EXERCISE 3.100. Given any vector space U, if V. = Vi @& V5 is a direct sum
with projections P; and inclusions @;, then as in Example 1.82, Hom(U,V) =
Hom(U, V1)@Hom(U, V3), with projections Hom(Idy, P;) and inclusions Hom(Idy, Q;).
Given metrics g and h on U and V, if V; @ V4 is an orthogonal direct sum, then

Hom(U, V1) @ Hom(U, V3) is an orthogonal direct sum with respect to the induced
b metric.

HiNT. Consider A: U —V;, B: U — V.
(Hom(Idy, Qr)*oboHom(Idy, Q;))(A))(B) = (b(Qio A))(Qro B)
= Try(QroBog 'o(Qi0A)*oh)
= Try,(Bog 'oA* o QfohoQy).
For i # I, this quantity is zero. [ |
EXERCISE 3.101. Given a metric g on U, if U = Uy @ Us is an orthogonal direct

sum with data @;, P;, and g1, g2 are the metrics induced on Uy, Us (from Theorem
3.58), and K : U — U™, then

Try(K) =Trg, (Q1 0 K 0 Q1) +Trg,(Q3 0 K 0 Q2).

HinT. By Theorem 3.58, gi_1 = P,og ! o P, and from the hint for Exercise
3.99, Prog loPr = Onom(uz,Uy) for i # I. Using Lemma 2.6,
Trg(K) = Trv(g_l 0(QioPi+Q20P) 0oKo(QioP+Q20P))
= Try(Prog lo(PfoQi+PsoQ3) 0K oQn)
+Try,(Paog™ o (Pl oQ] + Py 0Q3) 0 K 0 Qo)
= Try(Prog o P oQioKoQy)
+Try,(Prog o Py o Q50 K 0Qs)
= Try (g7 0Qio KoQi)+Try,(g; " 0Q5 0K 0Qy).
|

LEMMA 3.102. Let V = U @ U™, with projections and inclusions P;, Q;. The
direct sum induces a symmetric form on V,

(3.8) PfoPy+ PyodyoP.

If U is finite-dimensional, then this symmetric form is a metric.

PRrOOF.

(PfoPy+PjodyoP) ody = P;on*odV—i—Pfod*Uo > ody
= P;odUopl—l—Pl*od*UodU*oPg
= P/oPy+ PjodyoP.

(PfoPy+PyodyoP)o(Qiod;'oQs+Q20Q;) = P;oQs+ PfoQ;

= Idy-.
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(Qiody'o Q5 +Q20Q )0 (PfoPy+ PyodyoP) = QioPi+ Q0P
= Idy.

ExaMPLE 3.103. Given a metric gy on U, if V = U @ U*, with direct sum data
P;, Q;, then the direct sum of the metric gy and its dual dy o gljl is a metric on V:

gu ® gu- = Pfogy o Pi+ Py odyogy'o Py,

as in Theorem 3.17 and Corollary 3.18.

The map K = Qo0gyo P+ Q1 og(}1 o P, is an involution on V', as in Equation
(1.19) from Theorem 1.136, and it is an isometry with respect to both the above
induced metric gy @ g+, and the canonical metric gy from (3.8) in Lemma 3.102. In
particular, if % € K, then Lemma 3.55 applies, so that the direct sum V =V; & Vs,
where

1 1 _

P = E(Idv—i—K):a(Idv+Q209UOP1+Q109U10P2)
1 1 _

P, = S(dy —K)=(Idv - Q2ogu o P = Qiogy' o Py),

is orthogonal with respect to both metrics on V. Each of the two metrics on V'
induces a metric on V; and on V5.

EXERCISE 3.104. For V=U @ U* and V = V; @ V5 as in the above Example,
the two induced metrics on V; are identical, while those on V5 are opposite.

HiINT. It is more convenient to check the equality of the inverses of the induced
metrics on Vi, using (3.4) from Corollary 3.18 and the formulas from Theorem 3.58:

Plogy'o(P))
= Udy + K)o (Quodg'o Q3+ Q20 Q)0 £ (Idy + K)*
= Plo(gu®gu-) o(P)"
= LIy + K)o (@0 g5 0 Qi + Qa0 g o dg' 0Q3) 0 L(1dy + K)°

1 - * * * * — *
= 5(@109U10Q1+Q209U°Q2+Q20Q1+QlodU1°Q2)

1, _ _
= §(gv1+(9U@gU*) h.

The calculations for the metrics induced on V5 are similar. [ |

EXAMPLE 3.105. Let V = U ¢ U*, with direct sum data P;, ();. The direct
sum induces an antisymmetric form on V|

(39) PQ* o dU o] P1 — Pl* [e) P2,

If U is finite-dimensional, then this antisymmetric form is symplectic (Definition
3.82). The construction is similar to the induced symmetric form (3.8) from Lemma
3.102, and canonical up to sign (as in (3.6), (3.7)). The inverse of the symplectic

form is Q1 od&1 0 Q5 — Q20Q7.
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3.7.5. Isotropic maps and graphs.

DEFINITION 3.106. Given a bilinear form g : V' — V* alinear map A: U — V
is isotropic with respect to g means that the pullback of g by A is zero:

A*ogo A= OHom(U,U+)-
EXERCISE 3.107. Given V =V} @ V5 with projections and inclusions (P, Ps),
(Q1,Q2), and a bilinear form h : V — V*, the following are equivalent.
(1) @1 and Q2 are both isotropic with respect to h.
(2) The involution K = Q1 0 Py — Q2 0 P; satisfies h = —K*oho K.
If, further, 2 € K and K € End(V) is any involution satisfying h = —K* o ho K,
then the direct sum produced by K has both of the above equivalent properties.

HINT. The expression Q1 o P; — Q2 o P is as in Example 1.122. [ |

EXERCISE 3.108. Given V = V; & V5 with inclusions @), bilinear forms ¢y :
Vi—= Vi, go: Vo — Vs, and a map A : Vi — Vb, the following are equivalent.
(1) g1 =A*0gao A
(2) The map Q1 + Q20 A : Vi — V is isotropic with respect to the bilinear
form g1 @ (—g2).

HiNT. The first property is that g; is the pullback of go by A as in Definition
3.7; special cases include A being an isometry (Definition 3.23) or a symplectic
isometry (Definition 3.85).

The second property refers to the direct sum of bilinear forms as in (3.3) from
Notation 3.9. The expression @)1 + @2 o A is from the notion that a “graph” of a
linear map can be defined in terms of a direct sum, as in Exercise 1.107.

EXERCISE 3.109. ([LP]) Let V. = U & U*. Given maps £ : W — U and
h:U — W, the following are equivalent.
(1) The bilinear form ho E : W — W* is antisymmetric.
(2) The map Q10 FE + Qa0h*ody : W — V is isotropic with respect to the
symmetric form (3.8) on V' from Lemma 3.102.
Further, if F is a linear monomorphism, then so is Q1 0 E + Q2 o h* o dyy.

HINT. By Definition 3.106, the second property is that the pullback of the
symmetric form (3.8) on V = U @ U* from Lemma 3.102 by the map Q10 FE+ Q20
h* odw : W — V' is Oom(w,w+). The transpose Ty (ho E) is E* o h* o dy .

(QioE + Q20 h*odw) o(Pfo P2+ Pyody o P)o(QioE + Q20 h™odw)
= E'oh*ody +diyoh™odyoE

= E'oh*odwy +holF.

For any maps I, G, if
(QoE+Q2oh”odw)oF =(QioE+Qz0h™odw)oG,
then
Po(QioE+Qyoh*odw)oF = Pio(QioE+Qeoh™odwy)oG
=FEoF = FEoQG,
so if F is a linear monomorphism (Definition 0.47), then F' = G, proving the second
claim. |
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If W =U and F = Idy, then this construction is exactly the graph of h* o dy,
as in Exercise 1.107. A generalization of the construction appears in Section 4.2.

EXERCISE 3.110. ([LP]) Let V. = U & U*. Given maps E : W — U and
h: U — W¥*, the following are equivalent.

(1) The bilinear form ho E : W — W* is symmetric.
(2) The map Q10 FE + Qa0h*ody : W — V is isotropic with respect to the
antisymmetric form (3.9) from Example 3.105.

3.7.6. The adjoint.

DEFINITION 3.111. Metrics g, h, on U, V induce an adjoint map,

(3.10) Hom(h, g™ ) o tyy : Hom(U, V) — Hom(V,U) : A+ gt o A* o h.

EXERCISE 3.112. Given metrics g and h on U and V, the map (3.10) is an
isometry with respect to the induced b metrics. Also, if A: U — V is an isometry,
then its adjoint is an isometry V' — U.

HiINT. The first assertion follows from the fact that g, h, and tyy are isometries.
The second claim follows from the following equation, which uses the symmetry of
g and h, and Lemma 1.14:

(3.11) (g toA*oh)* =h* 0 Ao (¢ 1) = hod‘_/1 0oA*odyog t=hoAogt,
and the hypothesis g = A* o h o A:
(g7t oA*oh)*ogo(gtoA*oh) = (hoAog HoA*oh
= hoAoA'=h.
|

LEMMA 3.113. Given metrics g and h on U and V', the composite of adjoint
maps,

(Hom(g,h™ ") o tyy) o (Hom(h, g~ ') o tyy) : Hom(U, V) — Hom(U, V)
is the identity. In particular, the adjoint map Hom(g,g~ ') o tyy : End(U) —
End(U) is an involution.
Proor. Using (3.11),
h=to(gtoA*oh)*og=h"to(hoAog Hog=A.
|

EXERCISE 3.114. Given a metric g on U, if Try(Idy) # 0, then the adjoint
map Hom(g,g 1) o tyy respects any direct sum End(U) = K @ Endg(U) as in
Example 2.9. The restriction of the adjoint map to Endg(U) is an involution and
an isometry.

HINT. The direct sum refers to the construction of Example 2.9, and it is
easily checked that P; o Hom(g, g~ %) otyy o Q; is zero for i # I. The direct sum is
orthogonal as in Theorem 3.52, and Theorem 3.61 applies to the map induced by
the adjoint on Endy(U).
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THEOREM 3.115. Given a metric g on U, the following diagram is commutative,
where s and s’ are switching involutions.

S

UeU UeU
l9®9] [9®9]
U @ U* U* @ U*
kyu+ kyr«
Hom(U, U*) —2% s Hom(U**, U*) 2290 ) gom (@, U)
Hom(Idw,g) THom(g*,IdU*) Hom(Idy,g)
End(U) ‘ End(U*) — 09D pod()
k Tk/ k
U o U d vr U — 2 gy
[g®Idy] l[g®Idy]
UeU > UeU

All the horizontal compositions of arrows define involutions, and zf% € K, then
they produce orthogonal direct sums on the spaces in the left column.

PROOF. The composite in the third row is Ty, and the second square from the
top does not involve the metric ¢ — it was considered in Lemma 3.6.

The composite in the fifth row, [g*®g~!]op, is the only involution not considered
earlier. The commutativity of all the squares is easy to check.

The direct sums are produced by the involutions as in Lemma 1.119. The
orthogonality of the direct sum for Hom(U, U*) was checked in Theorem 3.56, and
the orthogonality of the other direct sums similarly follows from Lemma 3.55 since
all the horizontal arrows are isometries and involutions, or from Theorem 3.61 since
all the vertical arrows are isometries which respect the direct sums, by Lemma
1.126. In particular, the direct sum U* @ U* = S?(U*) @ A?>(U*) from Lemma 3.6

is orthogonal. [ |

DEFINITION 3.116. Given a metric g on U, if % € K, then the orthogonal
direct sum on End(U), produced by the involution Hom(g,g~!) ot as in Theorem
3.115, defines subspaces of self-adjoint (A = g~ o A* o g) and skew-adjoint (A =
—g~to A* 0 g) endomorphisms.

ExAMPLE 3.117. Given a metric g on U, if % € K, then the bilinear form
h:U — U* is a symmetric (or, antisymmetric) form if and only if gt oh € End(U)
is self-adjoint (respectively, skew-adjoint). This is the action of the middle left
vertical arrow, and its inverse, from Theorem 3.115, respecting the direct sums
Hom(U,U*) — End(U).

EXERCISE 3.118. Given metrics g, h on U, V, if % € K then for any map
A:U—-V,
Hom(g ' o A* o h, A) : End(U) — End(V)

respects the direct sum from Definition 3.116.
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HINT. The following diagram is commutative, using Lemma 1.8 and the sym-
metric property of g and h, so Lemma 1.126 applies.

m(g,g" "
End(U) —2Y» End(U*) 22499 )

End(U)

lHom(gloA*oh,A) lHom(gIOA*Oh,A)

Hom(h,h ™)
B ——

End(V) —Y~ End(V*) End(V)

[
EXERCISE 3.119. Given a metric g on V, if 1 € K, then a skew-adjoint A €

2
End(V) satisfies Try (A) = 0. If, further, Try (Idy) # 0, then any A € End(V)
can be written as a sum of three terms,

T?“V (A)
T’I“V (Idv)

where A; and As have trace 0, A;j is self-adjoint, and As is skew-adjoint.

A: IdV+A1+A2)

HINT. The first claim follows from Lemma 2.5 and Lemma 2.6. The second
claim is an analogue of Corollary 3.36. Apply Theorem 1.125 to T'ry and the
involution Hom(g, g~ 1) ot on End(V) to get a direct sum decomposition. [ |

EXERCISE 3.120. Given a metric g on U, any scalar a € K, and any vector
u € U, the endomorphism

a - kyu((9(u)) @ u) € End(U)
is self-adjoint. If, further, a-(g(u))(u) = 1, then a-kyy ((g(u))®u) is an idempotent.
HINT. From the commutativity of the diagram in Theorem 3.115,
(Hom(g, g~ ") o tyu) (kuu ((9(u)) @ u))
= (Hom(g,g™ ") o tyy o kyu o [g ® Idy])(u @ u)
= (kvvolg®Idy]os)(u®u)
= kuu((g(u) ®uw).
The easily checked idempotent property is related to Exercise 2.15. [ |
EXERCISE 3.121. Given metrics g, h on U, V, any vector u € U, and any map

AU — V, the two self-adjoint endomorphisms from Exercise 3.120 are related by
the map from Exercise 3.118:

Hom(g™" 0 A" o h, A)(kuu ((9(w)) ® u)) = kv ((h(A(u))) ® (A(u))).

HiINT. The left square is commutative by Lemma 1.36, and the right square is
commutative by Lemma 1.62 and Equation (3.11).

UeoU —221 gy —F | pnqu)

l[A@B] l[(hvogl)@aB] lHom(gloA*oh,B)
[h@Idy]

VoV —2  yrgy — MY Enav)

The equality follows from the case where B = A, and starting with u®u € UQU.. [ |
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EXERCISE 3.122. Given a metric g on U, and an endomorphism A € End(U),
any pair of two of the following three statements implies the remaining third state-
ment.

(1) A is an involution.
(2) A is self-adjoint.
(3) A is an isometry.

3.7.7. Some formulas from applied mathematics.

REMARK 3.123. The following few statements are related to the Householder
reflection R.

EXERCISE 3.124. Given a metric g on U, and an element u € U, if (g(u))(u) #
0, then the endomorphism

2
(g(uw))(u)

is self-adjoint, an involution, and an isometry.

R=Idy — “kvu((g(uw)) @ u)

HINT. The second term is from Exercise 3.120. Lemma 1.123 and Exercise
3.122 apply.

PROPOSITION 3.125. Given a metric g on V' and % e K, if u,v € V satisfy
(g(w)(u) = (g(v))(v) # 0, then there exists an isometry H € End(V') such that
H(u) =wv.

PROOF. Such an isometry may not be unique; the following construction is not
canonical, it depends on two cases.

Case 1. If (g(u + v))(u + v) # 0, then consider the isometry from Exercise
3.124, applied to the vector u + v:

Ro= Iy = s by ((g(u+ ) @ (a4 0)
W e s (g ) () (4 +0)
- vy () + e)) - (o)
LetH:iR._v.

Case 2. If (g(u +v))(u + v) = 0, the calculation

(9(u+0))(u+v) + (9(u —v))(u —v) = 4 (g(u))(u),
and the assumption 1 € K, imply that (g(u — v))(u — v) # 0, so we can use the
isometry from Exercise 3.124, applied to the vector u — v:

2
H=R = Iy~ s by ((glu =) & (u =) :
2
U = u— (g(u_v))(u_v) (g(u—v))(u)(u—v)
= u-— : ((g(w)(w) = (9(v))(w)) - (u —v)
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EXERCISE 3.126. Given a metric gon V and v € V, if (g(v))(v) # 0, then there
exists a direct sum V = K@®ker(g(v)) such that any direct sum equivalent to it has
the properties that it is orthogonal and for any A € End(V),

Trv(QlOPloA):%.

If, further, % € K, then the direct sum produced by the involution —R, for R as in
Exercise 3.124, is such an equivalent direct sum.

HINT. Since g(v) # Oy«, Lemmas 1.100 and 1.101 give a direct sum V =
K @ ker(g(v)), which is canonical up to equivalence, as follows. Let Q) be the
inclusion of the subspace ker(g(v)) in V. For any a, § € K with a- 8- (g(v))(v) = 1,
define

Q?:K - Viyw=B-vy-v,
Pf=a-gv):V — K,
Py=1Idy —QioPr:V — ker(g(v)).

For the orthogonality of the direct sum, it is straightforward to check, using the
symmetric property of g, that (Pf*)* o (Qf)* og=go Q? o PP, or that (Qf)* 0goQ)
and (Q})* o go QY are both zero. This is also a special case of Exercise 3.91 with
h=gand H= Qf .

It is also easy to check that

(3.12) Q%o PfoA=kyv(B-a-((g(v)oA)®v) € End(V),
so by the definition of trace,

(3.13) Try(Qi o Pfod) = Buy(8-a-((9(v)oA)@wv)

(9(v)(A(v))

Bra-(g(v)(Av)) OO
where the RHS of (3.14) does not depend on the choice of «, . Further, if maps
P;, Q; define any direct sum equivalent to the above orthogonal direct sum, then
that direct sum is also orthogonal by Lemma 3.50, and Q’f oP* =Q10P asin
Lemma 1.95, so the LHS of (3.13) is invariant under equivalent direct sums.

Finally, setting A = Idy in (3.12) gives R = Idy —2- Q) o P{. If 3 € K, then
the direct sum produced by —R as in Lemma 1.119 has Q10 P, = &-(Idy +(—R)) =
Qf o P{* and the direct sums are equivalent. The A = Idy case of (3.14) also gives
the formula from Example 2.8.

The above steps did not use the invertibility of g, although the notion of or-
thogonal direct sum was defined only with respect to an invertible metric g. [ |

(3.14)

EXERCISE 3.127. Given a metric g on V and a direct sum of the form V = KGU
with projections (P, P») and inclusions (Q1, Q2), let v = Q1(1). If the direct sum is
orthogonal with respect to g, then it is equivalent to a direct sum V = K&ker(g(v))
from Exercise 3.126. The involution from Lemma 3.54,

—I(:—621OP1—|-6220P27
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coincides with the involution from Exercise 3.124,

2
R = Idv - o bvv((9() @)
2
fav- ((g0Q1)(1))(Q1(1)) kv (((90Q1)(1) ® (Q1(1))) € End(V).

HiNT. First, Lemma 3.71 applies to the orthogonal direct sum: (g(v))(v) =
(9(Q1(1))(Q1(1)) = v # 0. Using orthogonality again, go Q1 0 P, = P;f o Q7 o g,
so for any w € V,

9(@1(A(w) = P (Qi(g(w)))
=P (w) g(Q:1(1)) = Pi(w)-g(v) = gw)oQroP;:v—
Pi(w) - (g())(v) = (9(w)(@Q:1(F1(v)) = (g(w))(F1(v) - Qu(1))
= Pi(@:(1)) - (9(w))(v) = (g(w))(v)
Lo - @)

(g()(v)

The equivalence of the direct sums follows, using the symmetric property of g:

o D)
Qo) = Pilw)- Qi) = S
BO > w = «- . v w 'U:M-U

The claimed equality also follows, as in (3.12):
~K=1Idy —2-Qi0P, =1dy —2-Q) o P® =R.
|

EXERCISE 3.128. Given a metric g on V', if Try (Idy) # 0, then for an orthog-
onal direct sum End(V') = K @ Endo (V') with inclusion Qf as in Example 2.9 and
Theorem 3.52, the induced metric on K is h”, where v = 32 - Try (Idy) does not
depend on g. The involution R on End(V') from Exercise 3.127 does not depend on
g or 3, and reverses the trace: for any A € End(V), Try(R(A)) = =Try(A).

HiNT. Using Lemma 3.71,
v = BQUMNQT(1) =Try(8-Idy og~" o (5-Idy)" 0 g) = 52 Try(ldv).
For A € End(V),

RA) = A-2 (@MW) QL)

A—g-T?“V(Aogflo(ﬂ-fdv)*og)-ﬂ-[dv
v

2. Trv(A) : ﬂQ
B2 Try(Idy)

A -Idy.

REMARK 3.129. The following few exercises are related to the block vec oper-
ation from [O].
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In the following diagram,

Hom(U®V, W*@X*)

/ W

Hom (U, W*)®@Hom(V, X*) Hom(U®V, (W®X)*)
[kuw = ®ky x+] (U@V)*Q@(W@X)*
(@]l O

U'oW*@V*@X* — 2> UV W*® X*

82
53

VX U W* Hom(VeX, (UW)*)

[7®7)
kvex,wew)

VeoX)yoUeW):*

S1, S2, and s3 = sp0s7 are switching maps, and the various j maps are as in Notation
2.43. The top block is commutative, it is similar to the diagram from Lemma 2.32.

NoTAaTION 3.130. If three of the four spaces U, V., W, X are finite-dimensional,
then all of the arrows in the above diagram are invertible. Define the map

O:Hom(U @V, (W ® X)*) = Hom(V @ X, (U @ W)*)

to equal the composite going counter-clockwise around the lower right square in
the diagram.

EXERCISE 3.131. ([O] Theorem 1) If three of the four spaces U, V, W, X
are finite-dimensional, then for any A € Hom(U @ V, (W @ X)*), the following are
equivalent.

(1) There exist hy € Hom(U, W*), he € Hom(V, X*) such that
A:fo [hl ®h2]
(2) There exist ¢1 € (V @ X)* and ¢ € (U ® W)* such that

D(A) = kvex,wew)- (41 & ¢2).
In the special case W =U, X =V, (1) can be re-written using Notation 3.13:
(1") There exist hy € Hom(U,U*), he € Hom(V, V*) such that A = {h1 ® ha}.
|
EXERCISE 3.132. ([O] Corollary 1) If V is finite-dimensional, then for any
A € Hom(V @ V,(V ® V)*), the following are equivalent.

(1) There exists h € Hom(V, V*) such that A = {h ® h}.
(2) There exists ¢ € (V ® V)* such that O(A) = kygv,(vev)-(¢ @ ¢).

Either (1) or (2) implies that the bilinear form [J(A) is symmetric. [
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REMARK 3.133. The following two Propositions relating the b metric to a trace
on a tensor product space are analogous to a formula involving the “commutation
matrix” K (from Remark 1.76), which appears in [HJ] §4.3, and [Magnus]| (exercise
3.9: trKk (A’ ® B) =trA’B).

PROPOSITION 3.134. Given metrics g and h onU and V', for A, B € Hom(U,V),
Try-gu([(hody')® g™ opo[B* @ A]) = Tru(g~' o B* o ho A).

PrOOF. In the following diagram,

U@VeU*eV UeVeU*eV Hom(U,V )2Hom(U,V')
[[(duog™")®hI@Idygy] [p@Idy=gv] [tuv @Tdaomw,v)]
U*V*eU*RV V*UoU*QV —=2> Hom(V*U*2Hom(U,V)
i®ldy=gv] [dy«« g™ |@[Idy~®h]]
Hom(U*@VK&K)2U eV VHRURUQV* j
[Hom(Idy gy, l)@1dy gy ] s
U*V)*oU*QV VHRVQUQU Hom(V* @ U,U*®V)
[by v+ ®kuy]
Bogegy | ETERULT R q(VASER(U) Hom(idy g0 )
Lo[Try+®Try] 7
K End(V*®U) Hom(V*@U,V**@U™*)

Try«gu

the arrow s in the top row switches the two V factors, and the abbreviated arrow
labels are

ar = [kuv @ kuv]
az = [ku-v- @ kyv]
az = Hom(Idy-gu,[(hody)®g ).

The top right square is commutative by Lemmas 1.36 and 1.75. The lower left
triangle is commutative by Corollary 2.36, and the triangle above that by the
definition of trace. Starting with PR ¢ @ E@v e V@ U* @ U* ® V, the lower
right square is commutative:

PReERV (a3 o Hom(Idy«gu,p) o joa)(PRepREQV)
= [(hodyh)@g opo[(ku-v-(22¢))® (kuv(E00v))] :
vou = (A((E() - v)@ (g (D)) - ¢)),
PRPRERY = (j20 [kyev:®kyy] o s o [[[dv®g™ '@ [Idy- @]} (2@ ORERV)
= [(kv-v- (@ (h(v) @ (kvv(E2(9 ()] :
pou = (B() - h(v)@(E(u) - g (9)).
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Starting with ¢Ruw®ERv € U*QV QU*®V, the upper left square is commutative:

¢®w®§®v'—>(lo[E'UV*@E’UU]OSO[[IdV**®g_1]®[IdU*@h]]O[p@IdU*®V])(¢®U}®§®’U)
= (Lo [Boy- ® Evylos)((dv(w) ® (97 (4)) @ £ @ (h(v)))
= ((h())(w)) - (g~ (),

PRWRED v (Buy-gvo [(Hom(Idy-gv;l)ojo[(duog™t) @h]) @ Idy-ayv]os) (p@w@ED0)
= Bug-gv((lo[((dv og™")(¢) ® (h(v))]) ©® £ @ w)
= (E(g7(9))) - ((h(w))(w)).

A/\

This last quantity is also the result of the tensor product metric:

({(dyog ") @h}op@w))(E®v) = (£(g7"(9))) - ((h(v))(w)),

from Corollary 3.19. So the claimed equality follows from the commutativity of
the diagram, and the fact that k[}‘l, is an isometry (Theorem 3.41). Starting with
B® A € Hom(U, V) ® Hom(U, V):

LHS = (Trv-guoazoHom(Idy-gu,p)ojoltuy ® Iduemw,v)))(B ® A)
(Bvy-gvo|(Hom(Idy-gv;l)ojol(dyog ") @h))@Idy-gv]osoar ) (B ® A)
{(dv 0 g™") @ h} (kv (B) (k- (A4))

b(B))(A) = RHS.

(
(

PROPOSITION 3.135. Given metrics g and h onU and V', for A, B € Hom(U,V),

Tr{(ayon-1)0g) (fuv o [B* ® A]) = Try(B* o ho A).

PRrROOF. By Lemma 1.74 and the previous Proposition,

LHS = Try-gu([(dvoh ™) @g] toj o Hom(Idv-gu,1) ' o fuv o [B*® A))
= Trvegu([(hody') ®g ' opo[B* ® A))
= Try(g-'oB*ohoA)=RHS.
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3.7.8. Eigenvalues.

EXERCISE 3.136. Suppose h and g are bilinear forms on V', and ¢ is symmet-
ric. If h(v1) = A1 - g(v1), and (Tv(h))(v2) = A2 - g(v2), then either \y = Ag, or
(9(v1))(v2) = 0.

HiNT.

(A1 = A2) - (g(v1))(v2) = (Ar-g(v1))(v2) = (A2 - g(v2))(v1)
= (h(v1))(v2) = ((Tv (h))(v2))(v1) = 0.
i
EXERCISE 3.137. Suppose h and g are bilinear forms on V, and g is antisym-
metric. If h(vy) = A1 - g(v1), and (Ty (h))(v2) = Az - g(v2), then either Ay = — Ao,
or (g(v1))(v2) = 0. Il

EXERCISE 3.138. If h and g are both symmetric forms (or both antisymmetric),
and h(vi) = Ai-g(v1), and h(v2) = A2-g(v2), then either Ay = Ag, or (g(v1))(v2) = 0.
|

EXERCISE 3.139. If g is a bilinear form on V', and E' is an endomorphism of V'
such that go E=E*og:V — V* and E(v1) = A1 - vy, and E(v2) = Az - v2, then
either Ay = Ag, or (g(v1))(v2) = 0.

HINT. When g is a metric, the hypothesis is that E is self-adjoint.
(A= A2) - (g(v1))(v2) = (Ar-g(v1))(v2) — (A2 - g(v1))(v2)

(9(E(v1)))(v2) = (g(v1))(E(v2))

= ((go E)(v1))(v2) = ((E” o g)(v1))(v2) = 0.

EXERCISE 3.140. If g is a bilinear form on V, and F is an endomorphism of V'
such that goE = —FE*og:V — V* and E(v1) = A\ -v1, and E(v3) = A2 - va, then
either A\; = —X2, or (g(v1))(v2) = 0. In particular, if 3 € K, then either \; =0, or

(9(v1))(v1) = 0.
HiNT. This is a skew-adjoint version of the previous Exercise. [ |

EXERCISE 3.141. Given a metric g on U, a self-adjoint endomorphism H : U —
U, and a nonzero element v € U, there exists A\ € K such that H(v) = A - v if and
only if H commutes with the endomorphism k((g(v)) ® v) from Exercise 3.120.

HINT. The diagram from Exercise 3.121 gives these two equalities:

Ho (k((g(v)) ®@v)) = k((g(v)) ® (H(v))),

(k((g(v)) @v))o H = k((9(H(v))) ®v).
If H(v) = A - v, then the two quantities are equal. Conversely, if they are equal,
then for any u € U,

(E((g(v)) @ (H(©))))(u) = (k((g(H(v))) @v))(u)
(g)(w) - (H(v)) = (9(H(©)))(u) .
Since v # Oy, the non-degeneracy of g implies there is some u so that (g(v))(u) # 0.

_ (g(H ) (u)
Let A = 0w - 0
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EXERCISE 3.142. If g is a bilinear form on V', and E' is an endomorphism of V'
such that E*ogo E=g¢:V — V* and E(v1) = A1 - v1, and E(v2) = Az - v2, then
either A\;-\g = 1, or (g(v1))(v2) = 0. In particular, either A3 = 1, or (g(v1))(v1) = 0.

HiNT.

(g(v1))(v2) = ((E"ogo E)(v1))(v2) = (9(E(v1)))(E(v2))
= Az (g(v))(v2).

3.7.9. Canonical metrics.
EXAMPLE 3.143. Given V finite-dimensional, the canonical invertible map
(k*)"toe:End(V) — End(V)*

from Lemma 2.1 is a metric on End (V). It is symmetric by Lemma 1.14 and Lemma
2.1:

(K) ' oe)* odmnay) = ¢ o (k™) odgnayy = e*odok™ = (k) oe.

This metric on End(V) should be called the canonical metric, to distinguish
it from the b metric, induced by a choice of metric on V. The non-degeneracy of

the metric was considered in Proposition 2.16, where it was also shown that for A,
B € End(V),

(3.15) (") L oe)(A)(B) = Try (Ao B).
EXAMPLE 3.144. Given V finite-dimensional, the canonical map f: V*®@V —

(V*®V)* is invertible, and is symmetric by Lemma 1.71, so it is a metric on V*®@V.
The dual metric on (V* ® V)*isdo f~1 = (f*)~%

This metric on V* ® V is also canonical, and, in general, different from the
tensor product metric induced by a choice of metric on V. By Lemma 1.74, the
metric f is equal to the composite Hom(Idy+gy,l)ojop: V @V — (V* @ V)*.

EXERCISE 3.145. The dual metric dgo(h')~! on K* coincides with the (k*)~1oe
metric on End(K).

HINT. The metric h' is as in Lemma 3.67. For ¢, £ € K

((dx o (W) ")(@N(E) = &(Trx(9) = &(¢(1))
(k)" toe)(e)(€) = Trr(do&) =¢(E(1) =

¢(1)
§

EXERCISE 3.146. With respect to the canonical metrics (k*)~! o e on End(K)
and h' on K, Trg is an isometry.

HiNT. The canonical metric, applied to A, B € End(K), is:
(")t oe)(A)(B) = Tre(Ao B) = (Ao B)(1) = A(B(1)) = B(1) - A(1).
This coincides with the pullback:
(WM (Tre(A))(Trie(B)) = (W (AL))(B(1)) = A1) - B(1).



146 3. BILINEAR FORMS

EXERCISE 3.147. Given finite-dimensional V', the canonical map k: V*®V —

End(V) is an isometry with respect to the canonical metrics f and (k*)~! o e.

HINT. The pullback of (k*)~! o e by k agrees with f:
E*o(k*) loeok=f.

EXERCISE 3.148. Given finite-dimensional V', the canonical map e : End(V) —
(V*®V)* is an isometry with respect to the canonical metrics (k*)~loe and (f*)~!

HINT. The pullback of (f*)~! by e is:

e* o (f*)—l ce=e¢e*o (e*)—l o (k*)—l ce = (k*)—l oe.

It follows that fyy is an isometry, but this also follows from Theorem 3.26.

EXERCISE 3.149. ([G-] §1.8) Given finite-dimensional U, V, if A : U — V is
invertible, then Hom(A~!, A) : End(U) — End(V) is an isometry with respect to
the (k*)~! o e metrics.

HiNT. From the Proof of Lemma 2.6:
(") loe = (K*)'oe oHom(A, A7) o Hom(A™! A)
= Hom(Ail, A)*o (k‘*)*l oeo Hom(Ail, A).
[ |

EXERCISE 3.150. For U, V., and invertible A as in the previous Exercise,
[(A™)* @ A] : U* @ U — V* @V is an isometry with respect to fyy and fyy.

HiINT. This follows from Lemma 1.62:
[(A_l)* ® A] = k;%, o Hom(A_l, A) o kyu,
and could also be checked directly. [

EXERCISE 3.151. Given finite-dimensional V, the transpose t : End(V) —
End(V*) : A+ A* is an isometry with respect to the canonical (k*)~! o e metrics.

HINT. From the Proof of Lemma 2.5:
t* o (k/*)—l oe’ot — (k*)—l oe.
[ |

EXERCISE 3.152. Given finite-dimensional U, V', the map j : End(U)®End(V) —
End(U ® V) is an isometry with respect to the tensor product of canonical metrics,
and the canonical metric on End(U ® V).

HinT. By Corollary 2.36,

Trugv((j(A1 ® B1)) o (j(A2 ® B2))) = Truev(i((410Az2) ® (Bio B2)))
T?“U(Al 9] Ag) . TT\/(Bl 9] Bg).
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EXERCISE 3.153. Given finite-dimensional U, if Try(Idy) # 0, then a direct
sum End(U) = K@ Endg(U) from Example 2.9 is orthogonal with respect to the
canonical metric (k*)~! o e on End(U), and this induces a canonical metric on
Endg(U). The involution from Exercise 3.124, defined in terms of the canonical
metric and the canonical element Idy, is given for A € End(U) by:

T?“U (A)
TTU (IdU)

which is the same as the involution —K from Lemma 3.54 and the involution R
from Exercise 3.128.

R:A—A—-2- -Idv,

HiNT. The orthogonality is easy to check; this is also a special case of Exercises
3.126 and 3.127. |

EXERCISE 3.154. Given a metric g on U, the adjoint involution Hom(g, g~ 1) o
tyy on End(U) is an isometry with respect to the canonical metric. If % € K, then
the direct sum decomposition into self-adjoint and skew-adjoint endomorphisms,
from Definition 3.116, is orthogonal with respect to the canonical metric. On the
space of self-adjoint endomorphisms, the metric induced by the canonical metric
coincides with the metric induced by the induced b metric. On the space of skew-
adjoint endomorphisms, the two induced metrics are opposite. [ |

EXERCISE 3.155. For any bilinear form ¢ : End(V) — End(V)* (and in par-
ticular, any metric g on End(V)), if V is finite-dimensional then there exists
F € End(End(V)) so that for all A, B € End(V),

(9(A)(B) =Trv((F(A)) o B).
HINT. Define F = e~ ! 0 k* o g. Then by Proposition 2.17,
(9(A))(B) = Trv((e” ' (k*(9(4)))) o B).

The canonical metric on End(V) from Example 3.143 is the case F' = Idg,q(v)-
The b metric from Definition 3.40 induced by a metric h on V,

(b(A)(B) = Trv(h71 o A*ohoB),

is the case where F' is the adjoint involution from Definition 3.111 and Lemma
3.113.

ExAMPLE 3.156. For the generalized transpose from Definition 1.7 and Exam-
ple 1.53,

tW,, € Hom(Hom (U, V'), Hom(Hom(V, W), Hom(U, W))),
and any bilinear form ¢ : Hom(U, W) — Hom(U, W)*, the map
Hom(Idpom(v,vy, Hom(I dpomv,wy, 9))
transforms ¢/, to the scalar valued trilinear form
Hom (I dyom(v,wy, 9) © t‘(/JVV € Hom(Hom(U, V'), Hom(Hom(V, W), (Hom(U, W))*)).
For A € Hom(U, V), B € Hom(V,W), and C € Hom(U, W),
Hom(Idyom(v,wy, 9) o tyry : A = go () (A)) = g o Hom(A, Idy) :
B +— g(BoA):
C — (g(BoA))C).
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In the special case where g is the metric b from Definition 3.40 induced by metrics
g1 on U and go on W,

(9(BoA)(C) = Tru(gi o(Bod) 0gy00)
= Try-(A*oB*oga0Cogrt).
In a different special case where W = U and g is the canonical metric (k*)~!oe on
End(U) from Example 3.143,
(g(BoA))(C)=Try(BoAoC).
EXAMPLE 3.157. For any metrics g and h on End(V'), consider the b metric
from Definition 3.40 induced by g and h on End(End(V)),
(b(E))(F) = Trgnaqvy(Fog™ ' o E* o h),
for E, F € End(End(V)). The canonical metric on End(End(V)),
(3.16) (]f;:mci(v),End(v))_1 © €End(V),End(V)>
is not necessarily the same as the b metric. The metrics can be shown to be different
by example, if there exist A, B € End(V), ¥, ® € End(V)* such that (h(A4))(B) =0
and U(A) # 0 and ®(B) # 0. From Equation (3.5) and Equation (3.15),
(0(kEna(v),End(v) (2 @ A))) (Fgnd(v),Ena(v) (¥ @ B))
= U(g~H(®)) - (h(A)(B) =0.
The canonical metric applied to the same inputs has output
Trend(v) (kEnd(v),End(v) (2 @ A)) © (kgnd(v),Ena(v) (¥ ® B)))
= Trgaaw)(®(B) - kgna(v),End(v)(¥ @ A4))
= O(B)-T(A) #0.
So even for g and h as in Example 3.143, the canonical metric is not the same as
the metric canonically induced by canonical metrics!



CHAPTER 4

Vector Valued Bilinear Forms

The notion of a bilinear form h : V' — V* can be generalized from the “scalar
valued” case to a “vector valued” (or “W-valued,” or “twisted”) form h : V —
Hom(V, W), so that for inputs vy, va € V, the output (h(v1))(v2) is an element
of W. In the same way as Example 1.55, vector valued bilinear functions B :
V x V ~» W correspond to W-valued bilinear forms on V', elements of the space
Hom(V, Hom(V,W)). Most of the properties of the scalar valued case generalize,
but some of the canonical maps are different.

4.1. Transpose for vector valued forms

There would appear to be multiple ways to use the already considered canonical
maps to define a transpose operation that switches the inputs for a W-valued form.
One way would be to transform Hom(V, Hom(V,W)) into Hom(V,V*) @ W, and
then apply [Ty @ Idw], where Ty is the transpose for scalar valued forms from
Definition 3.2. Another way would be to start from scratch with canonical maps
from Chapter 1, which is the approach taken with Lemma 4.1 and Definition 4.2.
Of course, these two ways end up with the same result, as shown in Lemma 4.5.

The following Lemma considers a more general domain Hom(V;, Hom(Va2, W)),
where V7 and V5 are not necessarily the same. The d map in the diagram is a
generalized double duality from Definition 1.13, the ¢ map is a generalized transpose
from Definition 1.7, the canonical ¢ maps are as in Definition 1.46, and s is a
switching map.

LEMMA 4.1. For any Vi, Vo, W, the following diagram is commutative.

q1

Hom(Vy, Hom(Va, W))

Hom(V; @ Vo, W)

lt\vyl,Hom(Vg,W)
Hom(Hom(Hom(Va, W), W), Hom(Vy, W)) Hom(s,Idw)

lHom(dVQ wildgom vy, w)

q2

Hom(Vz2, Hom(Vy, W)) Hom(Ve @ Vi, W)
Proor. For u € Vq, v € Vo, and A € Hom(Vy, Hom(Va, W)),
Hom(s, Idw) o q1)(A) :
(q1(A)) 0 5)(v @ u) = (q1(A))(u ®v) = (A(u))(v),

(
(
(q20 Hom(d\éWvIdHom Vi, W)) © tvl Hom(Vz,W))(A) :
(
(

VROU

v@u = (@, tom(vew)(A) © dv,w)) (v @ u)
(t: Hom(va.w) (A (dvaw (v))) (1) = ((dvyw () 0 A)(u) = (A(w))(v).

149
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Note that the composite Hom(s, Idw ) o gy could be abbreviated as a re-ordered
g map, as in (1.6) from Notation 1.49. However, the relationship between the
switching maps and the transpose maps in the following Definition will be more
clear without this abbreviation, so here in Section 4.1 and in Section 4.2, all the
g maps will be the version from Definition 1.46 and not the variant (1.5) from
Notation 1.49.

DEFINITION 4.2. Corresponding to the left column in the above diagram, let

(41) TV17V2§W = HOHl(dVQW, IdHom(VhW)) © t‘v/[i,Hom(Vg,W)'
NOTATION 4.3. In the special case V' = V| = V5, abbreviate Ty, v.w = Tv,w.
In the case W =K, Ty .k is exactly Ty from Definition 3.2.

The above expression (4.1) for Ty, v,.w (and Ty . ) uses only Hom spaces and
maps from Section 1.1, without referring to tensor products, the scalar field K,
scalar multiplication, or any dual space like V*. The spaces and s and ¢ maps in
Lemma 4.1 use tensor products but no scalars.

LEMMA 4.4. For any vector spaces Vi, Vo, W, Ty, v,.w s invertible. In par-
ticular, for Vi = Va, Tv,.w is an involution on Hom(V;, Hom(Vy, W)).

PRrROOF. The first claim follows from Lemma 4.1 and the invertibility of the ¢
maps (Lemma 1.47), and the diagram also shows that
(4.2) Tv, viow = Ty, vy
The second claim is a special case of (4.2). For h : Vi — Hom(V,, W), and v € V7,
u € Vs, it follows from Definition 4.2 that

(4.3) (T, vow (h)) () (v) = (h(v))(w),

as in (3.1) from Lemma 3.3. Instead of using Lemma 4.1 or (4.3), Equation (4.2)
can be checked directly from Definition 4.2, using Lemma 1.6, Lemma 1.14, and
Lemma 1.17:

Tv, visw (T vasw (R)) = Hom((t), gromqvy wy (1) © dvow, Idw) © dyyw
Hom(dv,w, Idw) o Hom(Hom(h, Idw ), Idw) o dy, w

= Hom(dv,w, Idw) o duom(vs,w),w © b
h.

Relabeling the subscripts then gives the composite in the other order. [ |

The following Lemma uses a canonical n map from Definition 1.40, so that for
g@w € Hom(V,V*) @ W, (n(g @ w))(v) = (9(v)) @ w.

LEMMA 4.5. For any V', W, the following diagram is commutative. If V or W
is finite-dimensional, then the kyw and n maps in the diagram are invertible.

Hom(V,Hom(V,IW)) T — Hom(V,V*@W) <—— Hom(V,V*)@W

tW
Wﬁ

Tviw  Hom(Hom(Hom(V, W), W), Hom(V,W))  [Tv®Ildw]

AH%W,MHM(WW))

Hom(V,Hom (V,W))

Hom(Idv ,kvw) HOm(MV ®W) ~a HOHl(V,V )®W
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PROOF. The left triangle is Definition 4.2 for Ty .. For the right part of the
diagram, starting with g®@w € Hom(V,V*) @ W,

g@w +— (Hom(dyw,Iduom(v, ))otyHom(V’W)OHom(IdV,kVW)on)(g®w):

v ((tVHom(VW)(kVWO( n(g ® w)))) o dvw)(v)
= (dyw()) o kyw o (n(g @ w)) :
u = (dvw(v))(kvw ((9(u) ® w))
= (bvw((g(u)) ®w))(v)=(g(u))(v) - w,
gRw +— (Hom(Idy,kyw)ono[Ty ® Idw])(g @ w) :
v = kyw((n((Tv(g)) @ w))(v))
= kyw((Tv(9))(v)) ®w) :

(
u = ((Tv(9))(0)(w) - w=(g(w))(v) - w.

The invertibility of the canonical maps was stated in Lemma 1.64 and Lemma
1.44. |

LEMMA 4.6. For any vector spaces Uy, Us, Vi, Vo, Wi, Wa, and any maps
E:U -V, F:Uy— Vo, G: Wiy — Ws, the following diagram is commutative.

Ty, vy;wy

Hom(V;, Hom(Va, Wh)) Hom(Va, Hom(Vy, Wh))

Hom(E,Hom(F,G))l/ lHom(F,Hom(E,G))

Tuy Uy, Wy

Hom(U;, Hom(Us, W2)) Hom (Us, Hom(Uy, W3))

PROOF. The claim could be checked by calculating how the composites act on
pairs of input vectors, as in Equation (4.3) from the Proof of Lemma 4.4. The
following proof instead shows how the claim follows from only the elementary prop-
erties of the ¢ and d maps.

The diagram can be expanded using Definition 4.2 and Lemma 1.6:

Tvy vy
Hom(V1, Hom(Va, W1)) I Hom(Va, Hom(Vy, W7))
Hom(Idy, ,Hom(Idv,,G)) Hom(ldv2,Hom(IdV1,G))l
H Vi, H Vo, W- M, H Vo, Hom(Vy, W;
Om( 1 Om( QtX%QH)o)m(szWQ) Hom(dV2W2’IdHOmO({/Ill(W22) Om( ! 2))
Hom(E,Hom(F,IdWQ))l all Hom(F,Hom(E,IdW2))l
Hom(U;, Hom(U,, W- Mo Hom(Usy, Hom (U, W-
( ' ( Qtyf,lizzn(m,ww Hom(dw,w,, IdHom(Ul(Wi 4 2))
where
M; = Hom(Hom(Hom(Va, W2), Wa), Hom(V;y, Wa))
My, = Hom(Hom(Hom(Us, W2), Wa), Hom(Uy, Wa))
a1 = Hom(Hom(Hom(F, Idw,), Idw,), Hom(E, Idw,)).

The lower left square is commutative by Lemma 1.8. The lower right square is
commutative by Lemma 1.6 and Lemma 1.14. These steps are analogous to the
steps in the Proof of Lemma 3.8.
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The commutativity of the upper block states that for h : V3 — Hom(Va, W7),
TV1,V2;W2 (HOHI(IdV2, G) o h) = HOIIl(IdV1 5 G) 9] (TV1,V2;W1 (h))
The following diagram expands the upper block of the previous diagram, so that
the compositions down the left and right sides are Ty, v,.w, and Ty, v,.w, from
Definition 4.2, and the claim of the Lemma follows from the commutativity of the

diagram.

Hom(Idv, ,Hom(Idv., ,G
Hom(V;, Hom(Va, Wh)) (v, Wdvs &)

Hom(V;, Hom(Va, Wa))

Wa
V1, Hom(Vva,W3)

W2 t
V1, Hom(Vvy,Wy)

Hom(Hom(Hom(Va, Wa), Wa), Hom(V;, Wa))

Hom(Hom(Hom(Va,W1),Ws), Hom(V;,W3))

L
vy, Hom (v, W)

a?’l Hom (dvywy 7IdHom(V1 ,Wz))
Hom(Hom(Hom(Va,W1),W7), Hom(V;,W3))
Hom(Hom(Hom (Va, Wh), W1), Hom(V;, Wh))

Hom(dv,wy -/ dHom(v;,wy))
Hom(dv,wy I dHom(v, ,wy))

Hom(Va, Hom(Vq, Wh))

Hom(Idv,,Hom(Idv,,G)) Hom(V2, Hom(V1, Wa))

The inside arrows are:

az = Hom(Hom(Hom(Idv,,G), Idw,), Iduomv,,w,))
az = Hom(Hom(Iduom(vy,wy) G)s Ldtom(vy,w2))
ay = Hom(IdHom(Hom(VQ,Wl),Wl ) Hom(IdV1 ; G))

The upper square and the left square are both commutative by Lemma 1.8. The
lower square is commutative by Lemma 1.6. The commutativity of the right block
follows from Lemma 1.6 and this special case of Lemma 1.14:

HOIn(IdHom(V27W1), G) o} dV2W1 = HOHI(HOIII(Ide, G), Idwz) o} dV2W2~

Similarly to Lemma 4.5, the following few Lemmas use canonical n maps —
all labeled n, even when some spaces appear in a different order, as in Notation
1.41, so their domain, target, and formula are as indicated by their position in the
diagram.
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LEMMA 4.7. For any U, Vi, Vo, W, the following diagram is commutative. If
U is finite-dimensional, or Vi and Va are both finite-dimensional, then all the maps
in the diagram are invertible.

Hom(Idvy ,n1)
Hom(V1,U @ Hom(Va, W)) ———

Hom(Vy, Hom(Va, W @ U))
na

Hom(Vy, Hom(V2, W)) @ U
[Tvy ,vo,w®Idy] Tvy vosweU

Hom(Va, Hom(Vy, W)) @ U

n3

Hom(Idv,,n4)
B —

Hom(Va, Hom(Vy, W) @ U) Hom(Va, Hom(Vy, W @ U))

Proor. Replacing the Ty, v,.w and Ty, v,;weu downward arrows in the above
diagram by the composites with the ¢ maps from Lemma 4.1 gives this diagram.

Hom(ldvl,nl)
————— Hom(V;, Hom(Vo, W @ U))

Hom(V1,U @ Hom(V2, W))
n2

Hom(Vy, Hom(V2, W)) @ U a3

[ ®Idy]

Hom(V; @ Vo, W) @ U Hom(Vh @ Vo, W @ U)

[Hom(s,Idw)®Idy] Hom(s,ldwgu)
Hom(Va @ Vi, W) @ U - Hom(Va @ Vi, W @ U)
l[g2®Idy]
Hom(Va, Hom(Vi, W)) @ U a1
ng

H()In([dv2 ,YL4)

Hom(Va, Hom(Vy, W) ® U) —————— Hom(Va, Hom(V;, W @ U))

The middle block is commutative by Lemma 1.42. To check the top square, for
h®wu € Hom(Vy,Hom(Vo, W) @ U, v®@z € V; ® Vs,
(g3 o Hom(Idy,,n1)ona)(h@u):v®@z + (g3(n1o(na(h®@u))))(ve )
(n1 0 (n2(h ®@w)))(v))(x)
n1(u @ (h(v))))(x)

(nsoflpp@Idy))(h®@u) :v@z

The lowest square is analogous, with some re-ordering. [ |
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The composite Hom(Idy,,n;1) o ne appearing in the upper left corner of the
diagram from Lemma 4.7 is equal to a composite of the following form, using
different variants of the n maps, as in Notation 1.41:

Hom(V1, Hom(V2, W) @ U) —— Hom(V;, Hom(Va, W @ U))

(4.4) T
Hom(Vy, Hom(V2, W)) @ U

The spaces can be re-ordered in various ways to state results analogous to Lemma
4.7, with other versions of the n maps but essentially the same Proof. The following
Lemma 4.8 is an analogue of Lemma 4.7 but with a longer composite of n maps.

LEMMA 4.8. For any Uy, Uz, Vi, Vo, W, the following diagram is commutative.

[Tdu, ®[Tvy ve:w®Idu,]]
Uy @ Hom(Vy, Hom(Va, W)) ® Us Uy ® Hom(Va, Hom(Vi, W)) @ Us

[Idy, ®n2] [Idu, ®ns]
U1 ® Hom(Vy, Uz ® Hom(Va, W)) Uy ® Hom(Va, Hom(Vy, W) @ Us)
Hom(V1,U; ® Uz @ Hom(Va, W)) Hom(Vs, Uy ® Hom(Vy, W) @ Us)
Hom (Tdv, ,[Tdy, ®n1]) Hom(Idvy,[Idu, ®na4])
Hom(V1, Uy ® Hom(Va, W & Us)) Hom(V5, Uy ® Hom(Vy, W & Us))
Hom(Idv, ,no) Hom(Idv,,n10)

Hom(Vy, Hom(Va, Uy @ W @ Us))

Hom(Vs, Hom(V4, Uy @ W @ Us))

Tvy vy ;U1 @WRUs

PROOF. As remarked after the Proof of Lemma 4.7, the vertical composites of
n maps could be rearranged into composites of different n maps with the spaces in
different order, as in (4.4), or using variations on Lemma 1.45. Such rearrangements
could be used in a proof of this Lemma as stated or to state and prove analogous
results.

The following Proof is more direct, and analogous to that of Lemma 4.7, replac-
ing the 7" maps with composites involving the ¢ maps from Lemma 4.1. In the state-
ment of the Lemma and the following diagram, the maps labeled ny,...,n4,q1, 2
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are the same that appear in Lemma 4.7.

[Idy, ®[Hom(s,Idw )®Idy,]]
Uy @ Hom(Vy @ Vo, W) @ Us U; @ Hom(Vo @ V1, W) @ Us

[Idu, ®[q1®@Idu,]] [Tdu, ®[q2®Idu,]]
[[du, ®[Tvy vysw @Idu,]]
U1 ® Hom(Vz, Hom(V2, W)) & U Uy @ Hom(Va, Hom(Vy, W) & U

nzo[ldy, ®nz] ngo[ldy, ®nsz]
Hom(V1, Uy ® Uy @ Hom(Va, W)) Hom(Vs, Uy ® Hom(Vy, W) @ Us)
Hom(Idv1 ,ngo[IdU1 ®mn1]) Hom(Ide,nloo[IdU1 ®n4l)

Hom(Vy, Hom(Va, Uy @ W @ Us))

Hom(Vs, Hom(V4, Uy @ W @ Us))

V1,Vo;U1 @WQRUy

g5 g6

HOm(S,IdU1®W®U2)

Hom(Vh, @ Vo, Uy @ W @ Us) Hom(Vo @ V4,U1 @ W @ Us)

The g and s maps are invertible, and the commutativity around the outside of
the diagram can be checked directly, using the formula for ¢~' from Lemma 1.47.
Starting in the upper left corner with U; @ Hom(V; @ Vo, W)@ Us, for A € Hom(V; ®
‘/é,W),uEUl,UEUQ,yevl,ZE%,

u@AQu
z2QyY

I

g6(n100[Idy, ® na] o (ns([Idu, @ na)(u @ (g; (Ao 's)) @ )))) :
(100 Idy, @ na] o (ns([Idy, ® na](u @ (g5 (A 0 8)) ©))))(2))(y)
= (mo([Idy, @ na](u® (g5 ' (A0 s))(2) ©v)))(y)
= u®(((g¢5 ' (A09))(2)(y) ®v
= u®((Ados)(z®y))®v=u® (Aly®2)) v,
u®A®v —  (g5(ng o [Idy, ® ni] o (n7([Idy, ® na](u @ (¢ (A)
2@y = ((ngo[ldy,®mni]o (n7([Idy, ® nal(u @ (q; *(A))
= (no([Idy, @ m](u®@v® ((q; " (A)®)))))(2)
= u® (g7 '(A))W)(=) ®v=ue (Aly ® 2)) @ v.

I

®\_/
\_/
=
\./S,
~—
—
<L —
N
—
N

The following Lemma 4.9 shows how Ty, v, is related to some switching
maps, which are involutions in the case V3 = V5; an analogue for the scalar case
Ty is Theorem 3.115.
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LEMMA 4.9. For any Vi, Vo, W, the following diagram is commutative. If V;
and Vs are both finite-dimensional, then all the arrows are invertible.

s2®1d
ViRV e W [se®@Idw] VyeVrew
[Tdyy @kvyw]
[Idvl* ®kV2W] / kV2’V1*®W
Vi @ Hom(Va, W) V5 @ Hom(Vy, W) Hom(Va, Vi* @ W)

"l Hom(Idv, kv, w)
Hom(V1, V5 @ W)

kv1,HOIIl(V2,W)
kVQ,HOm(Vl,W)
om(Idv, ,kvyw)

Hom(Vy, Hom(Va2, W)) Hom(Va, Hom(Vy, W))

Tvy vo;w
q1 q2

Hom(s1,Id
Hom(Vi @ Vi, W) oy Idw)

Hom(V, @ V4, W)

kvi ova.w kvaavy,w
V1eWh)* oW [s@ldw] (Ve@WVi)" oW
[Hom(Idv, g vy, l)@Idw] [Hom(Idv, @ v, L) ®@Idw]
Hom(V; @ 5, K@ K) @ W Hom(Va @ V1, K@ K) @ W
[1®Idw] [j2®Idw]
ViR Ve W 2] ViRV W

PROOF. The block with the ¢ maps is exactly Lemma 4.1, and the next lower
block is commutative by Lemma 1.62. The lowest block is easy to check, where
the abbreviation j; = Hom(Idv;ov,,1) © j1 as in Notation 2.43 could be used, so
that the vertical composite is [j; ® Idw]. Inside the upper rectangle, the blocks on
the left and right are commutative by Lemma 1.62 again, and its upper block is
commutative by a variation on Lemma 1.65. The lower block in the upper rectangle
is commutative: using Definition 4.2 and ¢ ® A € V5" @ Hom(Vy, W), u € V1, v € Va,

TV1,V2;W 9 I‘IOHI(IdV1 s ng,W) on:

PRA — (tl\//l'i,Hom(VQ,W) (kvz,W ° (n(¢ ® A)))) ody,w :
= (dvw(v) o kv, w0 (n(¢ © A)) :
u = (kyw(o® (Aw)))(v)

= ¢(v) - (Aw)) = ((kva,Hom(vi,w) (¢ ® A))(v))(u).

So the top rectangle is commutative.
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LEMMA 4.10. For any Vi, Vo, V3, W, if V1 and Va are finite-dimensional, then

all the arrows in the following diagram are invertible and the diagram is commuta-
tive.

[Tvy vy, w @I dvy]

Hom(Vy, Hom(V2, W)) ® V5 ———— Hom(Va2, Hom(V;, W)) @ V3

ni na

Hom(V1, V3 @ Hom(Va, W)) Hom(Va, Hom(Vi, W) @ V3)
HOn’l(IdV1 ;[IdV3®k7V2W]) HOm(Ide,[kvlw®Idv3])
Hom(Vy, V3 @ V5" @ W) Hom(V, Vi* @ W ® V3)

kvl,v3®v2*®w

kVQ,V1*®W®V3

S1

VoVl oW Vi ViraW e Vs

PrOOF. The following diagram is commutative, where the column on the left
matches the left column in the above diagram, and the column on the right uses
two maps from the diagram in Lemma 4.9.

Hom(V1, V3 ® Hom(V2, W)) <5— Hom(Vi, Hom(V2, W) ® V3

Hom(Idvy ,[Idvy ®kvgw])T T[Hom(ldvl kvew ) ®Idy,]

Hom(Vy, V3 @ Vo @ W) Hom(V1, V5 @ W) @ V3

n3
kvl,v3®v2*®WT T[kvl:vz*®w®ld"3]

VIioVeVyioW——F V'V eaWeV;
[Idvl*®5]

The upper square is commutative by Lemma 1.42, and the lower square by a varia-
tion on Lemma 1.65. The above diagram is abbreviated to appear in the left block
of the following diagram, by labeling its four corners (Myy, Mia, M2y, Mas), and
its upward vertical composites as the vertical arrows a1, [az ® Idy,].

[Tvy vo,w ®Tdys] na

M, M3

ny

My

Hom(Va, Hom(Vi, W) @ V3)
Hom(Idv,,[kv, W®1dV3])T
ay [a2®1dV3] [a3®IdV3] HOHI(‘/Q, Vl* W ® VS)

kv, veewev:
[[S2®1dw]®[dV3]M / 3

22 23

Moy
[Idvl* ®s]

The other two spaces are similarly related to the right column in the top square
from Lemma 4.9:

Mi; Hom(Va, Hom(Vi, W)) @ V3
Ma = VieVieWsl,
as = HOm(IdVQ ) kV1 W) © kV27V1*®W7
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so that the commutativity of the middle block follows from the commutativity of
the top block from Lemma 4.9, together with Lemma 1.36. The right block is
a mirror image analogue of the left block, but without the switching map, so the
verification that it is commutative again uses Lemma 1.42 and Lemma 1.65. Letting
51 = [[s2 ® Idw] ® Idy,] o [Idy> ® s~ '], the commutativity around the outside of

the diagram gives the claim of the Lemma. [

EXERCISE 4.11. If Vi, Vo, W have metrics g1, g2, h, then
Tv, vo.w = Hom(Vy, Hom(Va, W)) — Hom(Va, Hom(Vy, W))
is an isometry with respect to the induced metrics.

HINT. From Lemma 4.1, Ty, v,.w = (]2_1 o Hom(s, Idy ) o ¢1 is a composite of
isometries, using Theorem 3.45, Exercise 3.66, and Exercise 3.77. In the special
case V1 = Va, g1 = g2, Exercise 3.122 applies to the involution Tv,,;r. A further
special case is W = K, so Corollary 3.48 on the involution Ty follows from this
claim and Exercise 3.74. [

The transpose for bilinear forms can be applied to vector valued trilinear forms:
elements of Hom(X, Hom(Y, Hom(Z,U))), to switch the first and second, or second
and third, inputs in expressions such as ((h(z))(y))(z) € U. A map switching the
first and third inputs can be expressed in terms of T maps, or in terms of ¢ and
s maps in analogy with Lemma 4.1, but in more than one way, as shown by the
following Lemma 4.12 and Equation (4.5).

LEMMA 4.12. For any wvector spaces X, Y, Z, U, the following diagram is
commutative.

Hom(X, Hom(Y, Hom(Z,U)))

Hom (I W W:m

Hom(X, Hom(Z, Hom(Y, U))) Hom(Y,Hom(X, Hom(Z,U)))
lTX,Z;Hom(Y,U) Hom(IdY7TX,Z;U)l

Hom(Z, Hom(X, Hom(Y, U))) Hom(Y,Hom(Z, Hom(X,U)))
Hom(Idz,Tx,y;u Ty, z:Hom(x,U)

Hom(Z, Hom(Y, Hom(X, U)))
PROOF. The claim follows from finding a map
a1 : Hom(X, Hom(Y, Hom(Z,U))) — Hom(Z, Hom (Y, Hom(X, U))),

equal to both downward composites on the left and right sides of the above diagram.
This first diagram corresponds to the right side.



HOHI(X,HOm(Y;H m ZaU)))

Hom(X®@Y®Z,U) Hom(Y ® X, Hom(Z,U))

Hom(Y®@X®Z,U)

Hom(Y®Z®X,U)

Hom(Z@Y®X,U) Hom(Y ®Z,Hom(X,U))

Hom(Z,Hom(Y,Ho

HOm([81®Idz],Idu)
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Tx,y Hom(z,U)

Hom(X ®Y, Hom(Z,U))

g3
Hom(31 aIdHom(Z,U) )

q2

Hom(Idy ,qg5)

Hom(ldY7TX,Z;U)

Hom(Y, Hom(X®Z,U))

g4

Hom([Idy ®s2],Idy) lHom(Idy,Hom(sQ,IdU))

— Hom(Y,Hom(Z® X),U)

4

"

a3

HOm([Sg@Idx],]du)

Hom(Idy ,q6)

Hom(siivldHom(X,U) ) l
1’
a3

Hom(Z®Y,Hom(X,U))

/7
as

TY,Z;Hom(X,U)

159

Hom(Y,Hom (X, Hom(Z,U)))

Hom(Y,Hom(Z, Hom(X,U)))

All the arrows are invertible — the ¢ maps convert the transpose maps to switching
maps (recall the convention from Lemma 4.1 that all the ¢ maps here are ordered as
in Definition 1.46). The right blocks are commutative by Lemma 4.1 and Definition
4.2, with the right center block also using Lemma 1.6. The three left blocks are
commutative by Lemma 1.50 and the two center blocks by Lemma 1.51.

This second diagram, corresponding to the left side of the claim, is not exactly
a mirror image of the first but is commutative in the same way, using Lemma 4.1,
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Lemma 1.6, Lemma 1.50, and Lemma 1.51.

Hom (X, Hom(Y,Hom(Z,U)))

Hom(Idx,Ty,z,u)

Hom(X, Hom(Z,
Hom(Idx,q7)

Hom (X, Hom(Y ®Z,U))

q9
Hom(Idx ,Hom(ss,Idy))

Hom (X, Hom(Z®Y,U)) Hom(X®Y®Z,U)

Hom([Idx ®s3],Idu)

TX,Z;Hom(Y,U)
q10

Hom(X®Z,Hom(Y,U)) —— Hom(X®ZQY,U)
Hom(s%IdHom(Y,U))l Hom([so®Idy],Idy)

Hom(Z®X,Hom(Y,U)) Hom(Z®X®Y,U)

’
d10

1

dg

HOm([Idz®Sl],Idu)

Hom(Z, Hom(X®Y,U)) Hom(Z@Y®X,U)

lHom(IdZ,Hom(sl,IdU))
11’
do

Hom(Z,Hom(Y ® X, U))

Hom(IdZ,qé)

Hom(Z, Hom(X, Hom(Y,U)))

Hom(Idz,Tx,y:v)
Hom(Z,Hom(Y,Hom(X,U)))

The composites of permutations in the diagrams are equal to the same switching
map s4:

[Sg@[dx]o[fdy®52]0[51®Idz] = [IdZ@Sl]O[SQ@Idy]O[Idx®83]
= 54: XRY®RZ—-7ZY ® X.

By Lemma 1.51, g3 0 g1 = g9 o Hom(Idx,q7) and ¢’ o ¢} = ¢’ o Hom(Idz o ¢5).
So, the two diagrams fit together as claimed, with the downward composite in the
left column of the first diagram being equal to the composite in the right column
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of the second, giving the required map
"

(4.5)a; = (¢§o q'l)_1 o Hom([s3 ® Idx]o[Idy ® s2]o[s1® Idz],Idy)oqsoq
= Hom(Idz, (¢%)™ ") o (gy)~* o Hom(sy, Idy) o g9 o Hom(Idx, g7).

4.2. Symmetric bilinear forms

DEFINITION 4.13. A W-valued form h € Hom(V,Hom(V,W)) is symmetric
means: h = Ty, (h). h is antisymmetric means: h = =Ty, (h). Let Sym(V; W)
denote the subspace of symmetric forms, and Alt(V; W) the subspace of antisym-
metric forms.

It follows from Lemma 1.119 and Lemma 4.4 that if % € K, then Ty . produces
a direct sum

(4.6) Hom(V, Hom(V, W)) = Sym(V; W) & Alt(V; W).
REMARK 4.14. The direct sum (4.6) is canonical, and so is the decomposition
of any form A into its symmetric and antisymmetric parts

(4.7) %(h +Tv,w(h)) + %(h — Ty,w(h)).

However, there are several other involutions appearing in the V = V; = V5 case
of Lemma 4.9, and some of the other spaces admit distinct but equivalent direct
sums as in Example 1.144. Recalling the direct sum V@V = S?V @ A2V produced
by the involution s as in Example 1.124, Example 1.145 applies to the involutions
Ty.w and Hom(s, Idy ) from Lemma 4.1 and Lemma 4.9, so the map

q : Hom(V, Hom(V,W)) — Hom(V ® V, W)
respects both of the direct sums on the target:
Hom(V@V,W) = {A:Aos=A}®{A: Aos=—A},
Hom(V ® V,W) = Hom(S*V,W)® Hom(A?V,W).
EXAMPLE 4.15. It follows from Lemma 4.5 that for a map of the form
h = (Hom(Idy, kvw) oni)(g ® w),
with g : V — V* w € W, if g is symmetric, or antisymmetric, then so is h.

DEFINITION 4.16. For any U, V', W the pullback of a W-valued form h : V' —
Hom(V, W) by amap H : U — V is another W-valued form Hom(H, Idy )oho H :
U — Hom(U, W).

In the case W = K, this coincides with the previously defined pullback (Defi-
nition 3.7).

LEMMA 4.17. For maps H : U =V, G : W7 — W5, and a form h : 'V —
Hom(V, Wy),

Tu.w,(Hom(H,G) o ho H) = Hom(H, G) o (Tv.w, (h)) o H.
The map
Hom(H,Hom(H, G)) : Hom(V, Hom(V, W;)) — Hom (U, Hom (U, W3))
respects the direct sums Sym(V; Wh) @ Alt(V; W1) — Sym(U; Wa) @ Alt(U; Wa).
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PROOF. The first claim is a special case of Lemma 4.6. The claim about the
direct sums follows from Lemma 1.126 and Lemma 4.4. [

The G = Idw case of Lemma 4.17 shows that the pullback by H : U — V of
a symmetric form h : V — Hom(V, W) is a symmetric form U — Hom(U, W), and
similarly, the pullback of an antisymmetric form is antisymmetric.

NoTAaTION 4.18. For hy : Vi — Hom(Vy, W), and hs : Vo — Hom(Va, W), and
a direct sum V =V, @ Vs, let hy @ he : V — Hom(V, W) denote the form
Hom(Py, Idw ) o hy o Py + Hom( Py, Idw) o he o Ps.
In the W = K case, this is exactly the construction of Notation 3.9.
LEMMA 4.19. Ty.w(h1 @ ha) = (Tvy.w (k1)) @ (Tvy.w (he)).

ProOOF. The proof proceeds exactly as in Theorem 3.10, using Lemma 1.14
and Lemma 1.6.

It follows that the direct sum of symmetric W-valued forms is symmetric, and
similarly, the direct sum of antisymmetric forms is antisymmetric.

Working with the tensor product of vector valued forms is simpler than the
scalar case (Notation 3.13), since the scalar multiplication is omitted. If hy : V} —
Hom(V1,W7) and hsy : Vo — Hom(Va, Wa) are two vector valued forms, then the
map

jolh1 ®ho]: Vi @ Vo — Hom(V; @ Vo, W1 @ Wa)
has output

((4 o [ @ ho])(u1 ® uz))(v1 ®v2) = ((h1(u1))(v1)) @ ((h2(u2))(v2)) € W1 ® Wa,
so it is a Wi ® Wa-valued form.
THEOREM 4.20.
Tviove;wrew, (J 0 [h1 @ ha]) = j o [(Tvy;w, (1)) @ (Tvy;w, (h2))]-

PrOOF. In analogy with the proof of Theorem 3.12; the following diagram is
commutative:

[dvy wy ®dvyw, ]

Vi@V, M,
ldv1®v2,W1®W2 lj/

Hom(Hom(V; @ V2, W1 @ Wa),W1 @ W2) ; M,

Hom(j,1dw, @w,)
where
M, = Hom(Hom(Vi, W), W1) ® Hom(Hom(Va, Wa), Wa)
M, = Hom(Hom(Vi, W1)® Hom(Va, Wy), Wi @ Wa);
v QU HOm(ja IdW1®W2) © dV1®V27W1®W2)(Ul ® UQ)

(
= (dV1®V2,W1®W2 (1)1 ® 02)) oj:

A®B = [A®B|(v1 ®v2) = (A(vn1)) ® (B(v2)),
V1 QU > (j/O[dVIW1 ®dV2W2])(’U1 ®1)2)

= J((dviw, (11)) @ (dvam (v2))) :
A®B +— (A(v1)) ® (B(vs)).
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The statement of the Theorem follows from Lemma 1.6, the above diagram, Lemma
1.37, and Lemma 1.36:

LHS = (t‘V/V;®®VI;V,2Hom(V1®V2,W1®W2)(j © [h1 @ hal)) 0 dvieve, Wi 0Ws
= Hom([h1 ® hal, Idw,ew,) o Hom(j, Idw,ew,) © dvigv,,wi oW,
Hom([hy ® hol, Idw,ew,) © §" o [dv,w, @ dvyws,]
jo[Hom(hy, Idw,) ® Hom(ha, Idw,)] o [dv,w, ® dvyw,]
= Jol[(Tviwi(h)) @ (Tvyyw, (R2))].

It follows that the tensor product of symmetric forms is symmetric, as is the
tensor product of antisymmetric forms.

In the W; = K case, the tensor product of a scalar valued form hy : Vi3 — V¥
and a vector valued form hg : Vo — Hom(Va, W) is a form j o [hy ® hs] with values
in K@ W. The map Hom(Idv,gv,,lw) o j o [h1 & he] is a W-valued form.

COROLLARY 4.21. For hy : Vi — Vi* and hg : Vo — Hom(Va, W), the following
W -valued forms are equal.

TV1®V2;W(H0m(IdV1®V27 lW) ojo [hl & h2])
= Hom(Idv,gv,,lw) o jo [(Tv,(h1)) @ (Tvyw (h2))]-

PrOOF. The equality follows immediately from Lemma 4.6, the previous The-

orem, and the equality Tv.x = Ty .

EXERCISE 4.22. Let V = U @ Hom(U, L) be a direct sum with data P;, Q;.
Then,

(4.8) Hom(Py,Idr) o P+ Hom(Py, Idy) odyr o Py

is a symmetric L-valued form on V. If dyp is invertible, then this form is also
invertible.

HINT. The proof that the form (4.8) is symmetric is the same as the calculation
from Lemma 3.102, but using Lemma 1.14 and Lemma 1.17 in their full generality.
If dyy, is invertible (for example, as in Proposition 3.78), then the inverse of the
form is

Q10 d&i o Hom(Q2, Idr) + Q2 o Hom(Q1, Idy).
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EXERCISE 4.23. Let V = U @ Hom(U, L) as in Exercise 4.22. Given maps
E:W — U and h: U — Hom(W, L), the following are equivalent.

(1) The L-valued form ho E : W — Hom(W, L) is antisymmetric.
(2) The pullback of the symmetric L-valued form (4.8) by the map

Q10E+Q20H0m(h,IdL)OdWLIW—>V

is OHom(W,Hom(W,L)) .
HiNT. The statement is analogous to Exercise 3.109, but uses the generalized

notion of pullback from Definition 4.16.

EXERCISE 4.24. Suppose V = V; @ Va, and there is an invertible map g : V —
Hom(V, L) so that these pullbacks are zero:

Hom(Q1,Idr)ogo Q1 = Otom(vi,Hom(Vs,L))s
Hom(Q2,Idr)ogo Q2 = Otom(Vy,Hom(Va,L))-
Then these maps are invertible:
Hom(Q1,Idp) o go Qs : Vo — Hom(Vy, L),
Hom(Q2,Idy) o go @y : Vi — Hom(Va, L).
HINT. The inverses are Py o g~ o Hom(Py, Idyr), Py o g~ o Hom(P,, Idy). [ |

EXERCISE 4.25. ([EPW])Let V=Vi®V; and g : V — Hom(V, L) be as in the
previous Exercise. Then there is another direct sum V = V; @ Hom(V1, L), defined
by data P, @1, and

P, = Hom(Q1,Idy)og:V — Hom(Vi, L),
Qy = g 'oHom(Py,Idr):Hom(Vi,L) — V.

If, also, g is symmetric, then g is equal to the L-valued form induced by this direct
sum, as in Exercise 4.22:

g =Hom(Py,Idy) o Py + Hom(Py, Idy) ody, 1 o P;.
HINT. It is easy to check that P} o @ is zero, and Py o Q% is the identity.
Hom(Q2,Idr)ogo Q10 ProQ)
= Hom(Qs,Idr)ogoQioPiogto Hom(P; o Idy)
= Hom(Q2,Idy)ogo(Idy — Q20 Ps)o g to Hom(Py, Idy,)
= OHom(Hom(V1,L),Hom(Va,L))-

By the previous Exercise, Hom(Q2, Idy,) o g o 1 is invertible, so

Pyo Q/Q = OHom(Hom(Vl,L),Vl)~

QioP+Qy0P,
QioPr+(QioPr+Q20P)0Q50P0(Q1oPr+Q20P)
= QioP1+Q20P0g " oHom(Py,Idy)oHom(Qy,Idr)ogoQzo0 P
= QioPi+Qr0P =Idy,
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using the inverse formula from the previous Exercise. As for the claimed equality,
RHS = Hom(Pi,Idr)oHom(Qy,Ids)og
+Hom(Hom(Q1,Idr) o g,Idr) ody, o Py
= Hom(Py,Idr)oHom(Q1,Idr)ogo(QroP1+ Qa0 Po)+
Hom(g, Idr,) o Hom(Hom(Q1,Idy), Idr) ody, 1, o P
= Hom(Py, Idy)oHom(Qq,Idr)ogoQz0 P
+Hom(Py, Idy) o Hom(Q2,Idr) o go Q20 Ps
+Hom(g, Idr) odyr o Q0 Py
= Hom(QioP1+ Qa0 P, Idr)ogoQaoPo+ (Ty(g)) oQ10 Py
= go(QroP+QioP)=g.

4.3. Vector valued trace with respect to a metric

A metric g on V suggests that the scalar trace Tr, (Definition 3.32) can be
generalized to a vector valued trace map on W-valued forms, but at first there would
appear to be two constructions of a map T'rg,w : Hom(V, Hom(V, W)) — W. One
way would be to combine the previously constructed vector valued trace Try-,w
(Definition 2.50) and composition with g~!, and another would be to start with
the scalar trace T'ry, and tensor with Idy,. Of course, the two approaches have the
same result.

LEMMA 4.26. Given a metric g on V', the following diagram is commutative.

Hom(Idv,ky k) it
Hom(V,Hom(V,W)) ——————— Hom(V, V*@W) == Hom(V,V*)@W

Hom(g_1 ddy+gw)

Hom(g™ }kyy,) [Hom(g~,Idy«)@Idw]

Hom(V*, V* @ W)

Hom(VA V) @W /i o

Try«w [Try«®Idw)

W Ko W

lw

PrOOF. The upper left triangle is commutative by Lemma 1.6, and the upper
right block is commutative by Lemma 1.42, with invertible n maps by the finite-
dimensionality of V. The lower square is the definition of T'ry -y, and the right

triangle uses the definition of T'r,. [

DEFINITION 4.27. Given a metric g on V, an arbitrary vector space W, and a
W-valued form h : V' — Hom(V, W), the W-valued trace with respect to g is the
following element of W:

Trgw(h) = Try-w(kyy ohog ™).
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Corollary 2.58 also gives the equality
Try-w(kyw ohog ) =Trvaw(lg™" @ Idw] o kyy, o h).
By the previous Lemma,
Trow = Try«w oHom(g™ ", ki) = lw o [Try ® Idw] o ny ' o Hom(Idy, kygy ).

EXAMPLE 4.28. Given a metric g on V', if & is of the form h = (Hom(Idy, kyw)o
n1)(E @ w), for E:V — V* and w € W, then Trgw(h) = Try(E) - w, and if
Try(E) =0, then Trgw (h) = Ow.

The previously defined scalar valued trace with respect to g (Definition 3.32)
is exactly the W = K case of the vector valued case:

THEOREM 4.29. Given a metric g on V., for h: V. — V*, Tryx(h) = Try(h).

ProOOF. By Lemma 1.63, kyk : V' @ K — V* is exactly the scalar multiplica-
tion appearing in Theorem 2.54, so that

Tryx(h) = Trv*;K(k;ng oho g_l) =Try«(ho g_l) =Trg(h).
[ |

THEOREM 4.30. For any metric h¥ on K, as in Lemma 3.67, and a form
h:K — Hom(K, W),
1
Trea () = - (WD) (1).
PROOF.
Tryew(h) = Trcw ()™ @ Idw] o kg o h)
— (o [(h*) " @ Idw] 0 kgl o B)(1)

= om (R
= 00,

v

where the first step uses Corollary 2.57, and the last step uses the formula m~! =

dgw (1), from Definition 1.20. The intermediate step uses the commutativity of the
diagram

w

Hom(K, W)

m
V'ZWT kKWT
[RY®@Idw]

KW —————K'oW

A@w = (m ' okiw o [h¥ ® Idw])(\ @ w)
(

kxw ((RY(A)) @ w))(1)
= v-A-l-w

= (v-iw)(A@w).



4.3. VECTOR VALUED TRACE WITH RESPECT TO A METRIC 167

THEOREM 4.31. Given a metric g on V., Trgw (Tv.w(h)) = Trgw(h).
PROOF. Since V' must be finite-dimensional, Lemma 4.5 and Lemma 4.26 ap-
ply.
TrowoTyv.aw = lwo[Tr,® Idw]oni'oHom(Idy, k;%,v)
oHom(Idy, kyw)omnio[Ty & Idw] o nfl o Hom(Idy, k;‘l,v)
= lwol[Try®Idw]o [Ty ® Idw] ony ' o Hom(Idy, kyyy)
= lwo[Try® Idw]on;" oHom(Idy, kyyy)
= T?“g;W,
by Lemma 1.36 and Theorem 3.33, which stated that Trg, o Ty, = T'ry. [ |
COROLLARY 4.32. Given a metric g on'V, if h: V. — Hom(V, W) is antisym-
metric and & € K, then Trgw(h) = Ow. i

PrOPOSITION 4.33. Given a metric g on V', the W-valued trace is invariant
under pullback, that is, if H : U — V is invertible, then

Tri«ogor;w (Hom(H, Idw)oho H) = Trgw(h).
Proor. Using Corollary 2.58 and Lemma 1.62,
LHS = Try-wl(kgy oHom(H,Idw)ohoHoH ‘og o (H*)™)
= Try-w([(H*) ' ® Idw] o kyy, o Hom(H, Idw)ohog™t)
= Try-w(kyyohog ') = RHS.

This statement and proof are analogous to Proposition 3.37. [

THEOREM 4.34. Given a metric g on'V, for any map B : W — W/,
Trg.w:(Hom(Idy, B) o h) = B(Trgw(h)).
PrOOF. Using Corollary 2.59 and Lemma 1.62,
LHS = Try-w(kyw, oHom(Idy,B)ohog ')
= Try-w/([Idy-® Blokyjyohog™)
= B(Try-w(kyy ohog™ ') = RHS.
|

COROLLARY 4.35. Given a metricg on'V, and maps H : U =V, B: W — W/,
if H is invertible then the following diagram is commutative.

T’I"g1W
Hom(V, Hom(V, W)) w
Hom(H,Hom(H,B))l lB
Treogor;w!
Hom(U, Hom(U, W')) w’

PRrOOF. This follows from Proposition 4.33 and Theorem 4.34. [
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PROPOSITION 4.36. Given metrics g1, g2 on Vi, Vo, and a direct sum V =
Vi @ Vi, for W-valued forms hy : Vi — Hom(Vy, W), hg : Vo — Hom(Va, W),
Trg@gw (b1 @ ha) = Trgw(h) + Trg,w(he) € W.

ProOF. First, Lemma 1.6 and Lemma 1.62 apply to simplify the following map
from Hom(V;, W) to V* @ W:
(Q; ® Idw] o kyryy, o Hom(Pr, Idyw)
= kyyy o Hom(Q;, Idw) o Hom(Py, Idw) = ki, o Hom(Pr o Q;, Idw)
= kyy, if i =1, or Ogom(Hom(vy,w),vrew) if i # I.
Then the formula (3.4) for (g1 © g2)~! from Corollary 3.18 applies:

LHS = Trvw([(91©92)"" @ Idw] o kyyy 0 (hn @ ha))
Tryaw([(Q1og7 " 0 Q}) ® Idw] o kyryy o Hom(Pr, Idw) o hy o Py

+[(@: ogfl )®Idw]Ok;WOHom(PQ,IdW)ohgoPQ
+(Q2095" 0 Q3) ® Idw] o kyqy o Hom(Py, Idw ) o hy o Py
+[(Q2 095" 0 Q%) ® Idw] 0 kytyy o Hom(Py, Idw) © hy o Py)

= Tryw(((Qiogrh) @ Idw] o kyy, 0 hio Pr)
+Trv,w([(Q2 095 He Idw]o kV2W o hy o Py)

= Trvgw((ProQiogrt) ® Idw] o kyly o hn)
+Trvw ([(Pao Qa0 gy ") ® Idw] o ky,y o ho) = RHS.

The last steps used Corollary 2.58 and Lemma 1.36. [

THEOREM 4.37. For metrics g1, g2 on Vi, Vo, and vector valued forms hy :
Vi — Hom(Vy,Wh), he : Vo — Hom(Va, Wa),

Trigi@g.y;wiaw, (J © [l @ ha]) = (Trg,;w, (h1)) @ (Trgyws, (h2)) € Wi @ Wa.
PRrROOF. The following diagram is commutative.

VioV,e W, @ Ws VioW @ Ve Ws

S1

[lg1®g2]@Idw, gw,]
[[9:®@Idw, |®[g2@Idw,]]

V@ Vs @ W, @ W - VW, @ Vs @ Ws
[i®Tdw, o w,] kv, wy ®kvyws]
Hom(V2 @ Vo, K@ K) @ W1 @ Ws Hom(Vi, W1) ® Hom(Va, Wa)
[Hom(Idv, g vy ) @Idw, @ws,] J

kvi@va, wi@wy

(Vi @ Vo) @ Wi @ W,

Hom(Vy ® Vo, W1 @ Wa)

The commutativity of the lower part is exactly Lemma 2.32. The top square is easy
to check, where the s; map is as in Theorem 2.40. The statement of the Theorem
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follows from Corollary 2.64, using Lemma 1.36 and the formula for {g; ® go}~!
from Corollary 3.19:
LHS = Trv,evemiew, (97 ® g5 05~ o Hom(Idv, gv,, 1 1)) @ Idw,ow,]
okyova.wiew, ©J © [h1 ® ha))
= Trygvewiews(s10 g7 @ Idw,] © [95" ® Tdws,]]
olkyw, ® kvl o [h1 ® hal)
= Trvievemiews (510 (G5((l91 " ® Tdwy] 0 ki, 0 ha)
®(lg2 " ® Idw,] 0 kyyy, 0 h2))))
= (Trviw, (91" @ Idw,] 0 kylyy, 0 ha))
(Trvaws (g5 ' ® Idw,] o kyy, o ha)) = RHS.

COROLLARY 4.38. For metrics g1, g2 on Vi, Va, a scalar valued form hy : Vi —
Vi, and a W-valued form hg : Vo — Hom(Va, W),

Trigi0gy;w(Hom(Idv, vy, lw) 0 j o [l @ ho]) = Trg, (h1) - Trgpw (ha).
Proor. Using Theorem 4.34, the previous Theorem, and Theorem 4.29,

LHS = lw(Trigeg}yxew (jo [h1 © hs]))
= w((Trg;x(h)) @ (Trew(he))) = RHS.

THEOREM 4.39. If% €K, and g and y are metrics on V and W, then the direct
sum Sym(V; W) @ Alt(V; W) is orthogonal with respect to the induced metric.

PROOF. Since V is finite-dimensional, all the arrows in the diagram for Lemma
4.5 are invertible. Let H = Hom(Idy, kyw) o n1, so H and H~' are isometries by
Theorem 3.41, Theorem 3.45, and Lemma 3.73. Also, [Ty ® Idy| is an isometry by
Corollary 3.48 and Theorem 3.28, so by Lemma 4.5 and Definition 4.2, Ty, is an
isometry, and an involution by Lemma 4.4. Then Lemma 3.55 applies to the direct
sum produced by Ty .. [ |

By Theorem 3.56 and Theorem 3.60, Hom(V,V*) @ W = (Sym(V) @ W) @
(Alt(V) ® W) is an orthogonal direct sum. Since H respects the direct sums,
by Lemma 4.5 and Lemma 1.126, it follows from Theorem 3.61 that the maps
between Sym(V) @ W and Sym(V; W), and between Alt(V) @ W and Alt(V; W),

are isometries.

THEOREM 4.40. If Try(Idy) # 0, and g is a metric on V, then there is a
direct sum Hom(V,Hom(V,W)) = W @ ker(Trg.w). If y is a metric on W, then
the direct sum is orthogonal with respect to the induced metric.

ProOOF. By Theorem 3.53, Hom(V, V*) = K& ker(T'ry) is an orthogonal direct
sum, with data P{' = a-Trg, Q] : A — X-8-g, with a- - Try(Idy) =1 as in
Example 2.9. Also, Py’ = Idgom(v,v+) — Q7 o P’, and Q4 is just the inclusion of the
subspace ker(Tr,) in Hom(V,V*). By Example 1.81, Hom(V,V*) ® W is a direct
sum of K® W and (ker(T'ry)) @ W, with data P, = [P/’ @ Idw], Q; = [QY @ Idw].
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Let H = Hom(Idy, kyw)oni, and let P{ = a-T'rg,w, so that the following diagram
is commutative by Lemma 4.26.

Hom(V, Hom(V, W)) ~ Hom(V,V*) @ W
l(»Trg;W \L[(owTrg)@Idw]

w Ko W

lw

Let Q5 be the inclusion of ker(Trg.w) in Hom(V,Hom(V, W)), which is a linear
monomorphism so that P/ 0Q5 = Oom(ker(Tr,.w),w)- Define Hy @ (ker(Try))@W —
ker(Trg.w) by Ho = H 0Q2; the image of Hy is contained in ker(Tr,.w ) by Lemma
4.26, so Q4 o Hy = H o Q3. Theorem 1.102 applies, so that Hom(V, Hom(V, W))
has a direct sum structure W & ker(Trg.w ), and H respects the direct sums. By
Theorem 3.60, if W has a metric y, then the direct sum Hom(V,V*) @ W = (K®
W) @ ((ker(Try)) ® W) is orthogonal with respect to the induced metric. Since
H is an isometry (as mentioned in the proof of the previous Theorem), it follows
from Theorem 3.61 that W & ker(T'rg,1) is orthogonal with respect to the induced

metric. [ |

COROLLARY 4.41. The metric induced on W by the direct sum from the previous
Theorem is 32 - Try (Idy) - y.

PROOF. The induced metric on K ® W is {h* ® y}, for v = 3% - Try(Idy) by
Theorem 3.60 and Lemma 3.71. By Theorem 3.61, Plo Ho Q1 =lyw o PioQ =
lw : K@ W — W is an isometry, so by Lemma 3.69, the metric in the target must
be v - y. [ |

COROLLARY 4.42. Given a metric g on V', if both % € K and Try(Idy) # 0,
then there is a direct sum Hom(V, Hom(V,W)) = W @& Symg(g; W) & Alt(V; W),
where Symo(g; W) is the kernel of the restriction of Trg.w to Sym(V;W). If W
has a metric y, then there is an orthogonal direct sum. [ |

EXERCISE 4.43. For K : V — Hom(V,W), an orthogonal direct sum V =
V1 &V, with respect to a metric g on V', and the induced metrics g1, g2, on Vi, Vo,

Trow(K) = Trg.w(Hom(Q1, Idw) o K 0 Q1) + T7g,.w (Hom(Q2, Idw) o K 0 Q2).
HINT. In analogy with Exercise 3.101, Lemma 1.62 and Corollary 2.58 apply:
LHS = Try-w(kyyoKog™?)
= Tryw(kyyy o Ko(QioPr+ Qa0 Py)og "o(Q10Pr+ Q20 P,)*)
= Try-wlkpyyoKoQioPiog toPfoQ})
+Tryew (kpyy 0 K0 Qa0 Paog ' o PyoQ3)
= Trvw((Q] @ Idw] o kyy 0 Ko Qiog)
+Trvw ([Q5 © Tdw] o kyyy 0 Ko Qaogy ')
= Tryw(kyy o Hom(Q1, Idw) o Ko Q1og; ")
+Trvw (ky,yy 0 Hom(Q2, Idw) o K 0 Q095 ') = RHS.
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4.4. Revisiting the generalized trace

We return to some notions introduced in Section 2.4. Recall, from Notation
2.68, the map ny =sok 1oQl : K=V ®V*.

NOTATION 4.44. For finite-dimensional V', consider the following diagram.

End(V
[k®Idy]
W \ ls®Idu]
[nv®Idy]

V*eVeU

KU VeV eU
!
U n1
[Idy®kvu]
lnvu
V ® Hom(V,U) = Hom(V,V @ U)

The top block is from (2.13), the back triangle is commutative by Lemma 1.65,
and the right block is also commutative by a variation on Lemma 1.65. So, a map
nvu : U — V @ Hom(V,U) can be defined by the following equal formulas:

wu = [Idv ®kyyloy @ Idy]oly’
= n;lonlo[Q%Q@IdU]olal
w: = nyt(ni(Idy @u)).

This map nyy is a generalized coevaluation.

With the above notation, Theorem 2.77 can be re-stated in terms of ny .

COROLLARY 4.45. For finite-dimensional V', ng as in the above diagram, any
F:VeoU—->VeW,aduecU,

(Trvuw (F))(u) = Trvw (F o (na(nvu (u))))-

PRrROOF. The following diagram is a modification of the diagram from the Proof
of Theorem 2.77.

End(V) 8 U e VF O VO U U9 e g v @w 2SI g
U

QW
T[Qi@ldu] [8®1dU]l kv.veu lkv vew l/
——= W

KoU Uy gyeou Hom(V,V @ W) — %

llu [Idv®kvu]l THOm(IdVJ‘_') TEUVW

U—"" -V @Hom(V,U) —= Hom(V,V & U) Hom(V, W) @ V

The diagram is commutative; the left blocks and lower middle triangle by the
construction of 7y and nyy in Notation 4.44, the upper middle triangle by Lemma
1.62, and the right block copied from the Proof of Theorem 2.77. The path from
U to W along the top row is Try,u,w (F) by Theorem 2.69, and equals the same
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composite map from U to W along the lower row, so
(4.9) Tryow(F):u = Buoyw ()" (F o (n2(nvu(u))))

Trv,w (F o (n2(nvu(u))))
= TT\/;W(F o (nl(Idv ® u)))

The composition in (4.9) from the lower path in the diagram, or equivalently
(4.10) Tryv.uw(F) = Evyw o (n')"t o Hom(Idy, F) ongonyy : U — W,

has two interesting properties: it does not involve scalar multiplication or duals
(except in the construction of 7y ), and the maps nyy and Evyw appear in sym-
metric roles.

Notation 4.44 also allows for a comparison between (4.10) and the formula from

Corollary 2.76,
Tryv.uw(F) = Evyw o (n/) "' o (¢ H(F)).

Asin (2.19), using noonyy : u — ni(Idy ®@u), the composite Hom(Idy, F')onsony
is equal to ¢~ 1(F):

Hom(Idy,F)ongonyy:u — Fo(ni(Idy @u)):
v Flueu) = (¢ (F)(w)(v).

EXERCISE 4.46. In the case U = K, these maps are equal: nyy = nyk = ny.

LEMMA 4.47. For finite-dimensional V and V', and maps A : U — U’, B :
V — V', the following diagram is commutative.

o V @ Hom(V,U)

-

l/ [B@Hom(Idy ,A)]
A V' @ Hom(V,U")
T [Idy s @Hom(B,Id)]

U MYy @ Hom(V',U")
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PROOF. First consider this diagram, with switching maps s, s’, and s, and
where the k£ maps are invertible by Lemma 1.64.

VeV VeV

kvv
Idy+«®B]) [BRIdy «
End(V [rdv @ldy+]
Hom(Idyv,B)

Hom(V, V') < Y gy ey e v

Hom(B,Idy/)
End(V)
(B*®Idy/] [[dy' ®B"]
kvl VI
RV

vV

The right blocks are commutative by Lemma 1.39 and the left blocks by Lemma
1.62. The distinguished elements Idy and Idy- have the same image in Hom(V, V'):

Hom(Idy, B)(Idy) = BoIdy = B = Idy, o B = Hom(B, Idy:)(Idy").

By the commutativity of the blocks in in the diagram,

(4.11) (s" o kyy ) (B)

([B® Idy-] o sokyy)(Idy)
(Hdv: @ B0 5" o ky i) (Idyr).
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In this second diagram, the commutativity of the center left block is the claim of
the Theorem.

End(V)oU
[Qi®Idy]
[kvv®Idu]
KeU V*eVeU
[s®@Idy]
. VeV*eU
[IdvQkvu]
U V @ Hom(V,U) e
nouv
[BQHom(Idyv,A)]
) V/®H0m(‘/, U/) V,®V* ®U/
[dy: ®ky ]
[Idyr@Hom(B,Idy 1))
U V'@ Hom(V',U") [Idy/ Q[B*®Idy/]]
[Tdy: ®ky /]
lyr V/ ® VI* ® U/
[8/®1du/]
K® U’ VEe V' eU'
) [k:V/V/ ®IdU’]

End(V') U’

The upper and lower left blocks are from the definition of the nyy, ny v maps from
Notation 4.44, and the right blocks are commutative by Lemma 1.36 and Lemma
1.62. So to establish the claim it is enough to check that these two paths from U
to V! @ V* @ U’ define the same composite.

(4.12)  [B® [Idy- ® A]] o [s ® Idy] o [ky1 ® Idy] o [Q1 @ Idy] ol :

u = ([B®[Idy-® Al]o[s® Idy] o [kyy @ Idy])(Idy @ u)

(([B @ Idy-]osokyy)(dy)) ® (Au),

(413)  [Idy: @ [B* ® Idy]] o [ o Idy] o [kyhyy @ Idys] o [QF @ Idy/] o l) o A
u +— ([Idy: ® [B* @ Idy]| o [s' o Idy] o [kyhyy @ Idp:])(Idy: @ (A(w)))

([dy: ® B o s’ o kyphy ) (Idv)) © (A(u)).

The maps (4.12) and (4.13) are equal by (4.11). i

The following pair of Theorems are analogues of Theorem 2.96; the idea is that
nyu and FEvyw satisfy identities analogous to the abstractly defined evaluation
and coevaluation maps as in Definition 2.97. Theorem 4.49 uses the transpose for
vector valued forms from Definition 4.2.
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THEOREM 4.48. For any U and V', if V is finite-dimensional then the following
composite is equal to a switching map:

[Idv@E’UVU]O[ﬂVU@Idv]:S()ZU®V—>V®U.

ProOOF. The claim is analogous to the first identity from Theorem 2.96, and
the proof is also analogous. The labeling V =V} = V5, = V3 is introduced to track
the action of the switching s maps. The upper and middle left squares are from
the diagram from Notation 4.44. The claim is that the lower left triangle in the
following diagram is commutative.

Hom(Vo, V1) @U@ V3 <—— V@ V10U V3

VyoVseVieU

[[K®Idy|®Idy] [Tdy«®s; ']
T[[Q}(@Id[]]@[dv] [[8®1du]®ldv]
[[nveldu]®ldy] *
KeUeV, ———=Vi 0V eUeV;  [Bwslive]
l[lu(g[dv] ([Tdv@kvul®Idy]
Id
S0 [Idy®Evyu]
lveou
VeUu

The commutativity of the right block is easy to check, where the switching map sy
is as in Theorem 2.87 and Corollary 2.88. The composition starting at U ® V' in
the lower left and going all the way around the diagram clockwise to V' ® U is the
trace, as in Theorem 2.69, of s, ', and the computation of Example 2.92 applies.

[ldy ® Evyylo [nvy ® Idy]
lveu o [Bvy ® Idvgy] o [Idy- @ syt o [(k7! o Q) ® Idyev] o [Ig" @ Idy]

= Trvwevveu(s;') =s3" = so.

THEOREM 4.49. For any U and V', if V is finite-dimensional, then the n maps
indicated in the following diagram are invertible,

Hom(Idy,
Hom (V, U) =™ Fom(V, V @ Hom(V, U)) <— Hom(V, Hom(V, U)) & V

[Tv,u®Idy]
Hom(ldv ,EUvu)

Hom(V, Hom(V,U) ® V) <— Hom(V, Hom(V,U)) @ V

and the diagram is commutative in the sense that this composite map is equal to
the identity map:

HOIn(Idv, EUVU) 0 nNg O [TV;U & Idv] o n;l o HOIn(Idv, nVU) = IdHom(V,U)~

PROOF. The claim is analogous to the second identity from Theorem 2.96, and
the overall proof is also analogous. As in the Proof of Theorem 4.48, the labeling
V =V, = V5 = V3 is introduced to track the action of the n, p, and s maps in this
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“main diagram.”

VioU

lvxgu

KeVieU
[Q1®Idv+gu]
Hom(Vy,U) VooV Ve q’f@TdW‘)QaII—JI]OIn(‘/Q,%)@ VieU
Hom(Idv ,nvu) [.g”@[du]T p@Idye o] [t@Idy+gu]

Hom(V1, V3@ Hom(V2,U)) =—— V' @ V3@ V5 @ U Hom (V5" V5 )@ Vi*@U

n1 sll (k' ®Idy+gu]
Hom(Vi, Hom(Va,U))® V3 %*®V1*®U®%T>V},**®V2*®V1*®U
[Ty,u®Idy] [Idy»»®s4]
Hom(Vz, Hom(V3,U))® V3 Vi VFEQU® Vs
na [Boy«®Idygy+]
Hom(Vz, Hom(V1,U)® V3) KU Vs
Hom(Idv,Evyu) lugv*
Hom(V5,U) — ViU — UV
S3

The abbreviations tyy = t, kyy = k, ky+y+ = k', and the map p are as in the
notation from Lemma 2.5. The switching involution s’ appeared in Lemma 2.84.
The composite t o Q1 : K — End(V*) is equal to another inclusion, temporarily
denoted Q}, that maps 1 to Idy- = Idi, = t(Idy) as in Equation (2.4). So, the
composition in the right column is the trace, as in Theorem 2.69, of s4, and the
computation of Example 2.91 applies:

lrevs o [Evy- @ Idygy-~] o [Idy- @ s4] o [(K) 7' o Q}) ® Idy-gu] o l;1®U
= Try.v-euusv-(s4) = s3.

The p, k, and n maps are invertible by the finite-dimensionality of V; in the right
center block, the triangle with k, ¢, and p is commutative by Lemma 1.75, and it
is easy to check that the other triangle with p’ is also commutative. The claim
of the Theorem is that the composition in the left column gives the identity map;
this will follow if we can find a1 and as as indicated that make the main diagram
commutative.

The following maps, and s1 in the above diagram, are from Lemma 4.10, in the
case V=V =Vo=V3, U=W:

ap = Hom(Idy,[Idy ® kvu]) o kvvev-eu
ag = HOIn(Id\/, [k?VU &® Id\/]) o k\/ﬂ/*@(]@\/.
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The commutativity of the left center block then follows from Lemma 4.10, so to
prove the Theorem it only remains to show that these maps a1, as make the upper
and lower blocks of the main diagram commutative.

To check the lower block, start with Y @ ¢ @u®v e V@ V* @ U ® V at its

top, and w € V.

YRXPRQURUV
W
PYRPOJURV
W

Hom(Idy, Evyy) o Hom(Idy, [kyy @ Idy]) o kvyv+guev :
Evyy o lkyy @ Idy] o (kv,v-euev (¥ ® ¢ @u®v)) :
Evyy([kvy @ Idy](¥(w) - ¢ @ u®v))

Evyy((w) - (kvu(d @ u)) @ v) = ¢(w) - d(v) - u,

kyy o sgl o lU®V* o [EUV* ®IdU®V*] o [IdV** ® 34] op' :
(kyy o sz olygy- o [Evy« @ Idygy+])((dv (v) ® ¢ @ u® )
(kv 055 )(0(v) - u @) = ¢(v) - kyy (Y @ u) :

o) - Y(w) - u.

In the following diagram, the two lower right commutative squares are from
the definition of 7y .

[%iﬁﬂ//

KeVyeU

lvrgu

Hom(Idyv, [Q} ®Idy])

VieU

kvu

VieoVse Vi eU
[S//(X)IdU]
[k@Idy+gu]

Hom(Va, V3) ® Vi* @ U Vo Vs Vs oU

[ss®@Idy) kv vev*eu

vy @ Hom(Va, V3) @ U Hom(V, Vs ® Vi @ U)

kv End(vyou Hom(Idv,[s®Idu])

Hom(V1, Hom(Va, V3) ‘%Oql)(lmﬁ)om(vb Vi@ VzeU)
Hom(Idvy,[s®Idy])

Hom(V;,K® U) Hom(V4, V3

EETE——
Hom(Idv,[nv®Idy])
HOm(Idv,lu) HOm(Idv,[Idv®kvu])

®Vy @ U)

Hom(Vy,U) Hom(Vy, V3 ® Hom(V2,U))

_
Hom(IdV ,nvu)

To check the commutativity of the upper right block, start with ¢ @ v ® Y ® u €
VieVeeVy®@Uand we V:

PRUVRYRU —
wo o
ORUVRYRuU
W

Hom(Idy, [k ® Idy]) o Hom(Idy, [s~' @ Idy]) o kvvev-eu :
[(kos™") @ Idy]o (kvyvev-eu(¢@v@Y @u)):

[(kos™) @ Idy)(dp(w) - v @Y ®u) = ¢(w) - (k(y ®v)) @ u,
kv Ena(vyeu © [s5s ® Idy] o [k @ Idy-gu] o [s" @ Idy] :

kv Ena(vyeu (¢ @ (k(Y ®@v)) @ u) :

P(w) - (k(¢ @ v)) @ u.
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To check the commutativity of the left block, start with a @ p @u e K@ V* @ U:

aRPRuU
v =
aRPRuU
v =

kv Ena(vyeu © [s5 @ Idy] o [Q] ® Idy-gu] :

kv Endavyeu (@ @ (a- Idy) @ u) :

(p(v)) - (- Idv) @ u,

Hom(Idy, [Q1 ® Idy]) o Hom(Idy,l;") o kv o ly-gu
Q1 @ Idy]oly' o (kvu(a-¢@u)):

(a-op(v)) - Idy @ u.

The downward composite of the four arrows in the right column equals the previ-
ously defined a7. So, the above calculation is enough to establish the commutativity
of the top block in the main diagram:

HOHI(Idv,UVU) o kVU = ay o [(8/,)71 ® IdU] o [(k71 o Q%) ® Idv*®U] o 1‘71@(].

As mentioned earlier, this proves the claim of the Theorem. [ |
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4.5. Topics and applications
4.5.1. Quadratic forms.

PROPOSITION 4.50. Given vector spaces V., W, and a function q :V ~ W, if
% € K then the following are equivalent.

(1) There exists a symmetric W-valued form hy : V' — Hom(V, W) such that
for allveV,

q(v) = (h1(v))(v).

(2) There exists a W-valued bilinear form ho : V- — Hom(V, W) such that for
allveV,

q(v) = (h2(v))(v).
(3) There exists a bilinear function By : V XV ~» W such that for allv € V,
q(v) = Bi(v,v).
(4) For any a« € K and v € V, q(a-v) = a? - q(v), and the function By :
V XV ~s W defined by
Bs(u,v) = q(u +v) —q(u) —q(v)

is bilinear.
(5) For any a € K and v € V, gq(a-v) = o? - q(v), and the function Bs :
V XV ~s W defined by

Bs(u,v) = q(u) + q(v) — q(u —v)

1s bilinear.
(6) For any a« € K and v € V, q(a-v) = o? - q(v), and the function By :
V XV ~s W defined by

Ba(u,v) = q(u+v) —q(u—v)

is bilinear.
(7) For all u,v € V, q satisfies:

(4.14) q(u+v) +qu—v)=2-qu)+2-q(v),
and the function By : V XV ~~ W defined by
By(u,v) = q(u+v) —q(u—v)
satisfies, for all a € K, By(a - u,v) = - By(u,v).
PROOF. As in Notation 0.41, the ~~ arrow symbol refers to functions which are
not necessarily linear. The functions By, ..., By are bilinear as in Definition 1.23.
The implication (1) == (2) is trivial. For (2) == (3), define By by
Bi(u,v) = (h2(u))(v), and similarly for (3) == (2), define hy by the formula
ho(u) : v = Bi(u,v). The correspondence between hy and B; is a W-valued
version of the construction from Example 1.55.

Now, assuming (3), so that By is bilinear and q(v) = By (v, v), the first property
from (4), (5) and (6) is immediate:

q(a-v) = Bi(a-v,a-v) = a? - By(v,v) = a? - q(v).
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Expanding By, B3, By in terms of Bjy:

Ba(u,v) = q(u+v)—q(w) —q(v)
= Bl(u+vvu+v)_Bl(uvu)_Bl(vav)
B (uv U) + By (’U, u)

Bs(u,v) = q(u)+a(v) —q(u—v)
= Bi(u,u)+ Bi(v,v) — B1(u —v,u —v)
= Bi(u,v) + Bi(v,u).
By(u,v) = g(u+v)—q(u—v)
= Bi(ut+v,u+v)— Bi(u—v,u—0v)
(4.15) = By(u,v) + Bi(v,u) + Bi(u,v) + Bi(v,u).

The bilinearity of B; implies the bilinearity of Bi(u,v) + Bi(v,u), so (3) implies
(4), (5), and (6). The relation By = By + Bs also shows that any two of (4), (5),
and (6) together imply the third.

For (3) = (7), expanding (4.14) in terms of By shows LHS = RHS (a
related quantity already appeared in Proposition 3.125), and By is bilinear as in
(4.15).

So far, the implications have not yet used % € K. To show (6) = (3), given
the bilinear form By, define By (u,v) = (%)2 - B4(u,v), so that Bj is bilinear, and
for any v € V,

2
B = (3) G0 - qw-0)
2
= (3) ‘@@+D-0)-40-0)
(4.16) = (3) (@170 - 40) = )
Similar calculations using 3 € K would directly show (4) = (3) and (5) = (3).

For (7) = (3), Equation (4.14) with u = v = Oy gives q(0y) = Oy, and with
u = 0y gives q(—v) = q(v). Then

By(v,u) = q(v +u) —q(v —u) = q(v+u) — q(u — v) = By(u,v).

It follows that By(u, - v) = Ba(a-v,u) = a- Ba(v,u) = a- B4(u, v). The following
calculation shows that 2- By is additive in the first entry, using (4.14) in steps (4.18)
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and (4.20) and some add-and-subtract steps in (4.17) and (4.19).

2+ Ba(uy + ug,v)

= 2-q(ur +ug +v) —2-q(ur +uz —v)

= 2-qur +us+v)+2-qlu; —v) —2-qlur +us —v) —2-q(ug +v)
(4.17) +2-q(ur +v) —2-q(ug —v)

= q2-ur+u2) +quz +2-v) —q(2-u1 + uz) — q(uz —2-v)
(4.18) +2-q(ur +v) —2-q(ug —v)

= quz +2-v) +q(uz2) — q(uz = 2-v) — q(uz)
(4.19) +2-q(ur +v) —2-q(ug —v)

= 2-q(uz+v) +2-q(v) —2-q(uz —v) —2-q(-v)
(4.20) +2-q(ur +v) —2-q(ug —v)

= 2 By(u1,v) + 2 By(ua,v).

By symmetry again, 2 - By is bilinear, and so is B; = (%)2 - By. The following
calculation establishing (3) using (4.14) is different from (4.16):

Bi(v,0) = (3) - (aw+v) — 4o - v))

> q(v+v) +q(v —v))

(3
- () 0) +2- () = a(0).

Finally, to show (2) = (1) using 3 € K, let h; be the symmetric part of hs
as in (3.2) and (4.6):

(ha(u)(v) =
= (()(v) =

~((ha(u))(v) + (ha(v))(u))
-(a(v) +a(v)) = a(v).

N = N =

DEFINITION 4.51. Assuming % € K, a function q : V ~» W satisfying any of
the equivalent properties from Proposition 4.50 is a W-valued quadratic form.

REMARK 4.52. The equations from (4), (5), and (6) are known as polarization
formulas. Equation (4.14) from (7) is the parallelogram law for q. The case where

% ¢ K is more complicated and not considered here; the remaining statements here

in Section 4.5.1 will all assume % c K.

EXERCISE 4.53. Given a quadratic form ¢, the symmetric form hy from Propo-
sition 4.50 is unique.

HiNnT. This is a statement about symmetric forms rather than quadratic forms:
the claim is that if hg and h; are both symmetric forms and (ho(v))(v) = (h1(v))(v)
for all v € V, then hy = hy. The hint is to expand (ho(u + v))(u + v) and use
1
LeK.
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EXERCISE 4.54. The set Q(V; W) of W-valued quadratic forms on V' is a vector
space. The map fyw defined by fyw : Q(V; W) — Sym(V; W) : q — hy as in
Exercise 4.53 is linear and invertible.

HinT. Q(V; W) is a subspace of F(V, W) as in Example 6.28. i

DEFINITION 4.55. For vector spaces U, V., W, define a linear map tgvv by:
)y, : Hom(U,V) — Hom(Q(V;W),Q(U;W))
H — (q—qoH).

EXERCISE 4.56. There are a few things to check in Definition 4.55: first, that
for H : U — V, the composite q o H is a quadratic form, second, that t‘l’]VV(H) is
linear, and third, that /%, is linear. Further, the following diagram is commutative.

1y (H)

QV; W) QU; W)
lfvw lfuw
Sym(V; W) Sym(U; W)

Hom(H,Hom(H,Idw))

Hom(V, Hom(V, W)) Hom (U, Hom (U, W))

The middle horizontal arrow is the map induced by Hom(H, Hom(H, Idw)) as in
Lemma 4.17.

HINT. The linearity of t/%,(H) can be checked directly, but also follows from
the commutativity of the upper block in the diagram. It is enough to check the
commutativity of the large block from upper left to lower right; temporarily denote
the left inclusion @y and the right inclusion Q. For q with fyw (q) = h1,

Hom(H, Idw) o (Qv(fvw(q))) o H:v — (hi(H(v)))o H :
(4.21) u = (ha(H(v)))(H (w)).
Then Qu o fuw o (M (H)) : q = Qu(fuw (g0 H)) = hg is the unique W-valued
bilinear form that is symmetric and that has the property (qo H)(u) = (ho(u))(u).
However, q(H (u)) = (hi(H(u)))(H(u)), so Hom(H, Hom(H, Idw))(Qv (h1)) from
(4.21) has both these properties and is equal to hg by uniqueness, proving the
commutativity of the diagram.

EXERCISE 4.57. {11, (Idy) = Idq (v,w). For H:U -V and A: V — X,
tI(/JVX(A oH) = tI(/JVV(H) °© flV/VX(A)-

In particular, if H has a linear left (or right) inverse, then t/%;,(H) has a linear right
(or left) inverse. W

PROPOSITION 4.58. ([HK] §10.2) Suppose U is finite-dimensional and W #
{Ow}. For H:U — U, the following are equivalent.
(1) W, (H) : QU; W) — Q(U; W) is one-to-one.
(2) H is invertible.



4.5. TOPICS AND APPLICATIONS 183

PROOF. The (2) = (1) direction follows from Exercise 4.57.

For the other direction, suppose, contrapositively, that H is not invertible; then
by Lemma 1.19 (which uses the finite-dimensional property of U), H* : U* — U* is
not invertible. By Claim 0.56 (using the finite-dimensional property of U*), H* is
not one-to-one and there exists ¢ € U* so that ¢ # Oy« and H*(¢) = ¢po H = Oy-.
Pick any w € W with w # Ow, and define a bilinear form

9 = kusomw,w) (¢ @ (kuw (¢ ® w))) € Hom(U, Hom(U, W)).
9 7 OHom(U,Hom(u,w)) because there is some x € U with ¢(z) # 0, and
(9(z))(x) = (o(x) - kuw (¢ @ w))(x) = p(x) - P(z) - w # Ow.
Also, g is symmetric:
(9(vi))(v2) = (d(v1) - kuw (¢ @ w))(v2) = P(v1) - P(v2) - w
(9(v2))(v1) = (o(v2)- k‘UW(¢ w))(v1) = ¢(v2) - P(v1) - w
q = fip(9) is the quadratic form q(v) = @(v) - ¢(v) - w, and again using v = =,

97 0q ww)-
However, t¥;;(H) : q+— qo H, and for any u € U,

(a0 H)(u) = a(H(u)) = 6(H(w)) - S(H(w)) w0 =00 w = Oy
So qo H =04 (v;w), and tV;(H) is not one-to-one. [ |

) =
) =

4.5.2. Algebras.

DEFINITION 4.59. A vector space V together with a V-valued bilinear form
h:V — End(V) is an algebra (V. h).

DEFINITION 4.60. For any algebra (V, h) with V finite-dimensional, the canon-
ical metric (k*)~! o e on End(V) from Example 3.143 (and Equation (3.15)) pulls
back by h to give a scalar bilinear form on V', the Cartan-Killing form

k=h"o(k*) toeoh: v k() :u— Try((h(v)) o (h(u))).

The CK form x is symmetric by Lemma 4.17 (or Lemma 3.8 or Lemma 2.6),
but is not necessarily a metric on V.

THEOREM 4.61. Given an algebra (V,h), suppose Q : U — V satisfies, for any
uelU,veV,

(4.22) (h(Q(w)))(v) € QIU).
If Q is one-to-one, then for any left inverse of Q, P :V ~~ U,
(4.23) hi1:U — End(U) : u— Po (h(Q(u)))oQ

defines an algebra (U, hy), and hy does not depend on the choice of P. If, further,
V s finite-dimensional, with CK form k, then the CK form k1 of (U, h1) is the
pullback of k by Q.

PRrROOF. Using Po@ = Idy and the property (4.22), for any w € U and v € V,
(h(Q(w)))(v) Q)
= QP((h(Qw)))(v)) = (M(Q(u)))(v),
(4.24) = Qo Po(h(Q(u))) h(Q(u)).

m
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Note that if P’ : V ~» U is any other (not necessarily linear) left inverse of @, then
composing P’ with both sides of (4.24) gives, for all u € U:

Po (h(Q(u))) = P’ o (M(Q(u))),

so the expression (4.23) does not depend on the choice of P and defines hy uniquely.
Further, because h(Q(u)) € End(V) has image contained in Q(U) by (4.22), the
composite Po (h(Q(u))) : V — U is linear by Exercise 0.51, which justifies the use
of End(U) as the target space in (4.23). It remains to check that hy is linear; for
Uy, U2, U3 € Uv

hi(ur +ug) = Po(h(Qu1+uz2)))oQ
= Po(h(Qu)) +h(Q(u2))) 0 Q:
uz = P((M(Q(11)))(Q(u3)) + (M(Q(u2)))(Q(us)))
(4.25) = P((h(Q(u1)))(Q(uz))) + P((M(Q(u2)))(Q(u3))),
= (ha(w) + hi(u2))(us).

where step (4.25) is from Equation (0.1) in Exercise 0.51. The scaling property
for hy similarly follows from Exercise 0.51. The conclusion is that if Q@ : U — V
is one-to-one, then some left inverse exists (as in Exercise 0.48) and (U, hy) is an
algebra as claimed. If P is a linear left inverse, then the expression (4.23) can be
denoted hy = Hom(Q, P) o ho Q.

For finite-dimensional V', U is also finite-dimensional (Exercise 0.50). The CK
form on U can be computed for ui, us € U, using the linearity of the composites
Po (h(Q(u1))) and P o (h(Q(uz))) so that Lemma 2.6 applies in step (4.26), and
using Equation (4.24) in step (4.27):

(k1(ur))(uz) = Tro((Po(h(Q(u1))) o Q) o (P o (h(Q(uz))) e Q))
(4.26) = Try((QoPo(h(Q(u1)))) o (Qo Po(h(Q(uz)))))
(4.27) = Try((h(Q(u1))) o (h(Q(uz))))
= (Q"oro@Q)(u1))(uz).
In particular, k1 = Q* o k o Q also does not depend on P. [ |

REMARK 4.62. The above property (4.22) represents the notion of an ideal of
the algebra (V,h). The next Theorem describes an algebra which is a direct sum
of ideals.

THEOREM 4.63. Given an algebra (V, h), suppose there is a direct sumV = U;®
Us, with projections (P, Py) and inclusions (Q1, Q2). The following are equivalent.

(1) h respects the direct sums
Uy @ Us — Hom(V,Uy) @ Hom(V, Us).
(2) For bothi=1,2, and allu e U;, v eV,
(h(Qi(w)))(v) € Qi(Us).
PROOF. In (1), the direct sum is as in Example 1.82, so the assumption is

hoQ; o P, =Hom(Idy,Q;) o Hom(Idy, P;) o h.
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For anyu e U;, v eV,

hQi(w)) = hQi(Fi(Qi(u))))
= QioPo(h(Qi(u))) :
v Qi(Pi((MQi(w))(v)) € Qi(Us),
(

so (1) = (2). Conversely, assuming (2), for v € U;, v € V, and different indices

i AT,

(h(Qi(w))(v) € Qi(Us)
= (W(Qi(w)(v) = Qi(Pi((h(Qi(u)))(v)))
MQi(u)) = QioPio(h(Qi(u)))

= ho@Q; = Hom(Idy,Q;oPF)oho@);
— Hom(Idy,Pr)oho@Q; = Hom(Idy,Pr)oHom(Idy,Q;oP;)ohoQ;
= OHom(U;,Hom(V,U1))>
so by Lemma 1.87, h respects the direct sums as in (1). [ |
For a direct sum as in Theorem 4.63, Theorem 4.61 applies, so that each U;

has an algebra structure (U, h;), and if V' is finite-dimensional, then each (Uj;, h;)
has CK form k; = Q} ok 0 Q;.

THEOREM 4.64. For an algebra (V,h), the following are equivalent.
(1) For allu, v, w eV,

(h(w)((h(v))(w)) = (R((h(w))(v)))(w)-

(2) For any u € V, this diagram is commutative.

h(u
% ® %
£ p
End(V) B2 o av)

PRrOOF. (1) is equivalent to: for all u, v,
(h(u)) o (h(v)) = h((h(u))(v)),
which is equivalent to Hom(Idy, h(u)) o h = ho (h(u)) for all u, which is (2). [

DEFINITION 4.65. An algebra (V| h) satisfying either equivalent property from
Theorem 4.64 is an associative algebra.

EXAMPLE 4.66. The generalized transpose from Definition 1.7 and Example
1.53,

tVy - End(V) — End(End(V)) : A+~ Hom(A, Idy) : B~ Bo A,
defines an associative algebra (End(V),#,,,). Using Corollary 2.37,
(R(A)(B) = Trnaw) (v (4) o (try(B)))
= Trgnavy(Hom(A, Idy) o Hom(B, Idy))
= Treng)(Hom(Bo A, Idy))
= Try(BoA) -Try(Idy),



186 4. VECTOR VALUED BILINEAR FORMS

so the form x for the algebra (End(V),tV,,) is a scalar multiple of the canonical
metric from Example 3.143.

DEFINITION 4.67. For any vector space V, define the linear map ad,

ad : End(V) — End(End(V)):
A +— Hom(Idy,A)— Hom(A,Idy) :
B — AoB-BoA.

THEOREM 4.68. For an algebra (V, h), if h is antisymmetric then the following
are equivalent.

(1) For allu, v, w eV,
(h((h(v))(w)))(u) + (h((h(w))(u)))(v) + (A((h(u))(v)))(w) = Oy

(2) For any v € V, this diagram is commutative.

v ) v
£ p
End(V) —2") _ pha(v)

ProOOF. The first property is the Jacobi identity for hA. In (2), the map ad :
End(V) — End(End(V)) is as in Definition 4.67. Using the antisymmetric property,
(1) is equivalent to

(R((h())(w)))(w) = (h(v))((A(w))(w)) = (h(w))((h(v))(w))

for all u, v, w, which is equivalent to, for all v, w,

h((h()(w)) = (h(v)) o (h(w)) = (h(w)) o (h(v))
= (ad(h(v)))(h(w)).

This is equivalent to h o (h(v)) = (ad(h(v))) o h for all v, which is (2). [

DEFINITION 4.69. An algebra (V, h) with h antisymmetric and satisfying either
equivalent property from Theorem 4.68 is a Lie algebra.

EXERCISE 4.70. If £ € Kand h: V — End(V) satisfies (1) from Theorem 4.64,
then its antisymmetric part 4 (h — Ty,v (h)) from (4.7) satisfies (1) from Theorem
4.68. Similarly, h — Ty, (h) satisfies the Jacobi identity even without assuming
1 € K. So for any associative algebra (V, h), there is a Lie algebra (V, h— Ty, (h)).

ExampLE 4.71. (End(V),ad) is a Lie algebra. This uses the construction of
Exercise 4.70 applied to (End(V),t{/,,) from Example 4.66, although with the op-
posite sign, so that ad = Ty.y (tV,,) — tV+,. For finite-dimensional V, the form &
is the pullback of the canonical metric on End(End(V')) (from Equation (3.16)) by
ad (or by its opposite, —ad),

K = (£ad)* o (kfnavy Enavy) ' © €End(v).End(v) © (£ad).
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Using Equation (3.15), Lemma 2.6, and Corollary 2.37,

(4.28) (k(A))(B) = Treaav)((ad(A)) o (ad(B)))
Trenaev)((Hom(Idy, A) — Hom(A, Idy)) o (Hom(Idy, B) — Hom(B, Idy)))
= Trgngvy(Hom(Idy, Ao B) — Hom(A, B) — Hom(B, A) + Hom(Bo A, Idy))
= 2-Try(Idy) -Try(AoB)—2-Try(A) - Try(B).

EXAMPLE 4.72. Direct sums of ideals as in Theorem 4.63 are considered in the
Lie algebra case by [Humphreys] §I1.5. If V' is finite-dimensional and T'ry (Idy) #
0, then Theorem 4.61 applies to the Lie algebra (End(V'),ad) and the direct sum
End(V) =K@ Endg(V) from Example 2.9. The corresponding CK forms are x; =
Otiom(k,k+) and ky = Q3 0 ko Q2, so that for trace 0 elements A, B € Endg(V), the
pullback of (4.28) by the inclusion Q2 gives (k2(A))(B) =2-Try(Idy)-Try (Ao B).

EXAMPLE 4.73. For a vector space U, with % € K, and a metric g : U — U™,
recall from Definition 3.116 the direct sum on End(U) produced by the involution
Hom(g, g~1)ot, defining subspaces of self-adjoint and skew-adjoint endomorphisms,
temporarily denoted here by:

End(U) = sa@®so
= {A:g_loA*og}@{A: —g_loA*og}.
Let (P1, P), (Q1, Q2) denote the projection and inclusions for the direct sum. Then
with Hom(Q2, P2) ocado @2 : s0 — End(so0) as in (4.23), (so, Hom(Qz2, P2) o adoQ2)

is a Lie algebra. It is a subalgebra, but not an ideal, of (End(U), ad), so Theorem
4.61 and Theorem 4.63 do not apply.

DEFINITION 4.74. An algebra (V. h) is a one-sided division algebra means that
for every v # Oy, h(v) is invertible. (V,h) is a two-sided division algebra means
that for every v # Oy, both h(v) and (Ty.y(h))(v) are invertible.

4.5.3. Curvature tensors.

EXAMPLE 4.75. Consider V with a metric g, and an End(V')-valued bilinear
form R € Hom(V, Hom(V, End(V))).
If 1 € K and R satisfies

(4.29) Tvigna(v)(R) = —R
so that R € Alt(V;End(V)), then by Corollary 4.32,
T7gEnd(v)(R) = Ogna(v)-
If % € K and R satisfies
(4.30) Hom(Idy,Hom(Idy,Hom(g,g ") ot))(R) = —R
so that for any u,v € V,
(R(u)(v) = —g~" o (R(w))(v))* o g € End(V),
then (R(u))(v) is skew-adjoint with respect to g and, as in Exercise 3.119,
Hom(Idy,Hom(Idy,Try))(R):u +
(Hom(Idy,Try))oR)(u):v +— (Tryo(R(w)))(v)
Try ((R(u))(v)) =
(4.31) = Hom(Idy,Hom(Idy,Trv))(R) = Onom(v,v+)-

0
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There is another trace that is not necessarily zero even under both of the above
conditions. Define:

Ric = (Hom(Idy,Hom(Idy,Try)) o Hom(Idy,Tv.v)) (R) € Hom(V, V™).

If Try(Idy) # 0, then Theorem 3.35 and Theorem 3.53 apply — there is a canon-
ical, orthogonal decomposition:
Trq(Ric)

(4.32) Ric= ———% -9+ (Ric -

_ Try(Ric) )
Trv(_[dv) '

T?“V (Idv) g

REMARK 4.76. For a smooth manifold where V' is a tangent vector space over
K = R and g is a pseudo-Riemannian metric, the linear algebra properties of the
Riemann curvature tensor Rékl at a point are modeled by a form R as in Example
4.75, with the symmetries (4.29), (4.30), and (4.33). Its trace Ric is the Ricci
curvature tensor, and Try(Ric) from (4.32) is the scalar curvature. See [DEFIN] §30.

REMARK 4.77. The second term from (4.32) is the trace-free Ricci tensor.
There are other interesting linear combinations of Ric and g, including the trace-
reversed Ricci tensor,

. Try(Ric)
Ric—2-—%2— " . g,

TS Ty (Tdy) Y
and the Einstein tensor,

Ric — % -Try(Ric) - g.
PROPOSITION 4.78. If + € K and R € Hom(V,Hom(V,End(V))) satisfies
(4.29) and (4.31), and additionally has the property
(4.33)  (Tv;gna(v) o Hom(Idv, Ty,v) + Hom(Idv, Tv,v) o Ty.gaa(v)) (R) = — R,
then Ric is symmetric.
ProOF. Using Lemma 4.6 and Equations (4.33), (4.31), and (4.29),

Ty (Ric) = (Tv.xoHom(Idy,Hom(Idy,Try))oHom(Idy,Ty.v))(R)
= (Hom(Idy,Hom(Idy,Try)) o Ty gnavy © Hom(Idy, Ty.v))(R)
= —Hom(Idy,Hom(Idy,Try))(R)
—(Hom(Idy,Hom(Idy,Try)) o Hom(Idy,Tv,v) o Tyv.Enav))(R)
- _OHom(V,V*)
—(Hom(Idy,Hom(Idy,Try)) o Hom(Idy,Ty.v))(—R) = Ric.
If, further, Try (Idy) # 0, then it follows that the second, trace-free term in (4.32)
is also symmetric. [

REMARK 4.79. The lowered-index curvature tensor R, is modeled by the
multilinear form R’ in the following Example 4.80. Then Proposition 4.81 demon-
strates the symmetry property Rigui = Riiig-

EXAMPLE 4.80. For V, g, and R € Hom(V, Hom(V,End(V))) as in Example
4.75, define

R’ = Hom(Idy,Hom(Idy,Hom(Idy,g)))(R) € Hom(V, Hom(V, Hom(V,V™))),
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so that for u,v € V, (R'(u))(v) = go ((R(u))(v)) : V. — V*. As in Theorem 3.115
and Example 3.117, if 7 € K and (R(u))(v) is skew-adjoint then (R’(u))(v) is an
antisymmetric form, so if R has property (4.30) then R’ satisfies
(4.34) Hom(Idy,Hom(Idy,Ty))(R') = —R'.
By Lemma 4.6,
Hom(Idy,Hom(Idy,Hom(Idy,g))) o Tvgna(v)

= TyHom(v,v+) ¢ Hom(Idy, Hom(Idy,Hom(Idy, g))),
so if R has property (4.29), then R’ satisfies
(4.35) Ty Hom(v,v=)(R) = —R'.
Similarly by Lemma 4.6,

Hom(Idy, Hom(Idy,Hom(Idy,g))) c Hom(Idy,Tv.v)
= Hom(Idy,Tv.v~) o Hom(Idy,Hom(Idy,Hom(Idy,g))),

so if R has property (4.33), then R’ satisfies

(4.36)
(Tv ;Hom(v,v+) © Hom(Idy, Tv,v+) + Hom(Idy, Tv,v+) © Ty mom(v,v+)) (R') = —R'.

PROPOSITION 4.81. If + € K and R’ € Hom(V, Hom(V, Hom(V, V*))) satisfies
(4.34), (4.35), and (4.36), then R’ is a fized point of the involution
(4.37)
Hom(Idy,Tv,v+) o Ty Hom(v,v+) © Hom(Idy, Hom(Idy,Tv)) o Hom(Idy, Ty,v-).

ProoOF. Temporarily denote the involutions:

a1 = Tv.Hom(v,v+)

ay = Hom(Idy,Ty,v+)

as = Hom(Idy,Hom(Idy,Ty)).
Properties (4.34) and (4.35) then can be stated:
(4.38) 0 () — as(R)) — — .

By Lemma 4.6, a; o a3 = a3 o aj, and this is enough to show that the composite
az o ay o ag o ag from (4.37) is an involution. Lemma 4.12 gives the relations:

a2 ©a1o0a2 = a1°0a2°0aj
a3z oaz 0oaz = a2 0asoas.

Starting with property (4.36), applying as to both sides, and then using (4.38)
gives:

(4.39) (a1 0as +azoar)(R) = —R
= (azoajoaz+azoazoal)(R) = a3(—R)
(apoazoazoazoas+azoazoazoazoar)(R) = R
(4.40) = (apoazoazoas+azoazoazoaz)(R) = —-R.
Applying as o aj o az o ay to both sides of (4.39) gives:
(ag0ay0azoazoaroas)(R)
+(ag0ayoazoazoazoar)(R) = (azoaioazoaz)(—R)

(4.41) (ag0azoazoa; +azoar)(R) = —(azoajoazoaz)(R).
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Applying a; to both sides of (4.41) gives:

(ajoazoazoazoal +ajoazoar)(R) —(a10azoaioazoaz)(R)

(a1 0azoazoaz+ajoaz)(—R') = —(azoa;oazoazoaz)(R)
(4.42) = (a1o0azoazoas+ajoaz)(R) = —(azoajoazoaz)(R).
Adding (4.39) and (4.40) and subtracting (4.41) and (4.42), there are cancellations
using (4.38) again, to get:
OHom(V,Hom(V,Hom(V,v+))) = —2 - R + 2 (ag 0 ay 0 az o az)(R'),

which proves the claim. [ |

4.5.4. Partially symmetric forms. A map A V ® V — F is called a
“trilinear F-form” in [EHM], and it is “partially symmetric” means that it is
invariant under switching of the V factors. Such forms, of course, lie in the scope
of these notes, and it will also be convenient to consider maps of the form

V ®U — Hom(V, W),

as in the vector valued forms of Sections 4.2 and 4.3, but with the domain twisted
by U. The two notions are related, as already seen in the Proof of Lemma 4.12.

Some of the statements in this Section will use variant ¢ maps as in Notation
1.49. For arbitrary V, U, W, X, define

(4.43) ¢ :Hom(X ® U,Hom(V,W)) - Hom(V @ X @ U, W)
so that for G: X @ U — Hom(V, W), v e V,z € X, and u € U,
¢(G):v@reu— (Glrz®u))(v).

In the following Lemma, Ty is the transpose map from Definition 3.2, and ¢; is the
g map from (4.43) in the case X =V.

LEMMA 4.82. The following diagram is commutative.

[TV@IdHom(U,W)]
Hom(V,V*)®@Hom(U,W) —————— Hom(V,V*)@Hom(U,W)

J J
Hom(V @ U, V* @ W) Hom(V @ U, V* @ W)
HOm(IdV®U,kvw) HOIIl(IdV®U,kvw)
Hom(V ® U, Hom(V, W)) Hom(V ® U, Hom(V, W))
q1 q1

Hom(V QV® U7 W) Hom([s®Idy],Idw)

Hom(VeVeUW)

PRrOOF. Without stating all the details, the upper part of the diagram is anal-
ogous to the diagram from Lemma 4.5, and the lower part is analogous to the
diagram from Lemma 4.1. [ |

DEFINITION 4.83. Define Ty,yw € End(Hom(V ® U, Hom(V, W))) by
Tyv.ow = q; ' o Hom([s ® Idy], Idw) o qi.
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With this construction, the Ty.;;,w maps are analogous to, but not a special
case of, the maps Ty, v,;w from Lemma 4.1 and Definition 4.2. If V is finite-
dimensional, then j and k in the above diagram are invertible, and by the Lemma,

Tv,uw = Hom(Idvgy, kvw) o j o [Ty @ Idgomw,w)] © §~ o Hom(Idveu, kyy)-

As in Section 4.2, Tv.yw is an involution, and if % € K, then it produces a di-
rect sum structure on Hom(V ® U, Hom(V, W)), by Lemma 1.119. The other two
involutions in the above diagram also produce direct sums, and by Lemma 1.126,
the maps ¢1 and Hom(Idy gy, kyw) o j respect these direct sums, although the
comments about Example 1.145 in Remark 4.14 apply here also.

EXERCISE 4.84. With respect to induced metrics, Tv,y,w is an isometry, and
if % € K, then it produces an orthogonal direct sum.

HiINT. Use Definition 4.83 to show Ty .7, w is a composition of isometries. Then
Lemma 3.55 applies, as in Theorem 4.39. [

DEFINITION 4.85. A map G : V ® U — Hom(V,W) is partially symmetric
means: Ty,yw(G) = G. More generally, a map G : X ® U — Hom(V,W) is
partially symmetric with respect to a map H : V' — X means that G o [H ® Idy] :
V ® U — Hom(V, W) is partially symmetric.

LEMMA 4.86. ([EHM]) For any V, U, W, X, and G : X @ U — Hom(V, W),
the following diagram is commutative.

Ko X®U XoU
Qi®Idxeu]

End(V)® X ® U G
Hom(V,V @ X ® U) 2209 yomv, w)
kv,vexeu kvw

VeV e XU o @@ Vi W

PRrROOF. The lower square uses Lemma 1.62. In the upper square, the maps
are n as in Definition 1.40, and an inclusion Qi : A — X - Idy as in Example 2.9
and Equation (2.4).

A@z®@u +— (Hom(Idy,q(G))ono[Ql® Idxey])(A®z @ u)

= (¢(G))o(n(A Idy @z @u)):
v~ (@G)A vz Ru)
= A (Glzau))(v) =(Gol)(A®z @ u))(v).

THEOREM 4.87. For any spaces U, V, W, X, Y, and any maps G: X @ U —
Hom(V, W), M :Y — X ® U, the following are equivalent.

(q(G)) o [Idy @ M] = Onom(vey.w)
= GoM = OHom(Y,Hom(V,W))-
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PROOF. Let ¢ be the map from Equation (4.43), and let g2 be another such
map in the following diagram.

Hom(X ® U, Hom(V, W)) —— Hom(V ® X @ U, W)

Hom(ledHom(V,W))l lHom([IdV(@M],IdW)

g2

Hom(Y, Hom(V, W)) Hom(V @Y, W)

The diagram is commutative by Lemma 1.50. So, g2(G o M) = (¢(G)) o [Idy @ M].
Since ¢o is invertible (Lemma 1.47), G o M is zero if and only if its output under
q2 is also zero. [ |

EXAMPLE 4.88. Suppose there is some direct sum V @ X @ U = Wy & W,
with projections P; : V@ X @ U — W;. Then, for ¢; : Hom(X ® U, Hom(V, W;)) —
Hom(Ve@ X @U,W;)and M : Y - X @ U,

Py o [Idy ® M) = Ogom(vey,w,) <= (4; " (P:)) © M = Otom(y,Hom(V,W,))-

The following Theorem uses the the switching involution s as in Lemma 4.82,
and the direct sum V ® V = S?V @ A2V produced by s as in Example 1.124, with
projections (Py, P2) and inclusions (Q1, Q2).

THEOREM 4.89. Let H : V — X, and suppose there is some direct sum

VRX=27 &7
with operators P/, Qf, such that [Idy @ H] : V@V — V ® X respects the direct
sums and Pyo[Idy @ H]o Qo : A2V — Zy is invertible. If G : X @ U — Hom(V, W)
is partially symmetric with respect to H, then
9(G) = (¢(G)) © [(Q o P) ® Idy].

ProOOF. The following diagram is commutative by Lemma 1.50, where ¢; is as
in Lemma 4.82.

Hom(X ® U, Hom(V, W)) — Hom(V ® X ® U, W)
Hom([H®IdU]7IdHom(V,W))l lHOm([IdV(@[H@Idu]],Idw)
Hom(V @ U, Hom(V, W)) —> Hom(V @ V @ U, W)

By the assumption about respecting the direct sum, Pj o [Idy ® H| o Q; is zero for
i # I. Let Pj denote the projection % (I dpom(veu,Hom(v,w)) — Tv,u,w), so that if
G is partially symmetric with respect to H, then

Oom(azveu,w) = (qi(Py(Go[H @ Idy)))) o [Q2 ® Idy]

= (% cq1(Go[H ® Idy))) o [Q2® Idy]
—(% ~q1(Go[H®Idy)))o[s® Idy]o[Q2® Idy]

(1(G o [H & Idy])) o [Q2 ® Idy] o [Pa @ Idy] o [Q2 @ Idy]
(9(@)) o [ldv ® [H ® Idy]] o [Q2 ® Idy]

(¢(@)) o ([Q} ® Idy] o [P} ® Idy] + [Q5 ® Idy] o [Py ® Idy])
of[Idy ® H] ® Idy] o [Qs ® Idy]

= (¢(G)) e [Q4@Idy] o [Py@Idy] o [[Idy @ H|@Idy] o [Qe®Idy].
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Then, since [P) ® Idy] o [[Idy ® H| ® Idy] o [Q2 @ Idy] is invertible,
Ottom(zsau,w) = (¢(G)) 0 [Q5 ® Idy],
and it follows that
9(G) = (¢(G)) o [(Q) © P{ + Q4 0 Py ® Idy] = (q(G)) o (@) o P)) @ Idy]. 1

It follows from the previous two Theorems that if M : Y - X @ U and G is
partially symmetric with respect to H, then

2(G o M) = (q(G)) o [(Q) o P{) @ Idy] o [Idy & M].

REMARK 4.90. The map H : V' — X could be an inclusion of a vector subspace,
in which case the above Z; corresponds to the space denoted by H.V in [EFM].

BiG EXERCISE 4.91. Given a metric g on V, there exists a trace operator
Trg.uw : Hom(V @ U, Hom(V, W)) — Hom(U, W)

having nice properties which follow as corollaries of the results in Section 2.2. [ |






CHAPTER 5

Complex Structures

At this point we abandon the general field K and work exclusively with real
number scalars and vector spaces over the field R. Some of the objects could be
considered vector spaces over the field of complex numbers, but in this Chapter,
complex numbers will not be used as scalars or for any other purpose. The objects
will instead be real vector spaces paired with some additional structure, and the
maps are all R-linear, although some of the R-linear maps will respect the additional
structure.

5.1. Complex Structure Operators

DEFINITION 5.1. Given a real vector space V', an endomorphism J € End(V)
is a complex structure operator means: J o J = —Idy.

NOTATION 5.2. A complex structure operator is more briefly called a CSO.
Sometimes a pair (V, J) will be denoted by a matching boldface letter, V. Expres-
sions such as v € V, A: U — V| etc., refer to the underlying real space, so that
veV,A:U—V, etc.

ExAMPLE 5.3. Given V = (V, Jy) and another vector space U, [Idy @ Jy] €
End(U®V) is a canonical CSO on U®V, so we may denote U@V = (UV, [Idy ®
Jy]). Similarly, denote V@ U = (V @ U, [Jy ® Idy]).

EXAMPLE 5.4. Given a vector space V with CSO .Jy and another vector space
U, Hom(Idy,Jy) : A — Jy o A is a canonical CSO on Hom(U, V'), so we may
denote Hom(U, V) = (Hom(U, V'), Hom(Idy, Jv)). Similarly, denote Hom(V,U) =
(Hom(V,U), Hom(Jy, Idy)).

EXAMPLE 5.5. Given V, a CSO J induces a CSO J* = Hom(J, Idr) on V* =
Hom(V,R).

EXAMPLE 5.6. Given V, a CSO J € End(V), and any involution N that
commutes with J (i.e., N € End(V) such that No N = Idy and NoJ = Jo N),
N o J is a CSO.

EXAMPLE 5.7. Given V # {0y}, any CSO J € End(V) is not unique, since —.J
is a different CSO. This is the N = —Idy case from Example 5.6.

EXAMPLE 5.8. Given V = Vi @& V5, suppose there is an invertible map A : Vo —
V1, as in (3) from Theorem 1.136. Then, V also admits a CSO,

(5.1) Jy=Qyo0A loP —Qi0Ao0DP;,
and its opposite, —Jy .

EXAMPLE 5.9. In the special case of Example 5.8 where V =U ® U, A = Idy
(Case (1) from Theorem 1.136), the CSO (5.1) is Jy = Q20 P — Q1 0 Ps.

195
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EXAMPLE 5.10. For V. = V; & V5 and A : Vo — V; as in Example 5.8, the
implication (3) = (8) from Theorem 1.136 showed that there exist anticom-
muting involutions K7 and Ky on V. Conversely, for any pair of anticommuting
involutions K3 and K, the composite K70 K> is a CSO on V (and so is its opposite
—Ky 0Ky = Kso0Kj). Using K7 to produce a direct sum V = V; @ V5 and using
K5 to define amap A = Py o Ky 0Qy: Vo — V4 as in (1.20), the construction (5.1)
from Example 5.8 gives the same pair of CSOs: {£K; 0 Ko} = {£Jy }.

LEMMA 5.11. Given V with CSO J andv € V, if v # Oy, then the ordered list
(v, J(v)) is linearly independent.

PROOF. Linear independence as in Definition 0.32 refers to the scalar field R
in this Chapter. If J(v) = a - v for some o € R, then J(J(v)) = (=1)-v = a? - v.
There are no solutions for v # 0y and « € R.

EXERCISE 5.12. Not every real vector space admits a CSO. [ |

LEMMA 5.13. Given V with CSO J and vy, ...,ve € V, if the ordered list

(U1, 01,00, J(v1)y ..o, J(ve—1))
is linearly independent, then so is the ordered list
(Ula <oy Vg1, Ve, J(Ul)) cee J(Uf—l); J(UZ)) .

PrOOF. The ¢ = 1 case is Lemma 5.11. For ¢ > 2, suppose there are real
scalars aq, ..., 81, ..., B¢ such that

(5.2) ar vt .o tagrve+ P J(v)+ oo+ Ber J(ve) =0y
Then,
(53) 041'J(U1)+...+Oég-J(U[)—51'Ul—...—,8[-1}[:0\/.

Subtracting ay times (5.2) minus B¢ times (5.3), the J(v,) terms cancel, and
(alag + ﬂlﬂz) U1+ .. (az,laz —+ 647164) “vp—1 + (af —+ 6?) - Up
(b —aafe) - J(v1) + ... 4 (aefe—1 — ap—18e) - J(ve—1) = Ov.

By the linear independence of the ordered list with 2¢ — 1 elements, a? + 87 =
0 = ay = f¢r =0. Then (5.2) and the independence hypothesis again (or Lemma
5114 =2)imply oy =...=ap_1 =01 =...=Be—1 =0.

DEFINITION 5.14. Given V with CSO J, a subspace H of V is J-invariant
means: J(H) C H. Equivalently, because J is invertible, J(H) = H.

LEMMA 5.15. Given V with CSO J, and a J-invariant subspace H of V', if
H # {0y} and H is finite-dimensional, then H admits an ordered basis of the form
(U1y ey V1,00, J(V1)y ooy J(ve—1), J(ve)) .

PrOOF. By hypothesis, there is some v; € H with v; # Oy, and by J-
invariance, J(v) € H, so by Lemma 5.11, (v1,J(v1)) is a linearly independent
ordered list of vectors in H. Suppose inductively that

(U1, v—1,00, J(v1)y ..oy J(ve—1), J (ve))
is a linearly independent ordered list of vectors in H. If the ordered list spans H,
it is an ordered basis; otherwise, there is some vy, € H not in its span, so

(V1 vy V1,00, Vg1, J (V1) ooy J(ve—1), J(v0))
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is a linearly independent ordered list. J(vyy1) € H and Lemma 5.13 applies, so
(Ula sy Uo—1,00, V041, J(U1)7 SERE) J(U€—1)7 J(U€)7 ‘](’Uﬁ-‘rl))

is a linearly independent ordered list of elements in H. The construction eventually
terminates by Definition 0.28. [

DEFINITION 5.16. Given V with CSO .J, a subspace H of V' which is equal to
a span of a two-element set and is also J-invariant, H = J(H) C V, will be called
a J-complex line in V.

By Lemma 5.15, a J-complex line H must be of the form span{v, J(v)} for
some non-zero v € H.

LEMMA 5.17. Given V with CSO J, a J-complex line L, and a J-invariant
subspace H C V', if there is a non-zero element v € L N H, then L. C H. In
particular, if H is a J-complex line, then L = H.

PrOOF. By J-invariance, {v,J(v)} € LN H. By Lemma 5.11, (v, J(v)) is
a linearly independent ordered list, so it is an ordered basis of L and its span is
contained in H. Comment: the contrapositive can be stated: Given V with CSO .J,
v €V, and a J-invariant subspace H, if v ¢ H, then H Nspan{v, J(v)} = {0v}. N

LEMMA 5.18. Given V with CSO J, if L*, L? are distinct J-complex lines
in V, then span(L' U L?) has an ordered basis with 4 elements. In particular, a
subspace H C 'V that does not have 4 elements forming a linearly independent list
can contain at most one J-complex line.

PROOF. Suppose L, is a J-complex line in V, with L1 = span{v, J(v)}. If Lo
is a J-complex line with Lo # Ly, then Lo L, so there is some u € Lo \ L1, and
(v, J(v),u) is a linearly independent list. Because Lo is J-invariant, J(u) € Lo, so
by Lemma 5.13, (v, J(v),u, J(u)) is a linearly independent ordered list of elements
of L' U L?, and an ordered basis of span(L' U L?). i

LEMMA 5.19. Given V with CSO J, and a subspace H of V', if H = {0y} or
H has an ordered basis of the form (u1,J(u1),...,u,,J(u,)), then either H =V
or there exists a subspace U of V' such that U is J-invariant, H C U, and U admits
an ordered basis with 2(v + 1) elements.

PRrROOF. This is trivial for H = {0y} or H = V; otherwise, the ordered basis
for H can be extended by two more elements to an ordered basis of a J-invariant
subspace as in the Proof of Lemma 5.15. Note that this Lemma then applies to U
and can be repeated to get another subspace containing U'.

LEMMA 5.20. Given a vector space Vi with CSO Jy and an element v € V7,
another vector space Vo with CSO Ja, and a real linear map A : Vi — Vs, the
following are equivalent.

(1) A(J1(v)) € span{A(v), J2(A(v))}-
(2) A maps the subspace span{v, Ji(v)} C Vi to the subspace

span{A(v), J2(A@))} C Va.
Further, if A and v satisfy (1) and A(J1(v)) # Oy, then A and Jy(v) satisfy (1):
A(J1(J1(v))) € span{A(J1(v)), Jo(A(J1(v)))}-
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PROOF. (2) <= (1) is straightforward. If A(J;(v)) = a1-A(v)+az- J2(A(v))
for some (a1, a2) # (0,0), then there is this linear combination.

—Qq a9
Frag AN AN
oy

_ m (o - Av) + ag - J2(A(w)))

Tl Jo(on - A(v) + g - Ja(A(v)))

— —A@W) = AL (L), 1

The above notion for a real linear map A is slightly stronger than the state-
ment that A maps the J;-complex line span{v, Ji(v)} into some Ja-complex line;
if A(v) = Oy,, condition (2) implies A maps span{v, J;(v)} to the zero subspace.

EXERCISE 5.21. Given V with CSO J, if V' # {0y}, then the ordered list
(Idy,J) is linearly independent in End(V). ll

EXERCISE 5.22. Given V with two CSOs J; and Jo, if Jo # +J;, then the
ordered list (Idy, Ji, Ja2, J1 o Jo2) is linearly independent in End(V).

HINT. The hypothesis implies V' # {0y }, so Exercise 5.21 applies and (Idy, Ji)
is a linearly independent list. The next step is to show that (Idy, Ji, J2) is a linearly
independent list. If there are real scalars such that oy -Idy +az-Ji+as-J2 = Ogaa(v),
then:

(a1~Idv+a2'J1)0(a1~Idv+a2~J1) = (—()ég'JQ)O(_()ég'JQ)
(@2 —a3)-Idy +2a100-J; = —a2-Idy
= aias = 0.

If oy = 0 then by the linear independence of (Idy,J) from Exercise 5.21, oy =
as = ag =0. If oy = 0 then (ag - J1)o(ag - J1) = (—as - Ja) o (—ag - Ja) =
—a=-a2 = ay- (1 £.h) = Ognda(v), and the hypothesis Jo # +.J; implies

] = Qg = Qg3 — 0.
The claimed independence of the list (Idy,.Ji, J2, J;1 o J2) then follows from
applying Lemma 5.13 to the list (Idy, Ji, J2) and the CSO Hom(J2, Idy ) on End(V)
|

from Example 5.4.

REMARK 5.23. The results in this Section give some details omitted from [C;]

§2.

5.2. Complex linear and antilinear maps

LEMMA 5.24. Given U with CSO Jy, V with CSO Jyv, and a real linear map
A:U =V, the set

{ueU: Jv(Au) = A(Ju(u))}
is a Jy-invariant subspace of U, and its image
{A(u) : Jv(A(u)) = A(Ju(u))}

is a Jy-invariant subspace of V.
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PROOF. The first set is a real linear subspace of U because it is the kernel of
the real linear map Jy o A — A o Jy. To verify Definition 5.14, check that if u is in
the set, then so is Jy(u); the claim for the image set follows. [ |

EXAMPLE 5.25. Given V with two CSOs J; and Jo, the set
{veV:Ji(v) = Ja(v)}

is a Jp-invariant subspace of V' and also a Js-invariant subspace. This is the A =
Idy special case of Lemma, 5.24.

DEFINITION 5.26. For U = (U, Jy), V = (V,Jy), a real linear map A €
Hom(U, V) is c-linear means: Ao Jy = Jy o A. A map A € Hom(U, V) is a-linear
means: Ao Jy = —Jy o A.

Because some vector spaces can admit several complex structures, it will some-
times be more clear to specifically refer to A : U — V as c-linear (or a-linear) with
respect to the pair (Jy, Jy ).

LEMMA 5.27. If A: U — V is c-linear (or a-linear) and invertible, then A~
is also c-linear (or a-linear). The composite of two c-linear maps (or two a-linear
maps) is c-linear. B

LEMMA 5.28. If A : U — V s c-linear (or a-linear) with respect to Jy, Jy,
then the kernel ker(A) is a Jy-invariant subspace of U and the image A(U) is a
Jy -invariant subspace of V. [

LEMMA 5.29. Given V = (V,Jy) and V' = (V' J{,), any map A : U — U’,
and a c-linear map B : V. — V', the maps [A®@ B] : U®V — U @ V' and
[BRA : VU — V' @U’ are c-linear with respect to the induced CSOs from
Ezxample 5.3. [ |

LEMMA 5.30. Given V = (V,Jy) and V' = (V', J{,), any map A: U’ — U, and
a c-linear map B : V — V', the maps Hom(A, B) : Hom(U, V) — Hom(U’, V') and
Hom(B, A) : Hom(V',U’) — Hom(V,U) are c-linear with respect to the induced
CSOs from Example 5.4. [ |

EXERCISE 5.31. Given V = (V, Jy), the canonical maps /1 : R® V — V and
lo: VR —V from Example 1.28 are c-linear.

HinT. The CSO on R® V is as in Example 5.3, and the claim for [; follows
from Lemma 1.38. The claim for Is : V ® R — V is analogous. [ |

EXERCISE 5.32. Given W = (W, .J), the map m : W — Hom(K, W) from
Definition 1.20 is c-linear.

HINT. The CSO on Hom(K, W) is as in Example 5.4, and the claim follows
from Lemma 1.21. i

EXERCISE 5.33. Given U, V, W, with U = (U, J), the canonical map (Def-
inition 1.7) ¢, : Hom(U,V) — Hom(Hom(V, W), Hom(U, W)) is c-linear with
respect to the induced CSOs as in Example 5.4.

EXERCISE 5.34. Given U, V, W, with V. = (V,J), t/¥,, : Hom(U,V) —
Hom(Hom(V, W), Hom(U, W)) is c-linear with respect to the induced CSOs. ll
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EXERCISE 5.35. Given U, V, W, with W = (W, J), and any A € Hom(U, V),
the map
t(A) € Hom(Hom(V, W), Hom(U, W))
is c-linear Hom(V, W) — Hom(U, W).

HiNT. This claim, Exercise 5.33, and Exercise 5.34 all follow from Lemma

1.8. [ |

EXERCISE 5.36. Given V and W, with V = (V, Jy/), the canonical map (Defini-
tion 1.13) dyw : V — Hom(Hom(V, W), W) is c-linear with respect to the induced
CSO as in Example 5.4. [ |

EXERCISE 5.37. Given V and W, with W = (W, Jw), and any v € V, the map
dyw (v) € Hom(Hom(V, W), W) is c-linear Hom(V, W) — W.
HinT. This claim and Exercise 5.36 both follow from Lemma 1.14. [ |

EXERCISE 5.38. Given U, V, W, with U = (U, J), the canonical map (Defini-
tion 1.56) e}ty : Hom(U, V) — Hom(Hom(V, W) ® U, W) is c-linear with respect
to the induced CSOs. I

EXERCISE 5.39. Given U, V, W, with V. = (V,J), e}, : Hom(U,V) —
Hom(Hom(V, W) @ U, W) is c-linear with respect to the induced CSOs. ll

EXERCISE 5.40. Given U, V, W, with W = (W, J), and any A € Hom(U, V),
the map e}¥;,(A) € Hom(Hom(V, W) ® U, W) is c-linear Hom(V, W) @ U — W.

HiNT. This claim, Exercise 5.38, and Exercise 5.39 all follow from Lemma
1.57. |

Recall from Definition 2.71 that Hom(Hom(V, W) ® V, W) contains a distin-
guished element Foyw : A® v — A(v).

EXERCISE 5.41. Given V and W, with W = (W, Jy ), the canonical evaluation
Evyw : Hom(V, W) ® V — W is c-linear.

HINT. This claim can be checked directly; it also follows from Lemma 2.73, or
the formula Evyw = eV, (Idy) from Equation (2.16) and Exercise 5.40. i

EXERCISE 5.42. Given U and V, with V finite-dimensional and U = (U, Jy),
the map nyy : U = V @ Hom(V, U) from Notation 4.44 is c-linear.

HiNT. The claim follows from Lemma 4.47. [
EXERCISE 5.43. Given U, V, W, with W = (W, Jy), the map
Ty,v.w : Hom(U, Hom(V, W)) — Hom(V, Hom (U, W))
from Definition 4.2 is c-linear.
HiNT. The claim follows from Lemma 4.6. [
EXERCISE 5.44. Given U, V, W, with U = (U, Jy), the map
Ty,v.w : Hom(U,Hom(V, W)) — Hom(V, Hom(U, W)),
and its inverse from Equation (4.2) in Lemma 4.4,
Ty,u.w : Hom(V, Hom(U, W)) — Hom(U, Hom(V, W)),

are c-linear.
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HiNT. Both claims follow from Lemma 4.6. Alternatively, the c-linearity of the
composite formula from Definition 4.2,

Ty,v,w = Hom(dyw, Iduomw,w)) © tngom(vW),

and its inverse could be shown to follow from the c-linearity of the ¢t and d maps,
as in Exercise 5.33, Exercise 5.34, and Exercise 5.36.

EXERCISE 5.45. Given V and A € End(V), if V' is finite-dimensional and there
is some CSO J on V such that A is a-linear with respect to J, then Try (A) = 0. i

LEMMA 5.46. Given V and a CSO J € End(V), for any invertible A: U — V,
the composite A~toJoA € End(U) is a CSO. A is c-linear with respect to A~1oJo A
and J. If B : U — V is another invertible map and A~* o Jo A= B 'oJoB,
then Ao B~ is a c-linear endomorphism of (V,J). [ |

The CSO A~ ! o Jo A is the pullback of J.

LEMMA 5.47. Given V =V; @ Vo and a CSO J € End(V), the following are
equivalent.
(1) J respects the direct sum.
2) Q10 Py is c-linear.
) Q20 Py is c-linear.
) ProJoQ1 = Ouom(vi,va) and PaoJ o Q2 = Ouom(vy,17)-
) There exists a CSO Jy on Vi and a CSO Jy on Va so that

(5.4) J=Qi10J10P +Qz0Jy0P5.

(

(3
(4
(5

PrOOF. The equivalence of the five properties follows from Lemma 1.87 and
Definition 1.88. For (1) == (5), it is easily checked that each induced map
J; = PioJo@; is a CSO on V;, and that J is recovered by re-combining the
induced maps as in (5.4):

Qro(PioJoQi)oPi+ Q20 (PaoJoQz)oP =

Conversely, given CSOs J; on Vi, Jy on Va, the map J constructed as in (5.4) is a
CSO on V, and each J; agrees with the CSO induced by this J:

Po(QioJioPi+Qyo0Jy0P)oQ;=J. |

LEMMA 5.48. For V. =Vi® Vs and V' = V]| ® V5 and invertible maps A : Vo —
Vi, A"V =V, let J, J be CSOs on V and V' constructed as in Example 5.8.
Then, for H :V — V', the following are equivalent.

(1) H is c-linear with respect to J and J'.
(2) AoPjoHoQs=P/loHoQi0A and PloHoQy=—A"oPjoHoQ0A.
HiNT. To show (2) = (1), expand

HoJ=(QyoP +Q0oP))oHo(QaoA ™ oP, —Q10A0P,)

and similarly J' o H.
For (1) = (2), apply Hom(Q1, P3) to both sides of Ho.J = J' o H to get one
of the equations, and apply Hom(Q2, Py) to get the other. [ |

REMARK 5.49. Lemma 5.48 displays an algebraic pattern analogous to the
Cauchy-Riemann equations.
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EXAMPLE 5.50. For V =V, @V, V! =V/ @ V], A, A’, J, J asin Lemma 5.48,
any map B : V) — V/, and any real scalars «, 3, the map H : V — V' defined by
(5.5) a-Q40BoPi+B-Q}oBoAoPs—A-Qho(A) " oBoPy+a-Qho(A) "oBoAoP
is c-linear with respect to J, J'. In particular, in the case o = 1, 8 = 0, we denote
H = B.:

(5.6) B.=QjoBoP, +Qyo(A)Y 'oBoAoP,
and consider B, : V' — V' a c-linear extension of B : V4 — V{ because it satisfies
P{oB.oQ, =B.

EXERCISE 5.51. If (o, 8) # (0,0) then for B as in Example 5.50 and H from

(5.5), the following are equivalent.

(1) B has a left inverse.
(2) H has a left inverse.

Similarly, the following are equivalent.

(3) B has a right inverse.
(4) H has a right inverse.

Similarly, the following are equivalent.
(5) B is invertible.
(6) H is invertible.

HINT. For (1) = (2),if G : V/ — Vi is a left inverse of B then a left inverse
of H is:
1
OKQ +52
+B-Q20A ' oGoP +a-Qr0A ' oGoA oP)).
The same formula works to show (3) = (4) (assuming instead that G is a right
inverse of B) and (5) = (6) (with G = B™1).
For (2) = (1),if F: V' — V is a left inverse of H then a left inverse of B is:
PioFo(a-Qy—f-Qyo(A)™).
For (4) = (3) (and then (6) = (5) as in Exercise 0.54), if F’ is a right inverse
of H then a right inverse of B is

(a-P+B-AoPy)oF oQ).

(@ QioGoP{—B-QioGoA ol

EXERCISE 5.52. Given (V4,J1) and (Va, J3), a direct sum V =V} @ V3, and a
map A : Vi — Vs, the following are equivalent.

(1) Ais a-linear.
(2) J:Q10J10P1+Q20AOP1+QQOJQOP2 isa CSO on V.
For A and J as in the above statements (1) <= (2), the following are equivalent.
(3) A= Orom(vs,v2)-
(4) J respects the direct sum V =V} @ V4.
(5) J is the CSO constructed in (5.4) from Lemma 5.47.
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EXERCISE 5.53. For V, V1, Va3, A as in Exercise 5.52, the CSO Jy = Q10J10
P +Q20A0P; 4+ Qg0 Jy0 Py is similar to the direct sum CSO Jy = Q0Jy0 P +
Q2 0 Jo 0 Py, in the sense that J4 = G~ 0 Jy o G for some invertible G € End(V),
and G can be chosen so that P, o G o Q2 = Idy,.

HINT. Let G = Idy + % -2 0 Ao Jyo Py, then check Go Jy = Jyo G, or use
Gilzldv—%-ngAojlopl. l
EXERCISE 5.54. Given V = V; & V5, with CSOs J; on Vi, Jy on V5, and
J=Q10J10Pi+Q20Jy0PonV, let A:V; — Vi be any map, let
Q=Q1+Q20A:V1 =V,
and let
H=Qi(Vi) N J(Q1 (V1))

H is the largest J-invariant subspace of V' contained in the image of Q). For any
u € Vi, the following are equivalent:

(1) A(J1(u) = J2(A(u)).
(2) Qi(u) € H.
HINT. J is the CSO constructed in (5.4) from Lemma 5.47, and the same as
Jo from Exercise 5.53. The map Q] is an inclusion in the construction of the graph
of A, from Exercise 1.107. The property (1) was considered in Lemma 5.24.
Assuming (1),

J(Qi(w) = (QuoJioPi+ Q2020 P2)(Q1(u) + Q2(A(u)))
(5.7) = Qi(N1(u)) + Q2(J2(A(u)))
Q1(J1(u) + Q2(A(J1(u))) = Q1 (J1(u)).
So Q' (u) = =J(Q1(J1(u))) € J(Q1(1)).
Assuming (2), if Q] (u) € J(Q}(V1)), then J(Q)(u)) = Q}(v) for some v € V;.
From (5.7),

Q1(J1(u)) + Q2(J2(A(u))) = Q1(v) + Q2(A(v)),
and it follows that v = Jy(u) and Jo(A(u)) = A(v) = A(J1(u)), showing (1). [

PROPOSITION 5.55. Given V', consider three elements A, J1, Jo € End(V'). The
following two statements are equivalent.
(1) (Jl +J2) ocA=J, — Js.
(2) Joo(Idy +A)=J o(Idy — A).
The following two statements are also equivalent to each other.
(1/) Ao (Jl + .]2) =J — Jo.
(2’) (Id\/ +A> o J2 = (Idv - A) o Jl.
If A, Jy, Ja satisfy either condition (1) or (1'), then any two of the following imply
the remaining third.
(3) Ji is invertible.
(4) Ji + Jo is invertible.
(5) Idy + A is invertible.
If A, Ju, J2 satisfy (1) or (1), and also (5), then any two of the following imply the
remaining third.
(6) Ao Jy =—J 0 A.
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(7) Ji is a CSO.
(8) Jo is a CSO.

PROOF. (1) <= (2) by an elementary algebraic manipulation. The (1') <=
(2") and subsequent implications are analogous and left as an exercise. For (3), (4), (5
use (1) or (2) to establish

(J1+J2)O(Idv+A) =2-Jp,

and the claim follows.
For (6), (7), (8), use (2) to establish

(5.8) (Ji+ J2)o(AoJy + JioA)

= JioAoJi+JyoAoJi+JioJioA+JyoJjoA

= JioAo i+ ho(ldy+A)oJi+JioJioA—JyoJyo(Idy —A)

= JioAo i+ Jio(Idy —A)oJi+JioJioA—JyoJyo(Idy + A)

= (JioJ1 —JyoJy)o(Idy + A).
Given (6), (8), the equation (5.8) becomes Ogpngcvy = (J1 0 J1 + Idy) o (Idy + A),
and (7) follows from (5). Similarly, given (6), (7), (5.8) becomes Ognq(v) = —(Idy +
JyoJg)o(Idy + A), and (8) follows from (5). For (7), (8), note that (7) implies (3)
and then (5) implies (4), so by (7) and (8), (5.8) becomes LHS = Ogpq(v), and (6)
follows from (4).

Given V with a CSO Ji, Proposition 5.55 establishes a bijective correspondence
between the set of CSOs Jy on V' with J; 4+ J3 invertible and the set of A € End(V)
with A a-linear (with respect to J1) and Idy + A invertible, as follows. Since Jj is a
CSO, (3) and (7) hold. For any a-linear A € End(V') with Idy + A invertible, (5) and
(6) hold. If we define Jo by the similarity relation Jo = (Idy +A)oJyo(Idy +A)~ L,
then Jo = Jy o (Idy — A) o (Idy + A)~1, so (2) holds, (1), (4), and (8) follow as
consequences, and A satisfies A = (J; + J2) " o (J; — J2). Conversely, for any CSO
Jo with Jy + Ja invertible, (4) and (8) hold. If we define

(5.9) A= (Ji+ o) o (Jy — o),

then (1) holds, (2), (5), and (6) follow as consequences, and Jy satisfies Jo =
Jio(Idy —A)o (Idy + A)~t = (Idy + A)o Jy o (Idy + A)~L.

EXERCISE 5.56. Given V and any two CSOs Ji, Ja, the map J; + Js is c-linear
with respect to J; and J3, and the maps +(.J; — J2) are a-linear with respect to .J;
and Js. [ |

Bia EXERCISE 5.57. Given Vp, Vo with CSOs Jp, Ja, and a real linear map

A : Vi — Vs, if the image subspace A(V7) admits a linearly independent list of 3 or
more elements of V5, then the following are equivalent.

(1) For each v € Vi, A(J1(v)) € span{A(v), Jo(A(v))}.

(2) For each v € Vi, A maps the subspace span{v, J;(v)} C V; to the subspace

span{A(v), Jo(A(v))} C Va.
(3) For each v € V1, either A(Jy(v)) = J2(A(v)) or A(J1(v)) = —J2(A(v)).
(4) AOJ1 :J2 oA OI‘AOJ1 = —JQOA.

HINT. The idea is that A takes Ji-complex lines to Jo-complex lines, and that
this is equivalent to A being c-linear or a-linear. See also [C] for other properties
of A equivalent to (4).
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5.3. Commuting Complex Structure Operators
5.3.1. Two Commuting Complex Structure Operators.

LEMMA 5.58. Given V' and two CSOs Jy, Ja, the following are equivalent.

(1) Ji and Jo commute (i.e., Jy o Jy = JyoJy).
(2) The composite Jy o Jo is an involution.
(3) The composite —Jy o Jo is an involution.

EXAMPLE 5.59. Given V with commuting CSOs Ji, Jo, Lemma 1.119 applies
to the involution —J; o J5 as in Lemma 5.58: there is a direct sum V =V, ® V,
produced by —Jj o Jy, where
Vo = {veV:i(=Jiod)(v)=v}={veV:Jy(v)=J1(v)}
Va {veV:i(=Jiod)(v)=—v}={veV:Jv)=—Ji(v)},

with projections
1 1
PC:§-(IdV—J10J2):V—»VC, Pa:E'(Idv—i—Jlng):V—»Va.

As remarked in the Proof of Lemma 1.119, the same formulas are also used for
Q.o P., Q.0 P, € End(V), where Q. and @, are the corresponding subspace
inclusions.

Note that applying Lemma 1.119 to the involution J; o Jo would give the direct
sum in the other order, V- =V, @ V.. The subspace V. from Example 5.59 is the
same as in Example 5.25, where J; and J5 did not necessarily commute.

LEMMA 5.60. For V, Ji, Js as in Lemma 5.58, and another space V' with
commuting CSOs Ji, Jb, a map H : V — V' respects the direct sums V., &V, and
V@ V)] if and only if Ho Jy o Jy = J{ o Jjo H.

PRrROOF. This is an example of Lemma 1.126. [
EXAMPLE 5.61. Lemma 5.60 applies to V' =V, J| = Jy, J5 = J5, and either

H = J, or H = J, each of which induces a CSO on V, and on V, by Lemma 5.47.
The subspace V. has a canonical CSO, induced by either J; or Js:

PCOJIOQCZPCOJQOQC6End(%)~

The maps P. : V — V. and Q. : V. < V are c-linear with respect to either CSO
on V. The induced CSOs on the subspace V, are opposite, and generally distinct:

P,oJi0Q,=—PFP,0J20Q, € End(V,).
LEMMA 5.62. For V, Jy, Jy as in Lemma 5.58, U = (U, Jy), and a map

H:U — V, if H is c-linear with respect to both (Jy,J1) and (Ju,J2), then the
image of H is contained in V,.

PROOF. This can be checked by showing P, o H = Opom(u,v,)- [ |

LEMMA 5.63. For V, Jy, Jy as in Lemma 5.58, U = (U, Jy), and a map
H :V — U, if His c-linear with respect to either (Ji,Jy) or (Jo,Juy), then
HoQ.:V.— U is c-linear.
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PROOF. By the construction of the CSO on V., from Example 5.61, the LHS
quantities in the following two equations are equal to each other:

(HOQC)O(PCOJloQC) = HoJioQ.,
(HoQc:)o(PeoJaoQ:) = HolJdyoQe.
The equalities hold because J; and Jy commute with Q. o P.. On the RHS, either
HoJy or HolJs is equal to JyoH by hypothesis, so the claim (HoQ.)o(P.0J10Q.) =
Ju o (H o Q) follows. [ |

LEMMA 5.64. For V with commuting CSOs Jy, Jo, and V' with commuting
CSOs Jy, J5 as in Lemma 5.60, if H : V. — V' is c-linear with respect to any of
the pairs (Ju, J7) or (Ji,Jb) or (Jo, J7) or (Jo,Js), then PloHo Q. : V. — V! is
c-linear with respect to the canonical CSOs.

PROOF. The CSOs on V. and V/ are as in Example 5.61. i

LEMMA 5.65. Given V with commuting CSOs J., JZ, and U with commuting
CSOs JY, JE, if H : U — V satisfies both H o J = J\, o H and H o J& =
J‘Q, oH, then H:U.® U, — V. DV, respects the direct sums and the induced map
PY oHoQY :U. — V. is c-linear with respect to the induced CSOs. If, also, H is
invertible, then for i = c,a, the induced map PY o Ho QY : U; — V; is invertible.

Proor. This follows from Lemma 5.60, Lemma 5.64, and Lemma 1.89. [

We remark that the direct summands in Lemma 5.65 are all subspaces; if
u=QY(u) € U. CU, then H(u) = H(QY(u)) € V. €V, so H(u) is in the fixed
point set of the idempotent P : V' — V| as follows:
uelU. = H(u) = H(Q/(w)=HQ{ (P (Q (W) =Q (P (H(Q ()

= (P oHoQ])(u)=P/(H(u) e V.CV.
The induced map PY o H o QY : U. — V. is just the restriction of H : U — V to
the subspace U,, with image contained in the subspace V. of the target.

LEMMA 5.66. Given V with commuting CSOs J{., J&, and U with commuting
CSO0s J}, J&, if H : U — V satisfies both H o J}, = —J{. o H and H o J& =
—J‘Q, oH, then H :U.®U, — V.®V, respects the direct sums and the induced map
PY oHoQUY :U.— V, is a-linear with respect to the induced CSOs.

Proor. This is straightforward to check directly, or follows from Lemma 5.65
with J{-, J2 replaced by the opposite CSOs —J, —JZ. [ |

The following Theorem weakens the hypotheses of Lemma 5.65.

THEOREM 5.67. Given V with commuting CSOs Ji., JZ, and U with commut-
ing CSOs J, J&, if H : U — V is c-linear with respect to (J&,J3), then the
kernel of the composite PY o H o QY : U, — V. is equal to the set {u € U, :
(H o Jfy 0 Q) (u) = (Ji o H o Q) (w)}-

PROOF. Composing with QY does not change the kernel, so using the equalities
JEoQY = —J20QY and J2 o H=H o JZ,

QY oPYoHoQY = %
1
= 5-(H-J&,olﬁ[oj%})oQg:

(Idy — Jy o J§) o HoQq

(H+JyoHoJh)oQY

a >

DN =
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and the composite with the invertible map 2 - J{- has the same kernel:
2-J‘1/OQXOPCVOHOQ2]:J‘l/oHoQaU—HoJLlfoQg.
|

EXAMPLE 5.68. For a vector space V with a CSO J and involution N that
commute as in Example 5.6, the CSO No.J commutes with J and N. The involution
N produces a direct sum V = V; @ V, with projections (Py, P2) and inclusions
(Q1,Q2) as in Lemma 1.119, and because N = —(N o J) o J, V1 @ V5 is the same
as the direct sum V =V, ® V, as in Example 5.59. Lemma 1.126 and Lemma 5.47
apply to both J and N o J: they respect the direct sum V; & Vs, and the induced
maps Py oJo@, and Py o N oJ o @ are commuting CSOs on Vi, and similarly
for V5. More specifically, the CSOs on V; are equal: PLoJo @y =P,oNoJoQ,
while the CSOs P, o J o @4 and P, o N o J o Qs on V5 are opposite.

EXAMPLE 5.69. Given V = V; & V5 and CSOs J; € End(V;) for i = 1,2, V
admits four CSOs: +J and +.J’, where:

J = QioJioP+Q20J20Ps,
J = QioJioP,—Qs0Jy0Ps.

J is as in (5.4), and all four CSOs respect the direct sum as in Lemma 5.47. J and
J’ commute with each other, with —Jo J" = Q10 P — Q20 P», so the given direct
sum is equivalent to the direct sum produced by the involution, V =V, ® V,, as
in Example 1.122. This construction is a special case of Example 5.68, with the
involution N = Q1 o P, — Q2 o P, that commutes with J.

EXAMPLE 5.70. Given U with commuting CSOs Ji, Jo, if H € End(U) is an
involution such that H o J; o J, = Jy o Jy o H, then U admits two direct sums:
U = U; ® Us produced by H as in Lemma 1.119, and U = U, & U, produced by
—Jp 0 Ja. The composite (—J; o J2) o H is a third involution, which produces a
direct sum U = Us @ U, as denoted in Theorem 1.130. Both H and —J; o Jo, 0 H
respect the direct sum U, @& U, as in Lemma 1.128 and Lemma 5.60; they both
induce involutions U, — U, and U, — U,, with the involutions being equal on U,
as in (1.15), and opposite on U, as in (1.16), producing a direct sum U, = U.® U/,
and an unordered pair of subspaces of U,:

(5.10) U = {ueU:u=-Ji(J2(uw)) = H(u)},
U = {uelU:u=—-Ji(Ja(u)) = —H(u)},
U, = {ueU:u=Ji(J2(u)) = H(u)},
U = {ueU:u=Ji(J2(u)) = —H(u)}.

Similarly, both —J; o Jy and —J; o Jy o H respect the direct sum U; & Us, and
induce involutions on U; and Us that distinguish the same four subspaces:

Ul = {weU:u=H(u)=—-Ji(Ja(uv))},
U/ = {ueU:u=H(u)=J(J2(u)},

Uy = {ueU:u=—H(u)=—J(Ja(u))},
Ul = {ueU:u=—-H(u)=Ji(J2(u))}.

This configuration of subspaces gives an example of the results of Theorem 1.130,
Ul U’ UlﬁUC:UlﬂUCﬁU5, U” U2 UQﬁU@, U U(ZZUaﬁUﬁ,etC.
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LEMMA 5.71. Given U with commuting CSOs J1, Jo, if H € End(U) is an
involution such that H o Jy = Ji o H and H o Jy = Jy 0o H, then H respects the
direct sum U, ®U, — U.®U,, and induces involutions on U. and U,. The induced
involution P.o H o Q. on U, is c-linear, and its fized point set U. has a canonical

CSO.

PRrROOF. It follows from the c-linearity of H that Ho JyoJs = JyoJyo H. So,
this is a special case of both Lemma 5.65 and Example 5.70: the induced involution
on U, is c-linear with respect to the CSO on U, from Example 5.61, and produces
a direct sum U. = U, @ U/ as in (5.10). The subspace U. = {u € U : u =
—Ji1(J2(u)) = H(u)} has a canonical CSO, from Example 5.68.

LEMMA 5.72. Given U with commuting CSOs J1, Jo, if H € End(U) is an
involution such that H o J, = Jy o H, then H respects the direct sum U, & U, —
U.®U,, and induces involutions on U. and U,. The induced involution P.o H o Q.
on U is c-linear, and its fized point set U, has a canonical CSO.

PRrOOF. It follows from the involution property that H o J; = Jo,o H —
JjoH =HoJy, =— HolJyoJy=JyoJyoH. So, this is similar to Lemma
5.71, and also a special case of both Lemma 5.65 and Example 5.70: the induced
involution on U, is c-linear and produces a direct sum U, = U, @& U/'. The subspace
U, ={ueU:u= —Ji(J2(u)) = H(u)} has a canonical CSO, from Example
5.68. |

ExAMPLE 5.73. Given U and V, suppose there are commuting CSOs Jy, J2 on

V. Then the CSOs [J; ® Idy] and [J2 ® Idy] on V @ U, from Example 5.3, also
commute. As in Example 5.59, this gives a direct sum VU = (VeU).®(VeU),
with projections

1

5 . (IdV®U + [Jl ® IdU] o [.]2 ® IdU])
V ® U also admits a direct sum (V. @ U) @ (V, ® U) as in Example 1.81, with
projections

1

[(5 . (Id\/ +Ji0 Jg)) ®IdU] = [PL ® IdU],

for P, : V — V;, i = ¢,a, as in Example 5.59. This is a special case of Example
1.141; the pairs of projections are identical (using the linearity of j and Lemma
1.36), so the direct sums are the same and we have the equalities of subspaces
VeU).=V.oUand (VaU), =V, ®U, with inclusions [Q; ® Idy]. Similarly,
UeV),=UeV.,and (UV),=UV,.

EXAMPLE 5.74. Given U = (U, Jy) and V = (V, Jy), the two CSOs [Idy ® Jyv],
[Ju ® Idy] € End(U ® V') commute, so this is a special case of Example 5.59. The
direct sum so produced is denoted

As in Example 5.61, the subspace
U V=A{weUV:[ldy® Jy](w) =[Jy & Idy](w)}

has a canonical CSO, induced by either of the CSOs, so we may denote the space
U ®. V. The CSOs on U ® V induce opposite CSOs on the subspace

U,V = {w ceUV: [IdU ® Jv](w) = —[JU ®Idv](’w)}.
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EXAMPLE 5.75. For c-linear maps A : U — U’ and B : V — V’, the map
[A®B: UV =>U oV’

satisfies the hypotheses of Lemma 5.65, and respects the direct sums from Example
5.74. The induced map

Plo[A®B]oQ.,:U®.V—-U .V
is c-linear.
NOTATION 5.76. For c-linear maps A : U — U’ and B : V — V'’ as in

Example 5.75, the bracket notation from Notation 1.35 is adapted in the following
abbreviation:

[A®.B]=P.o[A®B]oQ.,:U®.V = U ®.V'.

As remarked after Lemma 5.65, this is exactly the restriction of the map [A® B] to
the U®,.V subspace of the domain, with image contained in the U’ ®.V’ subspace
of the target. The role of the j map in this construction is considered in more detail
by Example 5.136.

EXERCISE 5.77. For a-linear maps A: U — U’ and B : V — V', the map
[A@B]: UV =-U @V’
respects the direct sums. The induced map
P o[A®BloQ.:U®.V—->U .V

is a-linear. |l

EXAMPLE 5.78. Given U = (U, Jy) and V = (V, Jy), the CSO Hom(Idy, Jy)
commutes with Hom(Jy, Idy) € End(Hom(U, V'), so this is a special case of Ex-
ample 5.59. The direct sum so produced is denoted
(5.11) Hom(U, V) = Hom.(U, V) @ Hom, (U, V).
The projection P, : Hom(U, V) — Hom,(U, V) is defined by
1

1
3 (Idwiom(u,vy —Hom(Idy, Jy)oHom(Jy, Idy)) = 3 (Iduom(v,vy —Hom(Jy, Jy)).

As in Example 5.61, the subspace
Hom.(U,V) = {4 € Hom(U,V):Hom(Idy, Jy)(A) = Hom(Jy, Idy)(A)}
= {A€Hom(U,V):JyoA=AoJy}
has a canonical CSO, induced by either one of the CSOs, so we may denote the
space Hom,.(U, V). This is exactly the set of c-linear maps U — V as in Section
5.2. The CSOs on Hom(U, V) induce opposite CSOs on the subspace of a-linear
maps,
Hom,(U,V) = {A€Hom(U,V):Hom(Idy, Jy)(A) = —Hom(Jy,Idv)(A)}
= {AeHom(U,V):JyoA=—-AocJy}.
EXAMPLE 5.79. Given V = (V, Jy ), there is a direct sum
End(V) = End (V) @ End, (V)

as in Example 5.78, where End.(V) admits a canonical CSO. The identity element
Idy € End.(V) C End(V) is c-linear, and so is Jy.
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LEMMA 5.80. For c-linear maps A: U’ — U and B : V — V', the map
Hom(A, B) : Hom(U, V) — Hom(U’, V")
respects the direct sums from Example 5.78. The induced map
P! oHom(A, B) o Q. : Hom.(U,V) — Hom.(U', V') : F+s Bo Fo A,
is c-linear.

PROOF. P! is the projection Hom(U’, V') — Hom.(U’, V’). Lemma 5.65 ap-

c

plies. [

NoTATION 5.81. The induced map from Lemma 5.80 is denoted
Hom,.(4, B) = P. o Hom(A, B) o Q. : Hom.(U, V) — Hom,(U’, V).
As in Notation 5.76, this is a restriction of the map Hom(A, B) to subspaces of its
domain and target.
EXERCISE 5.82. For a-linear maps A : U’ — U and B : V — V', the map
Hom(A, B) : Hom(U, V) — Hom(U’, V")
respects the direct sums. The induced map
P! oHom(A, B) o Q. : Hom.(U,V) — Hom.(U', V') : F+— BoFo A
is a-linear. |l

ExAMPLE 5.83. Given U and V, suppose there are commuting CSOs Jy, Js on
V. Then the CSOs Hom(Idy, J1) and Hom(Idy, J2) on Hom(U, V) also commute.
As in Example 5.59, this gives a direct sum temporarily denoted

(5.12) Hom (U, V) = (Hom(U,V)). ® (Hom(U,V))a
with projections
1
5
Hom(U, V) also admits a direct sum Hom(U, V) @ Hom(U, V,) as in Example 1.82,
with projections

(Idwom(u,vy £ Hom(Idy, Ji) o Hom(Idy, J2)).

1
(5.13) Hom(Idy, 3 (Idy £ Jy 0 J3)).

The pairs of projections are identical: this is a special case of Example 1.143. We
can identify Hom(U, V) = (Hom(U, V)., and also identify Hom(Idy, Q.) with the
inclusion of the subspace (Hom(U,V)). in Hom(U, V); similarly, (Hom(U,V)), =
Hom(U, V,). More specifically, the set (Hom(U, V'), is defined as {A € Hom(U, V) :
J1oA = Jyo A}, while elements of Hom(U, V,.) are maps A such that for any u € U,
A(u) € V. CV, meaning Ji(A(u)) = Jo2(A(u)).

ExAMPLE 5.84. Given U and V, suppose there are commuting CSOs Jy, Jo
on V. Then the CSOs Hom(.J1, Idy) and Hom(J2, Idy) on Hom(V,U) also com-
mute. As in Example 5.59, this gives a direct sum Hom(V,U) = (Hom(V,U)). &
(Hom(V,U)), (the same notation as (5.12) but not the same subspaces) with pro-
jections

. (IdHom(V,U) + HOHl(Jl, IdU) o HOI’II(JQ, IdU))

N =
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Hom(V, U) also admits a direct sum Hom(V,, U) ® Hom(V,,U) as in Example 1.83,
with projections Hom(Q., Idy), Hom(Q,, Idy). Unlike Examples 5.73 and 5.83,
these pairs of projections are not obviously identical, and in fact this is a special case
of Example 1.144. The set (Hom(V,U)). is defined as {A € Hom(V,U) : Ao J; =
Ao Jo}, while elements of Hom(V,,U) are maps A defined only on the subspace of
v € V such that Jy(v) = Ja(v). The two direct sums are different but equivalent, as
discussed in Example 1.144. Specifically, if, for i = ¢, a, P}, QY denote the projec-
tions and inclusions for the direct sum Hom(V,U) = (Hom(V,U)).® (Hom(V,U)),,
then

Q! o P = Hom(P;, Idy) o Hom(Q;, Idy) : Hom(V,U) — Hom(V,U),
and as in Lemma 1.99,
P! o Hom(P;, Idy) : Hom(V;, U) — (Hom(V,U));
is invertible with inverse Hom(Q;, Idy) o QY, and for i = ¢, c-linear.

LEMMA 5.85. Given U and V', with commuting CSOs Jy, Jo € End(V), let W
be a space admitting a direct sum W1 & Wo. If H : W — Hom(V,U) respects one
of the two direct sums from Example 5.84, then H also respects the other direct
sum. If, further, H is invertible, then both induced maps W1 — (Hom(V,U)).
and W1 — Hom(V,,U) are also invertible. If the direct sum on W is given by
commuting CSOs Jyw, Jiy, and H satisfies both Hom(J1, Idy) o H = H o Jw and
Hom(Js, Idy)oH = Ho Jjy,, then H respects the direct sums and the induced maps
are c-linear.

ProOOF. The claims follow from Lemmas 1.89, 1.98, and 5.65. If the projections
and inclusions induced on W = W, ® W, by Jw, Jiy, are P/, Q}, then the induced
maps Hom(Q, Idy) o H o Q) : W, — Hom(V.,U) and P/ o Ho Q. : W, —
(Hom(V,U)). are related by composition with the c-linear invertible map from the
above Example:

Hom(Q., Idy) o H o Q. = (Hom(Q,, Idy) o Q) o (P o H o Q).
|
EXERCISE 5.86. The results of the previous Lemma have analogues for a map
Hom(V,U) — w. I

ExAMPLE 5.87. For U and commuting CSOs Jp, Jo on V as in Example 5.83,
suppose there are also commuting CSOs J{, J, on V. If B: V — V' respects the
direct sums V. @V, — V@V, (equivalently, BoJjoJs = JjoJj0 B by Lemma 1.126
and Lemma 5.60), then for ¢ = ¢, a, there are induced maps P/ o Bo Q; : V; — V.
By Lemma 1.92, for any map A : W — U, the map Hom(A4, B) : Hom(U,V) —
Hom(W, V") respects the direct sums

Hom(U, V,.) @ Hom(U, V,,) — Hom(W, V) ® Hom(W, V)
from Example 5.83, and for i = ¢, a, the induced map
Hom(Idw, P;) o Hom(A, B) o Hom(Idy, Q;)
is equal to Hom(A, P/ o B o Q;).
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ExaMPLE 5.88. For U, V, V', A as in Example 5.87, if B : V — V' is c-
linear with respect to both pairs Jy, Ji and Jo, J5, then B satisfies the hypothesis
from Example 5.87, and by Lemma 5.30, Hom(A, B) is also c-linear with respect to
the pairs Hom(/dy, J1), Hom(Idw, Ji) and Hom(Idy, J2), Hom(Idw, J5). Lemma
5.65 applies, so the induced maps from Example 5.87, P.o Bo Q. : V. — V!, and
also Hom(A, P, o B o Q.), are both c-linear.

EXERCISE 5.89. Given U, V, W, with U = (U, Jy) and V = (V, Jy ), the map
tW, : Hom(U, V) — Hom(Hom(V, W), Hom(U, W)) respects the direct sums and
the induced map

Hom,(U, V) — Hom.(Hom(V, W), Hom(U, W))
is c-linear.

HiNnT. Exercise 5.33, Exercise 5.34, and then Lemma 5.65 apply. [

EXAMPLE 5.90. For W = R in the previous Exercise, t{, = tyv : Hom(U, V) —
Hom(V*,U*). V* has a CSO J;; as in Example 5.5, and similarly J;; is a CSO for
U*. tyy respects the direct sums

Hom,(U,V) @ Hom, (U, V) — Hom.(V*,U*) @ Hom, (V*,U™)
and the induced map Hom.(U, V) — Hom.(V*,U*), A — tyv(A) = Hom(A4, Idr) =
A* is c-linear.

EXERCISE 5.91. Given U, V, W, with U = (U, Jy) and V = (V, Jy ), the map
ey, : Hom(U, V) — Hom(Hom(V,W) ® U, W) respects the direct sums and the
induced map

Hom.(U, V) — Hom(Hom(V, W) ®. U, W)
is c-linear.

HiNnT. Exercise 5.38, Exercise 5.39, and then Lemma 5.85, apply. [ |

EXERCISE 5.92. Given U and V', with V finite-dimensional and V = (V, Jy ),
the image of nyy : U — V @ Hom(V,U) from Notation 4.44 is contained in the
subspace of the target where the two induced CSOs agree: for any u € U,

nyvu(u) € Ve, Hom(V,U).
HinT. The claim follows from Lemma 4.47. [ |

EXERCISE 5.93. Given U, V, W, with U = (U, Jy) and W = (W, Jy ), the
map Ty, v,w : Hom(U, Hom(V, W)) — Hom(V,Hom(U, W)) respects the direct
sums and the induced map

Hom,. (U, Hom(V, W)) — Hom(V, Hom.(U, W))
is c-linear and invertible, where the inverse is induced by Tv,u.w .

HiNT. The direct sum for the domain is as in Example 5.78, and for the target
is as in Example 5.83. Exercise 5.43, Exercise 5.44, and then Lemma 5.65 apply.

EXERCISE 5.94. Given U, V, W, with U = (U, Jy) and V = (V, Jy ), the map
Tu,v,w : Hom(U, Hom(V,W)) — Hom(V,Hom(U, W)) respects the direct sums
and the induced map

Hom,(U,Hom(V,W)) — Hom.(V,Hom(U, W))

is c-linear and invertible, where the inverse is induced by Ty, ..
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HiNT. The direct sums are as in Example 5.78. Exercise 5.44 and Lemma 5.65
apply. [ |

EXERCISE 5.95. Given W and V = (V, Jy), the involution Ty, from Notation
4.3 is c-linear with respect to both induced CSOs as follows:
Hom(V,Hom(V,W)) — Hom(V,Hom(V,W))
Hom(V,Hom(V,W)) — Hom(V,Hom(V,W)).
The induced map
Hom,.(V,Hom(V,W)) — Hom.(V,Hom(V,W))
is a c-linear involution, and its fixed point subspace has a canonical CSO.

HiINT. The c-linearity claims are the U = V special case of Exercise 5.44, and
the induced map is the special case from Exercise 5.94. Lemma 5.72 applies to the
involution Ty, and the commuting CSOs on Hom(V, Hom(V, W)). i

EXAMPLE 5.96. For W, V = (V, Jy), and Hom(V, Hom(V,W)) as in Exercise
5.95, Example 5.70 applies to the commuting involutions Ty .y and
—Hom(Jv, Idyom(v,wy) o Hom(Idy, Hom(Jy, Idw)) = —Hom(Jy, Hom(Jv, Idw)).
Recalling the direct sums from (4.6) and (5.11),

Hom(V,Hom(V,W)) = Sym(V;W) & Alt(V; W),

Hom(V,Hom(V,W)) = Hom.(V,Hom(V,W))® Hom,(V,Hom(V,W)),

the four distinguished subspaces from Example 5.70 can be described in terms of
properties of their elements, W-valued bilinear forms h, and are denoted as follows:

Sym.(V, W) Sym(V; W) NHom.(V,Hom(V,W))

= {h: (h(v1))(v2) = (R(v2))(v1) = = (A(Jv (v1)))(Jv (v2))},
Symq(V,W) = Sym(V;W)NHom,(V,Hom(V,W))

= {h: (h(v1))(v2) = (A(v2))(v1) = (A(Jv (v1)))(Jv (v2))},
At (V, W) Alt(V; W) 1 Hom,(V, Hom(V, W))

= {h: (h(v1))(v2) = =(h(v2))(v1) = = (h(Jv (1)) (Jv (v2))},
Alt,(V, W) = Alt(V; W) NHom,(V,Hom(V,W))

{h: (h(v1))(v2) = =(h(v2))(v1) = (h(Jv (1)) (Jv (v2))}-

The c-linear involution on Hom.(V,Hom(V,W)) induced by Ty, from Exercise
5.95 produces the direct sum

Hom.(V,Hom(V,W)) = Sym.(V,W) & Alt.(V,W),
and there is a canonical CSO on Sym.(V,W).

EXERCISE 5.97. Given V with CSOs Ji, Js, if J; and Jy commute and Jo #
+.J1, then the span of {Idy, Ji, J2, J; 0 Jo} is a 4-dimensional subspace of End(V).
This subspace is closed under composition, so it is a subrng of End(V).

HiINT. The first claim follows from Exercise 5.22. Such a subspace is a com-
mutative ring, and isomorphic to the associative algebra of bicomplex numbers of

C. Segre. [ |
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EXERCISE 5.98. Given U, V = (V,Jy), W = (W, Jw), let P. denote the
projection VW — V ®,. W as in Example 5.74. For amap B : U — V| the map
[BIdw]:U®W — V@W is c-linear with respect to [[dy ® Jw] and [Idy @ Jw],
and P, is c-linear as in Example 5.61, so the composite P.o [B® Idw]: U @ W —
V ®. W is c-linear. If the image subspace B(U) contains a Jy-complex line in V,
spanned by B(uy) and Jy (B(u1)) = B(ug) # Oy, then for any non-zero w € W,

v=1u @ w4+ uz ® (Jw(w))
and
[IdU ® Jw](v) =u (Jw(w)) — Uy @ W
span a [[dy ® Jy|-complex line in ker(P; o [B® Idw]|) CU @ W.

HINT. The property that v # Oygw follows from Lemma 5.11 and Claim
6.36. |

EXERCISE 5.99. Given V = Vj @ V5, suppose there is an invertible map A :
Vo — V4 and there is a CSO J; on V;. The composite A= o J; 0 A is a CSO on V5
as in Lemma 5.46, and V admits six CSOs: £Jy, =J, £J/,

(5.14) Jy = Qo oA o P —Q10Ao0 P,
(515) J = Q10J10P1+Q20A_1OJ10AOP2,
J = QioJioP,—Qs0A o oAoP;.

Jy is as in Example 5.8 and does not depend on J;. J and J’ are as in Example
5.69. The CSO J commutes with both Jy and J’; the direct sum produced by the
involution —J o J’ is equivalent to the given direct sum V = V; @ V5 as in Example
5.69, but in general is not equivalent to the direct sum produced by —J o Jy, which
is denoted here by V = V. @ V,, with projections (P., P,) as in Example 5.59.
The CSOs Jy and J’ anticommute, so the involutions —J o J’ and —J o Jy also
anticommute. Theorem 1.137 applies: for any 8 # 0, the map

(5.16) f-PeoQr:Vi—=Ve

is invertible, with inverse % -ProQ.: V. — Vi. The map (5.16) is also c-linear with
respect to J; and the induced CSO on V., P.oJo Q. = P.o Jy o Q.. Similarly by
Theorem 1.137, 5- P, 0o Q4 : V1 — V, is invertible, and it is c-linear with respect to
J1 and the CSO

PaOJOQa:_PaOJVOQa
from Example 5.61 (so it is a-linear with respect to P, o Jy 0 Q). [

EXERCISE 5.100. For V =V, @& Vo, A : Vo — Vi, and CSOs Jy, Jy, J as in
Exercise 5.99, let U = U@ U, be another direct sum with projections and inclusions
(P{, P}), (Q},Q%), an invertible map A’ : Uy — Uy, and a CSO
(5.17) Jor=Qh0(A) toP —QoA 0P

as in Example 5.8 and (5.14). Note that unlike V4, no complex structure on Uj is
assumed, so the situation with Jy and Jy is as in Lemma 5.48. Let B : Uy — Vi
be any map, and recall from Example 5.50 that there is a c-linear extension B, :
(U, Ju) = (V. Jv),

(5.18) B.=Qi0BoP/+Qy0A ' 0cBoA oP;.
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Suppose, as in Exercise 5.98, that the image subspace B(U;) contains a Ji-complex
line in V4, spanned by B(u1) and Ji(B(u1)) = B(uz) # Oy,. Let

v= Q) () +@Q5((A)H(u2)) €T,
and
Ju(v) = Q((A) ™ (ur)) — Q' (uz) € U.
These two elements span a Jy-complex line in ker(P. o B.) C U. Conversely, if v

is a non-zero element of ker(P, o B.), then u; = P{(v) and uy = A’(Pj(v)) are not
both zero, and are related by Ji(B(u1)) = B(uz).

HINT. The vector v is non-zero (Pj(v) = uy # O, ).

Be(v) = (QioBoP+Qy0A 'oBoA oP)(Q} (U1)+Q2((A/) '(uz)))
= Q1(B(u1)) + Q2(A™"(B(u2))) = (@1 + Q20 A" 0 J1) 0 B)(u),
Pe(Bc(v)) = (PCOQCOP)(B (v))

= (P, o( -(Idy — Jy olJ))o (@1 +Qr0A o gy) o B)(u1)).
Using JoQi =Q1o0J;and JoQy = Qoo A o J oA,

(Idy — JyoJ)o(Q1+Qa0A o)

= Qi+Q@0A ' oJi—JyoQioJi+JyoQro A"

= Q1 +Q20A 01 —(Qa0A ' o Pl —QroA0P)o(QroJi — Qa0 ATY)

= OHom(n,v)-
The other vector, Ji7(v), is also in the kernel, by the c-linearity of B, : U — V and
P.:V=V.

For the converse, if v = (Q} o P| + Q% o Py)(v) # Oy then P{(v) and Pj(v) are
not both zero, and P.(B.(v)) = Oy, is equivalent to Jy (B.(v)) = —J(B.(v)). We
v

want to show that Ji(B(P{(v))) = B(A'(P3(v))). Expanding using (5.14), (5.15),
and (5.18) gives:

(5.19) Jv(Be(v)) = Qao(A(B(P{(v)))) — Qu(B(A'(P5(v)))),
J(B(v)) = Q1(J1(B(P{(v))))+Q2( NI (BA(P3()))),
B

and then using the equality Jy (B.(v)) = —J(Bc(v)), the claim follows from apply-
ing P; to both sides.

EXERCISE 5.101. For V. =V, ® Vo, U = U, ® Us, A, A', J1, Jy, B, and B,
as in Exercise 5.100, suppose (u1,...,ug) is a list of elements of Uy such that for
eacht=1,...,¢, J1(B(uz,—1)) = B(ug,). For each ¢, denote an element v, € U by:

v = Q1 (uzi—1) + Q3((A) " (uay)).
If B is one-to-one then the following are equivalent.
(1) (v1,Ju(v1),...,ve, Ju(ve)) is an independent list in U.
(2) (u1,...,uge) is an independent list in Uy.
HinT. For (1) = (2), by Exercise 5.51, B, is also one-to-one, so by Exercise
0.49,
(Be(v1), Be(Ju(v1)), - - Be(ve), Be(Ju (ve)))
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is an independent list in V. For each ¢,
Be(v,) = Qi(B(uz,1))+ Qa(A " (B(uz,)))
(@1 +Q20A7 " 0J1) 0 B)(uz,—1),
B:(Ju(v)) = Qa(A ' (B(ug.—1))) — Qi(B(ua.))
— ((Ql —|—Q20A_1 oJl)oB)(—ugL),

50 (Q1+ Q20 A 1o J;) o B transforms (uy, —ua, . .., U1, —uz¢) to an independent
list, which implies (2). Conversely, P; is a left inverse of Q; + Q2 0 A~! o Jy,
so (Q1 + Q20 A=t o J;) o B is one-to-one and transforms the independent list
(u1, —usg, ..., u2e—1, —uge) to an independent list. So (vy, Jy(v1),...,ve, Ju(ve)) is
transformed by B, into an independent list, which implies (1).

REMARK 5.102. The constructions of Exercise 5.98 and Exercise 5.99 are two
different generalizations of the notion of “complexification” of a complex vector
space. In particular, the V.®V, direct sum and complex linear isomorphism V; — V.
from line (5.16) are analogous to the well-known construction often denoted by
V10 @ VO1lin complex geometry. The idea from Exercise 5.98 and Exercise 5.100
that a real linear map B into a complex vector space can be “complexified” to a
c-linear map B., and then composed with a c-linear projection, so that the kernel
detects whether the image of B contains a complex line (or a J-invariant subspace,
as in Exercise 5.101), has been used in geometry, for example, [W].

EXERCISE 5.103. For V =V, @V, U = U@ Uy, A, A', J1, Jy, B, and B. as in
Exercise 5.100, suppose that additionally there is a CSO J; on Uy, and in analogy
with (5.15), there is the CSO on U,

(5.20) J=Q\0oJioP+Qho(A) toJioA 0P
If there is an element u; € Uy so that
(5.21) B(jl(ul)) = Jl(B(ul)) S ‘/1,

then B maps the Jj-invariant subspace spanned by {ui,Jy(u1)} in Uy to a Ji-
invariant subspace in Vi, spanned by {B(u1),J1(B(u1))}, as in Lemma 5.24. If
B(uy) # Oy, then the result of Exercise 5.100 applies, with ug = J; (u1): these two
elements of U:

v Q' (u1) + Q3((A") " (Ji(w))),
Ju(v) Q5((A) " (1)) = Q4 (i (wr))
span a Jy-complex line in ker(P. o B.) C U. The direct sum produced by —JoJy
is U. ® U,, with projections (P, P.), and Q, o P, = & - (Idy + J o Jy) as in
Example 5.59. A straightforward computation shows that v = 2-(Q/, 0 P)(Q (u1))
and Jy(v) = =2 - (Q), o P))(Q}(Ji(u1))). So, the Jy-complex line spanned by
{v,Ju(v)} is contained in ker(P. o B, o Q.) C U,, and it is the image under the
invertible map P! o @} of the .J;-complex line spanned by {uy, Jy(u1)} in U;.

The composite P.o B.o Q" : U, — V. is c-linear with respect to the canonically
induced CSO on V, and the CSO P, 0 .Jy 0 Q), = =P, 0.J0Q,, on U, as in Example
5.61. As in Exercise 5.99, P, o Q) : Uy — U, is c-linear with respect to J; and
PloJoQ, =—P oJyoQ,.

Conversely, if v € U, is a non-zero element of ker(P. o B. o Q)), then u; =
P{(Q,(v)) € Uy is non-zero and satisfies (5.21).
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HINT. To sketch a proof of the last claim, P{o@)’, is invertible by Theorem 1.137.
We want to show B(Jy(P}(Q,(v)))) = Ji(B(P}(Q.(v)))). By the construction of
U=U,a U, Q,(v) satisfies J/(Q’,(v)) = —J(Q,(v)). Expanding the formulas
from (5.17) and (5.20) gives:

Ju(Qa(v)) = Q’z((j‘l')_l(P{(sz(v)))) — Qi (AP (Qu(v)))),
J(Qu(v)) = QU(P(Qu(v)))) + Qa((A) ™ (J1(A'(P(Q4(v))))),
Setting these to be opposite and then applying P; to both sides gives the equation

(5.22) A'(P3(Q4(v)) = Ji(Pl(Q4 ().
The hypothesis (P, o B. o Q,)(v) = Oy, is equivalent to

JV(BC(Q;(U))) = _J(BC(Q;(U)))'
Expanding as in (5.19),

Jv(Be(Qu(v)) = Qa(AH(B(P{(Qu(v))))) — Qu(B(A'(P3(Q4(v)))));
J(Be(Qu(v)) = Qu(Ji(B(P{(Q4(v))))) + Q2(A™H (J1(B(A (Py(Q4(v)))))):
setting these to be opposite and then applying P; to both sides gives

JU(B(P[(Q;(v)))) = B(A'(P3(Qq(v)))),
so the claim follows from using (5.22). i

EXERCISE 5.104. For V =V; ® V5 and A as in Exercise 5.99, if J; and jl are
two (not necessarily commuting) CSOs on the same vector space V7, then Exercise
5.103 applies in the special case B = Idy,, B. = Idy. J; and Ji define different
complexifications, V' = V. & V, produced by —J o Jy as in Exercise 5.99, and
V =U.®U, produced by —JoJy as in Exercise 5.103, respectively. If u; is a non-
zero element of Vi where Jy (u1) = Ji(u1) (as in Example 5.25), then the .J;-complex
line spanned by {u1, Ji(u1) = jl(ul)} is mapped by P! o @; to a Jy-complex line
in the kernel of the map P.o Q! : U, — V.. [ |

REMARK 5.105. As in Remark 5.102, describing the subspace of vectors where a
real linear map happens to respect the CSOs, in terms of the kernel of the composite
of a complexified map and a projection, has been used in geometry. The special
case from Example 5.25 and Exercise 5.104, describing a set on which two CSOs
coincide, is considered by [HL]. The connection between the property in Exercise
5.100 (the image of B contains a J1-invariant subspace) and the property in Exercise
5.103 (B is c-linear on a subspace) is considered in Exercise 5.54.

5.3.2. Three Commuting Complex Structure Operators.

EXAMPLE 5.106. Given V and three commuting CSOs Ji, Jo, J3, consider an
ordered triple (i1,42,i3) which is a permutation (no repeats) of the indices 1, 2,
3. For the first two indices, the two CSOs J;,, J;, produce a direct sum V =
Vi(ivia) @ Va(ini,) with projection P ;,) = % - (Idy — J;, o J;,) as in Example
5.59. The ordering of the pair is irrelevant: V. i,) = Ve(ipi;)- The remaining
CSO J;, respects this direct sum by Lemma 5.60, and by Lemma 5.47 induces
a CSO Py(i i) © Jig © Qc(ivin) O Vi(iyin), Which commutes with the CSO induced
by Ji, and J;,. So, again as in Example 5.59, there is a direct sum Vi

iriz) T
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(Ve(iriz))e ® (Ve(iyin))a With projection Pe((i,iy)is) © Ve(iria) = (Ve
the composition of projections gives the formula

y)e. Simplifying

1112

1
Pe((inia)is) © Petiriz) = 7 - (Udv = J10Ja = Jy 0 J3 = Ji 0 J3).

Considering (V,(i,4,))c as a subspace of V, the above formula shows that neither
the composite map nor its image depends on the ordering of the three indices, and
80 (Vi(iyiz))e is equal to the subspace where all three CSOs coincide and it can
be denoted V,(123). The composite of inclusions Qc(;,i,) © Qc((iyin)is) also does not
depend on the ordering. The canonical CSO on V,(;23) is:

(5.23) Pr((irin)is) © Pe(ivin) © Ji © Qe(iriz) © Qe((irin)is)s
for any i = 1, 2, or 3.

Example 5.106 is also a special case of both Theorem 1.130 and Example 5.70:
given three commuting CSOs, there are commuting involutions on V|

(524) Klz—JQO.Jg, KQZ—Jlo.]g, KlOKQZ_JloJQ.

The direct sums from Theorem 1.130 produced by these involutions are exactly
V' = Vi(iviz) ® Va(iris), and each Vi, ;,) admits a canonically induced involution and
direct sum. The conclusions of Theorem 1.130 are V12) N Vi(23) N Ve1z) = Ve(i23)
and (Ve(iyiz))a = Va(ivia) N Va(izis)- From (1.18), each projection Py, 4,4, is equal
to a map induced by F(; ;,) and also to a map induced by P (;,4,)-

LEMMA 5.107. For V with three commuting CSOs J1, Jo, J3, U = (U, Jy), and
amap H :V — U, if H is c-linear with respect to (J1, Ju), then HoQ.12) : Vo) —
U is c-linear with respect to (Py2y © J1 0 Qc12), Ju) and H o Q 13y : Veazy — U
is c-linear with respect to (Py3) o J1 © Qc13), Ju). For any ordering (i, is,1i3),
H o Qciyiy) © Qc((irin)is) * Ve(r23) — U s c-linear.

PROOF. The first claim follows from Lemma 5.63, for the induced CSO P,(12)0
J1 0o Qc12) = Peiz) © J2 0 Qc12) on Vi12y. The second claim similarly follows
from Lemma 5.63, and there are analogous claims if H is instead assumed to be
c-linear with respect to either (Jz, Jy) or (Js3, Jy). Lemma 5.63 then applies to
H o Qc(12), and the two CSOs on V(1) from Example 5.106, P,(12) 0 J10Q(12) and
P12y 0 J30Qc12), 50 (H 0 Qc(12)) © Qc(12)3) is c-linear with respect to (P((12)3) ©
(Pe12) © J10Qc12)) © Qe((12)3), Ju ). The last claim follows from the composites not
depending on the ordering. [ |

LEMMA 5.108. Given V with commuting CSOs Ji., J&, J%, and U with com-
muting CSOs Jiy, J&, J3, if H : U — V satisfies Ho J}; = Ji o H and H o J =
JZ o H and Ho J3 = J3 o H, then H respects the corresponding direct sums from
Example 5.106, and each induced map Pc‘fim) oHo Qg(mg) is c-linear with respect
to the CSOs induced by Jf}, J‘i} and also c-linear with respect to the CSOs induced
by J[ij”’, J‘if. The induced map

1% 1% U U )
PC((i1i2)i3) © Pc(iliQ) oHo Qc(im) © Qc((iliQ)ig) 1 Uc(r23) = Ve(123)

is c-linear and does not depend on the ordering (iy,i2,13). If, also, H is invertible,
then the induced maps are invertible.
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PROOF. Theorem 1.131 applies, with commuting involutions on both V' and U
as in Example 5.106. In particular, H respects the direct sums

Uc(iliz) EB Ua(iliz) _> ‘/C(iliz) @ Va(iliz)'
The induced map PY

C(ilig)
Ue((irin)is) @ (Ueiriz))a = Ve((irin)is) ® (Ve(iyiz))as
where UC((iliz)ig) = Uc(123) and (Uc(iliz))a = Ua(iyiz) N Ua(izig) as in Example 5.106.
The first claim of c-linearity follows from Lemma 5.65. The second c-linearity
requires checking

i v is AV % U
Py OHOQ[cJ(ilig)OPU Osz’OQcU(ilig) =P oJi?oQ i1, °F, oHoQ (i)

c(iriz) c(iria) c(iriz) c(iriz)

oHo Qg(im) respects the direct sum

and then the last claims follow from Lemma 5.65 applied again to the commuting
CSOs induced on Ue(, iy, Ve(ivis)-

ExXAMPLE 5.109. Given U with commuting CSOs Jy, Js, J3, suppose H is an
involution on U such that HoJ; = Jo0 H and Ho Js = Jso H. By Lemma 5.72, H
respects the direct sum U2y © Uy12) — Uc(12) @ Ug(12), and induces involutions
on Ug(ig) and U, (12y. Lemma 5.108 applies to the triple (J1,.J2, J3) on the domain
of H and (J2, J1, J3) on the target. So, H respects the direct sums:

(5.25) Uei3) ©Ug1zy = Ug(23) © Ug(a3)
Ueaz) @ Ug2zy — Uc1z) © Ug(13)s

and the induced maps Uc(13) — Uc(23) — Uc(13) are c-linear and mutually inverses.
The induced maps U,1zy — Ug23) — Ugzy are also mutually inverses. The
subspace U, 12y admits commuting CSOs P, (12)0J10Q(12) = Pe(12)0J20Q(12) and
P.(12)0J30Q,(12) as in Example 5.106, producing the direct sum U, (123)® (Uc(12))a-
The induced involution P12y 0 H 0 Q(12) on U2y commutes with both of these
CSOs, respects this direct sum, and induces a c-linear involution on U(123) by
Lemma 5.71. The involutions on U from (5.24) satisfy

(5.26) (=Jz0J3)o H=Ho(—Jyo.J3),

so we have a special case of Example 1.132. Adapting the notation from Example
1.132, the involutions H and H o (—.J; o J3) produce direct sums U = Uy @ Ug and
Ug @ Uyg. The involution Pp19)0 H 0 Q.(12) on Ug(12) commutes with P2y o (—J10
J3)0Qc(12) = Pe(12)0(—J20J3)0Q (12), and their product P,(12)0(—J10J30H)oQ(12)
is an involution with fixed point subspace U1;. The following commutative diagram
is adapted from Example 1.132.

/ v \
e e v \ | / v
Uec(123) Ui Uei2) NU7 N Uy

Uc(123) N U7
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The subspace U,(123) N Uz has a canonical CSO.

EXERCISE 5.110. For Jy, Ja, Js, and H as in Example 5.109, the sixteen oper-
ators

{iIdU, iH,iJl o JQ,iJl o J3, iJQ o J3,iHO J1 o JQ, +Ho .]1 o Jg,iHO .]2 o .]3}

form a group which is the image of a representation of D4 X Zs. Unlike the group
from Exercise 1.139, there is no pair of anticommuting elements.

EXAMPLE 5.111. For U = (U, Jy), V = (V, Jy), and W = (W, Jy ), the space
U®V ®W admits three commuting CSOs [Jy ® Idvgw], ..., ldugy ® Jw].
The subspaces (U ®,. V) ®. W and U ®, (V ®. W) are equal, as a special case of
Example 5.106.

EXAMPLE 5.112. For U = (U, Jy) and commuting CSOs J1, Jo on V, UV has
three commuting CSOs: [Jy ® Idy], [Idy ® J1], [Idy @ J2]. This is another special
case of Example 5.106. The projection Pyo3) : U@V — (U ® V)e23) = U @ Ve is
as in Example 5.73, so P23y = [[dy ® P.], where P. : V — V, is as in Example
5.59. The subspace where all three CSOs agree is (U @ V) (123) = U @, V.

EXAMPLE 5.113. Given U and V, suppose V = (V,Jy) and there are com-
muting CSOs Jy, J{; on U. Then J; = Hom(Jy,Idy), J» = Hom(J},Idy),
Js = Hom(Idy, Jy) are three commuting CSOs on Hom(U, V'), and this is a special
case of Example 5.106. There are three direct sums:

HOHI(U, V) = (Hom(U, V))C(13) D (HOHI(U, V))a(13)7
where (Hom(U, V'))c13) = Hom.((U, Jy), V) as in Example 5.78,

Hom(U, V) = (Hom(U, V))c(23) ® (Hom(U, V'))q(23)
where (Hom(U, V') (23) = Hom.((U, Jy;), V), and

Hom(U, V) = (Hom(U, V))c12) ® (Hom(U, V))a(12).

as in Example 5.84. Each (Hom(U,V))s,4,) admits a direct sum with projection
onto

(Hom(U,V))e(iyin))e = (Hom(U,V))o123) = {A:U—=V : AoJy = AoJ];, = JyoA}.
The invertible map
P! o Hom(P,, Idy) : Hom(U,, V) = (Hom(U, V)12

from Example 5.84 (where in this case, P = P,13)) is c-linear with respect to
Hom(Idy,, Jv) and P,12)0.J30Q(12), and is also c-linear with respect to Hom (P, o
Ju o Qc, Idy) and P2y 0 J1 © Q(12), so by Lemma 5.65, it respects the direct

sums and induces an invertible, c-linear map Hom.(U., V) — (Hom(U,V'))c(123)
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as indicated in the following diagram.

Hom(U, V)

Hom(P.,Idy)

Hom(iUC, V) =——= (Hom(U, V)12 (Hom(U, V))cazy (Hom(U,V))c(2s)
Hom, (Ue, V) (Hom(U, V))e(123)

LEMMA 5.114. Given V = (V, Jy) and U with commuting CSOs J%, J&, let
W be a space with three commuting CSOs J3y,, J&,, Ji,. If H: W — Hom(U, V)
satisfies Hom(J, Idy) o H = H o JY, and Hom(J%,Idy) o H = H o J2, and
Hom(Idy,Jy)oH =Ho JS’V, then H respects the corresponding direct sums from
Ezxample 5.113 and the induced maps are c-linear. If also H is invertible, then the
induced maps are invertible.

PRrROOF. That H respects the direct sums produced by the three corresponding
pairs of CSOs, and that the induced maps

Pe(iyiny o HoQ We(irin) — (Hom(U, V))e(iyin)

(for example, the arrow labeled as in the diagram below) are c-linear, follow from
Lemma 5.108, which also showed the induced map as : W(123) — (Hom(U, V'))¢(123)
is c-linear, and invertible if H is. In the diagram, a; and a; are the canonical
invertible maps which appeared as horizontal arrows in the diagram from Example
5.113; the adjacent projection arrows are also copied from that diagram. Lemma
5.85 showed that H also respects the direct sum W12y © W12y — Hom(U,, V) @
Hom(U,, V) and that the induced map Hom(Q.., IdV)OHOQ’C(lz), denoted as in the
diagram below, is c-linear with respect to the CSO induced by Jj, and the CSO
induced by Hom(J};, Idy). In fact, as is also c-linear with respect to the other
pair of CSOs, induced by J3, and Hom(Idy, Jyv). By Lemma 5.65, as respects
the direct sums produced by the commuting CSOs and induces a c-linear map
az : We(123) — Hom,(U,, V); it satisfies the identity ao = a1 o a@s.

! .
C(i1i2) °

H

Hom(U, V) w

ipé(n)
Hom(Q.,Idv)
Wc(12)

/ / ip‘i((lm‘”’)

(HOIH(U, V))C(IQ) T> HOHI(UC, V) Wc(123)

ipu(mm s :
as

(Hom(U, V))c(123) — Hom, (U, V)

Pe(12)
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EXAMPLE 5.115. Given U and V/, suppose there are three commuting CSOs Jy,
Jis J{pon U. Then J; = Hom(JU,IdV) = Hom(J{;, Idy ), J3 = Hom(J{}, Idy)
are three commuting CSOs on Hom(U, V) and this is a spe(nal case of Example
5.106. There are three direct sums: Hom(U, V') = (Hom(U, V')) (s, i,)@(Hom(U, V) a(izis)
each of which is equivalent to a direct sum Hom(Uy(;,4,), V) @Hom(Ug (i, 4,), V') as in
Example 5.84, with projection Hom(Q(,,i,), Idv) : Hom(U, V) — Hom(Uy,4,), V)
and inclusion Hom(P,(;, ;,), Idy ). Each (Hom(U,V')).(, ,) admits a direct sum with
projection P’ e((iria)iz) ONLO

(Hom(U, V))e(iyin))e= (Hom(U, V))o123)= {A: U = V: AoJy = AoJj; = AoJy;}.

Each subspace Hom(Uy(j,i,), V) has two commuting CSOs, and Example 5.84 ap-
plies again; there are equivalent direct sums:

Hom(Uc(iliz), V) = (Hom(UC(iliz), V))C &) (Hom(Uc(iliz), V))a,
Hom(Uc(im), V) = Hom(Uc(lgg), V) D Hom((UC(iliQ))a, V)
The following diagram shows the (i1i2) = (12) case, the other two cases being
similar.
Hom(U, V)
Hom(Qc(12),1dv)
P12y
Hom(T, (Hom(U, V))ca12)

Hom(Qc((12)3),1dv. . ,
P Pi12)3)

az

Hom(Up(123), V) > (Hom(Up(12), V))e — > (Hom(U, V))e(123)

The horizontal arrows are

ay = Pcl(12) o Hom(P,(12), Idy)
as = PCH o Hom(Pc((lg)g), Id\/)
as = Pc/((12)3) 0aroQy;.

Both a; and ay are c-linear and invertible, canonically induced from the equivalent
direct sums as in Example 5.84. The a; map is also c-linear with respect to the
CSOs induced by J{7, so the induced map as is c-linear and invertible by Lemma
5.65. The c-linear invertible composite

az o az = Pl (19)3) © Pr19) 0 Hom(Pr(12)3) © Pe(12), Idv)
is canonical, not depending on the choice of (i1i2), as in Example 5.106.

EXAMPLE 5.116. Given U and V, suppose U = (U, Jy) and there are com-
muting CSOs Jy, Ji, on V. Then J; = Hom(Jy,Idv), J» = Hom(Idy, Jv),
J3 = Hom(Idy, Ji,) are three commuting CSOs on Hom(U, V'), and this is a special
case of Example 5.106. There are three direct sums:

Hom(U,V) = (Hom(U, V))c12) ® (Hom(U, V))a(12).
where (Hom(U, V'))c12) = Hom.(U, (V, Jy)) as in Example 5.78,
Hom(U,V) = (Hom(U, V))cas) ® (Hom(U, V))a(13).
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where (Hom(U, V'))c13) = Hom.(U, (V, J;,)), and
Hom(U, V) = (Hom(U, V))c(23) & (Hom(U, V))q(23),

where (Hom(U, V'))(23) = Hom(U, V..) as in Example 5.83. Each (Hom (U, V))c(,i,)
admits a direct sum with projection onto

((HOIII(U, V))c(i1i2))c = (HOHI(U, V))c(123) = HomC(Ua VL);

as follows:
There are two ways to construct the projection

Pt (Hom (U, V))¢(23) = Hom(U, V) — (Hom(U, V))c(123) = Hom.(U, V),

which will turn out to give the same map. Denote the projection P! : V — V. as
in Example 5.59 with corresponding inclusion @Q7; then P93 = Hom(Idy, P)) :
Hom(U,V) — Hom(U,V,) is the projection from (5.13) in Example 5.83, with
corresponding inclusion Q. (23 = Hom(Idy, Q).

The first construction of P! is to consider Hom(U, V..) as a space with commut-
ing CSOs Hom(Jy, Idy, ), Hom(Idy, Jv,) and directly apply Example 5.78 to get a
projection

Pt = - (Iduomu,v,) — Hom(Jy, Idy,) o Hom(Idy, Jv,))

N = N =

(527) - : (IdHom(U,VC) - HOHI(JU, Pc/ o JV o Q/c))

Second, consider the subspace (Hom(U, V')).(23), with two induced CSOs that com-
mute, as in Example 5.106:

(Pe(23) o Hom(Jy, Idy ) 0 Qc(23)),  (Peasy © Hom(Idy, Jv) 0 Qe23))-

Then, using P,3y = Hom(Idy, P.) and Q.23 = Hom(/dy,Q,), the projection
P,((23)1) defined by these two CSOs as in Example 5.106 is the same as (5.27).

The projection P((12)3) : (Hom(U,V))c12) — (Hom(U,V'))c(123) can also be
defined by two methods with the same result (and similarly for P.13)2)). The
commuting induced CSOs:

(5.28) (Pe12) o Hom(Jy, Idy) 0 Qc12)),  (Peizy o Hom(Idy, Ji,) 0 Qc(12))

define P ((12)3) as in Example 5.106. The other way to define the projection is
to consider the map Hom(Idy, P!) : Hom(U,V) — Hom(U, V.), which is c-linear
in two different ways: with respect to the pair Hom(Jy, Idy ), Hom(Jy, Idy,) and
also the pair Hom(Idy, Jy ), Hom(Idy, Jy,), as in Lemma 5.80. The induced map
P? = P' o Hom(Idy, P)) 0 Qc12) : (Hom(U,V))c(12) — Hom, (U, V,) is c-linear; it
can be denoted Hom,(Idy, P!) as in Notation 5.81. By the equality of the composite
projections from Example 5.106,
(5.29) P? = P'oHom(Idy,P.)o Q.n2)
(5.30) = Pes) © P23y o Qe1z)
= P.a2)3) 0 Pe12) © Qer2) = Pe((12)3)-

The expression (5.30) is an example of the construction (1.18) from Theorem 1.130.

Similarly, since the composite inclusions are equal:

(5.31) Qc(12) © Qe((12)3) = Hom(Idy, QL) 0 Qc((23)1)
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the inclusion Q((12)3) is equal the induced map:

Qc((12)3) = Pe12) o Hom(Idy, QL) 0 Qc((23)1) = Hom,(Idy, Q).

EXERCISE 5.117. Given V = (V, Jy ) and W = (W, Jy), Hom(Hom(V, W), W)
admits three commuting CSOs,

J1 HOHI(HOHI(J\/, Idw), Idw),
Jo = Hom(Hom(Idy, Jw), Idw),
J3 = HOHI(IdHom(VJ/V), Jw)

As in Example 5.113, there are three direct sums; (Hom(Hom(V, W), W)).(23) was
considered in Exercise 5.37. The composite

Pe(23)1) © Pe(asy o dyw : V — (Hom(Hom(V, W), W)) (123

is c-linear with respect to the canonical CSO. Let Q. : Hom.(V, W) — Hom(V, W)
denote the inclusion from Example 5.78. Then the image of

Hom(Q¢, Idw) o dyw : V — Hom(Hom.(V, W), W)
is contained in Hom.(Hom.(V, W), W), i.e., for any v € V,
dyw () oQ.:Hom.(V,W) = W : H — (Q.(H))(v) = H(v)

is a c-linear map. From the commutativity of the diagram from Example 5.113,
considering Hom(Q., Idw ) o dyw as a map V — Hom.(Hom.(V, W), W), it is
identical to the composite of the above map P, ((23)1)0 Pe(23)odvw with the canonical

map (Hom(Hom(V, W), W)).123) — Hom.(Hom.(V, W), W), so it is c-linear. [ |
Recall from Definition 1.40 and Notation 1.41 the canonical map
n:V ®@Hom(U,W) = Hom(U,V@W): (n(v®E)):urv® (E(u)).

THEOREM 5.118. If U = (U, Jy) and V = (V,Jy) and W = (W, Jw ), then
n:V @ Hom(U, W) — Hom(U,V @ W) is c-linear with respect to corresponding
pairs of the three commuting CSOs induced on each space, so il respects the direct
sums and induces c-linear maps

n': V @ Hom,.(U, W)
n?: V@, Hom(U, W)
n?:V ®. Hom(U, W)
n:V ®.Hom. (U, W)

Hom.(U,V @ W)
Hom.(U, V@ W)
Hom(U,V ®. W)
Hom.(U,V ®. W),

Ll

which are invertible if n is.

PROOF. The c-linearity claims for n follow from Lemma 1.42 (adjusted for
variations in ordering; they are also straightforward to check directly), and then
Lemma 5.108 applies. The direct sums for the domain V' ® Hom(U, W) are as
in Example 5.112. The projection onto the subspace V ® Hom.(U, W) is equal
to [Idy ® Py as in Example 5.73, where Py is the projection Hom(U, W) —
Hom.(U,W). The direct sums for the target space Hom(U,V ® W) are as in
Example 5.116. The following diagram shows some of the canonical projections,
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including P? as in (5.29).

V @ Hom (U, W) —— Hom(U,V @ W)

V © Homo(U, W) —“~ Hom.(U,V @ W)

i iP2=Homc(1dU,Pg)
V ®. Hom,.(U, W) —— Hom,(U,V ®,. W)

The invertibility also follows from Lemma 5.108; in particular, if U or V is finite-
dimensional then these maps are invertible. [ |

EXAMPLE 5.119. Given U = (U, Jy), V = (V, Jy), W = (W, Jw ), the canoni-
cal invertible map

q : Hom(V, Hom(U, W)) — Hom(V @ U, W)

from Definition 1.46 is c-linear with respect to the three corresponding pairs of
induced CSOs, by Lemma 1.50. Lemma 5.114 applies, so that the following induced
maps are c-linear and invertible:

Hom.(V,Hom(U,W)) — Hom(V ®.U,W)

Hom(V,Hom.(U,W)) — Hom.(V® U, W)

Hom.(V,Hom(U,W)) — Hom.(V®U, W)
Hom.(V,Hom.(U,W)) — Hom.(V ®.U,W).

The direct sums for the domain Hom(V, Hom(U, W)) are as in Example 5.116. The
direct sums for the target space Hom(V ® U, W) are as in Example 5.113.

EXAMPLE 5.120. Given V = (V, Jy) and W = (W, Jw ), Hom(V, Hom(V, W))
admits three commuting CSOs, and the involution Ty is c-linear with respect
to three corresponding pairs of commuting CSOs as in Exercise 5.43 and Exercise
5.44. Hom(V,Hom(V,W)) also admits the three involutions from (5.24), and the
involution Ty, satisfies

(—HOHl(IClV7 HOID(JV7 Jw))) o TV;W = TV;W o (—HOHI(Jv, HOIn(Idv, Jw))),

as in (5.26), so this is a special case of Example 5.109. As in (5.25), Tv.w induces
c-linear invertible maps:

Hom.(V,Hom(V,W)) — Hom(V,Hom.(V,W))
Hom(V,Hom.(V,W)) — Hom.(V,Hom(V,W)).

The subspace Hom.(V,Hom(V,W)) admits commuting CSOs as in (5.28), and
projects onto the subspace Hom.(V,Hom.(V, W)) as in Example 5.116. The in-
volution on Hom.(V,Hom(V,W)) induced by Ty.w from Exercise 5.95 induces
a c-linear involution on Hom.(V,Hom.(V, W)), producing a direct sum denoted
Sym.(V; W) @ Alt.(V; W). Combining the notation from Example 1.132, Exam-
ple 5.96, and Example 5.109, the following commutative diagram shows some of
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the projections from Example 5.109.
Hom(V, Hom(V, W))

/

Hom,(V,Hom(V, W)) Hom,.(V,Hom(V,W)) Sym(V; W)

e i

HOHIC(V, Homc (Vv W)) Ull Symc(v; W)

\

Symc(V; W)

/)

\

The projection P? = ¢((12)3) labeled in the diagram, and the vertical arrow
Pe((13)2) on the left, are as in (5.29) from Example 5.116. The subspace Uy is
this fixed point subspace:

{h: (h(v1))(v2) = =(h(Jv (01)))(Jv (v2)) = =Jw ((A(Jv (v2)))(v1))}-
The conclusions from Example 5.109 are that
Symc(V; W) = Hom.(V,Hom.(V, W)) N Sym(V; W),
and that Sym.(V; W) has a canonical CSO.
EXERCISE 5.121. Given U = (U, Jy) and W = (W, Jy), Hom(Hom(V, W) ®
U,W) admits three commuting CSOs, as in Example 5.113, so there are three

direct sums; (Hom(Hom(V, W) ® U, W)).(23) was considered in Exercise 5.40. The
composite

P.((23)1) © P23y 0 e}y, : Hom(U, V) — (Hom(Hom(V, W) ® U, W)) (123
is c-linear with respect to the canonical CSO. Let
Q. : Hom(V,W) ®. U < Hom(V,W) @ U
denote the inclusion from Example 5.74. Then the image of
Hom(Q.., Idw ) o e}, : Hom(U, V) — Hom(Hom(V, W) ®. U, W)
is contained in Hom.(Hom(V, W) ®. U, W), i.e., for any A € Hom(U, V),
ety (A) 0 Qe : Hom(V, W) ©. U = W : B&u + (e} (A))(Qe(B ® u)) = B(A(u))

is a c-linear map. From the commutativity of the diagram from Example 5.113,
considering Hom(Q., Idw) o ey, as a map Hom(U,V) — Hom.(Hom(V, W) ®,
U, W), it is identical to the composite of the above map P,((23)1) © Pr(23) oe}/JVV with
the canonical map (Hom(Hom(V, W)®U, W)),(123) — Hom.(Hom(V, W)®.U, W),

so it is c-linear. M
EXERCISE 5.122. Given V = (V, Jy) and W = (W, Jy ), Hom(Hom(V, W) ®
U, W) admits three commuting CSOs, as in Example 5.113, so there are three direct

sums; (Hom(Hom(V, W)@ U, W)),(23) was considered in Exercises 5.40, 5.121. The
composite

Py((23)1) © Peg2s) 0 ey : Hom(U, V) — (Hom(Hom(V, W) @ U, W))c(123)
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is c-linear with respect to the canonical CSO. Let Q. : Hom.(V,W) @ U —
Hom(V,W) ® U denote the inclusion from Examples 5.73 and 5.78. Then the
image of

Hom(Q., Idw) o e}y, : Hom(U, V) — Hom(Hom,.(V, W) @ U, W)
is contained in Hom.(Hom.(V, W) ® U, W), i.e., for any A € Hom(U, V),
ey (A)oQ. : Hom.(V,W)RU — W : B&u s (efiy (A)(Qe(B®u)) = B(A(u))
is a c-linear map. From the commutativity of the diagram from Example 5.113,
considering Hom(Q., Idw ) o ef¥;, as a map Hom(U, V) — Hom.(Hom.(V,W) ®
U, W), it is identical to the composite of the above map P,((23)1) © Pe(23) © e‘l’]VV with
the canonical map (Hom(Hom(V, W)®U, W)),(123) — Hom.(Hom.(V, W)U, W),
so it is c-linear. W

EXERCISE 5.123. Given U, V, W, with U = (U,Jy), V = (V,Jy), and
W = (W, Jw), we consider the three commuting CSOs on Hom(V, W) ® U, so
Example 5.115 applies to Hom(Hom(V, W) @ U, W). The lower square in the fol-
lowing commutative diagram is a specific case of a square from the diagram in
Example 5.115, with the same labeling of arrows, and (12) referring to the CSOs
induced by Jy and Jy. The e1, es arrows are the maps induced by eEVV on the two
equivalent direct sums from FExercise 5.91.

Hom,.(U, V)

/ lez
Hom(Hom(V, W) @, U, W) —= (Hom(Hom(V, W) @ U, W)).(12)

Hom(Qu((lz)s)JdW)l ipé((m)g)
Hom(Hom,(V, W) @. U, W) =22 (Hom(Hom(V, W) @ U, W))..(123)
The composite PC’((12)3) oey is c-linear, so the composite Hom(Q((12)3), [dw ) o ey is
also c-linear. As in Exercises 5.40, 5.121, 5.122, the image of Hom(Qc((12)3), [dw ) ©
e1 is contained in Hom.(Hom.(V, W) ® U, W), i.e., if @)/ denotes the inclusion
of Hom.(U,V) — Hom(U,V) and Q.(12) © Qc((12)3) is the composite inclusion of
Hom.(V, W) ®. U — Hom(V, W) ® U, then for any A € Hom.(U, V), the map

(5.32) el (QL(A)) 0 Qer12) © Qe(12)3) : Homo(V, W) ®. U — W
is c-linear. l

EXAMPLE 5.124. For V = (V, Jy) and W = (W, Jw ), the space Hom(V, W) ®
V' admits three commuting CSOs as in Example 5.112. The composite of the

inclusions, Qc(12) © Qc((12)3),

Hom,.(V, W) ®. Vc(g—> Hom.(V,W) ® Ve——s Hom(V, W)@ V

c((12)3) c(12)

does not depend on the ordering of the indices, but in the case of the above diagram,
Qc2) = [Qc ® Idy] for Q. : Hom.(V, W) — Hom(V, W), as in Example 5.73.
Define a c-linear evaluation map

(5.33) E’U%;W = Fvyw o Qc(12) o QC((12)3) : HOInC(V,W) ®:.V = W.
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This is the restriction of the canonical evaluation from Definition 2.71; it is c-linear
by Exercise 5.41 and Lemma 5.107. Considering the formula Evyw = el¥y, (Idy)
from Equation (2.16), this construction is also a special case of (5.32) from Ex-
ercise 5.123. The domain Hom.(V, W) ®,. V is spanned by elements of the form
P, ((12)3)(A ® v) for c-linear maps A : V — W, on which Ev{,y acts as follows:

Evyw (Pe(12)3) (A ® v))
= (Evyw o Qca2) © Qc((12)3) © Pe((12)3)) (A ®v)

1
(Uduom.(v.w)ev — [JHom.(v,w) ® Jv]))(A @ v)

= (Bvywo|Q.® Idy]o 3
= Bovw(5((QuA) ® v~ (@u(AoJv) @ (Ju (1)
= S(QuA)) — QA0 ) (Jr(v))

(5.34)= A(v) = Evyw (A ®v),
where in line (5.34), we just forget that A = Q.(A4) and Ao Jy = Q.(A o Jy) are

c-linear.

LEMMA 5.125. For any U, V, W, and c-linear map B : U — W, the following
diagram is commutative.

U W

Evyy T TEUQ,W

Hom,.(V,U) ®.V Hom.(V, W) ®.V

[Hom.(Idy,B)®.Idv]

PRrROOF. This is a c-linear version of Lemma 2.73 (the case G = Idy ), which
states the commutativity of the upper block of this diagram (for any B, not neces-
sarily c-linear).

U W
Evyy Evvw
Hom(V,U)®V Hom{dy B)@ldv] Hom(V, W)@V
[Qc®Idy] [Qe®Idv]

Hom,(V,U) @V Hom,(V, W) ® V/

[Hom(Idy,B)®Idy]

QL((12)3) Qe((12)3)

Hom,(V,U) @. V Hom,(V, W) ®. V

[Hom,(Idv,B)®.Idv]
The middle block is commutative by definition of Hom.(Idy, B) for the c-linear
maps Idy and B as in Notation 5.81, together with Lemma 1.36. The lower block
is commutative by the construction from Notation 5.76. The upward composites in
the left and right columns are Evy, and Evyyy as in Example 5.124. [
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5.3.3. Four Commuting Complex Structure Operators.

EXAMPLE 5.126. Given V and four commuting CSOs Ji, Jo, Js, J4, the con-
struction of Example 5.106 shows that for any ordered pair (i1,i2) selected with-
out repeats from the indices 1, 2, 3, 4, there is a direct sum with projection
Peiviy © V= Vi), and for a third distinct index, another direct sum with
projection Pr((i iz)iz) © Ve(ivia) = Ve(ivizis)- Repeating the process for the remain-
ing, fourth index, the fourth commuting CSO produces a direct sum V¢, i,i,) =
(Ve(irinis))e D (Ve(iyinis))a, With projection Pe((iyigis)is) @ Ve(irinis) = (Ve(iyizis))e- AS
in Example 5.106, the composite Py, iyiz)is) © Pe((iriz)is) © Pe(iriz) €quals

'(Idv—J1OJQ—J20J3—J10J3—J1OJ4—J20J4—J30J4+J1OJ20J3OJ4),

col—

which shows the image of the last projection does not depend on the ordering of the
four indices, so the subspace where all four CSOs coincide can be denoted Vi (1234)-

ExXAMPLE 5.127. Given V and four commuting CSOs Ji, Jo, J3, J4, the space
Vi(irip) from Example 5.126 admits three commuting CSOs: Py, i,) © Ji, © Qc(iyiz),
Pr(iviz) © Jis © Qc(ivia)s Pe(ivia) © Jis © Qc(iyiy)- Example 5.126 considered pairing the
first one with one of the other two to get two direct sums, but as in Example 5.106,
there are three possible direct sums on V,(; ;,), the third coming from Pe;, ;,)0Ji, o
Qclivin)s Pe(iniz) © Jia © Qe(ivin) to get a subspace denoted Ve, iy)(iziy), Where J;;, =
Ji, and J;; = Ji,, equal to the subspace V(,i,)(i,i,)- The composite projection
V' — Vi(iyiz)(isia) 18 given by the formula

1
Z'(Id\/—J1OJQ—J30J4+J10JQOJ30J4).

The subspace V(i i,)(iyiy) admits two commuting CSOs, the one induced by J;
and .J;,, and the other by J;, and J;,, so there is a direct sum, and a projection
onto the subspace V,(1234) from Example 5.126.
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THEOREM 5.128. Given V' and four commuting CSOs Ji, Ja, J3, J4, the fol-
lowing diagram is commutative, where the arrows are all the projections from direct
sums produced by commuting CSOs described in Fxamples 5.126 and 5.127.

\%

Ve1a) Ve23)

Ve3) Ve(24)

Ve(12) Ve(34)
Ve(123) Ve(234)

Ve(12)(34)

Ve(124)

Ve(1234)

PROOF. Some sub-diagrams were already considered in Examples 5.106, 5.126,
5.127. Some remain to be checked, for example, the equality of the composite
projections Vc(12) - Vc(123) - Vc(1234) and Vc(12) - Vc(12)(34) - Vc(1234) follows
from considering the three CSOs on V,(12) as in Example 5.106. The corresponding
composites of inclusions are also equal. [ |

LEMMA 5.129. Given V with commuting CSOs J\., J&, J5, Jib, and U with
commuting CSOs JY, J&, J&, Ji, if H: U — V satisfies H o J}; = J o H and
HolJit =JtoH and HoJ3 = J3 o H and H o J} = J. o H, then H respects
the corresponding direct sums from Ezamples 5.126 and 5.127, and induces maps
Uec(iria) = Ve(iria)s Ueliviais) = Ve(irizis)r @14 Uc(ivia)(iia) = Ve(iria)(isia), Which are
c-linear with respect to all pairs of CSOs induced by Ji;, Ji,, and invertible if H is.
The induced map U.(1234) — Ve(1234) @8 c-linear, and invertible if H is.
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Proor. All the claims follow from Lemma 5.65 and Lemma 5.108. As in
Lemma 5.108, the map Ug(1234) — Ve(1234) is canonically induced, not depending

on the ordering of the indices. [ |

EXAMPLE 5.130. For V' with commuting CSOs Jy, J{,, and U with commuting
CSOs Jy, J{;, the space U @ V has four commuting CSOs:

Ji = [Ju @ Idy], Jo = [Idy @ Jv], Js = [J; @ Idy], Jy = [Idy @ J‘//]
Theorem 5.128 applies, to give a collection of subspaces of U ® V. From Example
5.73, (U®V)eas) = Uc®@V and (U ® V)24 = U @ V. From Example 5.74,
(U®V)eaz2) = U@V, and we (temporarily) denote a similar construction (U ®
V)ezay = U @ V. The subspaces (U ® V).14) and (U ® V)23 did not appear
in previous Examples, and are omitted from the following commutative diagram,

where the positions of the objects match the corresponding positions in the diagram
from Theorem 5.128.

UV
) \
U®'V
U V.

UC ®C‘/C

The subspaces U, ®.V, U®.V,, U.®"V, and U ®'V, are as in Example 5.112. The
set U®LV corresponds to (U®V)c(12)(34), where J; = Jo and J3 = Jy; this notation
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resembles (5.10) from Example 5.70, with the commuting involutions —J; o J; and
—J3 o .]4.

EXAMPLE 5.131. For V with commuting CSOs Jy, J{,, and U with commuting
CSOs Jy, J{;, the space Hom(U, V') has four commuting CSOs:

J1 = Hom(Jy, Idy), Jo = Hom(J};, Idy),

J3 = Hom(Idy, Jv), Js = Hom(Idy, J;,).

Theorem 5.128 applies, to give a collection of subspaces of Hom(U, V). The sub-
space (Hom(U, V'))c(12) was considered in Example 5.113. As in Example 5.78, de-
note (Hom (U, V)).13) = Hom.(U, V'), and (temporarily) denote a similar construc-
tion (Hom(U, V'))e(24) = Hom'(U, V). From Example 5.83, denote (Hom(U, V))eza) =
Hom(U, V;). The subspaces (Hom(U,V))c14) and (Hom(U,V'))c(23) are omitted
from the following commutative diagram, but otherwise the positions of the ob-

jects match the corresponding positions in the diagram from Theorem 5.128 and
Example 5.130.

Hom(U, V)

om. (U, V) Hom' (U,

(Hom(U, V)1 Hom(U, V¢)
(Hom(U, V))¢(12 Hom' (U, V)

Hl(U7 V))c(124) HOHIC(U, Ve

(Hom(U, V))c(1234)
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Adapting the notation from (5.10) in Example 5.70, Hom,(U, V') denotes the sub-
space

(I{OI’H([]7 V))c(13)(24) = {A :U—=V:Ao JU = JV oAand Ao .](/J = J‘l/ o A}

If we ignore J{;, then the two projections onto Hom. (U, V;) in the above diagram are
as in Example 5.116. Similarly ignoring Ji7, the two projections onto Hom'(U, V,.)
are also as in Example 5.116.

EXAMPLE 5.132. The space (Hom(U, V))(12) from Example 5.131 is related to
Hom(U,, V) as in Example 5.113, by an invertible map P,(12)oHom(FP, Idy). Both
(Hom(U,V))c(12) and Hom(U, V') admit three induced CSOs, and Hom(U., V) ad-
mits three direct sums as in Example 5.116. The map P12y o Hom(FP, Idy) is
c-linear with respect to the three corresponding pairs of CSOs, so by Lemma 5.108,
it respects the direct sums and induces c-linear invertible maps as indicated by
the unlabeled horizontal arrows in the following diagram. The left part is copied
from the diagram in Example 5.131, and the top triangle and top square appeared
already in the diagram for Example 5.113.

Hom(U, V)

Qe(12)
Hom(P.,Idy) | | Hom(Qc,Idy)
Pe(12)

P (12yoHom(Pc,Idy )

(Hom(U, V))c(lg) Hom(UC,V)

(Hom(U, V))c(12\ Homc(UC,
))c(l‘)& Hom(Ue, Ve

(U, V))c(124) Hom/ (U, V

Hom(Qc,Idy )oQ,(12)

pl

(Hom(U, V))c(1233) Home (Ue, Ve)

The projections P!, P? are labeled to match (5.27), (5.29) from Example 5.116,
and the lower right vertical arrow is also from (5.29).
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THEOREM 5.133. For V with commuting CSOs Jy, Ji,, and U with commuting
CSOs Jy, Ji;, let W be a space with four commuting CSOs J3y,, J&., Ji, Ji-. If
H : W — Hom(U, V) satisfies Hom(Jy, Idy)oH = HoJ}, and Hom(J{;, Idy)oH =
H o J2, and Hom(Idy,Jv) o H = H o J3, and Hom(Idy,Ji,) o H = H o J;,,
then H respects the corresponding direct sums from FExamples 5.131 and 5.132, and
the induced maps are c-linear. If also H is invertible, then the induced maps are
invertible.

PROOF. The claims for the induced maps

Weiriny —  (Hom(U,V))e(iyiy)
Wetiyizisy —  (Hom(U, V))e(iyizis)
Wetinin)(isiey —  (Hom(U, V) e(iyin) (isia)

az: Weaosay —  (Hom(U,V))e(1234)

follow from Lemma 5.129. The target spaces are as in the diagram from Example
5.131, for example, H induces a map W,(i3)(24) — Hom,(U, V), labeled ag in the
diagram below, and a3 induces az. The claims for the induced maps

az = Hom(Qc, Idv) o H 0 Q15 : We(12) — Hom(U,, V),

and W,(123y — Hom, (U, (V,Jv)) (= Hom(U., V) in the diagram from Exam-
ple 5.132), and W,(124y — Hom, (U, (V, J{,)) = Hom'(U,, V) follow from Lemma
5.114. The map as is c-linear with respect to the pair of CSOs induced by J3,
and Hom(Idy, Jy ), as mentioned in the Proof of Lemma 5.114, and is also c-linear
with respect to the pair of CSOs induced by Jii, and Hom(Idy, J{,), so it satisfies
the hypotheses of Lemma 5.108, and respects the corresponding direct sums in the
diagram from Example 5.132. The maps induced by as are c-linear:

Weaoyzay — Hom(Ue,Ve)
az : Weaossy —  Home(Ue, Vo).

In the following diagram, the left half is copied from the diagram from Example
5.132, where a; = Hom(Qc, Idy) o Q.(12) induces a;, and they are both c-linear
and invertible. The space Hom/,(U, V) and projections P,(13)(24), P3 are copied
from Example 5.131, and the right half of the diagram is part of the diagram from
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Theorem 5.128.

Hom(U, V) w
Pu(12) L(12)
Hom(Q.,Idv)
(Hom(Uv V))c(lQ) a HOHI(UC, V) - (12) (‘(13)(24)

Pc(13)(z4)

HOHI U V . c(13)(24)

Py

/
1

Ve)

Finally, we remark that as = a1 o as; an analogous property was observed in the
Proof of Lemma 5.114. The identity can be checked directly, using the c-linearity
of H. The map az acts on w € Wy(1a34) as: a2 : w — P, o H(w) o Q., where P/ is

c

the projection V. — V. [

EXERCISE 5.134. Given U, V|, W, with U = (U, Jy), V = (V,Jy), and W =
(W, J), for any A € Hom,(U, V), the map ¢%;,(A) : Hom(V, W) — Hom(U, W)
(or, more precisely, t¥%,(Q.(A)), where @’ is the inclusion of Hom.(U,V) in
Hom(U,V)) is c-linear with respect to both pairs Hom(Idy, Jw ), Hom(Idy, Jw)
and Hom(Jy, Idw ), Hom(Jy, Idw), so [}, (A) respects the direct sums and induces
a c-linear map Hom.(V, W) — Hom.(U, W). The resulting map, denoted

tW, : Hom.(U, V) — Hom,(Hom,(V, W), Hom.(U, W)),

We(1234)

(Hom(U, V') (1234 — Hom, (U,

is c-linear.

HiNT. Lemma 5.65, Exercise 5.89, and Exercise 5.35 apply. The last claim can
be checked directly. However, by following the diagrams from Examples 5.131 and
5.132, a little more can be obtained. Let (); and P; denote the data for the direct
sum Hom(V, W) = Hom,.(V, W) @ Hom, (V, W), so that

Hom(Qc, Iduomw,w))
Hom(Hom(V, W),Hom(U,W)) — Hom(Hom.(V,W),Hom(U,W))
is as in Example 5.132. Then
Hom(Qe, Iditom(u,w)) © t0y : Hom(U, V) — Hom(Hom,.(V, W), Hom(U, W))
is c-linear with respect to Hom(Jy, Idy) and the CSO induced by
J? = Hom(Idyom(v,w), Hom(Jy, Idw)),
and is also c-linear with respect to Hom(Idy, Jy ) and the CSO induced by
J* = Hom(Hom(Jv, Idw), Idiomu,w))-
So by Lemma 5.65, it induces a c-linear map

Hom,.(U, V) — Hom.(Hom.(V, W), Hom(U, W)).
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As claimed above, the image of this induced map is contained in the subspace
Hom,(Hom.(V, W), Hom.(U, W)). For A € Hom.(U,V) and K € Hom.(V, W),
(trv(Qe(A) 0 Qe : K = (Qe(K)) 0 (QL(A)) = K o A € Hom,(U, W).

i

EXAMPLE 5.135. Given Uy, Us, Vi, Vo, and Uy = (U, Jy, ), the canonical map
(Definition 1.33)

j : Hom(Ula Vl) ® HOHI(U27 ‘/2) — HOHI(U]_ (24 U27 ‘/1 ® ‘/2)

is c-linear with respect to the induced CSOs, by Lemma 1.37. A similar statement
holds if any one of the four spaces has a CSO.

If every one of the above four spaces has a CSO, Uy = (U, Jy,), Uz =
(UQ,JUz)v Vi = (Vlvjvl)a Vi = (‘/2;JV2)7 then Hom(Ulv‘/i) & Hom(U%‘/Q) ad-
mits four commuting CSOs:

Ji = [Hom(Jy,, Idv,) ® Iduom(u,,va))
Jy = [Iduom(uy,vi) ® Hom(Ju,, Idy, )]
Jy = [Hom(Idy,,Jv,) ® Iduom(us,vs)]
Jy = Uduom, vy) ® Hom(Idy,, Jv,)],
and Hom(U; ® Us, Vi @ V3) also admits four commuting CSOs:

Ji = Hom([Jy, ® Idy,], Idv,ovs)

Jy = Hom([Idy, ® Ju,|, Idv,ovs)

Js = Hom(Idy,su,, [Jv; ® Idy,])

Jy = Hom(Idy,gu,, [Idy, ® Jy,]).

Since j is c-linear with respect to each pair J/,.J;, Theorem 5.133 applies, with
H = j and W = Hom(U;, V1) ® Hom(Us, V3), so j induces maps on corresponding
subspaces, which are c-linear with respect to (possibly several pairs of) correspond-
ing CSOs, and which are invertible if j is. From the diagrams in Theorem 5.128
and Examples 5.130, 5.131, some induced maps from Lemma 5.129 are evident:

Hom(U1, V1) ®. Hom(Us, Va) Hom.(U;y @ Uz, V1 ® Va)

K

Hom(Uy, V1) ®. Hom(Uz, 12) Hom,.(U; ® Uz, V1 ® V3)
Hom.(U1,V1) ® Hom(Uz, V2) — Hom,.(U; ® Uz, V1 ® V3)
Hom(U7, V1) ® Hom.(U2,Va) — Hom.(U; @ Uz, V3 ® Va)
Hom(Uy, V1) ® Hom(U2,Va) — Hom(U; ® Uz, V1 ®. Va)
Hom(U1, V1) ® Hom.(Uz2,V2) — Hom.(U; ® Uz, V1 ®, V2)
(5.35) az : Hom.(Uq, V1) ® Hom,.(Uz2,V2) — Hom.(U; ® Uz, Vi ® V3)
Hom.(U1, V1) ®. Hom(Usz,V2) — Hom.(U; ® Uz, V1 ®. Va)

&3 : Homc(Ul, Vl) Qe HOHIC(Uz, Vz)

K

(Hom(Uy @ Uz, Vi @ V2))e(1234) -

For example, the seventh map, labeled as as in the diagram from Theorem 5.133, is
c-linear with respect to both corresponding pairs of induced CSOs, and for c-linear
maps A and B, takes A ® B to the map j(A® B) : Uy @ Uy — V4 ® Vo, which is
c-linear with respect to the pair [Jy, ® Idy,], [Jv, ® Idy,], and also c-linear with
respect to the pair [Idy, ® Ju,], [Idy, @ Jy,].
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Also, if some but not all of the four spaces have CSOs, then there may still be
some induced maps, for example, the first one in the above list makes sense if only
U; and V5 have CSOs.

Let Q’C(12), PC’(12), and Q.(12), Pr(12) denote the inclusions and projections for
the direct sums produced by Jj, J5, and Jy, Jo, respectively, as appearing in the
diagram from the Proof of Theorem 5.133. By Lemma 5.85, the map j also respects
the direct sum

Hom(U; ®. Uz, V1 @ Va) & Hom(Uy ®, Uz, V1 @ Va),
and induces a c-linear map, labeled
az = HOHI(QC, IdV1®V2) ojo Q/c(12)7

as in the following diagram, a copy of two blocks of the diagram from Theorem
5.133.

J

Hom(Uy ® Uz, V1 ® V2)

Hom(Uy, V1) ® Hom(Us, Va)
Hom(Qu,Idv1®v2)l/ ipé(u)
Hom(U; ®. Uz, Vi ® Vo) =<——— Hom(Uy, V;) ®. Hom(Uz, V»)

: ;

Hom,(U; ®. Uz, Vi @, Vi) <2 Hom,(Uy, Vy) @ Hom, (U, V)

The map as is equal to the composite of the induced map
Pr(12) 0 0 Q12) : Hom(Ux, Vi) @ Hom(Uz, V2) — (Hom(U1 ® Uz, Vi & V2))c(12)
with the invertible c-linear map from Example 5.132, labeled a7 in Theorem 5.133,
Hom(Qc, Idvygv,)0Qc(12) : (Hom(U1®@Us, Vi®V2))e12) — Hom(U1®. Uz, V1@V3).

Also, as is c-linear with respect to all three corresponding pairs of induced CSOs,
so as in Example 5.131 and Theorem 5.133, it respects the corresponding direct
sums, to induce c-linear maps:
HOHIC(Ul, Vl) Re I{OHl(-U—z7 ‘/2) — HOIIIC(Ul ®:.U2,V1 ® ‘/2)
Hom (U1, V1) @, Hom(Us, Vo) — Hom(Uj ®. Uz, V1 @, Va)
Hom(Uy, V1) ® Hom¢(Uz2,V2) — Hom (Ui ®c U2, V1 ® V)

&2 : HOIIIC(U]_, V]_) Re HOI’HC(Uz, Vz) — HOIIIC(Ul Re Uz, Vl Re Vz)
Asremarked in the Proof of Theorem 5.133, let a1 denote the invertible map induced
by ai,

(Hom(U; ® Uz, Vi ® V2))e(1234) — Hom (U ®. Uz, V1 @, V2),
so that then @ = a; o az. The map ao is invertible if j is; it acts on w €

Hom,(Uy, V1) ®. Hom (U2, Va) C Hom(Uy, Vi) @ Hom(Us, V2) as: az : w —
P! o j(w) o Q., where P/ is the projection V4 ® Vo — V1 @, Va.

EXAMPLE 5.136. For Uy, Uz, V1, V3 as in Example 5.135, suppose A : Uy —
Vi1 and B : Uy — V5 are c-linear. Then

A® B € Hom.(Uy, V1) ® Hom.(Uz,Va) C Hom(U;, V1) @ Hom(Us, Va),
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so A® B is in the domain of a3 = j|Hom,(U;,v1)@Hom, (Us,V4) a8 in (5.35) and the
following diagram, a copy of two blocks of the diagram from Theorem 5.133.

as

Hom/,(U; ® Ua, Vi ® V) Hom,(Uy, V1) ® Hom.(Us, Vg)

Ps HOHIC(Ul, Vl) Qe HOHIC(Uz, V2)

as .
az

(Hom(Uy @ Uz, Vi @ Va))c(1234) Hom,(U; ®. Uz, Vi ®, V2)

ay

Starting with A ® B, these outputs are equal by the commutativity of the diagram
from Theorem 5.133:

(420 P})(A® B) = 52(%(A ® B — (Jy, 0 A) ®@ (B o Ju,)))

(5.36)

1
Plo (5([A®B] = [(Jry 0 A) @ (B o Ju,)])) © Qe
(dl o} P3 e} ag)(A & B) = &1(P3([A & B]))
1
= Po (5([A® B] = [Jv, @ Idv,] 0 [A® B] o [ldy, ® Jus])) 0 Qe
As in Lemma 5.80, this is the restriction of the map 3([A ® B] — [(Jy, 0 A) ®
(Bo Jy,)]) € Hom(U; ® Uz, Vi ® V2) to the subspace U; ®. Us in the domain and

V1 ®. Vs in the target.
For u; € Uy, ug € Us, these elements of V] ® V5 are equal:

([A®@ Bl o Qc)(Pe(ur @ uz))
= [A® B](%(m ®uz = (Ju, (1)) @ (Ju, (u2))))

= %((A(m)) ® (B(uz)) = (A(Ju, (u1))) @ (B(Ju, (u2)))),
(=[(Jvi 0 A) @ (B o Ju, )] © Qc)(FPe(ur © uz))

= —[(Jned)@(Bo JUQ)](%(M ® ug = (Ju, (u1)) @ (Ju, (u2))))

1

= 5 (=(Jn(A(w))) @ (B(Ju, (u2))) + (v (A(Jvy (w1))) @ (B(Ju, (T (u2)))))-

Because Uy ®,. Us is spanned by elements of the form P.(u; ® us), these maps
U; ®. Uz = Vi ®. Vg are equal:

PLo(5(14® B~ [(Jv, 0 A) & (Bo Ju)))) 0 Qe = Flo[A@ Bl o Q.

The above LHS is as in (5.36), and the RHS is from Notation 5.76, giving the
equality:

(d2 © PQI)(A & B) = [A Qe B] = (Hom(ch Pc/) Oj|Homu(U1,V1)®H0ch(U2,V2))(A ® B)'

There would be no ambiguity in denoting j = as.
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LEMMA 5.137. For any U, V, W, the following diagram is commutative.

Id cEBvg
U, ©, Homo(V, W) @, V — 102 E%w] 5 W

[n®cldv] l

¢
Evy ugow

Hom,.(V,U®. W)®.V

ProOOF. This is a c-linear version of Lemma 2.78, so all these objects are sub-
spaces of spaces from Lemma 2.78; the following argument keeps track of all of the
inclusions. The spaces U @ Hom(V, W) ® V and Hom(V,U @ W) ® V each admit
four commuting CSOs, and the map [n® Idy] is c-linear with respect to four corre-
sponding pairs as in Lemma 5.129, by Lemma 5.29 and Theorem 5.118. Some of the
projections and induced maps from Lemma 5.129 are as in the following diagram.

n®Ild
U@ Hom(V,W) @V —"2 _ Hom(V,u @ W)V
Pe(23) P23
[n*®Idy]

U ® Hom.(V,W)®@V Hom.(V,U W)@V
Pe((23)1) Pl(as)
[1’1®Idv]

U ®. Hom . (V,W) @V Hom,.(V,U®. W)®V
P.((231)a) P ((231)2)
[n@ufdv]

U ®. Hom.(V,W) ®.V

Hom.(V,U®. W) ®.V

In the upper block, [n* ® Idy] is induced by [n @ Idy] as in Lemma 1.91 and
Theorem 5.118, where n induces n'. The middle block is similarly related to the
lower block from Theorem 5.118. In the lowest block, [n ®. Idy] is induced as in
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Example 5.75, and [n ®. Idy] also appears in the following diagram.

U@Hom(V,IW)aV

Qc(23)

-

U ® Hom, (V, W) ® V LdveBovw]

Qc((23)4)
Idy @ Evy,
U ® Hom.(V, W) @. V v B Frw] Usw
Qc((234)1)
Y [du®cEvyw]

U®.Hom.(V,W)®.V Ux. W

[n®ufdv] p
EUV,U®UW

Hom,.(V,U®. W)®.V
Evvug.w

QL((132)4)
Evv,uew

Hom,.(V,U®. W)@V
Qe((13)2)
Hom(V,U®. W) &V

P13

Hom(V,U@ W)V

In the upper block, Q. (23) is the inclusion corresponding to the projection P(s3)
from the previous diagram, and as in Example 5.73, Q. (23) = [[dy ® [Q.® Idy]] for
Qc : Hom(V, W) — Hom(V,W). The inclusion Q.((23)4) does not correspond to
any projection from the previous diagram, but again as in Example 5.73, it is equal
to [Idy ® Q], for the inclusion Q : Hom.(V, W) @,V — Hom.(V,W) ® V. The
upper block is then commutative by Lemma 1.36 and adapting formula (5.33) from
Example 5.124, Evyy = Evyw o [Q.® Idy]o Q. The second block is commutative
by Notation 5.76 for the induced map [Idy ®. Ev{y). The commutativity of the
center block is the claim of the Lemma. The fourth block is commutative, it is an
adaptation of formula (5.33) defining Ev§; yg, w- The inclusion Q304 1 equal
to the inclusion with the first three indices re-ordered, @, ((231)4) corresponding to
the projection in the first diagram. In the lowest block, P’ (13) does not appear
in the first diagram; it is equal to [Hom(I/dy, P.) ® Idy] as in Example 5.73 and
Example 5.83. So, the lowest block is commutative by Lemma 2.73. The claim
follows, using Lemma 2.78 and equalities of composite inclusions from Theorem
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5.128.
Evy yg.w o n®c Idy]
= FEuyug.w o Q,c((13)2) © Q/c((132)4) oMm®. Idyv]
Evy,ue.w © Pr3) © Qus) © Qu13)2) © Qu132)4) © [0 ®c 1dv]
= PloEvyygw o Q'c(gs) ° Qlc((QS)l) °© Q:;((231)4) o [n®cIdy]
= PloBuvyyew o [n® Idy] o Qcas) © Qe((23)1) © Qe((231))
= Plo[ldy ® Evyw] o Qc(23) © Qc((23)4) © Qe((234)1)
= [Idy ®. Evywl-

THEOREM 5.138. For any V = (V,Jy), U, W, and c-linear F : V®. U —
V ®. W, if V is finite-dimensional then the n maps in the following diagram are
invertible:

Ve, U r Vo, W
[Idv@cEU%U]T T[Idv&Ev%,w]
V ®. Hom.(V,U) ®. V V ®@. Hom(V, W) ®.V

[n2®61dv1l l[né&fdv]

Hom(V,V®.U)®.V Hom(V,V ®. W) ®.V

[Hom,(Idy,F)®.Idy]
and the diagram is commutative, in the sense that
Fo[ldy ®. Ev{y] o g @ Idy] ™t

= [ldy ®. Ev{w] o [nh @, Idy] ™! o [Hom.(Idy, F) ®. Idy].

PROOF. This is a c-linear version of Theorem 2.79, and the Proof is analogous.
The maps ny and n), are special cases of the n map from Lemma 5.137; they are
invertible by Lemma 1.44 and Theorem 5.118, with [ny ®. Idy]~! = [n2_1 ®c Idy).

By Lemma 5.137, the upward composite on the left is equal to Evy ve,u, and
similarly the upward composite on the right is equal to Evy; v - The claim then

follows from Lemma 5.125. [ |

REMARK 5.139. The results in this Section on the c-linear evaluation map from
Example 5.124: Lemma 5.125, Lemma 5.137, and Theorem 5.138, give some details
omitted from [C,] §4.

5.4. Real trace with complex vector values

In this Section we develop the notion of vector valued trace of R-linear maps,
where the value spaces have complex structure operators. The approach will be to
refer to Chapter 2, while avoiding scalar multiplication.

Theorem 5.118 on the c-linearity of n maps generalizes in a straightforward
way to the various orderings of n maps from Notation 1.41, as in the following
Corollary. Recall from Theorem 2.74 the special case

n' : Hom(V,W)®@V — Hom(V,V@W): A®@v— (u— v (A(u))),
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and that if V is finite-dimensional then n’ is invertible.

COROLLARY 5.140. If V = (V, Jy) and W = (W, Jw ), then n' : Hom(V, W) ®

V — Hom(V,V ® W) is c-linear with respect to corresponding pairs of the three

commuting CSOs induced on each space, so it respects the direct sums and induces
maps

n} : Hom.(V,W) @V

ny : Hom(V, W) ®. V

n4 : Hom(V,W) ®.V

n’ : Hom.(V,W) ®.V

Hom.(V,V @ W)
Hom.(V, V@ W)
Hom(V,V ®, W)
Hom.(V,V ®. W).

m | |||

If n’ is invertible then so are these maps.

THEOREM 5.141. If V s finite-dimensional and W = (W, Jyw ), then the map

Tryv.aw = Evyw o (n')™! : Hom(V,V @ W) — W
is c-linear.

PROOF. The map n’ is from Corollary 5.140: it is c-linear with respect to
[Hom(Idy, Jw)® Idy] and Hom(Idy, [Idy ® Jw]) (without assuming any CSO on
V). The canonical evaluation Evyw : A®v — A(v) from Definition 2.71 is c-linear
Hom(V,W) ® V — W as in Exercise 5.41, and the equality Try,w on’ = Evyw

is from Theorem 2.74. The result could also be proved by applying Corollary 2.59
(or Corollary 2.75) with B = Jy .

THEOREM 5.142. If V is finite-dimensional and W admits commuting CSOs
Ji, Ja, then the map T'ry,.w respects the direct sums

Hom(V,V @ W.) ® Hom(V,V @ W,) — W, & W,,
and the induced c-linear map Hom(V,V @ W) — W, is equal to Trv.w,.

PrOOF. Lemma 2.61 applies. The direct sums on V @ W and Hom(V,V @ W)
are as in Example 5.73 and Example 5.83, with canonical projections as indicated
in the diagram. T'ry,p is c-linear with respect to both corresponding pairs of CSOs
by Theorem 5.141, and the c-linearity of the induced map follows from Lemma 5.65.

TTv;W

Hom(V,V @ W) w
HOm(Idv,[Idv®Pu])i ch
Trv.w,
Hom(V,V ® W) : W,

THEOREM 5.143. For finite-dimensional V', and U, W with CSOs Jy, Jw, the
generalized trace

Try.uw : Hom(V @ U,V @ W) — Hom(U, W)

is c-linear with respect to both pairs of corresponding commuting CSOs, and respects
the direct sums, inducing a c-linear map, denoted

Try,u,w : Hom.(V ® U,V ® W) — Hom,.(U, W).
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PRrROOF. The c-linearity claims follow from Theorem 2.30, and then Lemma
5.65 applies. That is enough for the Proof, but as in Theorem 2.52 and Theorem
2.53, the generalized trace is related to some different vector valued traces.

First, following the construction of Theorem 2.52, consider this diagram,

Hom(V@ U,V @ W)
Trv.uw

Hom(Idv,n~1)
My, =——= My, Hom (U, W)

Hom(Idy ,n) Try Hom(U,w)

Hom.(V @ U,V @ W) — Moy Moy TTV;HomC(UM},IPmC(U, W)
where
M1 = Hom(V,Hom(U,V @ W))
My = Hom(V,V @ Hom(U, W))
My = Hom(V,Hom.(U,V @ W))
My = Hom(V,V ® Hom.(U, W)).

All the vertical arrows are the canonical projections of the direct sums produced
by the commuting CSOs induced by Jy and Jy. The right square is commuta-
tive by Lemma 2.61; this is an example of Theorem 5.142, where the projection
Miy — Mas is equal to Hom(Idy, [Idy ® Py]). The map n: V @ Hom(U, W) —
Hom(U,V @ W) from Theorem 5.118 is invertible and c-linear with respect to
the commuting corresponding pairs of CSOs induced by Jy and Jy. Example
5.88 applies to Hom(Idy,n) and the middle square in the diagram: the induced
map (lower middle arrow) is invertible, c-linear, and equal to Hom(Idy,n'), where
n' is the induced map from Theorem 5.118. The map ¢ is as in Theorem 2.52,
which asserts the commutativity of the diagram’s top triangle. By Example 5.119,
the map ¢ similarly induces an invertible c-linear map, ¢;. We can conclude, for
K :V -V ®Hom.(U,W),

Try tom.u,w) (K) = Trvuw(q(n' o K)).

The next diagram has the same left and right columns as the previous one.
The upper triangle is commutative by Theorem 2.53, where the map from (2.10) is
temporarily relabeled q.

Hom(VeU, VW)

— Trv.uw
q

Hom(U, Hom(V, V@W)) Hom(U,W)

Hom(IdU ,Trv;w)

Hom,(Idy,Trv,w)

Hom.(VRU, VW) == Hom, (U, Hom(V,V@W)) Hom,.(U,W)
2

The map ¢ is c-linear with respect to the pairs of induced CSOs and by Example
5.119 again, induces an invertible c-linear map, ¢2, as indicated in the diagram. In
the right square, Try,w is c-linear as in Theorem 5.141, and Hom(Idy, Try.w) is
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c-linear with respect to the pairs of CSOs as in Lemma 5.80, inducing a c-linear map
Hom,(Idy,Try.w) as in Notation 5.81. The conclusion is an analogue of Equation
(2.11) from Theorem 2.53,

Try.uw = Homc(Idy, Trv.w) o g3 ',
so that for a c-linear map FF: VU -V W,
Trvuw(F) = Tryawo (g '(F))
(5.37) = Boywo(n) ' o(g (F)).

Line (5.37) gives an analogue of Corollary 2.76, using the c-linecar maps from the
Proof of Theorem 5.141. [ |



CHAPTER 6

Appendices

6.1. Appendix: Functions and Binary Operations

DEFINITION 6.1. Given sets S and T, the product set S x T is the set of ordered
pairs {(0,7) 10 € S, 7 € T}.

DEFINITION 6.2. Given sets S and T, suppose there is a subset G C S x T
with the following properties.
e If (s1,t1) € G and (s2,t2) € G and s; = so then t; = ts.
e For each s € S, there is an element (s,t) € G.
Then for each s € S, there is exactly one element a(s) € T so that (s,«a(s)) € G.
This defines a function «, with domain S, target T', and graph G, which is denoted
(as in Notation 0.41) by the arrow notation o : S ~ T.

DEFINITION 6.3. Given a set S, a binary operation on S is any function from
S xS to S. The notation (S,x*) denotes a set S, together with %, a binary oper-
ation on S. For z,y € S, and a binary operation *, the element *((x,y)) will be
abbreviated x * y.

DEFINITION 6.4. A binary operation * on S is associative means: for all x,y, z €
S, (xxy)* z = x % (y*z). The binary operation * is commutative means: for all
T,y €S, xxy =y*x.

DEFINITION 6.5. Given (S, %), any element e € S such that exz =z %xe =2
for all x € S is called an identity element.

EXERCISE 6.6. Given (S, %), suppose there is an identity element e € S. Then,
the identity element is unique.

EXERCISE 6.7. Given (S, #), with an identity element e, if for all z,y,z € S,
z % (y*z) = (z * 2) *y, then * is commutative and associative. I

EXERCISE 6.8. Give an example of a set and an operation % where x * (yx z) =
(z * z) * y holds but * is not associative. i

DEFINITION 6.9. Given (S, ), and an identity element e € S, and z,y € S,
y is a *x-inverse for x means that zxy =y *x = e.

Note that x-inverse cannot be defined without an identity element, so in any
statement asserting the existence of a *-inverse, it is assumed that there exists an
identity element for the operation .

EXERCISE 6.10. Given (S, %), let e be an identity element. Then e has a *-
inverse, and this inverse is unique.

245
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EXERCISE 6.11. Given (S,x*), and x € S, if  is associative, and there exist
y €S, z€ S such that y«x = e and = * z = e, then y = z and y is a *-inverse for
2. In particular, any #-inverse for z is unique.

“

NOTATION 6.12. Usually it is more convenient to call a x-inverse just an “in-
verse,” and if an element « has a unique inverse, then it can be denoted z~'. There
may be some other abbreviations for certain operations; customarily a +-inverse of
x is denoted —zx.

EXERCISE 6.13. Given (S, %), and x,y € S, if * is associative, and x and y both
have *-inverses, then x * y has a unique *-inverse, y ' * 1. [ |

EXERCISE 6.14. Given (S, ), and z € S, if * is associative, and there exists a
x-inverse for x, and x x x = x, then z = e.

EXAMPLE 6.15. Given a set S, let F denote the set of functions {a : S ~ S}.
Composition of functions is an example of a binary operation on F, denoted o, so
that the function a o g is defined by the formula depending on x € S:

(6.1) (o f)(x) = a(B(2))-

The operation o is associative and has an identity element denoted I'dg € F, which
is the function with graph G = {(z,z) : « € S}, so that Idg(z) =z for all z € S.

NOTATION 6.16. The same symbol o is used for composites of functions be-
tween other sets, although this is no longer an example of a binary operation as in
Definition 6.3. For any sets S, T, U, and any functions 5 : S ~ T and a : T ~ U,
there is a composite function awo f: S ~» U, defined as in (6.1). An associative
property holds: for v: R~ S, (a0 8)oy=ao (So7).

EXERCISE 6.17. Given S # @, and a function « : S ~» T, the following are
equivalent.

(1) For all s1, so € S, if s1 # s9, then a(s1) # a(sz2) (o has the one-to-one
property).

(2) For any set C' and any functions vy : C'~» S, 8 : C ~ S, if oy : C' ~~ T and
aod : C' ~ T are the same function, then v = ¢ (« has the left cancellable
property).

(3) There is a function 5 : T ~ S so that Soa : S ~ S is equal to the identity
function Idg : S ~» S (« has a left inverse).

EXERCISE 6.18. Given a function « : S ~» T', the following are equivalent.

(1) For all t € T, there is some s € S so that a(s) = t (« has the onto
property).

(2) For any set C' and any functions vy : T ~» C, 0 : T ~~ C, if yoar : S ~» C and
doa : S ~~ C are the same function, then v = ¢ (« has the right cancellable
property).

(3) There is a function 8 : T ~ S so that a«o 8 : T ~» T is equal to the
identity function Idp : T ~~ T (« has a right inverse).

HINT. The (1) = (3) step requires the Axiom of Choice. i
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EXERCISE 6.19. If 8 : T ~~ S is a left inverse of « and v : T ~» S is a right
inverse of a then g = .

HinT. This is analogous to Exercise 6.11. [

EXERCISE 6.20. Given S # ) and a function « : S ~» T, the following are
equivalent.
(1) « is both one-to-one and onto.
(2) «a has a left inverse v : T ~» S and a right inverse 5 : T ~~ S.
(3) There exists a function § : T~ S so that «od = Idy and § o a = Idg.

HINT. The equivalence (1) <= (2) uses Exercise 6.17 and Exercise 6.18,
although with the one-to-one assumption in (1), the Axiom of Choice is no longer
required to construct the right inverse in (2). (3) == (2) is trivial, and the
converse uses Exercise 6.19 to get § = § = ~. [

DEFINITION 6.21. A function « : S ~ T is invertible means that « satisfies
any of the equivalent properties (1), (2), or (3) from Exercise 6.20.

NOTATION 6.22. A function (such as § = 5 = « as in Exercise 6.19), that is
both a left inverse and a right inverse of the function « : .S ~» T is an inverse of
a. If an inverse of « exists, then it is unique by Exercise 6.19, it can be denoted
a ! :T ~ U, and a~! is also invertible, with inverse a.
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6.2. Appendix: Quotient spaces

DEFINITION 6.23. Given any vector space (V,+v, ) and a subspace W, for
any element v € V the following subset of V' is called a coset of W:

v+W=A{v+yw:we W}

DEFINITION 6.24. Given a subspace W of V' as in Definition 6.23, the set of
cosets of W is a vector space with the following operations:

(1 + W)+ (2 +W) = (v1+vv)+W,
p-v+W) = (pvo)+W,

and zero element Oy + W = W. This vector space is the quotient space, denoted

V/W.

EXERCISE 6.25. The function 7w : V. — V/W : v — v + W is linear and right
cancellable. If S is a subset of V' such that V' = span(S), then V/W = span(m(5)).
|

EXERCISE 6.26. Given a subspace W of V' as in Definition 6.23, and any set S,

if B:V ~~ S is constant on each coset v + W then there exists a unique function
b:V/W ~ S such that bow = B.

HINT. For v + W € V/W, choose any element x = v +w € v + W. Define
b(v + W) = B(x); this does not depend on the choice of = by hypothesis, and
v € v+ W (because Oy € W) so b(v + W) = B(z) = B(v). Then for any v € V,
(bom)(v) = b(mw(v)) = b(v+ W) = B(z) = B(v) as claimed. For uniqueness, use
the right cancellable property of 7.

EXERCISE 6.27. Given a subspace W of V as in Definition 6.23, and another
vector space U, if B : V — U is linear and satisfies B(w) = Oy for all w € W, then
there exists a unique function b : V/W — U such that bow = B, and b is linear.

HINT. For any v € V., if z € v + W then z = v + w for some w € W and
B(z) = B(v + w) = B(v) + B(w) = B(v) + 0y = B(v). So, B is constant on the
coset v + W, and the previous Exercise applies to show there is a unique b with
bom = B. The linearity of b easily follows from the linearity of B.
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6.3. Appendix: Construction of the tensor product

As mentioned in Section 1.2, we elaborate on the existence of a tensor product
of two vector spaces. The notation and methods in this Appendix are specific to
this construction and not widely used in the Chapters. We start with a set of
functions F (S, W) only because it comes with a convenient vector space structure.

EXAMPLE 6.28. For any set S #0) and any vector space W, the set of functions
FSW) ={f: 85~ W}

is a vector space, with the usual operations of pointwise addition of functions and
scalar multiplication of functions, and zero element given by the constant function

f(z) =0w.

NOTATION 6.29. For a set S #0 and any field K, for each = € S there is an
element d(x) € F(5,K) defined by:

(6.2) 0(x):y +— lfory=uz,
0(x):y +— Ofory+#u.
The span of the set of such functions is denoted
Fo(S,K) =span ({d(x) : x € S}),
so Fo(S,K) is a subspace of F(5,K). The notation (6.2) defines a function
6:8 ~ Fo(S,K) : .+ d(x).

EXERCISE 6.30. For S as above and any function f : .S ~» K, the following are
equivalent.

(1) f e Fo(S,K).

(2) The function f is uniquely expressible as a finite sum of functions with

N
coefficients a, € K and z, € S: f = Zau -0(zy).
v=1

(3) f(z) =0 for all but finitely many x € S.
|

EXERCISE 6.31. Given S, K, and 4 as in Notation 6.29, and any vector space W,
If g : S ~» W is any function, then there exists a unique linear map g : Fo(S,K) —
W such that god =g : S ~ W.

HINT. As in Exercise 6.30, the general element f of Fy(S,K) has a unique
N
expression of the form f = Z ay, - 6(x,); define g on such an expression by using

v=1
the same coefficients «,, and elements z,:

3= a, glx).

Then for each & € S, the composite function satisfies the claim:
(god)(x) =g(1-6(x)) =1-g(z) = g(z).

The uniqueness and K-linearity of g are easily checked. [
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DEFINITION 6.32. Given vector spaces U and V, define the following subsets
of Fo(U x V,K):

Ry = {0((u1 4+ u2,v)) —((ur,v)) — 6((uz,v)) : ur,ug € U,v € V'}
Ry = {0((u,v1 4+ v2)) —d((u,v1)) — 6((u,v2)) :uw € Uyv1,v2 € V}
Ry = {d((p-u,v))—p-0((u,v)):peKuelUwveV}

Ri = {8((p-0)—p8((w0): peKucUweV)

R = span(RiURsUR3URYy).

The tensor product space of U and V is defined to be the quotient space:
UV =FUxV,K)/R.
Let 7w : Fo(U x V,K) — U ® V denote the quotient map as in Exercise 6.25.

DEFINITION 6.33. Define a function 7: U x V ~» U @ V by:
T=mod: (u,v) = w(d((u,v))) =d((u,v)) + R.
The output 7((u,v)) is abbreviated u @ v € U @ V.
EXERCISE 6.34. 7 :U XV ~» U ® V is a bilinear function.
HiINT. Definition 1.23 is easily checked. [

THEOREM 6.35. For any bilinear function A : U x V ~» W there exists a
unique linear map a : U @V — W such that A=aoT.

PROOF. By Exercise 6.31, there exists a unique linear map A Fo(UxV,K) —
W such that Ao = A. The linear map A has value Oy on every element of the
subspace R; it is enough to check that A(r) = Oy for r in each of the four subsets
Ry, ..., Ry from Definition 6.32, for example, for r € Ry,
A(r) = A(3((ur +u2,v)) = 8((u1,v)) — 8((uz,v)))

= A((ur + uz,v)) = A((u1,v)) — A(uz,v))

= Ow.
The other A(r) values follow similarly from the bilinear property of A. Exercise
6.27 applies to A, to give a unique linear map

a:Fo(UxV,K)/R—W: f+Rw— A(f)
such that a o ™ = A. The conclusion is that
aoT=ao(mwod)=(aom)od=A0d=A = a(u®v) = A(u,v).
For the uniqueness, suppose there is some a’ with aomod = A = a’ omwod. The set
{0((u,v)) : w € U,v € V} spans Fo(U x V,K) as in Notation 6.29, and the image
under 7 of this set, {u®v : u € Uyv € V}, spans U @ V = Fo(U x V,K)/R by
Exercise 6.25. So a and a’ agree on a spanning set of U ® V' and must be equal.

CLAM 6.36. If (u1,u2) and (v1,v2) are linearly independent lists of elements
in U and V, then (u1 ® v1,us ® v1,u1 ® v, us @ v2) is a linearly independent list
of elements of U @ V. [
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6.4. Appendix: Comments on [C.]
6.4.1. Errata. The following typo appears in the published paper, [C.].

On page 535, line 3, the symbol should be Zy +— instead of Zy =.

6.4.2. Updates. The topic of defining a “trace without duals” (as in [C-] §3)
is briefly considered by [S] §1.7.

Some details omitted from [C,] are presented here in Chapter 2 (see Remark
2.111) and Section 5.3 (see Remark 5.139).
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