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Preface

These notes are a mostly self-contained collection of some theorems of linear
algebra that arise in geometry, particularly results about the trace and bilinear
forms. Many results are stated with complete proofs, the main method of proof
being the use of canonical maps from abstract linear algebra.

So, the content of these notes is highly dependent on the notation for these
maps developed in Chapter 1. This notation will be used in all the subsequent
Chapters, which appear in a logical order, but for 1 < m < n, it is possible to
follow Chapter 1 immediately by Chapter n, with only a few citations of Chapter
m. To review the elementary prerequisites, some foundational material appears in
Chapter 0 and the Appendices.

In such a collection of results, there will be several statements which will not be
needed in later Lemmas, Theorems, or Examples, and can be skipped without losing
any logical steps. Such statements will be labeled “Proposition” or “Exercise,” with
a short proof following from a “Hint” or left to the reader entirely. There are a few
statements which are needed in later steps but whose proofs do not fit the basis-free
theme; they are labeled “Claim,” with proofs left to the references.

Adam Coffman

v





Overview

The goal of these notes is to present the subject of linear algebra in a way
that is both natural as its own area of mathematics, and applicable, particularly to
geometry. The unifying theme is the trace operator on spaces of linear maps, and
generalizations of the trace, including vector valued traces, and traces with respect
to non-degenerate inner products. The emphasis is on the canonical nature of the
objects and maps, and on the basis-free methods of proof. The first definition of the
trace (Definition 2.3) is essentially the “conceptual” approach of Mac Lane-Birkhoff
([MB] §IX.10) and Bourbaki ([B]). This approach also is taken in disciplines
using linear algebra as a tool, for example, representation theory and mathematical
physics ([FH] §13.1, [Geroch] Chapter 14, [K]). Some of the subsequent formulas
for the trace (Theorem 2.10, and in Section 2.4) could be used as alternate but
equivalent definitions. In most cases, it is not difficult to translate the results into
the usual statements about matrices and tensors, and in some cases, the proofs
are more economical than choosing a basis and using matrices. In particular, no
unexpected deviations from matrix theory arise.

Part of the motivation for this approach is a study of vector valued Hermit-
ian forms, with respect to abstractly defined complex and real structures. The
conjugate linear nature of these objects necessitates careful treatment of scalar
multiplication, duality of vector spaces and maps, and tensor products of vector
spaces and maps ([GM], [P]). The study of Hermitian forms seems to require a pre-
liminary investigation into the fundamentals of the theory of bilinear forms, which
now forms the first half of these notes. The payoff from the detailed treatment of
bilinear forms will be the natural way in which the Hermitian case follows, in the
second half.

Chapter 0 gives a brief review of elementary facts about vector spaces, as
in a first college course; this should be prerequisite knowledge for most readers.
Chapter 1 then sketches a review of notions of spaces of maps Hom(U, V ), tensor
products U ⊗ V , and direct sums U ⊕ V , and introduces some canonical linear
maps, with the notation and basic concepts which will be used in all the subsequent
Chapters. Chapter 2 starts with a definition of the usual trace of a map V → V ,
and then states definitions for the generalized trace of maps V ⊗ U → V ⊗ W ,

or V → V ⊗W , whose output is an element of Hom(U,W ), or W , respectively.
Many of the theorems can be viewed as linear algebra versions of more general
statements in category theory, as considered by [JSV], [Maltsiniotis], [K], [PS],
[Stolz-Teichner], [S].

Chapter 3 offers a similar basis-free approach to definitions, properties, and
examples of a metric on a vector space, and the trace, or contraction, with respect to
a metric. The metrics are assumed to be non-degenerate, and finite-dimensionality
is a consequence. The main construction is a generalization of the well-known
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2 OVERVIEW

inner product Tr(AT · B) on the space of matrices; the construction of Theorem
3.41 shows how a metric on Hom(U, V ) is induced by arbitrary metrics on U and V ,
so that Hom(U, V ) is isometric to U∗ ⊗ V with the induced tensor product metric.
Chapter 4 develops the W -valued case of the trace with respect to a metric.

The basis-free approach is motivated in part by its usefulness in the geometry of
vector bundles and structures on them, including bilinear and Hermitian forms, and
almost complex structures. Important geometric applications include real vector
bundles with Riemannian metrics, pseudo-Riemannian metrics (since definiteness is
not assumed), or symplectic forms. The linear algebra results can be restated geo-
metrically, with linear maps directly replaced by bundle morphisms, “distinguished
non-zero element” by “nonvanishing section,” and in some cases, “K” by “trivial
line bundle.”

The plan is to proceed at an elementary pace, so that if the first few Lem-
mas in Chapter 1 make sense to the reader, then nothing more advanced will be
encountered after that. In particular, the relationships with differential geome-
try and category theory can be ignored entirely by the uninterested reader and
are mentioned here only in optional “Remarks.” It will be pointed out when the
finite-dimensionality is used— for example, in the Theorems in Chapter 2 about
the vector valued trace TrV ;U,W , V must be finite-dimensional, but U and W need
not be.



CHAPTER 0

Review of Elementary Linear Algebra

0.1. Vector spaces

Definition 0.1. Given a set V , a field K, a binary operation + : V × V → V
(addition), and a function · : K × V → V (scalar multiplication), (V,+, ·) is a
vector space means that the operations have all of the following properties:

(1) Associative Law for Addition: For any u ∈ V and v ∈ V and w ∈ V ,
(u+ v) + w = u+ (v + w).

(2) Existence of a Zero Element: There exists an element 0V ∈ V such that
for any v ∈ V , v + 0V = v.

(3) Existence of an Opposite: For each v ∈ V , there exists an element of V ,
called −v ∈ V , such that v + (−v) = 0V .

(4) Associative Law for Scalar Multiplication: For any ρ, σ ∈ K and v ∈ V ,
(ρσ) · v = ρ · (σ · v).

(5) Scalar Multiplication Identity: For any v ∈ V , 1 · v = v.
(6) Distributive Law: For all ρ, σ ∈ K and v ∈ V , (ρ+σ) · v = (ρ · v) + (σ · v).
(7) Distributive Law: For all ρ ∈ K and u, v ∈ V , ρ · (u+ v) = (ρ · u)+ (ρ · v).

It is a convenient abbreviation to refer to a vector space (V,+, ·) as just V , as
in all of the following Exercises.

Exercise 0.2 (Right Cancellation). Given u, v, w ∈ V , if u+w = v +w, then
u = v.

Hint. These first several Exercises, 0.2 through 0.11, can be proved using only

the first three axioms about addition.

Exercise 0.3. Given u,w ∈ V , if u+ w = w, then u = 0V .

Exercise 0.4. For any v ∈ V , (−v) + v = 0V .

Exercise 0.5. For any v ∈ V , 0V + v = v.

Exercise 0.6 (Left Cancellation). Given u, v, w ∈ V , if w + u = w + v, then

u = v.

Exercise 0.7 (Uniqueness of Zero Element). Given u,w ∈ V , if w + u = w,

then u = 0V .

Exercise 0.8 (Uniqueness of Additive Inverse). Given v, w ∈ V , if v+w = 0V
then v = −w and w = −v.

Exercise 0.9. −0V = 0V .

Exercise 0.10. For any v ∈ V , −(−v) = v.

3



4 0. REVIEW OF ELEMENTARY LINEAR ALGEBRA

Exercise 0.11. Given u, x ∈ V , −(u+ x) = (−x) + (−u).
The previous results only used the properties of “+,” but the next result, even

though its statement refers only to +, uses a scalar multiplication trick, together
with the distributive axioms, which relate scalar multiplication to addition.

Theorem 0.12 (Commutative Property of Addition). For any v, w ∈ V ,

v + w = w + v.

Proof. We start with this element of V , (1 + 1) · (v + w), and then set
LHS=RHS, and use both distributive laws:

(1 + 1) · (v + w) = (1 + 1) · (v + w)

((1 + 1) · v) + ((1 + 1) · w) = (1 · (v + w)) + (1 · (v + w))

((1 · v) + (1 · v)) + ((1 · w) + (1 · w)) = (v + w) + (v + w)

(v + v) + (w + w) = (v + w) + (v + w).

Then, the associative law gives v + (v + (w + w)) = v + (w + (v + w)), and Left
Cancellation leaves v + (w + w) = w + (v + w). Using the associative law again,

(v+w)+w = (w+v)+w, and Right Cancellation gives the result v+w = w+v.

Exercise 0.13. For any v ∈ V , 0 · v = 0V .

Exercise 0.14. For any v ∈ V , (−1) · v = −v.
Exercise 0.15. For any ρ ∈ K, ρ · 0V = 0V .

Exercise 0.16. For any ρ ∈ K and u ∈ V , (−ρ) · u = −(ρ · u).
Exercise 0.17. Given ρ ∈ K and u ∈ V , if ρ ·u = 0V , then ρ = 0 or u = 0V .

Exercise 0.18. If 1
2 ∈ K, then for any v ∈ V , the following are equivalent. (1)

v + v = 0V , (2) v = −v, (3) v = 0V .

Hint. Only the implication (1) =⇒ (3) requires 1
2 ∈ K; the others can be

proved using only properties of +.

Definition 0.19. It is convenient to abbreviate the sum v + (−w) as v − w.
This defines vector subtraction, so that v minus w is defined to be the sum of v
and the opposite (or “additive inverse”) of w.

Notation 0.20. Considering the associative law for addition, it is convenient
to write the sum of more than two terms without all the parentheses: u+v+w can
mean either (u + v) + w, or u + (v + w), since we get the same result either way.
In light of Exercise 0.16, we can write −ρ · v to mean either (−ρ) · v or −(ρ · v),
since these are the same. The multiplication “dot” can be used, or omitted, for
both scalar times scalar and scalar times vector, when it is clear which symbols are
scalars and which are vectors: instead of 3 · u, just write 3u. It is also convenient
to establish an “order of operations,” so that scalar multiplication is done before
addition or subtraction. So, 4v+u−3w is a short way to write (4·v)+(u+(−(3·w))).
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0.2. Subspaces

The general idea of the statement “W is a subspace of V ” is that W is a vector
space contained in a bigger vector space V with the same field K, and the + and ·
operations are the same in W as they are in V .

Definition 0.21. Let (V,+V , ·V ) be a vector space with field of scalars K. A
set W is a subspace of V means:

• W ⊆ V , and
• There are operations +W :W ×W → W and ·W : K×W →W such that
(W,+W , ·W ) is a vector space, and

• For all x, y ∈ W , x+V y = x+W y, and
• For all x ∈W , ρ ∈ K, ρ ·V x = ρ ·W x.

Theorem 0.22. If W is a subspace of V , where V has zero element 0V , then
0V is an element of W , and is equal to the zero element of W .

Proof. By the second part of Definition 0.21, W is a vector space, so by
Definition 0.1 applied to W , W contains a zero element 0W ∈ W . By the first part
of Definition 0.21, W ⊆ V , which implies 0W ∈ V . By Definition 0.1 applied to W ,
0W +W 0W = 0W , and by Definition 0.21, 0W +V 0W = 0W +W 0W . It follows that

0W +V 0W = 0W ∈ V , and then Exercise 0.3 implies 0W = 0V .

Theorem 0.22 can be used in this way: if W is a set that does not contain 0V
as one of its elements, then W is not a subspace of V .

Theorem 0.23. If W is a subspace of V , then for every w ∈ W , the opposite
of w in W is the same as the opposite of w in V .

Proof. Let w be an element of W ; then w ∈ V because W ⊆ V .
First, we show that an additive inverse of w in W is also an additive inverse of

w in V . Let y be any additive inverse of w inW , meaning y ∈W and w+W y = 0W .
(There exists at least one such y, by Definition 0.1 applied to W .) W ⊆ V implies
y ∈ V . From Theorem 0.22, 0W = 0V , and w +W y = w +V y by Definition 0.21,
so w +V y = 0V , which means y is an additive inverse of w in V .

Second, we show that an additive inverse of w in V is also an additive inverse of
w in W . Let z be any additive inverse of w in V , meaning z ∈ V and w+V z = 0V .
(There exists at least one such z, by Definition 0.1 applied to V .) Then w +V z =
0V = w +V y, so by Left Cancellation in V , z = y and y ∈ W , which imply z ∈W
and w +W z = w +W y = 0W , meaning z is an additive inverse of w in W .

By uniqueness of opposites (Exercise 0.8 applied to either V or W ), we can

refer to y = z as “the” opposite of w, and denote it y = −w.

Theorem 0.23 also implies that subtraction in W is the same as subtraction in
V : by Definition 0.19, for v, w ∈ W , v −W w = v +W y = v +V y = v −V w.

Theorem 0.23 can be used in this way: if W is a subset of a vector space V and
there is an element w ∈ W , where the opposite of w in V is not an element of W ,
then W is not a subspace of V .
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Theorem 0.24. Let (V,+V , ·V ) be a vector space, and let W be a subset of V .
The following are equivalent.

• W satisfies all of these three properties:
(1) x ∈ W , y ∈ W imply x +V y ∈ W (closure under +V addition),

and
(2) ρ ∈ K, x ∈ W imply ρ ·V x ∈ W (closure under ·V scalar multi-

plication), and
(3) W �=Ø.

• W is a subspace of V .

Proof. Let V have zero element 0V .
First suppose W is a subspace, so that by Definition 0.21, W is a vector space

and contains a zero element 0W , which shows W �=Ø, and (3) is true. From
Definition 0.1 the vector spaceW has an operation +W so that x ∈W , y ∈W imply
x+W y ∈W , and from the definition of subspace, x+W y = x+V y, so x+V y ∈W ,
establishing (1). Similarly, from Definition 0.1, W has a scalar multiplication so
that ρ ∈ K implies ρ ·W x ∈ W , and from the definition of subspace, ρ ·W x = ρ ·V x,
so ρ ·V x ∈W , establishing (2).

Conversely, it follows from (1), (2), and (3) that W is a subspace of V , as
follows: W is a subset of V by hypothesis. Define +W and ·W for x, y ∈ W and
ρ ∈ K by x +W y = x +V y, and ρ ·W x = ρ ·V x — these define operations on
W by (1) and (2), and the last two properties from Definition 0.21 are satisfied by
construction. It remains to check the other properties from Definition 0.1 to show
that (W,+W , ·W ) is a vector space. Since W �=Ø by (3), there is some x ∈ W , and
by (2), 0 ·V x ∈ W . By Exercise 0.13, 0 ·V x = 0V , so 0V ∈ W , and it satisfies
x+W 0V = x+V 0V = x for all x ∈ W , so 0V is a zero element for W . The scalar
multiple identity also works: 1 ·W x = 1 ·V x = x. Also by (2), for any x ∈ W ,
(−1) ·V x ∈ W , and it is easy to check (−1) ·V x is an additive inverse of x in W :
x+W ((−1) ·V x) = (1 ·V x)+V ((−1) ·V x) = (1+(−1)) ·V x = 0 ·V x = 0V . The other
vector space properties, (1), (4), (6), (7) from Definition 0.1, follow immediately
from the facts that these properties hold in V and the operations in W give the

same sums and scalar multiples.

Exercise 0.25. Given a vector space V , if W is a subspace of V and U is a

subspace of W , then U is a subspace of V .

Exercise 0.26. Given a vector space V , if W is a subspace of V , U is a

subspace of V , and U ⊆W , then U is a subspace of W .

Exercise 0.27. Given a vector space V , if U is a subspace of V and W is a

subspace of V then the intersection U ∩W is a subspace of V .

Definition 0.28. A vector space V is finite-dimensional means that there does
not exist an infinite ordered list of subspaces of V ,

(V0, V1, V2, . . . , Vν , . . .),

with Vν � Vν+1 for all ν.

Exercise 0.29. Given a vector space V , if V is finite-dimensional and W is a

subspace of V , then W is finite-dimensional.
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Definition 0.30. Given a vector space V and any subset S ⊆ V , the span of
S is the subset of V defined as the set of all (finite) sums of elements of S with
coefficients in K:

{α1s1 + α2s2 + . . .+ ανsν : α1, . . . , αν ∈ K, s1, . . . , sν ∈ S}.
This is always a subspace of V . (We define the span of Ø to be {0V }.)

Exercise 0.31. Given a vector space V , if V is finite-dimensional then there

exists a finite subset S ⊆ V such that the span of S is equal to V .

Definition 0.32. Given an ordered list (possibly with repeats) of elements of
a vector space V , (u1, u2, . . . , uν), the list is linearly independent means that the
following implication holds for scalars α1, . . . , αν ∈ K:

α1u1 + α2u2 + . . .+ ανuν = 0V =⇒ α1 = α2 = . . . = αν = 0.

The empty list is linearly independent. We will not have occasion to consider
infinite lists.

Claim 0.33. If V is a vector space equal to the span of a finite set S ⊆ V with
ν elements, then V is finite-dimensional and there is no linearly independent list of

elements of V of length > ν.

Definition 0.34. Given an ordered list of elements of a vector space V ,
(u1, u2, . . . , uν), the list is an ordered basis of V means that the list is linearly
independent and the span of the set {u1, u2, . . . , uν} is equal to V .

0.3. Additive functions and linear functions

Let U , V , and W be vector spaces with the same field of scalars K.

Definition 0.35. A function F : U → V is additive means: F has the property
that F (u + w) = F (u) + F (w) for all u,w ∈ U .

Definition 0.36. A function F : U → V is linear means: F is additive and
also has the scaling property: F (ρ · u) = ρ · F (u) for all ρ ∈ K and all u ∈ U .

Exercise 0.37. If F : U → V is additive, then: F (0U ) = 0V , and for all u ∈ U ,

F (−u) = −F (u).
Exercise 0.38. If K contains the rational numbers Q as a subrng, and F :

U → V is additive, then for every rational number ρ ∈ Q, F (ρ · u) = ρ · F (u).
Hint. Start by showing that for integers ν ∈ Z, F (ν · u) = ν · F (u).
Exercise 0.39. Give an example of a field, vector spaces V and W , and a

function F : V →W , such that F has the scaling property, but which is not linear

because it is not additive.

Exercise 0.40. Give an example of a field, vector spaces V and W , and a
function F : V →W such that F has the additive property, but which is not linear
because it does not have the scaling property.

Hint. Try this for K = C and then for K = R (harder).
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Notation 0.41. At this point, the arrow notation F : V → W will only be
used for functions that are linear from a vector space V (the domain) to another
vector space W (the target). A linear function will also be called a map, linear
map, or arrow, or when it is convenient to emphasize the scalar field, a K-linear
map. A function which is not necessarily linear will be denoted with a variant �
arrow symbol.

Example 0.42. Given a vector space V and a subspace W , the canonical
subspace inclusion function Q :W → V defined by Q(w) = w is linear.

Notation 0.43. As a special case of the above inclusion map (and as in Ex-
ample 6.15), the identity map IdV : V → V , defined by the formula IdV (v) = v, is
linear.

Exercise 0.44. Given vector spaces U , V , W , and functions F : W → V ,

G : V → U , if F and G are linear, then the composite G ◦ F :W → U is linear.

The ◦ notation for composites is as in Notation 6.16.

Example 0.45. For a linear function F : W → V , the image of F is the set

F (W ) = {F (w) ∈ V : w ∈W}. The image is always a subspace of the target V .

Example 0.46. For a linear function F : W → V , the kernel of F is the set
ker(F ) = {w ∈ W : F (w) = 0V }. The kernel is always a subspace of the domain
W .

Definition 0.47. A linear map C : X → Y is a linear monomorphism means:
C has the following cancellation property for any compositions with linear maps A
and B (which are well-defined in the sense that X is the target space of both A
and B),

C ◦A = C ◦B =⇒ A = B.

Exercise 0.48. Given a linear map F : U → V , the following are equivalent.

(1) F is one-to-one.
(2) F is left cancellable.
(3) F has a left inverse: there exists a function H : V � U such that H ◦F =

IdU .
(4) F is a linear monomorphism.
(5) ker(F ) = {0U}.

Hint. The first three properties are considered in Exercise 6.17, and their
equivalence is a matter of set theory only, without using the linearity of F . In
particular, the function H is not necessarily linear. The implication (2) =⇒ (4) is
trivial, and (1) =⇒ (5) uses only F (0U ) = 0V from Exercise 0.37. The implications

(5) =⇒ (1) and (4) =⇒ (5) follow from the linearity of F .

Exercise 0.49. Given a list (u1, u2, . . . , uν) of elements of V , if A : V → W
is linear and the list (A(u1), . . . , A(uν)) is independent in W , then (u1, u2, . . . , uν)
is independent. If A : V → W is linear and one-to-one, and (u1, u2, . . . , uν) is

independent, then (A(u1), . . . , A(uν)) is independent.

Exercise 0.50. If V is finite-dimensional and F : U → V is linear and one-to-
one, then U is finite-dimensional.
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Exercise 0.51. Given linear maps A : W → V and F : U → V , if A(W ) ⊆
F (U) and H : V � U is any left inverse of F , then H ◦A :W → U is linear.

Hint. For any two elements v1, v2 ∈ F (U), v1 = F (u1) for some unique u1 as
in Exercise 0.48, and similarly v2 = F (u2). Using the linearity of F and any scalar
λ,

H(v1 + v2) = H(F (u1) + F (u2)) = H(F (u1 + u2))

= u1 + u2 = H(F (u1)) +H(F (u2)) = H(v1) +H(v2),(0.1)

H(λ · v1) = H(λ · F (u1)) = H(F (λ · u1))
= λ · u1 = λ ·H(F (u1)) = λ ·H(v1).

In particular, for w1, w2 ∈ W , let A(w1) = F (u1) and A(w2) = F (u2). Then, using
the additivity of A and (0.1),

(H ◦A)(w1 + w2) = H(A(w1) +A(w2)) = (H ◦A)(w1) + (H ◦A)(w2).

The scaling property for H ◦A follows similarly.

Definition 0.52. A map C : X → Y is a linear epimorphism means: C has
the following cancellation property for any compositions with linear maps A and
B,

A ◦ C = B ◦ C =⇒ A = B.

Exercise 0.53. If the linear map F : U → V has a right inverse, meaning that
there exists H : V � U so that F ◦H = IdV , then F is onto and right cancellable
as in Exercise 6.18, and the right cancellable property implies that F is a linear

epimorphism.

Exercise 0.54. Given vector spaces V , W , and a linear function F :W → V ,
the following are equivalent.

(1) F is both one-to-one and onto.
(2) F has a right inverse H1 : V �W and a left inverse H2 : V � W .
(3) There exists a linear map G : V → W such that G is a left inverse of F

and G is a right inverse of F .

Hint. The (3) =⇒ (2) direction is trivial. The equivalence (1) ⇐⇒ (2) does
not use the linearity of F — see Exercise 6.20, which also shows that (2) implies
H1 = H2, so G : V � W in (3) can be chosen to equal H1 = H2. The linearity of

F then implies the linearity of G by Exercise 0.51.

Notation 0.55. Given vector spaces V , W , and a linear function F :W → V ,
F is invertible means that F satisfies any of the three equivalent properties (1), (2),
or (3) from Exercise 0.54, as in Definition 6.21. However, we usually use property
(3), so that as in Notation 6.22, G is the unique inverse of F , denoted G = F−1.
It follows that F−1 is also invertible, with inverse F .

Claim 0.56. If V is finite-dimensional and F : V → V is linear and F is either

a linear monomorphism or a linear epimorphism, then F is invertible.

Claim 0.57. Given a finite-dimensional vector space V and a linear map F :
V → V , the following are equivalent.

(1) For all linear maps A : V → V , A ◦ F = F ◦A : V → V .
(2) There exists a scalar λ ∈ K so that for all v ∈ V , F (v) = λ · v.
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Proof. The second property can be denoted F = λ · IdV . See [B] Exercise

II.1.26 or [J] §3.11.



CHAPTER 1

Abstract Linear Algebra

1.1. Spaces of linear maps

For this Chapter, we fix an arbitrary field (K,+, ·, 0, 1). All vector spaces use
the same scalar field K, and + and · also refer to the vector space addition and
scalar multiplication. A K-linear map A with domain U and target V , such that
A(u) = v, will be written as A : U → V : u �→ v, or the A may appear near the
arrow when several maps are combined in a diagram.

Notation 1.1. The set of all K-linear maps from U to V is denoted Hom(U, V ).

Claim 1.2. Hom(U, V ) is itself a vector space over K. If U and V are finite-

dimensional, then Hom(U, V ) is finite-dimensional.

Notation 1.3. Hom(V, V ) is abbreviated End(V ), the space of endomorphisms
of V . The space End(V ) has a distinguished element, the identity map denoted
IdV : v �→ v from Notation 0.43.

Notation 1.4. Hom(V,K) is abbreviated V ∗, the dual space of V .

Definition 1.5. For maps A : U ′ → U and B : V → V ′, define

Hom(A,B) : Hom(U, V ) → Hom(U ′, V ′)

so that for F : U → V ,

Hom(A,B)(F ) = B ◦ F ◦A : U ′ → V ′.

Lemma 1.6. ([B] §II.1.2) If A : U → V , B : V →W , C : X → Y , D : Y → Z,
then

Hom(A,D) ◦Hom(B,C) = Hom(B ◦A,D ◦ C) : Hom(W,X) → Hom(U,Z).

Definition 1.7. For any vector spaces U , V ,W , define a generalized transpose
map,

tWUV : Hom(U, V ) → Hom(Hom(V,W ),Hom(U,W )),

so that for A : U → V , B : V →W ,

tWUV (A) = Hom(A, IdW ) : B �→ B ◦A.

11
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Lemma 1.8. For any vector spaces U , V , W , U ′, V ′, W ′, and any maps
E : U ′ → U , F : V → V ′, G :W →W ′, the following diagram is commutative.

Hom(U, V )
tWUV ��

Hom(E,F )

��

Hom(Hom(V,W ),Hom(U,W ))

Hom(Hom(F,IdW ),Hom(E,G))

��
Hom(Hom(V ′,W ),Hom(U ′,W ′))

Hom(U ′, V ′)
tW

′
U′V ′ �� Hom(Hom(V ′,W ′),Hom(U ′,W ′))

Hom(Hom(IdV ′ ,G),Hom(IdU′ ,IdW ′ ))

��

Proof. For any A : U → V ,

Hom(Hom(IdV ′ , G),Hom(IdU ′ , IdW ′)) ◦ tW ′
U ′V ′ ◦Hom(E,F ) :

A �→ (tW
′

U ′V ′(F ◦A ◦ E)) ◦Hom(IdV ′ , G)

= Hom(F ◦A ◦ E, IdW ′) ◦Hom(IdV ′ , G),

Hom(Hom(F, IdW ),Hom(E,G)) ◦ tWUV :

A �→ Hom(E,G) ◦Hom(A, IdW ) ◦Hom(F, IdW ).

The claimed equality follows from Lemma 1.6.

Notation 1.9. In the special case W = K, tKUV is a canonical transpose map
from Hom(U, V ) to Hom(V ∗, U∗), and it is abbreviated tKUV = tUV .

Notation 1.10. tUV (A) = Hom(A, IdK) is abbreviated by A∗ : V ∗ → U∗, so
that for φ ∈ V ∗, A∗(φ) is the map φ ◦A : U → K, i.e., (A∗(φ))(u) = φ(A(u)).

Claim 1.11. For any vector spaces U , V , the map

tUV : Hom(U, V ) → Hom(V ∗, U∗) : A �→ A∗

is one-to-one. If V is finite-dimensional then tUV is invertible.

Lemma 1.12. For A : U → V and F : V → V ′, (F ◦ A)∗ = A∗ ◦ F ∗, and if A
is invertible, then so is A∗, with (A−1)∗ = (A∗)−1. Also, IdV ∗ = Id∗V .

Proof. The claim about F ◦A follows from Lemma 1.8 (with E = IdU , G =
IdK), or by applying Lemma 1.6 directly. Note that tV V : End(V ) → End(V ∗) takes
the distinguished element IdV ∈ End(V ) to the distinguished element tV V (IdV ) =

Id∗V = IdV ∗ ∈ End(V ∗).

Definition 1.13. For any vector spaces V , W , define

dV W : V → Hom(Hom(V,W ),W )

so that for v ∈ V , H ∈ Hom(V,W ),

(dV W (v)) : H �→ H(v).
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Lemma 1.14. For any vector spaces U , V , W , X and any maps H : U → V ,
G :W → X, the following diagram is commutative.

U
dUW ��

H

��

dUX

����
���

���
���

�� Hom(Hom(U,W ),W )

Hom(Hom(H,IdW ),G)

��
Hom(Hom(U,X), X)

Hom(Hom(H,G),IdX)
�� Hom(Hom(V,W ), X)

V
dV X �� Hom(Hom(V,X), X)

Hom(Hom(IdV ,G),IdX)

��

Proof. For u ∈ U , A : V →W ,

Hom(Hom(IdV , G), IdX) ◦ dV X ◦H : u �→ (dV X(H(u))) ◦Hom(IdV , G) :

A �→ (G ◦A)(H(u)),

Hom(Hom(H,G), IdX) ◦ dUX : u �→ (dUX(u)) ◦Hom(H,G) :

A �→ (G ◦A ◦H)(u),

Hom(Hom(H, IdW ), G) ◦ dUW : u �→ G ◦ (dUW (u)) ◦Hom(H, IdW ) :

A �→ G((dUW (u))(A ◦H))

= G((A ◦H)(u)).

As a special case of Lemma 1.14 with W = X , G = IdW , for any H : U → V ,

(1.1) (tWHom(V,W ),Hom(U,W )(t
W
UV (H))) ◦ dUW = dVW ◦H,

where tWHom(V,W ),Hom(U,W )(t
W
UV (H)) = Hom(Hom(H, IdW ), IdW ) by Definition 1.7

of the t maps.

Notation 1.15. In the special case W = K, dV K is abbreviated dV . It is the
canonical double duality map dV : V → V ∗∗, defined by (dV (v))(φ) = φ(v).

The case (1.1) of Lemma 1.14 then gives the equation ([B] §II.2.7, [AF] §20)

(1.2) dV ◦A = A∗∗ ◦ dU ,
where for A : U → V , A∗∗ abbreviates tV ∗U∗(tUV (A)).

Claim 1.16. The canonical map dV is one-to-one. dV is invertible if and only
if V is finite-dimensional.

Proof. The one-to-one property is easily checked. See [B] §II.7.5.

Lemma 1.17. Hom(dV W , IdW ) ◦ dHom(V,W ),W = IdHom(V,W ).

Proof. For v ∈ V , K : V →W ,

((Hom(dV W , IdW ) ◦ dHom(V,W ),W )(K))(v) = (dHom(V,W ),W (K))(dV W (v))

= (dV W (v))(K) = K(v).

In the W = K case, this one-sided inverse relation gives ([AF] §20)

d∗V ◦ dV ∗ = IdV ∗ .
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Remark 1.18. In some applications, the vector space V is often identified with
a subspace of V ∗∗, or the map dV is ignored, but it is less trouble than might be
expected to keep V and V ∗∗ distinct, and always accounting for dV turns out to be
convenient bookkeeping.

Lemma 1.19. Suppose U is finite-dimensional. For A : U → V , if A∗ has a
linear right inverse F : U∗ → V ∗, so that A∗ ◦ F = IdU∗ , then A has a linear left
inverse. If A∗ has a linear left inverse E : U∗ → V ∗, so that E ◦ A∗ = IdV ∗, then
A has a linear right inverse.

Proof. Using Lemma 1.12, case (1.2) of Lemma 1.14, and Claim 1.16,

d−1
U ◦ F ∗ ◦ dV ◦A = d−1

U ◦ F ∗ ◦A∗∗ ◦ dU = d−1
U ◦ (A∗ ◦ F )∗ ◦ dU = IdU .

Using the one-to-one property of dV ,

dV ◦A ◦ d−1
U ◦ E∗ ◦ dV = A∗∗ ◦ E∗ ◦ dV = (E ◦A∗)∗ ◦ dV = dV

=⇒ A ◦ d−1
U ◦ E∗ ◦ dV = IdV .

Definition 1.20. For any vector space W , define m : W → Hom(K,W ) so
that for w ∈ W ,

m(w) : λ �→ λ · w.
Lemma 1.21. For any vector spaces W , W ′, with two maps m, m′ as indicated,

and any maps φ ∈ K∗, G :W →W ′, the following diagram is commutative.

W
m ��

φ(1)·G
��

Hom(K,W )

Hom(φ,G)

��
W ′ m′

�� Hom(K,W ′).

Proof. For λ ∈ K, w ∈W ,

Hom(φ,G) ◦m : w �→ G ◦ (m(w)) ◦ φ : λ �→ G(φ(λ) · w),
m′ ◦ (φ(1) ·G) : w �→ m′(φ(1) ·G(w)) : λ �→ λ · φ(1) ·G(w).

Lemma 1.22. For any vector space W , m :W → Hom(K,W ) is invertible.

Proof. An inverse is

m−1 = dKW (1) : Hom(K,W ) →W : A �→ A(1).

Checking both composites, ((m ◦ m−1)(A))(λ) = λ · A(1) = A(λ), and (m−1 ◦
m)(w) = (m(w))(1) = 1 · w = w.
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1.2. Tensor products

Definition 1.23. For vector spaces U , V , W , a function A : U × V � W is a
bilinear function means: for any λ ∈ K, u1, u2 ∈ U , v1, v2 ∈ V ,

A(u1 + u2, v1) = A(u1, v1) +A(u2, v1),

A(u1, v1 + v2) = A(u1, v1) +A(u1, v2), and

A(λ · u1, v1) = A(u1, λ · v1) = λ · A(u1, v1).
Remark 1.24. We remark that the above Definition is different from the notion

of bilinear form, from Definition 3.1 in Chapter 3. The way in which these types of
functions are related is described in Example 1.55.

For any vector spaces U and V , there exists a tensor product vector space
U ⊗ V , which we informally define as the set of formal finite sums

(1.3) ρ1 · u1 ⊗ v1 + ρ2 · u2 ⊗ v2 + · · ·+ ρν · uν ⊗ vν ,

for scalars ρ1, . . . , ρν ∈ K, elements u1, . . . , uν ∈ U , and elements v1, . . . , vν ∈ V ,
with addition and scalar multiplication carried out in the usual way, subject to the
relations:

(u1 + u2)⊗ v = u1 ⊗ v + u2 ⊗ v,

u⊗ (v1 + v2) = u⊗ v1 + u⊗ v2,

(ρ · u)⊗ v = u⊗ (ρ · v) = ρ · (u⊗ v).

A term u ⊗ v is also called a tensor product of the vectors u and v. The
operation taking a pair of vectors to their tensor product is a bilinear function,
denoted

τ : U × V � U ⊗ V : (u, v) �→ u⊗ v.

U ⊗V and τ have the property that for any bilinear function A : U ×V �W as in
Definition 1.23, there is a unique linear map a : U ⊗ V → W such that A = a ◦ τ ,
that is, for any u ∈ U and v ∈ V ,

(1.4) A(u, v) = a(u⊗ v).

So bilinear functions can be converted to linear maps, by replacing the domain
U × V with the tensor product U ⊗ V .

A more formal proof of the existence of U ⊗ V and τ as above uses methods
different from the main stream of this Chapter, so we refer to Appendix 6.3, where
(1.4) is stated as Theorem 6.35. The following re-statement of the description (1.3)
also follows from the construction of Appendix 6.3:

Lemma 1.25. For any U , V , there exists a space U ⊗V and a bilinear function
τ : U × V � U ⊗ V such that U ⊗ V is equal to the span of elements of the form
τ (u, v) = u ⊗ v. Any linear map B : U ⊗ V → W is uniquely determined by its

values on the set of elements u⊗ v.

Remark 1.26. In general, although the set of tensor products of vectors, {u⊗v :
u ∈ U, v ∈ V } spans the space U ⊗ V , not every element of U ⊗ V is of the form
u⊗ v — generally elements are finite sums as in (1.3).

Lemma 1.27. If U and V are finite-dimensional, then so is U ⊗ V .
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Example 1.28. The scalar multiplication operation ·U : K×U � U is a bilinear
function, and induces a map

lU : K⊗ U → U : λ⊗ u �→ λ · u.
The map lU is invertible, with inverse l−1

U (u) = 1⊗ u, and sometimes lU is abbre-
viated l, with the same l notation used for maps U ⊗K → U : u⊗ λ �→ λ · u.

Example 1.29. The switching function

S : U × V � V × U : (u, v) �→ (v, u)

composes with τ : V × U � V ⊗ U :

τ ◦ S : U × V � V ⊗ U : (u, v) �→ v ⊗ u.

This composite is a bilinear function and induces an invertible, K-linear switching
map

s : U ⊗ V → V ⊗ U : u⊗ v �→ v ⊗ u.

Claim 1.30. The spaces (U ⊗ V ) ⊗ W and U ⊗ (V ⊗ W ) are related by a

canonical, invertible, K-linear map.

Remark 1.31. In addition to the discussion in Appendix 6.3, the above state-
ments about tensor products follow standard constructions as in references [MB]
§IX.8, [AF] §19, [K] §II.1. From this point, product sets U × V and the function
τ will not appear often, but could be used by the reader to verify certain maps
are well-defined. Lemma 1.25 will be used frequently and without comment when
defining maps (as already done in Examples 1.28 and 1.29) or proving equality of
two maps (as in Lemma 1.36, below).

Remark 1.32. The notion of a multilinear map is also standard, and the spaces
from Claim 1.30 can be identified with each other and yet another space, a triple
tensor product U⊗V ⊗W . This is spanned by elements of the form u⊗v⊗w, and it is
a convenient abbreviation for our purposes to also identify elements (u⊗ v)⊗w =
u ⊗ (v ⊗ w) = u ⊗ v ⊗ w. We leave the justification for this to the references;
some applications or generalizations of linear algebra keep track of this associativity
and do not use such abbreviations, but we will make these identifications without
comment. Similarly, notions of associativity for tensor products of more than three
spaces or vectors will be implicitly assumed as needed.

A tensor product of K-linear maps canonically induces a K-linear map between
tensor product spaces, as follows.

Definition 1.33. For any vector spaces U1, U2, V1, V2, define

j : Hom(U1, V1)⊗Hom(U2, V2) → Hom(U1 ⊗ U2, V1 ⊗ V2),

so that for A : U1 → V1, B : U2 → V2, u ∈ U1, and v ∈ U2, the map j(A⊗B) acts
as:

(j(A⊗B)) : u⊗ v �→ (A(u)) ⊗ (B(v)).

Claim 1.34. The canonical map j is one-to-one. If one of the ordered pairs
(U1, U2), (U1, V1), or (U2, V2) consists of finite-dimensional spaces, then j is invert-
ible.

Proof. See [B] §II.7.7 or [K] §II.2.
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Although it frequently occurs in the literature that j(A ⊗ B) and A ⊗ B are
identified, we will maintain the distinction. In this Section and later (many times
in Section 2.2), the canonical map j will appear in diagrams as a function in its
own right, and it is useful to keep track of it everywhere, instead of only ignoring
it sometimes. However, the notation j(A ⊗ B) is not always as convenient as the
following abbreviation.

Notation 1.35. Let [A⊗B] denote j(A⊗B), so that, for example, the equation

(j(A⊗B))(u ⊗ v) = (A(u)) ⊗ (B(v))

appears as

[A⊗B](u ⊗ v) = (A(u))⊗ (B(v)).

Lemma 1.36. ([B] §II.3.2, [K] §II.6)

[A⊗B] ◦ [E ⊗ F ] = [(A ◦ E)⊗ (B ◦ F )].

Note that the brackets conveniently establish an order of operations, and appear
three times in the Lemma, but may stand for three distinct canonical j maps,
depending on the domains of A, B, E, and F . When it is necessary or convenient
to keep track of different maps, the j symbols are used instead of the brackets, and
are sometimes labeled with subscripts, primes, etc., as in the following Lemma.

Lemma 1.37. For any vector spaces U1, U2, U3, U4, V1, V2, V3, V4, with maps
j′, j′′ as indicated, and any maps A1 : U3 → U1, A2 : U4 → U2, B1 : V1 → V3,
B2 : V2 → V4, the following diagram is commutative.

Hom(U1, V1)⊗Hom(U2, V2)

[Hom(A1,B1)⊗Hom(A2,B2)]

��

j′ �� Hom(U1 ⊗ U2, V1 ⊗ V2)

Hom([A1⊗A2],[B1⊗B2])

��
Hom(U3, V3)⊗Hom(U4, V4)

j′′ �� Hom(U3 ⊗ U4, V3 ⊗ V4)

Proof. For E : U1 → V1 and F : U2 → V2,

E ⊗ F �→ (j′′ ◦ [Hom(A1, B1)⊗Hom(A2, B2)])(E ⊗ F )

= j′′((Hom(A1, B1)(E)) ⊗ (Hom(A2, B2)(F )))

= j′′((B1 ◦ E ◦A1)⊗ (B2 ◦ F ◦A2)),

E ⊗ F �→ (Hom([A1 ⊗A2], [B1 ⊗B2]) ◦ j′)(E ⊗ F )

= [B1 ⊗B2] ◦ (j′(E ⊗ F )) ◦ [A1 ⊗A2]

= j′′((B1 ◦ E ◦A1)⊗ (B2 ◦ F ◦A2)).

The last step uses Lemma 1.36.

Lemma 1.38. For any vector spaces U , W , and any maps φ ∈ K∗, F ∈
Hom(U,W ), the following diagram is commutative.

K⊗ U

[φ⊗F ]

��

lU �� U

φ(1)·F
��

K⊗W
lW �� W
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Proof. For λ ∈ K, u ∈ U ,

lW ◦ [φ⊗ F ] : λ⊗ u �→ lW ((φ(λ)) ⊗ (F (u))) = φ(λ) · F (u),
(φ(1) · F ) ◦ lU : λ⊗ u �→ φ(1) · F (λ · u).

Lemma 1.39. For any vector spaces U , U ′, V , V ′, any maps A : U → U ′,
B : V → V ′, and switching maps s and s′, the following diagram is commutative.

U ⊗ V
s ��

[A⊗B]

��

V ⊗ U

[B⊗A]

��
U ′ ⊗ V ′ s′ �� V ′ ⊗ U ′

Proof. For u ∈ U , v ∈ V ,

([B ⊗A] ◦ s)(u ⊗ v) = (B(v)) ⊗ (A(u)) = (s′ ◦ [A⊗B])(u ⊗ v).

Definition 1.40. For arbitrary vector spaces U , V , W , define

n : Hom(U, V )⊗W → Hom(U, V ⊗W )

so that for A : U → V , w ∈ W , u ∈ U ,

n(A⊗ w) : u �→ (A(u)) ⊗ w.

Notation 1.41. The ordering of the spaces from Definition 1.40 is not canon-
ical; the “n” label (with various subscripts) is used for analogously defined maps:

n0 : Hom(U, V )⊗W → Hom(U, V ⊗W ) : A⊗ w : (u �→ (A(u))⊗ w)

n1 : Hom(U, V )⊗W → Hom(U,W ⊗ V ) : A⊗ w : (u �→ w ⊗ (A(u)))

n2 :W ⊗Hom(U, V ) → Hom(U, V ⊗W ) : w ⊗A : (u �→ (A(u))⊗ w)

n3 :W ⊗Hom(U, V ) → Hom(U,W ⊗ V ) : w ⊗A : (u �→ w ⊗ (A(u))).

For map with the n label appearing in a diagram or equation, its type from the
above list of four formulas can usually be determined by context. The above variants
are related to each other by compositions with switching maps.

Lemma 1.42. For any vector spaces U , U ′, V , V ′, W , W ′, with maps n, n′ as
indicated, and any maps F : U ′ → U , B : V → V ′, C : W → W ′, the following
diagram is commutative.

Hom(U, V )⊗W
n ��

[Hom(F,B)⊗C]

��

Hom(U, V ⊗W )

Hom(F,[B⊗C])

��
Hom(U ′, V ′)⊗W ′ n′

�� Hom(U ′, V ′ ⊗W ′)

Proof. For A : U → V , w ∈ W , u′ ∈ U ′,

A⊗ w �→ (Hom(F, [B ⊗ C]) ◦ n)(A⊗ w) = [B ⊗ C] ◦ (n(A⊗ w)) ◦ F :

u′ �→ [B ⊗ C]((A(F (u′)))⊗ w) = ((B ◦A ◦ F )(u′))⊗ (C(w)),

A⊗ w �→ (n′ ◦ [Hom(F,B)⊗ C])(A ⊗ w) = n′((B ◦A ◦ F )⊗ (C(w))) :

u′ �→ ((B ◦A ◦ F )(u′))⊗ (C(w)).
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The n map is related to a canonical j map.

Lemma 1.43. The following diagram is commutative.

Hom(U, V )⊗W
n ��

[IdHom(U,V )⊗m]

��

Hom(U, V ⊗W )

Hom(lU ,IdV ⊗W )

��
Hom(U, V )⊗Hom(K,W )

j �� Hom(U ⊗K, V ⊗W )

Proof. Starting with A⊗ w ∈ Hom(U, V )⊗W ,

A⊗ w �→ (j ◦ [IdHom(U,V ) ⊗m])(A⊗ w) = j(A⊗ (m(w))) :

u⊗ λ �→ (A(u)) ⊗ (λ · w) = λ · (A(u)) ⊗ w,

A⊗ w �→ (Hom(lU , IdV ⊗W ) ◦ n)(A⊗ w) = (n(A⊗ w)) ◦ lU :

u⊗ λ �→ (A(λ · u))⊗ w = λ · (A(u))⊗ w.

Lemma 1.44. The canonical map n : Hom(U, V ) ⊗W → Hom(U, V ⊗W ) is
one-to-one, and if U or W is finite-dimensional, then n is invertible.

Proof. This follows from Lemma 1.22, Claim 1.34, Lemma 1.43, and the

invertibility of the lU map as in Example 1.28. See also [B] §II.7.7 or [AF] §20.

Lemma 1.42, Lemma 1.43, and Lemma 1.44 all generalize in straightforward
ways to re-ordered variants of n maps as in Notation 1.41.

Lemma 1.45. For any U , V , W , W ′, and n maps as indicated, the following
diagram is commutative.

W ⊗Hom(U, V )⊗W ′ [n3⊗IdW ′ ] ��

[IdW⊗n0]

��

Hom(U,W ⊗ V )⊗W ′

n′
0

��
W ⊗Hom(U, V ⊗W ′)

n′
3 �� Hom(U,W ⊗ V ⊗W ′)

Proof. For A ∈ Hom(U, V ), w ∈W , w′ ∈W ′, u ∈ U ,

n′
0 ◦ [n3 ⊗ IdW ′ ] : w ⊗A⊗ w′ �→ n′

0((n3(w ⊗A)) ⊗ w′) :
u �→ (n3(w ⊗A))(u)⊗ w′ = w ⊗ (A(u))⊗ w′,

n′
3 ◦ [IdW ⊗ n0] : w ⊗A⊗ w′ �→ n′

3(w ⊗ (n0(A⊗ w′))) :
u �→ w ⊗ (n0(A⊗ w′))(u) = w ⊗ (A(u))⊗ w′.

Definition 1.46. For arbitrary vector spaces U , V , W define

q : Hom(V,Hom(U,W )) → Hom(V ⊗ U,W )

so that for K : V → Hom(U,W ), v ∈ V , u ∈ U ,

(q(K))(v ⊗ u) = (K(v))(u).
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Lemma 1.47. For any vector spaces U , V , W , q is invertible.

Proof. For D ∈ Hom(V ⊗ U,W ), check that

q−1(D) : v �→ (u �→ D(v ⊗ u))

defines an inverse. See also [AF] §19, [B] §II.4.1, [MB] §IX.11, or [K] §II.1.

Remark 1.48. In some applications, the map q−1 is called a “currying” trans-
formation, and so q is an “uncurrying” map.

Notation 1.49. In the same way as Notation 1.41, there are different orderings
of the spaces from Definition 1.46, with the “q” label being used in either of these
two cases:

q1 : Hom(V,Hom(U,W )) → Hom(V ⊗ U,W ) : K �→ (v ⊗ u �→ (K(v))(u)),

q2 : Hom(V,Hom(U,W )) → Hom(U ⊗ V,W ) : K �→ (u ⊗ v �→ (K(v))(u)).(1.5)

For map with a q label appearing in a diagram or equation, its type from the above
list can usually be determined by context. The above variants are related to each
other by composition; for a switching map s : U ⊗ V → V ⊗ U ,

q2 = Hom(s, IdW ) ◦ q1.(1.6)

Both maps from (1.5) are invertible as in Lemma 1.47 and satisfy suitably
re-ordered versions of Lemma 1.50, Lemma 1.51, and Lemma 1.52.

Lemma 1.50. ([AF] §20) For any vector spaces U1, V1, W1, U2, V2, W2, with
maps q1, q2 as indicated, and any maps D : V2 → V1, E : U2 → U1, F :W1 →W2,
the following diagram is commutative.

Hom(V1,Hom(U1,W1))
q1 ��

Hom(D,Hom(E,F ))

��

Hom(U1 ⊗ V1,W1)

Hom([E⊗D],F )

��
Hom(V2,Hom(U2,W2))

q2 �� Hom(U2 ⊗ V2,W2)

Proof. Starting with any G : V1 → Hom(U1,W1),

(Hom([E ⊗D], F ) ◦ q1)(G) : u⊗ v �→ (F ◦ (q1(G)) ◦ [E ⊗D])(u ⊗ v)

= F ((G(D(v)))(E(u))),

(q2 ◦Hom(D,Hom(E,F )))(G) : u⊗ v �→ (q2(Hom(E,F ) ◦G ◦D))(u ⊗ v)

= ((Hom(E,F ) ◦G ◦D)(v))(u)

= (F ◦ (G(D(v))) ◦ E)(u)

= F ((G(D(v)))(E(u))).

Lemma 1.51. The following diagram is commutative.

Hom(X,Hom(Y,Hom(Z,U)))
q1 ��

Hom(IdX ,q3)

��

Hom(X ⊗ Y,Hom(Z,U))

q2

��
Hom(X,Hom(Y ⊗ Z,U))

q4 �� Hom(X ⊗ Y ⊗ Z,U)
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Proof. For G ∈ Hom(X,Hom(Y,Hom(Z,U))), x ∈ X , y ∈ Y , z ∈ Z,

(q2 ◦ q1)(G) : x⊗ y ⊗ z �→ (q2(q1(G)))(x ⊗ y ⊗ z)

= ((q1(G))(x ⊗ y))(z)

= ((G(x))(y))(z),

(q4 ◦Hom(IdX , q3))(G) : x⊗ y ⊗ z �→ (q4(q3 ◦G))(x ⊗ y ⊗ z)

= ((q3 ◦G)(x))(y ⊗ z) = (q3(G(x)))(y ⊗ z)

= ((G(x))(y))(z).

Lemma 1.52. For any vector spaces U1, U2, V1, V2, the following diagram is
commutative.

Hom(U1, V1)⊗Hom(U2, V2) n
��

j

��

Hom(U1, V1 ⊗Hom(U2, V2))

Hom(IdU1 ,n
′)
��

Hom(U1 ⊗ U2, V1 ⊗ V2) Hom(U1,Hom(U2, V1 ⊗ V2))q
��

Proof. For A ∈ Hom(U1, V1), B ∈ Hom(U2, V2), u ∈ U1, v ∈ U2,

(q ◦Hom(IdU1 , n
′) ◦ n) : A⊗B �→ q(n′ ◦ (n(A⊗B))) :

u⊗ v �→ ((n′ ◦ (n(A⊗B)))(u))(v)

= (n′((A(u)) ⊗B))(v) = (A(u)) ⊗ (B(v))

= (j(A⊗B))(u ⊗ v).

Example 1.53. The generalized transpose map from Definition 1.7 is a distin-
guished element in the following vector space:

tWUV ∈ Hom(Hom(U, V ),Hom(Hom(V,W ),Hom(U,W ))),

and its image under this q map,

q : Hom(Hom(U, V ),Hom(Hom(V,W ),Hom(U,W )))

→ Hom(Hom(U, V )⊗Hom(V,W ),Hom(U,W ))

is the following map:

q(tWUV ) : Hom(U, V )⊗Hom(V,W ) → Hom(U,W )

A⊗B �→ (q(tWUV ))(A⊗B) = (tWUV (A))(B)

= Hom(A, IdW )(B) = B ◦A.(1.7)

The operation of composition of linear maps is a bilinear function, as in Definition
1.23:

◦ : Hom(U, V )×Hom(V,W ) � Hom(U,W )

(A,B) �→ B ◦A.(1.8)

The agreement of (1.7) and (1.8) shows that q(tWUV ) is the unique linear map cor-
responding to composition as a bilinear function as in (1.4) and Theorem 6.35:

◦ = q(tWUV ) ◦ τ .
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Remark 1.54. The conclusion of Example 1.53 is that the generalized trans-
pose map is a linear, curried version of composition. Considering

q(tWUV ) ∈ Hom(Hom(U, V )⊗Hom(V,W ),Hom(U,W ))

as a distinguished element in a vector space has an analogue in matrix algebra (see,
for example, [CHL]), where matrix multiplication can be viewed as an element of
a space of tensors.

Example 1.55. Let B : V × V � K be a bilinear function as in Definition
1.23, so that there exists a unique linear map B : V ⊗ V → K satisfying B ◦ τ =
B as in (1.4). The invertible map q−1 : Hom(V ⊗ V,K) → Hom(V,Hom(V,K))
transforms B ∈ (V ⊗ V )∗ to q−1(B) ∈ Hom(V, V ∗). So, every bilinear function
B : V × V � K has a linearized, curried form which is an element of Hom(V, V ∗),
called a bilinear form — such maps are the main topic of Chapter 3.

Definition 1.56. For any vector spaces U , V , W define

eWUV : Hom(U, V ) → Hom(Hom(V,W )⊗ U,W )

so that for A : U → V , B : V →W , and u ∈ U ,

eWUV (A) : B ⊗ u �→ B(A(u)) ∈ W.

Lemma 1.57. For any vector spaces U , V , W , U ′, V ′, W ′, and any maps
E : U ′ → U , F : V → V ′, G :W →W ′, the following diagram is commutative.

Hom(U, V )
eWUV ��

Hom(E,F )

��

Hom(Hom(V,W )⊗ U,W )

Hom([Hom(F,IdW )⊗E],G)

��
Hom(Hom(V ′,W )⊗ U ′,W ′)

Hom(U ′, V ′)
eW

′
U′V ′ �� Hom(Hom(V ′,W ′)⊗ U ′,W ′)

Hom([Hom(IdV ′ ,G)⊗IdU′ ],IdW ′ )

��

Proof. For any A : U → V , C : V ′ →W , u ∈ U ′,

Hom([Hom(IdV ′ , G)⊗ IdU ′ ], IdW ′ ) ◦ eW ′
U ′V ′ ◦Hom(E,F ) :

A �→ (eW
′

U ′V ′(F ◦A ◦ E)) ◦ [Hom(IdV ′ , G)⊗ IdU ′ ] :

C ⊗ u �→ (eW
′

U ′V ′(F ◦A ◦ E))((G ◦C) ⊗ u)

= (G ◦ C)((F ◦A ◦ E)(u)),

Hom([Hom(F, IdW )⊗ E], G) ◦ eWUV :

A �→ G ◦ (eWUV (A)) ◦ [Hom(F, IdW )⊗ E] :

C ⊗ u �→ G((eWUV (A))((C ◦ F )⊗ (E(u))))

= G((C ◦ F )(A(E(u)))).

Lemma 1.58. The following diagram is commutative.

Hom(U, V )
eWUV ��

tWUV

��

Hom(Hom(V,W )⊗ U,W )

Hom(Hom(V,W ),Hom(U,W ))

q
�������������������������
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Proof.

q ◦ tWUV : A �→ q(Hom(A, IdW )) : B ⊗ u �→ (B ◦A)(u) = (eWUV (A))(B ⊗ u).

Notation 1.59. For the special case W = K, abbreviate eKUV = eUV (or
sometimes just e):

eUV : Hom(U, V ) → (V ∗ ⊗ U)∗

so that for A : U → V , φ ∈ V ∗, and u ∈ U ,

eUV (A) : φ⊗ u �→ φ(A(u)) ∈ K.

Lemma 1.60. If V is finite-dimensional, then eUV is invertible.

Proof. This follows from Lemma 1.58, Claim 1.11, and Lemma 1.47.

Definition 1.61. For any vector spaces U , V , define

kUV : U∗ ⊗ V → Hom(U, V )

so that for ξ ∈ U∗, v ∈ V , and u ∈ U ,

(kUV (ξ ⊗ v)) : u �→ ξ(u) · v ∈ V.

Lemma 1.62. For maps A : U ′ → U , B : V → V ′, the following diagram is
commutative.

U∗ ⊗ V
kUV ��

[A∗⊗B]

��

Hom(U, V )

Hom(A,B)

��
U ′∗ ⊗ V ′ kU′V ′ �� Hom(U ′, V ′)

Proof. For φ⊗ v ∈ U∗ ⊗ V , u ∈ U ′,

(Hom(A,B) ◦ kUV )(φ⊗ v) = B ◦ (kUV (φ⊗ v)) ◦A :

u �→ B(φ(A(u)) · v) = φ(A(u)) ·B(v),

(kU ′V ′ ◦ [A∗ ⊗B])(φ⊗ v) = kU ′V ′((A∗(φ)) ⊗ (B(v))) :

u �→ (A∗(φ))(u) ·B(v) = φ(A(u)) ·B(v).

Lemma 1.63. For any vector space V , kV K = lV ∗ : V ∗ ⊗K → V ∗.

Proof. For v ∈ V , ϕ ∈ V ∗, λ ∈ K,

kV K : ϕ⊗ λ �→ kV K(ϕ⊗ λ) : v �→ ϕ(v) · λ,
lV ∗ : ϕ⊗ λ �→ λ · ϕ : v �→ (λ · ϕ)(v).
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Lemma 1.64. The canonical map kUV is one-to-one, and if U or V is finite-
dimensional then kUV is invertible.

Proof. The kUV map (sometimes abbreviated k) is related to a canonical n
map. The following diagram is commutative.

Hom(U,K)⊗ V
n ��

kUV �����
����

����
����

��
Hom(U,K⊗ V )

Hom(IdU ,lV )

��
Hom(U, V )

lV ◦ (n(φ⊗ v)) : u �→ φ(u) · v = (kUV (φ⊗ v))(u).

The n map is one-to-one, and, if U or V is finite-dimensional, then n is invertible
by Lemma 1.44, which used Claim 1.34. The lV map is invertible as in Example

1.28. See also [B] §II.7.7 or [K] §II.2.

Lemma 1.65. For any vector spaces U , V , W , this diagram is commutative

Hom(U, V )⊗W

n

��
U∗ ⊗ V ⊗W

[kUV ⊗IdW ]
		�������������

kU,V ⊗W

�� Hom(U, V ⊗W )

Proof. For φ⊗ v ⊗ w ∈ U∗ ⊗ V ⊗W and u ∈ U ,

φ⊗ v ⊗ w �→ n((kUV (φ⊗ v)) ⊗ w) : u �→ (φ(u) · v)⊗ w

φ⊗ v ⊗ w �→ kV,V ⊗W (φ⊗ v ⊗ w) : u �→ φ(u) · (v ⊗ w).

The diagram from Lemma 1.65 can be modified by replacing the n map with
a re-ordered variant as in Notation 1.41, or adding one or more arrows to com-
pose with switching maps as in Example 1.29, to get analogous statements about
commutativity by a similar calculation.

Remark 1.66. Unlike the canonical maps tWUV , dV W , s, j, n, q, and eWUV , the
k maps explicitly refer to the set of scalars K, in both the dual space U∗ and the
scalar multiplication · in V . The maps l and m also refer to scalar multiplication.

Remark 1.67. The canonical maps appearing in this Chapter are well-known
in abstract linear algebra. Lemma 1.8, Lemma 1.14, Lemma 1.21, Lemma 1.37,
Lemma 1.38, Lemma 1.39, Lemma 1.42, Lemma 1.50, Lemma 1.57, and Lemma
1.62 can be interpreted as statements about the naturality of the t, d, m, j, l, s,
n, q, e, and k maps, in a technical sense of category theory. In geometry, these
same lemmas also are enough to show that these maps transform in the right way
under (pointwise linear, invertible) changes from one local trivialization to another
in a vector bundle, so that these basis-free constructions on vector spaces extend
to well-defined maps of vector bundles.

Remark 1.68. These canonical maps also appear in concrete matrix algebra
and applications: see [Magnus], [G2] (particularly §I.8 and §VI.3), [Graham];
for historical references, see [HS] and [HJ] (Chapter 4). For example, the map
k−1
UV : Hom(U, V ) → U∗ ⊗ V is a “vectorization,” or “vec” map. The tUV map, of
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course, is analogous to the transpose operation (A �→ A′, in the notation of [HS]
and [Magnus]) and an analogue of Lemma 1.62 is the equality:

vec(ABC) = (C′ ⊗A)vecB,

attributed by [HS] to [R], see also [Nissen], [HJ], [Magnus] (§1.10).

Notation 1.69. The composite of the e and k maps is denoted

fUV = eUV ◦ kUV : U∗ ⊗ V → (V ∗ ⊗ U)∗.

Sometimes fUV is abbreviated f .

The output fUV (φ⊗ v) acts on ξ ⊗ u to give φ(u) · ξ(v) ∈ K:

(eUV (kUV (φ⊗ v)))(ξ ⊗ u) = ξ((kUV (φ ⊗ v))(u)) = ξ(φ(u) · v) = φ(u) · ξ(v).
Exercise 1.70. For maps A : U ′ → U , B : V → V ′, the following diagram is

commutative.

U∗ ⊗ V
fUV ��

[A∗⊗B]

��

(V ∗ ⊗ U)∗

[B∗⊗A]∗

��
U ′∗ ⊗ V ′ fU′V ′ �� (V ′∗ ⊗ U ′)∗

Hint. This can be checked directly as in the Proof of Lemma 1.62; it also

follows as a corollary of Lemma 1.57 and Lemma 1.62.

Lemma 1.71. f∗
UV ◦ dV ∗⊗U = fV U : V ∗ ⊗ U → (U∗ ⊗ V )∗.

Proof. For ξ ⊗ u ∈ V ∗ ⊗ U , and φ⊗ v ∈ U∗ ⊗ V ,

(f∗
UV (dV ∗⊗U (ξ ⊗ u)))(φ⊗ v) = (dV ∗⊗U (ξ ⊗ u))(fUV (φ⊗ v))

= (fUV (φ ⊗ v))(ξ ⊗ u)

= φ(u) · ξ(v)
= (fV U (ξ ⊗ u))(φ ⊗ v).

Notation 1.72. For any vector spaces U , V , the following composite is de-
noted:

pUV = [dV ⊗ IdU∗ ] ◦ s : U∗ ⊗ V → V ∗∗ ⊗ U∗.

So, for φ ∈ U∗, v ∈ V , pUV (φ⊗ v) = (dV (v))⊗φ. Sometimes pUV is abbreviated p.

Lemma 1.73. For maps B : V → V ′, C : U∗ → U ′∗, the following diagram is
commutative.

U∗ ⊗ V
pUV ��

[C⊗B]

��

V ∗∗ ⊗ U∗

[B∗∗⊗C]

��
U ′∗ ⊗ V ′ pU′V ′ �� V ′∗∗ ⊗ U ′∗

Hint. This can be checked using case (1.2) of Lemma 1.14.
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Lemma 1.74. The following diagram is commutative. If V is finite-dimensional
then all the maps are invertible.

U∗ ⊗ V
fUV ��

pUV

��

(V ∗ ⊗ U)∗

V ∗∗ ⊗ U∗ j �� Hom(V ∗ ⊗ U,K⊗K)

Hom(IdV ∗⊗U ,l)

��

Proof.

φ⊗ v �→ (Hom(IdV ∗⊗U , l) ◦ j ◦ pUV )(φ ⊗ v) = l ◦ [(dV (v)) ⊗ φ] :

ξ ⊗ u �→ ξ(v) · φ(u)
= (f(φ⊗ v))(ξ ⊗ u).

Lemma 1.75. The following diagram is commutative. If V is finite-dimensional
then all the maps are invertible.

U∗ ⊗ V
kUV ��

pUV

��

Hom(U, V )

tUV

��
V ∗∗ ⊗ U∗ kV ∗U∗ �� Hom(V ∗, U∗)

Proof.

φ⊗ v �→ (kV ∗U∗ ◦ pUV )(φ ⊗ v) = kV ∗U∗((dV (v)) ⊗ φ) :

ξ �→ (kV ∗U∗((dV (v))⊗ φ))(ξ) = (dV (v))(ξ) · φ = ξ(v) · φ :

u �→ ξ(v) · φ(u),
φ⊗ v �→ (tUV ◦ kUV )(φ ⊗ v) :

ξ �→ (tUV (kUV (φ⊗ v)))(ξ) = ξ ◦ (kUV (φ⊗ v)) :

u �→ ξ((kUV (φ⊗ v))(u)) = ξ(φ(u) · v) = φ(u) · ξ(v).

The diagram shows how Claim 1.11, Claim 1.16, and Lemma 1.64 are related.

Remark 1.76. The map p corresponds to another well-known object in matrix
algebra, denoted the “vec-permutation matrix” Im,n by [HS]. The equality vecA =
IvecA′ (in the notation from Remark 1.68) corresponds to the equality k ◦ p = t ◦ k
from Lemma 1.75, and [HS] states a matrix analogue of Lemma 1.73. This matrix
has also been called the “commutation matrix” Kmn by [Magnus] (§3.1) (with the
equivalent property KvecA = vecA′) or the “shuffle matrix” by [L], [HJ].
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1.3. Direct sums

The following definition applies to any integer ν ≥ 2 (see also [AF] §6).

Definition 1.77. Given vector spaces V , V1, V2, . . . , Vν and ordered ν-tuples
of maps (P1, P2, . . . , Pν) and (Q1, Q2, . . . , Qν), where Pi : V → Vi, Qi : Vi → V for
i = 1, 2, . . . , ν, V is a direct sum of (V1, V2, . . . , Vν) means:

Q1 ◦ P1 +Q2 ◦ P2 + · · ·+Qν ◦ Pν = IdV

and

Pi ◦QI =

{
IdVi if i = I
0Hom(VI ,Vi) if i �= I

.

This data is sometimes abbreviated V = V1 ⊕ V2 ⊕ · · · ⊕ Vν , when the maps
Pi (called projections) and Qi (inclusions) are understood. Note that the ordering

is part of the notation and that each map Qi is one-to-one (having a left inverse
as in Exercise 0.48) and that if V is finite-dimensional then each Vi is also finite-
dimensional (by Exercise 0.50 — this fact may not be mentioned at every subsequent
occurrence).

We will most frequently consider direct sums of two spaces; in this ν = 2 case,
the above Definition requires that five equations are satisfied by (P1, P2), (Q1, Q2),
but it is enough to check only three of these equations.

Lemma 1.78. Given vector spaces V , V1, V2, if there exist P1 : V → V1,
P2 : V → V2, Q1 : V1 → V , Q2 : V2 → V such that:

Q1 ◦ P1 +Q2 ◦ P2 = IdV

P1 ◦Q1 = IdV1

P2 ◦Q2 = IdV2

then V = V1 ⊕ V2.

Proof. The conclusion is that the pairs (P1, P2) and (Q1, Q2) satisfy Defi-
nition 1.77, and the only two equations remaining to be checked are P2 ◦ Q1 =
0Hom(V1,V2) and P1 ◦Q2 = 0Hom(V2,V1).

P2 ◦Q1 = P2 ◦ IdV ◦Q1 = P2 ◦ (Q1 ◦ P1 +Q2 ◦ P2) ◦Q1

= P2 ◦Q1 ◦ P1 ◦Q1 + P2 ◦Q2 ◦ P2 ◦Q1

= P2 ◦Q1 ◦ IdV1 + IdV2 ◦ P2 ◦Q1

= P2 ◦Q1 + P2 ◦Q1

= 0Hom(V1,V2),

the last step using Theorem 0.3. The other equation is similarly checked.
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Theorem 1.79. Given vector spaces V , V1, V2, V3, V4, if V = V1 ⊕ V2 and
V2 = V3 ⊕ V4, then V = V1 ⊕ V3 ⊕ V4.

Proof. Let (P1, P2), (Q1, Q2) be the projections and inclusions for V = V1 ⊕
V2, and let (P3, P4), (Q3, Q4) be the direct sum data for V2 = V3 ⊕ V4. The
projections (P1, P3◦P2, P4◦P2) and inclusions (Q1, Q2◦Q3, Q2◦Q4) give a canonical
construction for the claimed direct sum. The first equation from Definition 1.77 is:

Q1 ◦ P1 + (Q2 ◦Q3) ◦ (P3 ◦ P2) + (Q2 ◦Q4) ◦ (P4 ◦ P2)

= Q1 ◦ P1 +Q2 ◦ (Q3 ◦ P3 +Q4 ◦ P4) ◦ P2

= Q1 ◦ P1 +Q2 ◦ IdV2 ◦ P2

= IdV .

The remaining nine equations are also easily checked.

Example 1.80. If H : U → V is an invertible map between arbitrary vector
spaces, and V = V1 ⊕ V2, then U is a direct sum of V1 and V2, with projections
Pi ◦H : U → Vi for i = 1, 2, and inclusions H−1 ◦Qi : Vi → U .

Example 1.81. If V = V1 ⊕ V2, and U is any vector space, then V ⊗ U is a
direct sum of V1 ⊗ U and V2 ⊗ U . The projections and inclusions are [Pi ⊗ IdU ] :
V ⊗ U → Vi ⊗ U , and [Qi ⊗ IdU ] : Vi ⊗ U → V ⊗ U . There is an analogous direct
sum U ⊗ V = U ⊗ V1 ⊕ U ⊗ V2.

Example 1.82. If V = V1 ⊕ V2, and U is any vector space, then Hom(U, V )
is a direct sum of Hom(U, V1) and Hom(U, V2). The projections and inclusions
are Hom(IdU , Pi) : Hom(U, V ) → Hom(U, Vi), and Hom(IdU , Qi) : Hom(U, Vi) →
Hom(U, V ).

Example 1.83. If V = V1 ⊕ V2, and U is any vector space, then Hom(V, U) is
a direct sum of Hom(V1, U) and Hom(V2, U). The projections are Hom(Qi, IdU ) :
Hom(V, U) → Hom(Vi, U), and the inclusions are

Hom(Pi, IdU ) : Hom(Vi, U) → Hom(V, U).

Example 1.84. As the U = K special case of the previous Example, if V =
V1 ⊕ V2, then V

∗ = V ∗
1 ⊕ V ∗

2 , with projections Q∗
i and inclusions P ∗

i .

Lemma 1.85. Given V = V1 ⊕ V2, the image of Q2, i.e., the subspace Q2(V2)
of V , is equal to the subspace ker(P1), the kernel of P1, which is also equal to
ker(Q1 ◦ P1).

Proof. The second equality follows from ker(P1) ⊆ ker(Q1◦P1) ⊆ ker(P1◦Q1◦
P1) = ker(P1). It follows from P1 ◦Q2 = 0Hom(V2,V1) that Q2(V2) ⊆ ker(P1), and if

P1(v) = 0V1 , then v = (Q1 ◦P1+Q2 ◦P2)(v) = Q2(P2(v)), so ker(P1) ⊆ Q2(V2).

Lemma 1.86. Given U = U1 ⊕ U2 and V = V1 ⊕ V2, with projections and
inclusions P ′

i , Q
′
i, Pi, Qi, respectively, if the maps A1 : U1 → V1 and A2 : U2 → V2

are both invertible, then the map Q1 ◦A1 ◦P ′
1 +Q2 ◦A2 ◦ P ′

2 : U → V is invertible.

Proof. The inverse is Q′
1 ◦A−1

1 ◦ P1 +Q′
2 ◦A−1

2 ◦ P2.
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Lemma 1.87. Given a direct sum V = V1 ⊕ V2 as in Definition 1.77, another
direct sum U = U1⊕U2, with projections and inclusions P ′

i and Q
′
i, and H : U → V ,

the following are equivalent.

(1) Q1 ◦ P1 ◦H = H ◦Q′
1 ◦ P ′

1.
(2) Q2 ◦ P2 ◦H = H ◦Q′

2 ◦ P ′
2.

(3) P1 ◦H ◦Q′
2 = 0Hom(U2,V1) and P2 ◦H ◦Q′

1 = 0Hom(U1,V2).
(4) There exist maps H1 : U1 → V1 and H2 : U2 → V2 such that H =

Q1 ◦H1 ◦ P ′
1 +Q2 ◦H2 ◦ P ′

2.

Proof. First, for (1) ⇐⇒ (2),

H = (Q1 ◦ P1 +Q2 ◦ P2) ◦H = H ◦ (Q′
1 ◦ P ′

1 +Q′
2 ◦ P ′

2)

= Q1 ◦ P1 ◦H +Q2 ◦ P2 ◦H = H ◦Q′
1 ◦ P ′

1 +H ◦Q′
2 ◦ P ′

2.

Applying either equality (1) or (2), then subtracting, gives the other equality. For
(1) =⇒ (3),

P1 ◦H ◦Q′
2 = P1 ◦ (Q1 ◦ P1 +Q2 ◦ P2) ◦H ◦Q′

2

= P1 ◦H ◦Q′
1 ◦ P ′

1 ◦Q′
2 = 0Hom(U2,V1),

P2 ◦H ◦Q′
1 = P2 ◦H ◦ (Q′

1 ◦ P ′
1 +Q′

2 ◦ P ′
2) ◦Q′

1

= P2 ◦Q1 ◦ P1 ◦H ◦Q′
1 = 0Hom(U1,V2).

Next, to show that (3) implies (1) or (2), let i = 1 or 2:

Qi ◦ Pi ◦H = Qi ◦ Pi ◦H ◦ (Q′
1 ◦ P ′

1 +Q′
2 ◦ P ′

2)

= Qi ◦ Pi ◦H ◦Q′
i ◦ P ′

i

= (Q1 ◦ P1 +Q2 ◦ P2) ◦H ◦Q′
i ◦ P ′

i = H ◦Q′
i ◦ P ′

i .

The construction in (4) is the same as in Lemma 1.86 (without requiring invert-
ibility). The implication (4) =⇒ (1) is straightforward. To show that (1) and (2)
imply (4), let H1 = P1 ◦H ◦Q′

1 and H2 = P2 ◦H ◦Q′
2. Then,

Q1 ◦H1 ◦ P ′
1 +Q2 ◦H2 ◦ P ′

2 = Q1 ◦ P1 ◦H ◦Q′
1 ◦ P ′

1 +Q2 ◦ P2 ◦H ◦Q′
2 ◦ P ′

2

= Q1 ◦ P1 ◦Q1 ◦ P1 ◦H +Q2 ◦ P2 ◦Q2 ◦ P2 ◦H
= (Q1 ◦ P1 +Q2 ◦ P2) ◦H = H.

Definition 1.88. For V = V1 ⊕ V2, U = U1 ⊕ U2, and H : U → V , H
respects the direct sums means: H satisfies any of the equivalent conditions from
Lemma 1.87. For such a map and i = 1, 2, the composites Pi ◦H ◦Q′

i : Ui → Vi are
said to be induced by H .

Lemma 1.89. If H : U → V is an invertible map which respects the direct sums
as in Definition 1.88, then H−1 also respects the direct sums, and for each i = 1, 2,
the induced map Pi ◦H ◦Q′

i : Ui → Vi is invertible, with inverse P ′
i ◦H−1 ◦Qi.

Proof.

(Pi ◦H ◦Q′
i) ◦ (P ′

i ◦H−1 ◦Qi) = Pi ◦Qi ◦ Pi ◦H ◦H−1 ◦Qi

= Pi ◦Qi = IdVi

(P ′
I ◦H−1 ◦Qi) ◦ (Pi ◦H ◦Q′

i) = P ′
I ◦H−1 ◦H ◦Q′

i ◦ P ′
i ◦Q′

i

= P ′
I ◦Q′

i
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If i = I, this shows Pi◦H◦Q′
i is invertible. If i �= I, then P ′

I◦H−1◦Qi = 0Hom(Vi,UI),

so H−1 respects the direct sums.

Lemma 1.90. Given U = U1 ⊕U2, V = V1 ⊕V2, W =W1 ⊕W2, if H : U → V
respects the direct sums and H ′ : V → W respects the direct sums, then H ′ ◦H :
U → W respects the direct sums. A map induced by the composite is equal to the

composite of the corresponding induced maps.

Lemma 1.91. Suppose V = V1 ⊕ V2, U = U1 ⊕ U2, and H : U → V respects
the direct sums, inducing maps Pi ◦H ◦ Q′

i. Then, for any A : W → X, the map
[H ⊗A] : U ⊗W → V ⊗X respects the direct sums

U1 ⊗W ⊕ U2 ⊗W → V1 ⊗X ⊕ V2 ⊗X

from Example 1.81. The induced map [Pi ⊗ IdX ] ◦ [H ⊗A] ◦ [Q′
i ⊗ IdW ] is equal to

[(Pi ◦H ◦Q′
i)⊗A].

Proof. All the claims follow immediately from Lemma 1.36.

Lemma 1.92. Suppose V = V1 ⊕ V2, U = U1 ⊕ U2, and H : U → V respects
the direct sums, inducing maps Pi ◦H ◦ Q′

i. Then, for any A : W → X, the map
Hom(A,H) : Hom(X,U) → Hom(W,V ) respects the direct sums

Hom(X,U1)⊕Hom(X,U2) → Hom(W,V1)⊕Hom(W,V2)

from Example 1.82. The induced map Hom(IdW , Pi) ◦Hom(A,H) ◦Hom(IdX , Q
′
i)

is equal to Hom(A,Pi ◦H ◦Q′
i). Analogously, the map Hom(H,A) : Hom(V,W ) →

Hom(U,X) respects the direct sums

Hom(V1,W )⊕Hom(V2,W ) → Hom(U1, X)⊕Hom(U2, X)

from Example 1.83, and the induced map Hom(Q′
i, IdW )◦Hom(H,A)◦Hom(Pi, IdX)

is equal to Hom(Pi ◦H ◦Q′
i, A).

Proof. All the claims follow immediately from Lemma 1.6.

Notation 1.93. Given a direct sum V = V1⊕V2 with projection and inclusion
pairs (P1, P2), (Q1, Q2), the pairs in the other order, (V2, V1), (P2, P1), (Q2, Q1),
also satisfy the definition of direct sum. The notation V = V2 ⊕ V1 refers to these
re-ordered pairs.

Example 1.94. A map H ∈ End(V ) which satisfies Q2 ◦P2 ◦H = H ◦Q1 ◦P1

respects the direct sums H : V1 ⊕ V2 → V2 ⊕ V1 (and so H also satisfies the other
identities from Lemma 1.87).

Lemma 1.95. Given a vector space V that admits two direct sums, V = V1⊕V2,
V = V ′′

1 ⊕ V ′′
2 with projections and inclusions Pi, Qi, P

′′
i , Q

′′
i , respectively, the

following are equivalent.

(1) The identity map IdV : V1 ⊕ V2 → V ′′
1 ⊕ V ′′

2 respects the direct sums.
(2) Q1 ◦ P1 = Q′′

1 ◦ P ′′
1 .

(3) Q2 ◦ P2 = Q′′
2 ◦ P ′′

2 .
(4) P ′′

I ◦Qi = 0Hom(Vi,V ′′
I ) for i �= I.

(5) PI ◦Q′′
i = 0Hom(V ′′

i ,VI) for i �= I.

Proof. The first statement is, by Definition 1.88 and Lemma 1.87, equivalent
to any of the next three statements. The equivalence with the last statement follows

from Lemma 1.89.
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Definition 1.96. Given V , two direct sums V = V1 ⊕ V2 and V = V ′′
1 ⊕ V ′′

2

are equivalent direct sums means: they satisfy any of the properties from Lemma
1.95.

For a fixed V , this notion is clearly an equivalence relation on direct sum
decompositions of V .

Example 1.97. If V = V1 ⊕ V2 and H1 : U1 → V1 and H2 : U2 → V2 are
invertible, then V is a direct sum U1⊕U2, with projections H−1

i ◦Pi and inclusions
Qi ◦Hi. The direct sums V = V1 ⊕ V2 and V = U1 ⊕ U2 are equivalent.

Lemma 1.98. Given U and V , a direct sum U = U1⊕U2, and a map H : U →
V , suppose V = V1 ⊕ V2 and V = V ′′

1 ⊕ V ′′
2 are equivalent direct sums. Then H

respects the direct sums U1 ⊕ U2 → V1 ⊕ V2 if and only if H respects the direct
sums U1 ⊕ U2 → V ′′

1 ⊕ V ′′
2 . Similarly, a map A : V → U respects the direct sums

V1 ⊕V2 → U1 ⊕U2 if and only if A respects the direct sums V ′′
1 ⊕V ′′

2 → U1 ⊕U2.

Lemma 1.99. Given V = V1 ⊕ V2 and V = V ′′
1 ⊕ V ′′

2 with respective direct sum
data Pi, Qi, P

′′
i , Q

′′
i , if P1 ◦ Q′′

2 = 0Hom(V ′′
2 ,V1), and P

′′
1 ◦ Q2 = 0Hom(V2,V ′′

1 ), then

P ′′
1 ◦Q1 : V1 → V ′′

1 and P ′′
2 ◦Q2 : V2 → V ′′

2 are both invertible.

Proof. The inverse of P ′′
i ◦Qi is Pi ◦Q′′

i : V ′′
i → Vi.

As a special case of both Lemma 1.99 and Lemma 1.89, if V = V1⊕V2 and V =
V ′′
1 ⊕ V ′′

2 are equivalent direct sums, then there are canonically induced invertible
maps P ′′

i ◦Qi : Vi → V ′′
i , i = 1, 2.

Lemma 1.100. Suppose φ ∈ V ∗. If φ �= 0V ∗ then there exists a direct sum
V = K⊕ ker(φ).

Proof. Let Q2 be the inclusion of the kernel subspace ker(φ) = {w ∈ V :
φ(w) = 0} in V . Since φ �= 0V ∗ , there exists some v ∈ V so that φ(v) �= 0. Let α,

β ∈ K be any constants so that α · β · φ(v) = 1. Define Qβ
1 : K → V so that for

γ ∈ K, Qβ
1 (γ) = β · γ · v. Define Pα

1 = α · φ : V → K. Then,

Pα
1 ◦Qβ

1 : γ �→ α · φ(β · γ · v) = α · β · φ(v) · γ = γ.

For any w ∈ ker(φ), (Pα
1 ◦ Q2)(w) = α · φ(w) = 0. Define P2 = IdV − Qβ

1 ◦ Pα
1 ,

which is a map from V to ker(φ): if u ∈ V , then

(φ ◦ P2)(u) = (φ ◦ IdV − φ ◦Qβ
1 ◦ Pα

1 )(u)

= φ(u)− φ(Qβ
1 (α · φ(u)))

= φ(u)− φ(β · α · φ(u) · v)
= φ(u)− α · β · φ(v) · φ(u) = 0.

Also, for w ∈ ker(φ),

(P2 ◦Q2)(w) = ((IdV −Qβ
1 ◦ Pα

1 ) ◦Q2)(w) = (Q2 −Qβ
1 ◦ 0(ker(φ))∗)(w) = w,

so P2 ◦Q2 = Idker(φ), and the claim follows from Lemma 1.78.

Given V and φ, the direct sum from the previous Lemma is generally not unique,
nor are two such direct sums, depending on v, α, β, even equivalent in general.
However, in some later examples, there will be a canonical element v /∈ ker(φ), and
in such a case, different choices of α, β give equivalent direct sums.
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Lemma 1.101. Given V , φ ∈ V ∗, and v ∈ V so that φ(v) �= 0, let α, β, α′,
β′ ∈ K be any constants so that α · β · φ(v) = α′ · β′ · φ(v) = 1. Then the direct
sum V = K ⊕ ker(φ) constructed in the Proof of Lemma 1.100 is equivalent to

the analogous direct sum with maps Qβ′
1 : γ �→ β′ · γ · v, Pα′

1 = α′ · φ, Q2, and

P ′
2 = IdV −Qβ′

1 ◦ Pα′
1 .

The following result will be used as a step in Theorem 4.40.

Theorem 1.102. Suppose U = U1 ⊕ U2 is a direct sum with projections and
inclusions Pi, Qi, and that there are vector spaces V , V1, V2, and maps P ′

1 : V → V1,
Q′

2 : V2 → V , H : U → V , H1 : U1 → V1, H2 : U2 → V2, such that P ′
1◦H = H1◦P1,

Q′
2 ◦ H2 = H ◦ Q2, and P ′

1 ◦ Q′
2 = 0Hom(V2,V1). Suppose further that H and H1

are invertible, and that Q′
2 is a linear monomorphism. Then, there exist maps

Q′
1 : V1 → V and P ′

2 : V → V2 such that V = V1 ⊕ V2. Also, H respects the direct
sums, and H2 is invertible.

Proof. Let Q′
1 = H ◦Q1 ◦H−1

1 . Then

P ′
1 ◦Q′

1 = P ′
1 ◦H ◦Q1 ◦H−1

1 = H1 ◦ P1 ◦Q1 ◦H−1
1 = IdV1 .

Let P ′
2 = H2 ◦ P2 ◦H−1. Then

Q′
1 ◦ P ′

1 +Q′
2 ◦ P ′

2 = H ◦Q1 ◦H−1
1 ◦ P ′

1 +Q′
2 ◦H2 ◦ P2 ◦H−1

= H ◦Q1 ◦ P1 ◦H−1 +H ◦Q2 ◦ P2 ◦H−1

= IdV .

Q′
2 ◦ P ′

2 ◦Q′
2 = (IdV −Q′

1 ◦ P ′
1) ◦Q′

2 = Q′
2,

so P ′
2◦Q′

2 = IdV2 , by the monomorphism property (Definition 0.47), and this shows
V = V1 ⊕ V2 by Lemma 1.78. H respects the direct sums:

P ′
1 ◦H ◦Q2 = H1 ◦ P1 ◦Q2 = 0Hom(U2,V1)

P ′
2 ◦H ◦Q1 = H2 ◦ P2 ◦H−1 ◦H ◦Q1 = 0Hom(U1,V2).

By Lemma 1.89, P ′
2 ◦H ◦Q2 = H2 ◦P2 ◦H−1 ◦H ◦Q2 = H2 has inverse P2 ◦H−1 ◦

Q′
2.

Exercise 1.103. Let V = V1 ⊕ V2 ⊕ · · · ⊕ Vν be a direct sum, as in Definition
1.77, with projections (P1, P2, . . . , Pν) and inclusions (Q1, Q2, . . . , Qν). For another
vector space W and additive functions A : V � W , B : V � W , the following are
equivalent.

(1) For all i = 1, . . . , ν, A ◦Qi = B ◦Qi : Vi →W .
(2) A = B.

Hint. The additive property is used in steps (1.9), (1.10).

A = A ◦ (Q1 ◦ P1 + · · ·+Qν ◦ Pν)

= (A ◦Q1) ◦ P1 + · · ·+ (A ◦Qν) ◦ Pν(1.9)

= (B ◦Q1) ◦ P1 + · · ·+ (B ◦Qν) ◦ Pν

= B ◦ (Q1 ◦ P1 + · · ·+Qν ◦ Pν)(1.10)

= B.
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Exercise 1.104. Let V = V1 ⊕ V2 ⊕ · · · ⊕ Vν be a direct sum. Suppose there
is some i and some additive function P ′ : V � Vi so that P ′ ◦ Qi = IdVi , and
P ′ ◦QI = 0Hom(VI ,Vi) for I �= i. Then, P ′ = Pi.

Hint. This is a special case of Exercise 1.103. P ′ is not assumed to be linear,
but the above calculation uses the additive property to conclude that P ′ is linear

because it equals a given linear map.

In the above sense, given all the data P1, . . . , Qν in a direct sum, each individual
map Pi is unique. Exercise 1.106 states an analogous uniqueness result for Qi.

Exercise 1.105. Let V = V1 ⊕ V2 ⊕ · · · ⊕ Vν be a direct sum. For any set W
and any functions A :W � V , B :W � V , the following are equivalent.

(1) For all i = 1, . . . , ν, Pi ◦A = Pi ◦B :W → Vi.
(2) A = B.

Hint. The calculation is similar to that in Exercise 1.103, but does not assume

any additive property.

Exercise 1.106. For V = V1⊕V2⊕· · ·⊕Vν , suppose there is some i and some
function Q′ : Vi � V so that Pi ◦ Q′ = IdVi , and PI ◦ Q′ = 0Hom(Vi,VI ) for I �= i.
Then, Q′ = Qi.

Hint. This is a special case of Exercise 1.105.

Exercise 1.107. Let V = V1 ⊕ V2 be a direct sum with projections (P1, P2)
and inclusions (Q1, Q2), and let A : V1 → V2. Then the following maps (P ′

1, P
′
2),

(Q′
1, Q

′
2) also define a direct sum.

Q′
1 = Q1 +Q2 ◦A : V1 → V

Q′
2 = Q2 : V2 → V

P ′
1 = P1 : V → V1

P ′
2 = P2 −A ◦ P1 : V → V2.

This is equivalent to the original direct sum if and only if A = 0Hom(V1,V2).

Hint. The first equation from Definition 1.77 is:

Q′
1 ◦ P ′

1 +Q′
2 ◦ P ′

2 = (Q1 +Q2 ◦A) ◦ P1 +Q2 ◦ (P2 −A ◦ P1)

= Q1 ◦ P1 +Q2 ◦A ◦ P1 +Q2 ◦ P2 −Q2 ◦A ◦ P1

= IdV .

The remaining equations from Definition 1.77 (or Lemma 1.78) are also easy to
check. If the direct sums are equivalent, then 0Hom(V1,V2) = P2 ◦Q′

1 = P2 ◦ (Q1 +

Q2 ◦A) = A, and conversely.

The direct sum P ′
i , Q

′
i is the graph of A. In a certain sense, Exercise 1.107 has

a converse: if a space V decomposes in two ways as a direct sum, with the same
inclusion Q2, then the two direct sums are related using the graph construction, up
to equivalence.
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Exercise 1.108. Given V , V1, V2, suppose the pairs (P1, P2) and (Q1, Q2)
define a direct sum V = V1 ⊕ V2, and the pairs (P ′

1, P
′
2), (Q′

1, Q
′
2) also satisfy

Definition 1.77. If Q2 = Q′
2, then there exists a map A : V1 → V2, and there exist

(P ′′
1 , P

′′
2 ), (Q

′′
1 , Q

′′
2) which define a third direct sum, and which satisfy:

Q′′
1 = Q1 +Q2 ◦A : V1 → V

Q′′
2 = Q2 : V2 → V

P ′′
1 = P1 : V → V1

P ′′
2 = P2 −A ◦ P1 : V → V2.

This (P ′′
1 , P

′′
2 ), (Q

′′
1 , Q

′′
2) direct sum is equivalent to the (P ′

1, P
′
2), (Q

′
1, Q

′
2) direct

sum.

Hint. Note that by Exercise 1.106, the hypothesis Q2 = Q′
2 is equivalent to

assuming that Q′
2 satisfies P2 ◦ Q′

2 = IdV2 and P1 ◦ Q′
2 = 0Hom(V2,V1). Choosing

Q′′
2 = Q2 gives the identity P ′

1 ◦Q′′
2 = 0Hom(V2,V1).

The above four equations are the properties defining a graph. The claimed ex-
istence follows from checking that the following choices have the claimed properties.

A = −P ′
2 ◦Q1 : V1 → V2

Q′′
1 = Q′

1 ◦ P ′
1 ◦Q1 : V1 → V

P ′′
2 = P ′

2 : V → V2.

The equivalence of direct sums as in Definition 1.96 is verified by checking P ′
2◦Q′′

1 =

0Hom(V1,V2).

1.4. Idempotents and involutions

Definition 1.109. An element P ∈ End(V ) is an idempotent means: P ◦P =
P .

Lemma 1.110. Given V and P1, P2 ∈ End(V ), any three out of the following
four properties (1)− (4) imply the remaining fourth.

(1) P1 is an idempotent.
(2) P2 is an idempotent.
(3) P1 ◦ P2 + P2 ◦ P1 = 0End(V ).
(4) P1 + P2 is an idempotent.

Property (4) is equivalent to:

(5) There exists P3 ∈ End(V ) such that P3 is an idempotent and P1+P2+P3 =
IdV .

If, further, either 1
2 ∈ K or P1 + P2 = IdV , then P1, P2, P3 satisfying properties

(1)− (5) also satisfy:

(6) For distinct i1, i2 ∈ {1, 2, 3}, Pi1 ◦ Pi2 = 0End(V ).

Conversely, if P1, P2, P3 ∈ End(V ) satisfy (6) and P1 + P2 + P3 = IdV , then

P1, P2, P3 are idempotents satisfying (1)− (5).

Exercise 1.111. For P ∈ End(V ), the following are equivalent.

(1) P is an idempotent.
(2) For any A ∈ End(V ), P + P ◦A− P ◦A ◦ P is an idempotent.

(3) For any A ∈ End(V ), P +A ◦ P − P ◦A ◦ P is an idempotent.
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Exercise 1.112. If P ∈ End(V ) is an idempotent, then the following are
equivalent.

(1) P ′ ◦ P = P ◦ P ′ for all idempotents P ′ ∈ End(V ).
(2) P = 0End(V ) or P = IdV .

Hint. This follows from Exercise 1.111 and Claim 0.57.

Example 1.113. An idempotent P defines a direct sum structure as follows.
Let V1 = P (V ), the subspace of V which is the image of P . Define Q1 : V1 → V
to be the subspace inclusion map, and define P1 : V → V1 by restricting the
target of P : V → V to get P1 : V → V1 with P1(v) = P (v) for all v ∈ V .
Then P = Q1 ◦ P1 : V → V by construction. The map IdV − P is also an
idempotent (this is a special case of Lemma 1.110), so proceeding analogously,
define V2 = (IdV − P )(V ), the image of the linear map IdV − P : V → V . Again,
let Q2 : V2 → V be the subspace inclusion, and define P2 = IdV − P , with its
target space restricted to V2, so that Q2 ◦ P2 = IdV − P by construction, and
Q1 ◦ P1 + Q2 ◦ P2 = P + (IdV − P ) = IdV . To show V = V1 ⊕ V2, it remains
only to check that these maps satisfy the two remaining equations from Lemma
1.78. For v1 ∈ V1, Q1(v1) = v1 = P (w1) for some w1 ∈ V , so (P1 ◦ Q1)(v1) =
P1(P (w1)) = P (P (w1)) = P (w1) = v1. Similarly, for Q2(v2) = v2 = (IdV −P )(w2),
(P2◦Q2)(v2) = (IdV −P )((IdV −P )(w2)) = (IdV −P )(w2) = v2. This construction
of the direct sum V = V1 ⊕ V2 is canonical up to re-ordering.

The statement of Lemma 1.85 in the special case of Example 1.113 is that the
image of IdV − P is the kernel of P , and the image of P is the kernel of IdV − P .

Example 1.114. Given any direct sum V = U1 ⊕ U2 as in Definition 1.77
with projections (P1, P2) and inclusions (Q1, Q2), the composite Q1 ◦ P1 : V → V
is an idempotent, and so is IdV − Q1 ◦ P1 = Q2 ◦ P2. This is a converse to the
construction of Example 1.113; any direct sum canonically defines an unordered
pair of two idempotents. For P = Q1 ◦P1, the direct sum V = V1 ⊕V2 constructed
in Example 1.113 is equivalent, as in Definition 1.96, to the original direct sum.

Lemma 1.115. Given idempotents P : V → V , P ′ : U → U defining direct sums
V1 ⊕ V2 and U1 ⊕ U2 as in Example 1.113, and a map H : U → V , the following
are equivalent.

(1) H respects the direct sums (as in Definition 1.88).

(2) H ◦ P ′ = P ◦H.

Exercise 1.116. Given maps P1 : V → V1, Q1 : V1 → V , P2 : V → V2,
Q2 : V2 → V1, if Q1 ◦ P1 + Q2 ◦ P2 = IdV and either P1 ◦ Q2 = 0Hom(V2,V1) or
P2 ◦ Q1 = 0Hom(V1,V2), then P1 ◦ Q1 : V1 → V1 and P2 ◦ Q2 : V2 → V2 are both
idempotents.

Hint. These are some of the composites from Definition 1.77 and this claim is

related to Lemma 1.78 and Lemma 1.99.

Definition 1.117. An element K ∈ End(V ) is an involution means: K ◦K =
IdV .
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Lemma 1.118. If 1
2 ∈ K and K ∈ End(V ), then the following are equivalent.

(1) K ∈ End(V ) is an involution.
(2) P = 1

2 · (IdV +K) is an idempotent.

(3) IdV − P = 1
2 · (IdV −K) is an idempotent.

Lemma 1.119. For an involution K ∈ End(V ), let V1 = {v ∈ V : K(v) = v},
and V2 = {v ∈ V : K(v) = −v}. If 1

2 ∈ K, then V = V1 ⊕ V2, with Qi the subspace
inclusion maps, and projections:

P1 =
1

2
· (IdV +K),(1.11)

P2 =
1

2
· (IdV −K).(1.12)

Proof. This can be proved directly, but also follows from the construction
of Example 1.113. It is easy to check that V1 is a subspace of V , equal to the
image of the idempotent P from Lemma 1.118 and that V2 is equal to the image of
IdV −P . The composites Q1 ◦P1, Q2 ◦P2 ∈ End(V ) are also given by the formulas
1
2 · (IdV ±K).

Notation 1.120. We refer to the construction of V = V1 ⊕ V2 as in Lemma
1.119 as the direct sum produced by the involution K. The subspaces V1, V2 and
maps P1, P2 in (1.11), (1.12) are canonical, but Lemma 1.119 made a choice of
order in the direct sum V = V1 ⊕V2. With this ordering convention, the involution
−K produces the direct sum V = V2 ⊕ V1 as in Notation 1.93.

Notation 1.121. For the projection maps defined by formulas (1.11), (1.12)
from a direct sum produced by an involution, the double arrowhead will appear in
diagrams, P1 : V � V1, P2 : V � V2, and the same style arrow for composites of
such projections. For the subspace inclusion maps as in Lemma 1.119, the hook
arrow will appear: Q1 : V1 ↪→ V for the fixed point subspace ofK, and Q2 : V2 ↪→ V
for the fixed point subspace of −K, and similarly for composites of such inclusions.

Example 1.122. Given any direct sum V = U1 ⊕U2 as in Definition 1.77 with
projections (P1, P2) and inclusions (Q1, Q2), the map

Q1 ◦ P1 −Q2 ◦ P2 = IdV − 2 ·Q2 ◦ P2 : V → V

is an involution, and it respects the direct sums U1 ⊕ U2 → U1 ⊕ U2. If 1
2 ∈ K,

then the direct sum produced by this involution, V = V1 ⊕ V2 as in Lemma 1.119,
is equivalent, as in Definition 1.96, to the original direct sum. As in Lemma 1.89
and Lemma 1.99, there are invertible maps Ui → Vi. If the direct sum maps Qi, Pi

were defined by some involution K as in Lemma 1.119, then Q1 ◦P1−Q2 ◦P2 = K.

Lemma 1.123. For an idempotent P : V → V , let V = V1⊕V2 be the direct sum
from Example 1.113. The maps K = 2 · P − IdV : V → V and IdV − 2 · P = −K
are involutions, and both K and −K respect the direct sums V1 ⊕ V2 → V1 ⊕ V2.
If 1

2 ∈ K, then the direct sum from Lemma 1.119 produced by K is the same as
V = V1 ⊕ V2.

Proof. The claim that K and −K respect the direct sums is a special case of

Lemma 1.115.
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Example 1.124. For any space V , the switching map s : V ⊗ V → V ⊗ V
from Example 1.29 is an involution. For 1

2 ∈ K, s produces a direct sum on V ⊗V ,
denoted:

V ⊗ V = S2V ⊕ Λ2V,

with projections P1 = 1
2 · (IdV ⊗V + s) : V ⊗ V � S2V and P2 = 1

2 · (IdV ⊗V − s) :

V ⊗ V � Λ2V and corresponding subspace inclusions Q1, Q2.

Theorem 1.125. Given 1
2 ∈ K, an involution K ∈ End(V ), let V = V1 ⊕ V2

be the direct sum produced by K. For any φ ∈ V ∗, if φ �= 0V ∗ and φ ◦K = φ, then
there is a direct sum V = K⊕ ker(φ ◦Q1)⊕ V2.

Proof. Let (P1, P2) and (Q1, Q2) be the pairs as in Lemma 1.119; the inclusion
Q1 appears in the claim. From φ �= 0V ∗ , there is some w ∈ V so that φ(w) �= 0.
Let v = 1

2 · (w +K(w)) ∈ V1. Then

(φ ◦Q1)(v) = φ(v) = φ(
1

2
· (w +K(w))) =

1

2
· φ(w) + 1

2
· φ(K(w)) = φ(w) �= 0.

So φ◦Q1 �= 0V ∗
1
and Lemma 1.100 applies to get a direct sum V1 = K⊕ker(φ◦Q1),

depending on parameters α, β ∈ K such that α · β · φ(w) = 1. The inclusions are

Qβ
3 : K → V1 : γ �→ β · γ · v, and the subspace inclusion Q4 : ker(φ ◦Q1) → V1. The

projections are Pα
3 = α · φ ◦Q1 : V1 → K, P4 = IdV1 −Qβ

3 ◦ Pα
3 : V1 → ker(φ ◦Q1).

Theorem 1.79 applies to get the claimed direct sum. In particular, the first inclusion

is Q1 ◦Qβ
3 : K → V , the second is a subspace inclusion Q1 ◦Q4 : ker(φ ◦Q1) → V ,

and the third is the subspace inclusion not depending on φ, Q2 : V2 ↪→ V . The three

projections are α·φ◦Q1◦P1 : V → K, (IdV1−Qβ
3 ◦(α·φ◦Q1))◦P1 : V → ker(φ◦Q1),

and P2 : V � V2.

For K and φ as in Theorem 1.125, any element u ∈ V can be written in the
following way as a sum of terms that do not depend on α or β:

u = IdV (u)(1.13)

= (Q1 ◦Qβ
3 ◦ (α · φ ◦Q1 ◦ P1)

+Q1 ◦Q4 ◦ (IdV1 −Qβ
3 ◦ (α · φ ◦Q1)) ◦ P1 +Q2 ◦ P2)(u)

=
φ(u)

2φ(w)
(w +K(w)) +

(
1

2
(u+K(u))− φ(u)

2φ(w)
(w +K(w))

)
+

1

2
(u−K(u)).

The second and third terms are in the kernel of φ; the third term is the projection
of u onto the −1 eigenspace of K, not depending on φ or w. The first two terms
are both in the +1 eigenspace of K, and they both depend on φ and on v =
1
2 · (w +K(w)).

Lemma 1.126. Given 1
2 ∈ K and two involutions K : V → V and K ′ : U → U ,

which produce direct sums V1 ⊕V2, U1⊕U2 as in Lemma 1.119, a map H : U → V

respects the direct sums U1 ⊕ U2 → V1 ⊕ V2 if and only if K ◦H = H ◦K ′.

Lemma 1.127. Given 1
2 ∈ K and two involutions K : V → V and K ′ : U → U ,

which produce direct sums V1 ⊕V2, U1⊕U2 as in Lemma 1.119, a map H : U → V
respects the direct sums U1 ⊕ U2 → V2 ⊕ V1 if and only if K ◦H = −H ◦K ′.

Proof. Note the order of the spaces V2 ⊕ V1 is different from that appearing
in Lemma 1.126, so the notation refers to the identities Q1 ◦ P1 ◦H = H ◦Q′

2 ◦ P ′
2
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and Q2 ◦P2 ◦H = H ◦Q′
1 ◦P ′

1. The claims can be checked directly, but also follow

from applying Lemma 1.126 to the involutions K and −K ′.

Lemma 1.128. Given V and a pair of involutions on V , K1 and K2, if
1
2 ∈ K,

then the following are equivalent.

(1) The involutions commute, i.e., K1 ◦K2 = K2 ◦K1.
(2) The composite K1 ◦K2 is an involution.
(3) K2 respects the direct sum V = V1 ⊕ V2 produced by K1.
(4) K1 respects the direct sum V = V3 ⊕ V4 produced by K2.

Proof. The equivalence (1) ⇐⇒ (2) is elementary and does not require
1
2 ∈ K. The direct sums in (3), (4) are as in Lemma 1.119. The equivalences

(1) ⇐⇒ (3) and (1) ⇐⇒ (4) are special cases of Lemma 1.126.

In statement (3) of Lemma 1.128, K2 induces an involution on both V1 and V2
as in Definition 1.88 and Lemma 1.89, and similarly for K1 in statement (4).

Given 1
2 ∈ K, and V with commuting involutions K1, K2 as in Lemma 1.128

and Lemma 1.129, and corresponding direct sums V = V1 ⊕ V2, V = V3 ⊕ V4,
respectively, as in Lemma 1.128, let V = V5 ⊕ V6 be the direct sum produced by
the involution K1 ◦K2.

Lemma 1.129. Given V , subspaces V1, . . . , V5 as above, and commuting involu-
tions K1, K2 ∈ End(V ), for v ∈ V , any pair of two of the following three statements
implies the remaining one:

(1) v = K1(v) ∈ V1.
(2) v = K2(v) ∈ V3.

(3) v = (K1 ◦K2)(v) ∈ V5.

It follows from Lemma 1.129 that these subspaces of V are equal:

(1.14) V1 ∩ V3 = V1 ∩ V5 = V3 ∩ V5 = V1 ∩ V3 ∩ V5.
Let (P5, P6), (Q5, Q6) denote the projections and inclusions for the above direct

sum V = V5⊕V6 produced by K1 ◦K2. Since K1 ◦Q5 = K2 ◦Q5, the maps induced
by K1 and K2 are equal:

(1.15) P5 ◦K1 ◦Q5 = P5 ◦K2 ◦Q5 : V5 → V5;

this map is a canonical involution on V5, producing a direct sum V5 = V ′
5 ⊕ V ′′

5

with projection P ′
5 : V5 � V ′

5 from (1.11). Similarly, there is an involution induced
by K1 or K1 ◦K2 on V3, producing V3 = V ′

3 ⊕ V ′′
3 , and there is another involution

induced by K2 or K1 ◦ K2 on V1, producing V1 = V ′
1 ⊕ V ′′

1 . On the set V6, the
induced involutions are opposite:

(1.16) P6 ◦K1 ◦Q6 = −P6 ◦K2 ◦Q6 : V6 → V6,

if one produces a direct sum V6 = V ′
6 ⊕ V ′′

6 , the other produces V6 = V ′′
6 ⊕ V ′

6 .
Similarly, there are opposite induced involutions on V2 and V4.

Theorem 1.130. Given 1
2 ∈ K, and commuting involutions on V with the above

notation,
V ′
5 = V ′

3 = V ′
1 = V1 ∩ V3 ∩ V5.

The composite projections are all equal:

P ′
5 ◦ P5 = P ′

3 ◦ P3 = P ′
1 ◦ P1 : V � V1 ∩ V3 ∩ V5.
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Also, V ′′
5 = V2 ∩ V4, V ′′

3 = V2 ∩ V6, and V ′′
1 = V4 ∩ V6.

Proof. V ′
5 is the set of fixed points v ∈ V5 of the involution P5 ◦ K1 ◦ Q5.

Denote the maps from Lemma 1.119 P ′
5, Q

′
5, so

Q′
5 ◦ P ′

5 =
1

2
· (IdV5 + P5 ◦K1 ◦Q5).

To establish the first claim, it is enough to show V ′
5 = V1∩V3; the claims V ′

3 = V1∩V5
and V ′

1 = V3 ∩ V5 are similar, and then (1.14) applies. To show V ′
5 ⊆ V1, use the

fact that K1 commutes with Q5 ◦ P5 = 1
2 · (IdV +K1 ◦K2); if v ∈ V ′

5 ⊆ V5, then

v = Q5(v) = (P5 ◦K1 ◦Q5)(v) = Q5((P5 ◦K1 ◦Q5)(v)) = K1(Q5(v)),

so v ∈ V1. Showing V
′
5 ⊆ V3 is similar, so V ′

5 ⊆ V1 ∩ V3.
Another argument would be to consider the subspace V ′

5 as the image of Q5 ◦
Q′

5 ◦ P ′
5 ◦ P5 in V . Then

Q5 ◦Q′
5 ◦ P ′

5 ◦ P5 = Q5 ◦ 1

2
· (IdV5 + P5 ◦K1 ◦Q5) ◦ P5

=
1

2
·Q5 ◦ P5 +

1

2
·K1 ◦Q5 ◦ P5

= Q1 ◦ P1 ◦Q5 ◦ P5,(1.17)

which shows V ′
5 is contained in V1, the image of Q1 in V .

Conversely, if v ∈ V1 ∩ V3, then v = K1(v) = Q5(v) ∈ V5 (Lemma 1.129) and
(P5 ◦K1 ◦Q5)(v) = (P5 ◦Q5)(v) = v ∈ V ′

5 .
The equality of the composites of projections follows from using the commuta-

tivity of the involutions to get Q1 ◦P1 ◦Q5 ◦P5 = Q5 ◦P5 ◦Q1 ◦P1, and then (1.17)
implies Q5 ◦Q′

5 ◦ P ′
5 ◦ P5 = Q1 ◦Q′

1 ◦ P ′
1 ◦ P1.

The last claim of the Theorem follows from similar calculations. However, the

three subspaces are in general not equal to each other.

The projection P5 : V � V5 satisfies P5 ◦K1 = (P5 ◦K1 ◦Q5) ◦ P5, so Lemma
1.126 applies: P5 respects the direct sums V1⊕V2 → V ′

5 ⊕V ′′
5 and the map V1 → V ′

5

induced by P5 is P ′
5 ◦ P5 ◦Q1. By Theorem 1.130,

(1.18) P ′
5 ◦ P5 ◦Q1 = P ′

1 ◦ P1 ◦Q1 = P ′
1 : V1 � V ′

1 = V ′
5 .

This gives an alternate construction of P ′
1 as a map induced by P5, or similarly,

any P ′
i is equal to a map induced by PI for any distinct i = 1, 3, 5, I = 1, 3, 5.

Theorem 1.131. Given 1
2 ∈ K, suppose K1

V , K
2
V are commuting involutions

on V as in Theorem 1.130. Similarly, let K1
U , K

2
U be commuting involutions on U ,

with corresponding notation for the direct sums: U = U1⊕U2, U = U3⊕U4, etc. If
a map H : U → V satisfies H◦K1

U = K1
V ◦H and H◦K2

U = K2
V ◦H, then H respects

the corresponding direct sums U1 ⊕U2 → V1 ⊕V2 and U3 ⊕U4 → V3 ⊕V4. Further,
the induced map P 1

V ◦H ◦Q1
U : U1 → V1 respects the direct sums U ′

1⊕U ′′
1 → V ′

1⊕V ′′
1

and similarly for the maps U3 → V3, U5 → V5 induced by H. The induced map
U ′
1 → V ′

1 is equal to the map U ′
3 → V ′

3 induced by P 3
V ◦H ◦Q3

U : U3 → V3.

Proof. The fact that H respects each pair of direct sums is Lemma 1.126.
The subspace U1 has a canonical involution P 1

U ◦ K2
U ◦ Q1

U , and since K1
U , K

2
U
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commute, K2
U also commutes with Q1

U ◦ P 1
U = 1

2 · (IdU +K1
U ). The map induced

by H , P 1
V ◦H ◦Q1

U : U1 → V1, satisfies:

(P 1
V ◦H ◦Q1

U ) ◦ (P 1
U ◦K2

U ◦Q1
U ) = P 1

V ◦H ◦K2
U ◦Q1

U ◦ P 1
U ◦Q1

U

= P 1
V ◦K2

V ◦H ◦Q1
U

= (P 1
V ◦K2

V ◦Q1
V ) ◦ (P 1

V ◦H ◦Q1
U ).

It follows from Lemma 1.126 again that P 1
V ◦H ◦ Q1

U respects the direct sums as
claimed. The induced map is P 1′

V ◦ (P 1
V ◦H ◦Q1

U ) ◦Q1′
U : U ′

1 → V ′
1 .

The last claim of the Theorem is that this induced map is equal to the map
P 3′
V ◦(P 3

V ◦H◦Q3
U)◦Q3′

U : U ′
3 → V ′

3 . The claim follows from the idea that the induced
maps are restrictions of H to the same subspace U ′

1 = U ′
3 = U1 ∩ U3, by Theorem

1.130. More specifically, the subspace inclusions are equal: Q3
U ◦Q3′

U = Q1
U ◦Q1′

U :

U1∩U3 ↪→ U , and the composites of projections are equal: P 1′
V ◦P 1

V = P 3′
V ◦P 3

V .

Example 1.132. Given 1
2 ∈ K, suppose K1 and K2 are commuting involutions

on V as in Theorem 1.130, and suppose H is another involution on V so that
K1 ◦ H = H ◦ K2. The three involutions K1, K2, K1 ◦ K2 produce direct sums
V = V1 ⊕ V2, V3 ⊕ V4, and V5 ⊕ V6. Similarly, because K1 ◦K2 commutes with H ,
the three involutions K1 ◦K2, H , and K1 ◦K2 ◦H produce corresponding direct
sums V = V5⊕V6, V7⊕V8, and V9⊕V10. As in (1.15), there are induced involutions
on V5, P5 ◦ K1 ◦ Q5 = P5 ◦ K2 ◦ Q5 and P5 ◦ H ◦ Q5 = P5 ◦ K1 ◦ K2 ◦ H ◦ Q5.
These two involutions commute: for v = Q5(v) = (K1 ◦ K2)(v) ∈ V5, v satisfies
K1(v) = K2(v) and

(P5 ◦K1 ◦Q5 ◦ P5 ◦H ◦Q5)(v) = (P5 ◦K1 ◦H)(v) = (P5 ◦H ◦K2)(v),

(P5 ◦H ◦Q5 ◦ P5 ◦K1 ◦Q5)(v) = (P5 ◦H ◦K1)(v).

By Lemma 1.128, their product

(P5 ◦K1 ◦Q5) ◦ (P5 ◦H ◦Q5) = P5 ◦K1 ◦H ◦Q5 = P5 ◦K2 ◦H ◦Q5

is also an involution on V5 (although in general, K1 ◦H and K2 ◦H need not be
involutions). So, Theorem 1.130 applies to these three commuting involutions on
V5, with P5 ◦K1 ◦Q5 producing a direct sum V5 = V ′

5 ⊕V ′′
5 , where V ′

5 = V1∩V3∩V5
is the fixed point subspace of P5 ◦ K1 ◦ Q5. Similarly, V5 ∩ V7 ∩ V9 is the fixed
point subspace of P5 ◦ H ◦ Q5, and denoting by V11 the fixed point subspace of
P5 ◦K1 ◦H ◦Q5, the three fixed point subspaces have the following intersection:

(V1 ∩ V3 ∩ V5) ∩ (V5 ∩ V7 ∩ V9) ∩ V11 = (V1 ∩ V3) ∩ (V5 ∩ V7)
= (V1 ∩ V3 ∩ V5) ∩ V7 = V1 ∩ V3 ∩ V7
= {v ∈ V : v = K1(v) = K2(v) = H(v)}.
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The projections from Theorem 1.130 appear in the following commutative diagram.

V





�����
�����

�����
�����

�����
��

�������
���

���
���

���

���� �� ����
���

���
���

���
�

 ����
�����

�����
�����

�����
���

V1

�� ��		
			

			
		 V3

����

V5

����





















���� �� ����
���

���
���

��� V7

����

V9

�������
���

���
�

V1 ∩ V3 ∩ V5

�� ����
���

���
���

� V11

����

V5 ∩ V7 ∩ V9

����

















V1 ∩ V3 ∩ V7
Example 1.133. The construction in Example 1.132 also works under the

hypothesis that H commutes with both K1 and K2 (instead of K1 ◦H = H ◦K2).

Exercise 1.134. For involutions on V as in Example 1.132 satisfyingK1◦K2 =
K2 ◦K1 and K1 ◦H = H ◦K2, the set

{IdV ,K1,K2,K1 ◦K2, H,K1 ◦H,K2 ◦H,K1 ◦K2 ◦H}
is the image of a representation D4 � End(V ), where D4 is the eight-element

dihedral group.

Remark 1.135. An example of a vector space over K = Q admitting three
involutions satisfying the relations of Example 1.132 is Q(

√−1, 4
√
2), as considered

by [Cox] (Example 7.3.4), along with diagrams analogous to the above diagram.

Theorem 1.136. Given V , the following statements (1) to (7) are equivalent,
and any implies (8). Further, if 1

2 ∈ K, then all eight statements are equivalent.

(1) V admits a direct sum of the form V = U ⊕ U .
(2) V = U1⊕U2 and there exist invertible maps A1 : U3 → U1 and A2 : U3 →

U2.
(3) V = U ′ ⊕ U ′′ and there exists an invertible map A : U ′′ → U ′.
(4) V = U ′⊕U ′′ and there exists an involution K ∈ End(V ) that respects the

direct sums U ′ ⊕ U ′′ → U ′′ ⊕ U ′.
(5) V admits an idempotent P ∈ End(V ) and an involution K ∈ End(V ) such

that P ◦K = K ◦ (IdV − P ).
(6) V = U ′ ⊕ U ′′ and there exists an invertible H ∈ End(V ) that respects the

direct sums U ′ ⊕ U ′′ → U ′′ ⊕ U ′.
(7) V admits an idempotent P ∈ End(V ) and an invertible map H ∈ End(V )

such that P ◦H = H ◦ (IdV − P ).
(8) V admits anticommuting involutions K1, K2 (i.e., K1 ◦K2 = −K2 ◦K1).

Proof. The implication (1) =⇒ (2) is canonical: let U1 = U2 = U3 = U , and
A1 = A2 = IdU .

The implication (2) =⇒ (1) is canonical. Given V = U1⊕U2 with projections
(P1, P2) and inclusions (Q1, Q2), Example 1.97 applies. Let U = U3, to get V =
U ⊕U with projections (A−1

1 ◦P1, A
−1
2 ◦P2) and inclusions (Q1 ◦A1, Q2 ◦A2). The

direct sums are equivalent.
The implication (1) =⇒ (3) is canonical: let U ′ = U ′′ = U and A = IdU .
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The implication (2) =⇒ (3) is canonical: let U ′ = U1, U
′′ = U2 and A =

A1 ◦A−1
2 .

For (3) =⇒ (1), there are two choices. Given V = U ′ ⊕ U ′′ with projections
(P ′, P ′′) and inclusions (Q′, Q′′), one choice is to let U = U ′. Then V = U ⊕ U
with projections (P1, A ◦ P2) and inclusions (Q1, Q2 ◦ A−1). The other choice is
to let U = U ′′, with projections (A−1 ◦ P1, P2) and inclusions (Q1 ◦ A,Q2). As
in Example 1.97, either of the two constructions gives a direct sum equivalent to
V = U ′ ⊕ U ′′, so they are equivalent to each other.

For (3) =⇒ (2), there are two choices. One choice is to let U3 = U ′, A1 = IdU ′ ,
A2 = A−1. Applying the canonical (2) =⇒ (1) construction then gives projections
(P1, A ◦ P2) as in the first choice of the previous implication. The second choice is
to let U3 = U ′′, A1 = A, A2 = IdU ′′ , which similarly corresponds to the second
choice in the previous implication.

The implication (3) =⇒ (4) is canonical. Given A : U ′′ → U ′, let

(1.19) K = Q′′ ◦A−1 ◦ P ′ +Q′ ◦A ◦ P ′′.

It is straightforward to check that K is an involution, and Q′◦P ′◦K = K ◦Q′′◦P ′′,
so K respects the direct sums as in Example 1.94.

The implication (4) =⇒ (3) is canonical. Given K, let A = P ′ ◦ K ◦ Q′′ :
U ′′ → U ′, which by Lemma 1.89 has inverse A−1 = P ′′ ◦K ◦Q′.

The implication (4) =⇒ (6) is canonical: let H = K.
For (6) =⇒ (3), there are two choices. One choice is to let A = P ′ ◦H ◦Q′′ :

U ′′ → U ′, so A−1 = P ′′ ◦ H−1 ◦ Q′. The canonical involution (1.19) from the
implication (3) =⇒ (4) is then K = Q′′ ◦P ′′ ◦H−1 ◦Q′ ◦P ′+Q′ ◦P ′ ◦H ◦Q′′ ◦P ′′.
The second choice is to let A = P ′ ◦H−1 ◦Q′′. This similarly leads to an involution
Q′′ ◦ P ′′ ◦H ◦Q′ ◦ P ′ +Q′ ◦ P ′ ◦H−1 ◦Q′′ ◦ P ′′, which, unless H is an involution,
may be different from the involution from the first choice.

For (4) =⇒ (5), and for (6) =⇒ (7), there are two choices: P = Q′ ◦ P ′,
or P = Q′′ ◦ P ′′. This choice between two idempotents was already mentioned in
Example 1.114.

Conversely, for (5) =⇒ (4) (and similarly for (7) =⇒ (6)), there are two
choices. For U ′ = ker(P ) and U ′′ = P (V ), as in Example 1.113, there are two ways
to form a direct sum: V = U ′ ⊕ U ′′ or V = U ′′ ⊕ U ′. The map K (similarly H)
respects the direct sums as in Lemma 1.115.

For (4) =⇒ (8), which does not require 1
2 ∈ K, there are two choices (assuming

the ordering of the pair K1, K2 does not matter). Given K, let K1 = K. One
choice is to let K2 = Q′ ◦ P ′ − Q′′ ◦ P ′′, as in Example 1.122. It follows from
K ◦Q′ ◦ P ′ = Q′′ ◦ P ′′ ◦K that K1 ◦K2 = −K2 ◦K1. The second choice is to let
K2 = −Q′ ◦ P ′ +Q′′ ◦ P ′′.

Similarly for (5) =⇒ (8), there are two choices. Given K, let K1 = K. One
choice is to let K2 = 2 · P − IdV , as in Lemma 1.123. The second choice is to let
K2 = IdV − 2 · P .

For (8) =⇒ (4) using 1
2 ∈ K, the involution K1 produces a direct sum V =

V1⊕V2 as in Lemma 1.119, with projections P1 = 1
2 (IdV +K1), P2 = 1

2 (IdV −K1)
(the order of the direct sum could be chosen the other way, V2 ⊕ V1). By Lemma
1.127, K = K2 satisfies (4). In this case, the invertible map from (3) is, by Lemma
1.89, the composite

(1.20) A = P1 ◦K2 ◦Q2 : V2 → V1,
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with inverse P2 ◦K2 ◦Q1 : V1 → V2. Another choice for (8) =⇒ (4) is to use K2

to produce a different direct sum, and then let K = K1.

Theorem 1.137. Given 1
2 ∈ K and two involutions K,K ′ ∈ End(V ), which

produce direct sums V = V1 ⊕ V2, V = V ′
1 ⊕ V ′

2 as in Lemma 1.119, if K and K ′

anticommute, then for i = 1, 2, I = 1, 2, and β ∈ K, β �= 0, the map

β · P ′
I ◦Qi : Vi → V ′

I

is invertible.

Proof. Consider P ′
I ◦Qi : Vi → V ′

I and Pi ◦Q′
I : V ′

I → Vi. Then

P ′
I ◦Qi ◦ Pi ◦Q′

I = P ′
I ◦

1

2
· (IdV ±K) ◦Q′

I .

Since K respects the direct sums V ′
1 ⊕V ′

2 → V ′
2 ⊕V ′

1 by Lemma 1.127, P ′
I ◦K ◦Q′

I =
0End(V ′

I )
by Lemma 1.87. In the other order,

Pi ◦Q′
I ◦ P ′

I ◦Qi = Pi ◦ 1

2
· (IdV ±K ′) ◦Qi,

and similarly, Pi ◦K ′ ◦Qi = 0End(Vi).
Since P ′

I ◦Q′
I = IdV ′

I
and Pi ◦Qi = IdVi , the conclusion is that for any scalar

β ∈ K, β �= 0, the map β · P ′
I ◦Qi has inverse

2
β · Pi ◦Q′

I .

Lemma 1.138. Given involutions K1, K2, K3 ∈ End(V ), any pair of two of
the following three statements implies the remaining one.

(1) K3 commutes with K1 ◦K2.
(2) K3 anticommutes with K1.
(3) K3 anticommutes with K2.

Exercise 1.139. If K1, K2, K3 are involutions such that K1 and K2 commute
and K3 satisfies the three conditions from Lemma 1.138, then the set

{±IdV ,±K1,±K2,±K3,±K2 ◦K3,±K1 ◦K3,±K1 ◦K2,±K1 ◦K2 ◦K3}
is the image of a representation D4 ×Z2 � End(V ), where D4 is the eight-element

dihedral group and Z2 is the two-element group.

For 1
2 ∈ K and commuting involutions K1, K2, recall the direct sums V =

V1 ⊕ V2, V = V3 ⊕ V4, V = V5 ⊕ V6 from Lemma 1.129 produced by K1, K2,
K1 ◦K2. Further, suppose K3 is another involution satisfying the three conditions
from Lemma 1.138, and let V = V7 ⊕ V8 and V = V9 ⊕ V10 be the direct sums
produced by the involutions K3 and K1 ◦ K2 ◦ K3. Theorem 1.130 applies to V5
twice: first, to the pair K1, K2 to get the canonical involution P5 ◦K1 ◦ Q5 from
(1.15) producing V5 = V ′

5 ⊕ V ′′
5 with V ′

5 = V1 ∩ V3 ∩ V5, and second, to the other
pair K1 ◦K2, K3 to get another involution P5 ◦K3 ◦Q5 = P5 ◦K1 ◦K2 ◦K3 ◦Q5 as
in (1.15), producing another direct sum V5 = V ′′′

5 ⊕ V ′′′′
5 , with V ′′′

5 = V5 ∩ V7 ∩ V9.
Corollary 1.140. Given 1

2 ∈ K, 0 �= β ∈ K, commuting involutions K1, K2,
and an involution K3 as in Lemma 1.138, the map

β · P ′′′
5 ◦Q′

5 : V ′
5 → V ′′′

5

is invertible.
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Proof. Q′
5 is as in the Proof of Theorem 1.130. The projection P ′′′

5 : V5 � V ′′′
5

is from the direct sum V5 = V ′′′
5 ⊕ V ′′′′

5 produced by P5 ◦K3 ◦Q5. The involutions

P5 ◦K1 ◦Q5, P5 ◦K3 ◦Q5 ∈ End(V5) anticommute, and Theorem 1.137 applies.

Using a step analogous to (1.17), the output of the above invertible map, for
input v ∈ V ′

5 , can be written as:

β · P ′′′
5 ◦Q′

5 : v �→ β · (P ′′′
5 ◦Q′

5)(v)

= Q5(Q
′′′
5 (β · (P ′′′

5 ◦ (P5 ◦Q5) ◦Q′
5)(v)))(1.21)

= β · ((Q5 ◦Q′′′
5 ◦ P ′′′

5 ◦ P5) ◦Q5 ◦Q′
5)(v)

= β · ((Q7 ◦ P7 ◦Q5 ◦ P5) ◦Q5 ◦Q′
5)(v)

= β · (Q7 ◦ P7 ◦Q5 ◦Q′
5)(v)

=
β

2
· (v +K3(v)).

Corollary 1.140 could be re-stated as constructing an invertible map between these
subspaces of V5 = {v ∈ V : v = (K1 ◦K2)(v)}:

{v = K1(v) = K2(v)} → {v = K3(v) = (K1 ◦K2 ◦K3)(v)}.
Two more subspaces of V5, from Theorem 1.130, are:

V ′′
5 = {v ∈ V : v = −K1(v) = −K2(v)} = V2 ∩ V4,

V ′′′′
5 = {v ∈ V : v = −K3(v) = −(K1 ◦K2 ◦K3)(v)} = V8 ∩ V10,

and Theorem 1.137 also gives a construction of invertible maps: V ′
5 → V ′′′′

5 , V ′′
5 →

V ′′′
5 , and V ′′

5 → V ′′′′
5 .

Example 1.141. Given any spaces V and W , and an involution K on V ,
the map [IdW ⊗ K] is an involution on W ⊗ V . If 1

2 ∈ K, then the direct sum

produced by [IdW ⊗K] has projections 1
2 · (IdW⊗V ± [IdW ⊗K]). For the direct

sum V = V1⊕V2 as in Lemma 1.119 with inclusionsQ1, Q2, there is also a direct sum
W⊗V =W⊗V1⊕W⊗V2 as in Example 1.81, with projections [IdW ⊗ 1

2 ·(IdV ±K)]
and inclusions [IdW ⊗Qi]. The two constructions lead to the same formula for the
projection maps, so the projections are canonical and K produces a direct sum
W ⊗ V = W ⊗ V1 ⊕W ⊗ V2. The space W ⊗ V1 is a subspace of W ⊗ V , equal
to the fixed point set of [IdW ⊗K], with inclusion map [IdW ⊗Q1], and similarly
W ⊗ V2 is the fixed point subspace of −[IdW ⊗K]. The space V ⊗W admits an
analogous involution and direct sum.

Example 1.142. Given any spaces U , W with involutions KU on U and KW

on W , the involutions [IdU ⊗KW ] and [KU ⊗ IdW ] on U ⊗W commute, so Lemma
1.129 applies, and if 1

2 ∈ K, then Lemma 1.128 and Theorem 1.130 apply. For
the direct sums U = U1 ⊕ U2 and W = W1 ⊕W2 produced as in Lemma 1.119,
[KU ⊗ IdW ] respects the direct sum U ⊗W1 ⊕ U ⊗W2 from Example 1.141; the
induced involution on U ⊗W1 is exactly [KU ⊗ IdW1 ], so U ⊗W1 admits a direct
sum U1 ⊗W1 ⊕ U2 ⊗W1. Similarly, [IdU ⊗KW ] induces an involution on U1 ⊗W
and a direct sum U1 ⊗ W1 ⊕ U1 ⊕ W2. The subspace U1 ⊗ W1 appears in two
different ways, but there is no conflict in naming it: by Theorem 1.130, U1 ⊗W1 =
(U ⊗W1) ∩ (U1 ⊗W ).
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Example 1.143. Given any spaces V and W , and an involution K on V , the
map Hom(IdW ,K) is an involution on Hom(W,V ). If 1

2 ∈ K, then the direct sum
produced by Hom(IdW ,K) has projections

1

2
· (IdHom(W,V ) ±Hom(IdW ,K)) : A �→ 1

2
· (A±K ◦A).

For the direct sum V = V1 ⊕ V2 as in Lemma 1.119, there is also a direct sum
Hom(W,V ) = Hom(W,V1)⊕Hom(W,V2) as in Example 1.82, with projections

Hom(IdW , Pi) : Hom(W,V ) → Hom(W,Vi) : A �→ Pi ◦A =
1

2
· (IdV ±K) ◦A.

The two constructions lead to the same formula for the projection maps. The
only difference is in the target space: the fixed point set of Hom(IdW ,K) is the
set of maps A : W → V such that A = K ◦ A, while the image of the projection
Hom(IdW , P1) is a set of maps with domainW and target V1 = {v ∈ V : v = K(v)},
which is a subspace of V . It will not cause any problems to consider Hom(W,Vi)
as a subspace of Hom(W,V ); more precisely, in the case where V = V1 ⊕ V2 is
a direct sum produced by an involution, the map Hom(IdW , Qi) from Example
1.82 can be regarded as a subspace inclusion as in Lemma 1.119, so A and Qi ◦
A are identified. Then the above two direct sum constructions have the same
projections and inclusions, so the projections are canonical and K produces a direct
sum Hom(W,V ) = Hom(W,V1)⊕Hom(W,V2).

Example 1.144. Given any spaces V and W , and an involution K on V , the
map Hom(K, IdW ) is an involution on Hom(V,W ). If 1

2 ∈ K, then the direct sum
produced by Hom(K, IdW ) has projections

(1.22)
1

2
· (IdHom(V,W ) ±Hom(K, IdW )) : A �→ 1

2
· (A±A ◦K).

For the direct sum V = V1 ⊕ V2 as in Lemma 1.119, there is also a direct sum
Hom(V,W ) = Hom(V1,W )⊕Hom(V2,W ) as in Example 1.83, with projections

Hom(Qi, IdW ) : Hom(V,W ) → Hom(Vi,W ) : A �→ A ◦Qi.

Unlike Example 1.143, the two constructions lead to different formulas for the
projection maps. The fixed point set of Hom(K, IdW ) is the set of maps A : V →W
such that A = A ◦K, while the image of the projection Hom(Q1, IdW ) is a set of
maps with domain V1 and target W — which does not look like a subspace of
Hom(V,W ). The conclusion is that the two direct sum constructions are different.
However, they are equivalent, as in Definition 1.96. Checking statements (2) and
(3) of Lemma 1.95,

Hom(Pi, IdW ) ◦Hom(Qi, IdW ) : A �→ A ◦Qi ◦ Pi = A ◦ 1

2
· (IdV ±K),

which is the same as (1.22).

Example 1.145. Given any spaces U , V , W , with involutions KU on U , KV

on V , and Hom(KV , IdW ) on Hom(V,W ) as in Example 1.144, suppose 1
2 ∈ K and

H : U → Hom(V,W ) satisfies Hom(KV , IdW ) ◦ H = H ◦ KU . Let U = U1 ⊕ U2

be the direct sum produced by KU , and consider the direct sum on Hom(V,W )
produced by Hom(KV , IdW ) as in (1.22) from Example 1.144. Then, by Lemma
1.126, H respects the direct sums:

H : U1 ⊕ U2 → {A : V →W : A ◦KV = A} ⊕ {A : V →W : A ◦KV = −A}.
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Let V = V1 ⊕ V2 be the direct sum produced by KV ; then by Lemma 1.98, H also
respects the other, equivalent direct sum on Hom(V,W ) from Example 1.144:

H : U1 ⊕ U2 → Hom(V1,W )⊕Hom(V2,W ).

Example 1.146. Given 1
2 ∈ K, any spaces U and W , and involutions KU ∈

End(U) and KW ∈ End(W ), let U = U1 ⊕ U2 be the direct sum produced by
KU , with projections (P1, P2) and inclusions (Q1, Q2), and let W = W1 ⊕W2 be
the direct sum produced by KW , with data (P ′

1, P
′
2), (Q′

1, Q
′
2). Then there are

commuting involutions Hom(IdU ,KW ), Hom(KU , IdW ), on Hom(U,W ), and their
composite Hom(KU ,KW ) is another involution. Theorem 1.130 applies, and we
re-use its V1, . . . , V6 notation for the produced direct sums. As in Example 1.143,
there is a direct sum

Hom(U,W ) = {A = KW ◦A} ⊕ {A = −KW ◦A}
= Hom(U,W1)⊕Hom(U,W2)

= V1 ⊕ V2.

As in Example 1.144, there are two different but equivalent direct sums, the first is

Hom(U,W ) = {A = A ◦KU} ⊕ {A = −A ◦KU} = V3 ⊕ V4,

with projections and inclusions denoted (P3, P4), (Q3, Q4), and the second is

Hom(U,W ) = Hom(U1,W )⊕Hom(U2,W ),

with projections and inclusions

(Hom(Q1, IdW ),Hom(Q2, IdW )), (Hom(P1, IdW ),Hom(P2, IdW )).

From Lemma 1.99, there are canonical, invertible maps

P3 ◦Hom(P1, IdW ) : Hom(U1,W ) → V3,

Hom(Q1, IdW ) ◦Q3 : V3 → Hom(U1,W ).

There is also the direct sum produced by the composite involution,

Hom(U,W ) = {A = KW ◦A ◦KU} ⊕ {A = −KW ◦A ◦KU}
= V5 ⊕ V6.

It follows from Theorem 1.130 that V1, V3, and V5 admit canonical involutions and
direct sums. For example, P3 ◦ Hom(IdU ,KW ) ◦ Q3 is the involution on V3, and
it produces the direct sum V3 = V ′

3 ⊕ V ′′
3 , where V ′

3 = V1 ∩ V3 ∩ V5. The above
invertible map Hom(Q1, IdW ) ◦Q3 : V3 → Hom(U1,W ) satisfies

Hom(IdU1 ,KW ) ◦ (Hom(Q1, IdW ) ◦Q3)

= Hom(Q1,KW ) ◦Q3

= (Hom(Q1, IdW ) ◦Q3) ◦ (P3 ◦Hom(IdU ,KW ) ◦Q3) ,

so by Lemma 1.126, it respects the direct sums

V ′
3 ⊕ V ′′

3 → Hom(U1,W1)⊕Hom(U1,W2).

By Lemma 1.89, there is a canonical, invertible map from

V ′
3 = V1 ∩ V3 ∩ V5 = {A : U →W : A = KW ◦A = A ◦KU = KW ◦A ◦KU}
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to Hom(U1,W1), specifically, the map

A �→ P ′
1 ◦ (Q3(Q

′
3(A))) ◦Q1

= P ′
1 ◦A ◦Q1 =

1

2
· (IdW +KW ) ◦A ◦Q1 = A ◦Q1.

The inverse is defined for B ∈ Hom(U1,W1) by

B �→ P ′
3(P3(Q

′
1 ◦B ◦ P1)),

which, since Q′
1 ◦B ◦ P1 is an element of the subspace V1 ∩ V3, simplifies to

Q′
1 ◦B ◦ P1 = B ◦ P1 = B ◦ 1

2
· (IdU +KU ).

Example 1.147. For 1
2 ∈ K, and involutions KU on U and KW onW as in the

previous Example, suppose K3 is an involution on Hom(U,W ) that commutes with
Hom(KU ,KW ) and anticommutes with either Hom(KU , IdW ) or Hom(IdU ,KW ).
Then Lemma 1.138 and Corollary 1.140 apply. Continuing with the V1, . . . , V6
notation from Theorem 1.130 and Example 1.146, and also the V5 = V ′′′

5 ⊕ V ′′′′
5

and V7, . . . , V10 notation from Corollary 1.140, the result of the Corollary is that
for 0 �= β ∈ K, there is an invertible map:

β · P ′′′
5 ◦Q′

5 : V ′
5 → V ′′′

5

which maps

{A ∈ Hom(U,W ) : A = A ◦KU = KW ◦A}
to

{A ∈ Hom(U,W ) : A = KW ◦A ◦KU = K3(A)}.
There is also the canonical, invertible map from Example 1.146,

P ′
3 ◦ (P3 ◦Hom(P1, IdW )) ◦Hom(IdU1 , Q

′
1),

which maps Hom(U1,W1) to V
′
3 = V ′

5 . The composite of these maps is an invertible
map Hom(U1,W1) → V ′′′

5 :

(β · P ′′′
5 ◦Q′

5) ◦ (P ′
3 ◦ (P3 ◦Hom(P1, IdW )) ◦Hom(IdU1 , Q

′
1)).

For B ∈ Hom(U1,W1), its output in V ′′′
5 ⊆ Hom(U,W ) under the above map

simplifies as follows, using the equality of subspace inclusions Q5 ◦ Q′
5 = Q3 ◦ Q′

3

and steps similar to (1.21):

B �→ ((β · P ′′′
5 ◦Q′

5) ◦ (P ′
3 ◦ P3 ◦Hom(P1, Q

′
1)))(B)

= Q5(Q
′′′
5 (β · (P ′′′

5 ◦ (P5 ◦Q5) ◦Q′
5 ◦ P ′

3 ◦ P3 ◦Hom(P1, Q
′
1))(B)))

= β · ((Q5 ◦Q′′′
5 ◦ P ′′′

5 ◦ P5) ◦ (Q3 ◦Q′
3 ◦ P ′

3 ◦ P3) ◦Hom(P1, Q
′
1))(B)

= β · ((Q7 ◦ P7 ◦Q5 ◦ P5) ◦ (Q5 ◦ P5 ◦Q3 ◦ P3) ◦Hom(P1, Q
′
1))(B),

which, since Q′
1 ◦B ◦ P1 is an element of the subspace V3 ∩ V5, simplifies to

β · (Q7 ◦ P7)(Q
′
1 ◦B ◦ P1) =

β

2
· (Q′

1 ◦B ◦ P1 +K3(Q
′
1 ◦B ◦ P1)).

The inverse map

{A = KW ◦A ◦KU = K3(A)} → Hom(U1,W1)
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is the composite:

(Hom(IdU1 , P
′
1) ◦ (Hom(Q1, IdW ) ◦Q3) ◦Q′

3) ◦ (
2

β
· P ′

5 ◦Q′′′
5 )

=
2

β
·Hom(Q1, P

′
1) ◦ (Q5 ◦Q′

5) ◦ P ′
5 ◦ (P5 ◦Q5) ◦Q′′′

5

=
2

β
·Hom(Q1, P

′
1) ◦ (Q3 ◦ P3 ◦Q5 ◦ P5) ◦Q5 ◦Q′′′

5

=
2

β
·Hom(Q1, P

′
1) ◦Q3 ◦ P3 ◦Q5 ◦Q′′′

5 ,

which acts as A �→ 2
β · P ′

1 ◦ (12 · (A+A ◦KU )) ◦Q1 = 2
β ·A ◦Q1.



CHAPTER 2

A Survey of Trace Elements

2.1. Endomorphisms: the scalar valued trace

In the following diagram, the canonical maps kV V , eV V , and fV V are abbrevi-
ated k, e, f , and the double duality dV ∗⊗V is abbreviated d.

Lemma 2.1. For any vector space V , the following diagram is commutative.

(V ∗ ⊗ V )∗

End(V )

e

��
End(V )∗

k∗

������������������������

V ∗ ⊗ V

k

��										

f

��������������������
d �� (V ∗ ⊗ V )∗∗

f∗

��������������������
e∗

�������������

Proof. The left triangle is commutative by the definition of f from Notation
1.69. The right triangle is commutative by Lemma 1.6, and the middle by Lemma

1.71.

The spaces End(V ) and (V ∗ ⊗ V )∗ each have the interesting property of con-
taining a distinguished element, which is nonzero when V has nonzero dimension.
The identity IdV : v �→ v is the distinguished element of End(V ).

Definition 2.2. The distinguished element of (V ∗⊗V )∗ is the evaluation map,
EvV : φ⊗ v �→ φ(v).

The two distinguished elements are related by e : IdV �→ EvV :

(2.1) (e(IdV ))(φ ⊗ v) = φ(IdV (v)) = EvV (φ⊗ v).

Definition 2.3. For finite-dimensional V , define the trace by

TrV = (k∗)−1(EvV ) ∈ End(V )∗.

This distinguished element is the output of either of the two previously men-
tioned distinguished elements under any path of maps in the above diagram leading
to End(V )∗, by Lemma 2.1, and the fact that all the arrows are invertible when V
is finite-dimensional. At least one arrow in any path taking IdV or EvV to TrV is
the inverse of one of the arrows indicated in the diagram.

Remark 2.4. Using Definition 2.3 as the definition of trace, so that TrV (A) =
EvV (k

−1(A)), is exactly the approach of [MB], [B] §II.4.3, and [K] §II.3. In [G2]
§I.8, this formula is stated as a consequence of a different definition of trace.

49
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Lemma 2.5. For finite-dimensional V , and H ∈ End(V ),

TrV ∗(H∗) = TrV (H).

Proof. In this case, H∗ is tV V (H). In the following diagram, tV V , kV ∗V ∗ ,
eV ∗V ∗ , fV ∗V ∗ , and dV ∗∗⊗V ∗ are abbreviated t, k′, e′, f ′, and d′. There is also a
map p : V ∗ ⊗ V → V ∗∗ ⊗ V ∗ from Notation 1.72, and p∗ maps the distinguished
element EvV ∗ ∈ (V ∗∗ ⊗ V ∗)∗ to EvV :

(p∗(EvV ∗))(φ⊗ v) = EvV ∗((dV (v))⊗ φ) = (dV (v))(φ) = φ(v) = EvV (φ⊗ v).

(V ∗ ⊗ V )∗

End(V )

e

����������������������

t

��

End(V )∗
k∗

�������������������������

V ∗ ⊗ V

k

������������

f

��������������������

d
��

p

��

(V ∗ ⊗ V )∗∗

f∗

��������������������
e∗

�������������

p∗∗

��

(V ∗∗ ⊗ V ∗)∗

p∗

��

End(V ∗)

e′ ����������

������������

End(V ∗)∗

k′∗�����������

�������������

t∗

��

V ∗∗ ⊗ V ∗
k′

������������

f ′

��������������������
d′

�� (V ∗∗ ⊗ V ∗)∗∗

f ′∗

��������������������
e′∗

�������������

Some of the squares in the diagram are commutative, for example, k′ ◦ p = t ◦ k
from Lemma 1.75, and then p∗ ◦ (k′∗) = k∗ ◦ t∗ by Lemma 1.6, and this is enough
to give the result:

t∗(TrV ∗) = (t∗ ◦ (k′∗)−1)(EvV ∗) = ((k∗)−1 ◦ p∗)(EvV ∗) = (k∗)−1(EvV ) = TrV .

The equality q ◦ t = e from Lemma 1.58, which could fit in the back left square
of the above diagram, shows that q maps the distinguished element IdV ∗ to EvV .
So, there is another formula for the trace,

(2.2) TrV = ((k∗)−1 ◦ q)(IdV ∗).
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Lemma 2.6. For maps A : V → U and B : U → V between vector spaces of
finite, but possibly different, dimensions, TrV (B ◦A) = TrU (A ◦B).

Proof. Abbreviated names for maps are used again in the following diagram,
with primes in the lower pentagon.

(V ∗ ⊗ V )∗

[A∗⊗B]∗

��

End(V )

e

��

Hom(B,A)

��

End(V )∗
k∗

������������������������

Hom(A,B)∗

��

V ∗ ⊗ V

k

��										

f

��������������������

d
��

[B∗⊗A]

��

[B∗⊗A]∗

��

(V ∗ ⊗ V )∗∗

f∗

��������������������
e∗

�������������

[B∗⊗A]∗∗

��

(U∗ ⊗ U)∗

End(U)

Hom(A,B)

��

e′ 

��

End(U)∗

k′∗�����������

�������������

Hom(B,A)∗

��

U∗ ⊗ U

[A∗⊗B]

��

k′

��										

f ′

��������������������
d′

�� (U∗ ⊗ U)∗∗

[A∗⊗B]∗∗

��

f ′∗

��������������������
e′∗

�������������

Some of the squares in the diagram are commutative. In the back left square with
upward arrows, it follows from Lemma 1.57 (and can also be checked directly) that:

e ◦Hom(A,B) = [B∗ ⊗A]∗ ◦ e′.
For a front left square, by Lemma 1.62,

Hom(B,A) ◦ k = k′ ◦ [B∗ ⊗A],

then by Lemma 1.6, k∗◦Hom(B,A)∗ = [B∗⊗A]∗◦k′∗, corresponding to a back right
square. The claimed equality follows from the following steps, including Lemma
2.1:

TrU (A ◦B) = TrU (Hom(B,A)(IdV )) = (Hom(B,A)∗(TrU ))(IdV )

= ((Hom(B,A)∗ ◦ (k′∗)−1 ◦ e′)(IdU ))(IdV )
= ((k∗)−1 ◦ [B∗ ⊗A]∗ ◦ e′)(IdU ))(IdV )
= ((k∗)−1 ◦ e ◦Hom(A,B))(IdU ))(IdV )

= ((e∗ ◦ d ◦ k−1 ◦Hom(A,B))(IdU ))(IdV )

= (d(k−1(Hom(A,B)(IdU ))))(e(IdV ))

= (e(IdV ))(k
−1(Hom(A,B)(IdU )))

= (((k∗)−1 ◦ e)(IdV ))(Hom(A,B)(IdU )) = TrV (B ◦A).

Example 2.7. In the case V = K, k(IdK ⊗ 1) = IdK ∈ End(K) = K∗. The
trace is TrK = e∗(d(IdK ⊗ 1)) ∈ K∗∗, and for φ ∈ K∗, TrK(φ) = (e(φ))(IdK ⊗ 1) =
IdK(φ(1)) = φ(1). So, TrK = dK(1), and in particular, TrK(IdK) = 1.
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Example 2.8. If V is finite-dimensional and admits a direct sum of the form
V = K ⊕ U , with projection P1 : V → K and Q1 : K → V , then by Lemma
2.6 and Example 2.7, TrV (Q1 ◦ P1) = TrK(P1 ◦ Q1) = TrK(IdK) = 1. Similarly,
if V is a direct sum of finitely many copies of K, V = K ⊕ K ⊕ · · · ⊕ K, then
TrV (IdV ) = TrV (ΣQi ◦ Pi) = ΣTrK(Pi ◦Qi) = Σ1.

Example 2.9. Assume TrV (IdV ) �= 0. Let End0(V ) denote the kernel of TrV ,
i.e., the subspace of trace 0 endomorphisms. Recall from Lemma 1.100 that there
exists a direct sum End(V ) = K⊕End0(V ), and in particular, there exist constants
α, β ∈ K so that α · β · TrV (IdV ) = 1, and a direct sum is defined by

Pα
1 = α · TrV ,

Qβ
1 : K → End(V ) : γ �→ β · γ · IdV ,(2.3)

P2 = IdEnd(V ) −Qβ
1 ◦ Pα

1 ,

and the subspace inclusion mapQ2 : End0(V ) → End(V ). Such a direct sum admits
a free parameter and is generally not unique, but since IdV is a canonical element
of End(V ) and is not in ker(TrV ) by assumption, Lemma 1.101 applies, and any
choice of constants α, β leads to an equivalent direct sum. So, any endomorphismH
can be written as a sum of a scalar multiple of IdV , and a trace zero endomorphism:

H =
TrV (H)

TrV (IdV )
· IdV +

(
H − TrV (H)

TrV (IdV )
· IdV

)
,

and this decomposition of H is canonical.

Theorem 2.10. For V finite-dimensional, and A ∈ End(V ),

TrV (A) = (EvV ◦ [IdV ∗ ⊗A] ◦ k−1)(IdV ).

Proof. By Lemma 1.62,

[IdV ∗ ⊗A] ◦ k−1 = [Id∗V ⊗A] ◦ k−1 = k−1 ◦Hom(IdV , A),

so

(EvV ◦ [IdV ∗ ⊗A] ◦ k−1)(IdV ) = EvV (k
−1(A)) = TrV (A).

Remark 2.11. The idea of Theorem 2.10 (as in [K] §II.3) is that the trace of A
is the output of the distinguished element k−1(IdV ) under the composite of maps
in this diagram:

V ∗ ⊗ V
[IdV ∗⊗A] �� V ∗ ⊗ V

EvV �� K.

The statement of Theorem 2.10 could also be written as

TrV (A) = ((dEnd(V )(IdV )) ◦Hom(k−1, EvV ) ◦ j)(IdV ∗ ⊗A).

In terms of the scalar multiplication map l from Example 1.28 and the β = 1 case
of (2.3) from Example 2.9,

(2.4) Q1
1 : K → End(V ∗) : 1 �→ IdV ∗ ,

the composite [Q1
1 ⊗ IdEnd(V )] ◦ l−1 : End(V ) → End(V ∗) ⊗ End(V ) takes A to

IdV ∗ ⊗A, so

(2.5) TrV = (dEnd(V )(IdV )) ◦Hom(k−1, EvV ) ◦ j ◦ [Q1
1 ⊗ IdEnd(V )] ◦ l−1.
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The map Q1
1 from (2.4) is used in (2.5), and again in later Sections, without any

assumption on the identity map’s trace, so Q1
1 is not necessarily part of the data

for some direct sum as in Example 2.9.

Proposition 2.12. For V = V1 ⊕ V2, A ∈ End(V1), and B ∈ End(V2), let
A⊕B be the element of End(V ) defined by A⊕B = Q1 ◦A ◦ P1 +Q2 ◦B ◦ P2. If
V is finite-dimensional, then

TrV (A⊕B) = TrV1(A) + TrV2(B).

Proof. Recall V1 and V2 are finite-dimensional by Exercise 0.50. The con-
struction of A⊕B is as in Lemma 1.86.

TrV (A⊕B) = TrV (Q1 ◦A ◦ P1) + TrV (Q2 ◦B ◦ P2)

= TrV1(P1 ◦Q1 ◦A) + TrV2(P2 ◦Q2 ◦B)

= TrV1(A) + TrV2(B),

using Lemma 2.6.

Proposition 2.13. If V is finite-dimensional, V = V1⊕V2, and K ∈ End(V ),
then

TrV (K) = TrV1(P1 ◦K ◦Q1) + TrV2(P2 ◦K ◦Q2).

Proof. Using Lemma 2.6,

TrV (K) = TrV ((Q1 ◦P1 +Q2 ◦P2) ◦K) = TrV1(P1 ◦K ◦Q1) + TrV2(P2 ◦K ◦Q2).

The formula TrV (IdV ) = TrV1(IdV1) + TrV2(IdV2 ) can be considered as a
special case of either Proposition 2.12 or Proposition 2.13.

Exercise 2.14. Given V finite-dimensional and A,P ∈ End(V ), suppose P
is an idempotent with image subspace V1 = P (V ), and let P1 and Q1 be the
projections and inclusions from Example 1.113. Then

TrV (P ◦A) = TrV1(P1 ◦A ◦Q1).

In particular, for A = IdV , TrV (P ) = TrV1(IdV1).

Exercise 2.15. Suppose K has the property that

ν∑
ι=1

1 �= 0 for all ν ≥ 1.

For V finite-dimensional and A ∈ End(V ), any pair of two of the following three
statements implies the remaining third statement.

(1) There exist φ ∈ V ∗, v ∈ V so that A = kV V (φ⊗ v).
(2) TrV (A) = 1.
(3) A is a non-zero idempotent.

Hint. The implications (1), (2) =⇒ (3) and (1), (3) =⇒ (2) do not require
the assumption on K (known as characteristic zero). The implication (1), (2) =⇒
(3) is considered in ([AFMC] P1993-3). For (2), (3) =⇒ (1), by Lemma 1.64,

any A is of the form A = kV V

(
μ∑

ι=1

φι ⊗ vι

)
, and the exercise is to show that there

is such an expression with μ = 1.
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Proposition 2.16. ([G1] §IV.7) For V finite-dimensional and A ∈ End(V ),
the following are equivalent.

(1) TrV (A ◦B) = 0 for all B.
(2) A = 0End(V ).

Proof.

Hom(IdV , A)
∗(TrV ) = (Hom(IdV , A)

∗ ◦ (k∗)−1 ◦ e)(IdV )
= ((k∗)−1 ◦ e ◦Hom(A, IdV ))(IdV )

= ((k∗)−1 ◦ e)(A),
by the commutativity of the diagram from Lemma 2.6, with U = V . If

TrV (A ◦B) = (Hom(IdV , A)
∗(TrV ))(B) = (((k∗)−1 ◦ e)(A))(B)

is always zero, then ((k∗)−1 ◦e)(A) = 0End(V )∗ , and since (k∗)−1 ◦e has zero kernel,

A must be 0End(V ). The converse is trivial.

Proposition 2.17. ([B] §II.10.11) If V is finite-dimensional, then for any
Φ ∈ End(V )∗, there exists F ∈ End(V ) such that Φ(A) = TrV (F ◦ A) for all
A ∈ End(V ).

Proof. Let F = e−1(k∗(Φ)). The result follows from the commutativity of
the appropriate paths in the diagram for the Proof of Lemma 2.6 in the case U = V .

Φ(A) = (Hom(IdV , A)
∗(Φ))(IdV )

= ((e∗ ◦ d ◦ k−1 ◦Hom(A, IdV ) ◦ e−1 ◦ k∗)(Φ))(IdV )
= ((k−1)∗(e(IdV )))(Hom(A, IdV )(e

−1(k∗(Φ))))
= TrV (F ◦A).

Proposition 2.18. ([B] §II.10.11) For V finite-dimensional and Φ ∈ End(V )∗,
the following are equivalent.

(1) Φ satisfies Φ(A ◦B) = Φ(B ◦A) for all A, B ∈ End(V ).
(2) There exists λ ∈ K such that Φ = λ · TrV .

Proof. By Proposition 2.17, Φ(A ◦ B) = TrV (F ◦ A ◦ B) = Φ(B ◦ A) =
TrV (F ◦ B ◦ A). By Lemma 2.6, TrV (F ◦ B ◦ A) = TrV (A ◦ B ◦ F ) for all B, so
Hom(A,F )∗(TrV ) = Hom(F,A)∗(TrV ). Then

Hom(A,F )∗((k∗)−1(e(IdV ))) = Hom(F,A)∗((k∗)−1(e(IdV )))

(k∗)−1(e(Hom(F,A)(IdV ))) = (k∗)−1(e(Hom(A,F )(IdV )))

((k∗)−1 ◦ e)(A ◦ F ) = ((k∗)−1 ◦ e)(F ◦A),
so A ◦F = F ◦A for all A, and so F = λ · IdV by Claim 0.57. The converse follows

from Lemma 2.6.
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Proposition 2.19. ([G1] §IV.7) Suppose TrV (IdV ) �= 0, and that the map Ω ∈
End(End(V )) satisfies Ω(A◦B) = (Ω(A))◦(Ω(B)) for all A, B, and Ω(IdV ) = IdV .
Then TrV (Ω(H)) = TrV (H) for all H ∈ End(V ).

Proof.

TrV (Ω(A ◦B)) = TrV ((Ω(A)) ◦ (Ω(B))))

= TrV ((Ω(B)) ◦ (Ω(A)))
= TrV (Ω(B ◦A)),

so Proposition 2.18 applies to Ω∗(TrV ) and TrV (Ω(H)) = λ · TrV (H). The sec-
ond property of Ω implies TrV (Ω(IdV )) = TrV (IdV ) = λ · TrV (IdV ), so either

TrV (IdV ) = 0, or λ = 1 and TrV (Ω(H)) = TrV (H) for all H .

Remark 2.20. The following Lemma is a generalization of Example 2.7, mo-
tivated by a property of a “line bundle.”

Lemma 2.21. Suppose that L is a finite-dimensional vector space, and that the
evaluation map EvL : L∗ ⊗ L → K is invertible. Then TrL : End(L) → K is
invertible and TrL(IdL) = 1.

Proof. k = kLL and e = eLL are invertible. EvL �= 0(L∗⊗L)∗ , so IdL =

e−1(EvL) �= 0End(L). TrL = EvL ◦k−1 is invertible, so TrL(IdL) �= 0, and Example
2.9 applies. In particular, there is some β ∈ K so that β ·TrL(IdL) = 1, and a map

Qβ
1 : K → End(L) : γ �→ β · γ · IdL as in Equation (2.3) so that TrL ◦Qβ

1 = IdK. It
follows that

(EvL ◦ k−1) ◦Qβ
1 = IdK =⇒ Qβ

1 ◦ EvL = k.

There is also some v ∈ L, and there is some φ ∈ L∗, so that EvL(φ ⊗ v) �= 0, and
so φ(v) �= 0, and v �= 0L. Then,

k(φ⊗ v) = (Qβ
1 ◦ EvL)(φ⊗ v) = β · φ(v) · IdL,

so

(k(φ ⊗ v))(v) = φ(v) · v = (β · φ(v) · IdL)(v) = β · φ(v) · v,
which implies β = 1.

Remark 2.22. The following Proposition is proved in a different way by [AS2].

Proposition 2.23. Given V finite-dimensional and any positive integer ν, if
P1 : V → V and P2 : V → V are any idempotents, then

TrV ((P1 − P2)
2ν+1) = TrV (P1 − P2).

Proof. The odd power refers to a composite (P1 − P2) ◦ · · · ◦ (P1 − P2). It
can be shown by induction on ν that there exist constants αν,ι ∈ K, ι = 1, . . . , ν,
so that the composite expands:

(P1 − P2)
2ν+1 = P1 − P2 +

ν∑
ι=1

αν,ι · ((P1 ◦ P2)
ι ◦ P1 − (P2 ◦ P1)

ι ◦ P2).

The claim then follows from Lemma 2.6.



56 2. A SURVEY OF TRACE ELEMENTS

2.2. The generalized trace

An analogue of the trace TrV : End(V ) → K is the generalized trace, a map

TrV ;U,W : Hom(V ⊗ U, V ⊗W ) → Hom(U,W ),

constructed in Definition 2.24.

2.2.1. Defining the generalized trace.
The following particular cases of the canonical j maps will be used repeatedly:

j1 : End(V )∗⊗ End(Hom(U,W )) → Hom(End(V )⊗Hom(U,W ),K⊗Hom(U,W ))

j2 : End(V )⊗Hom(U,W ) → Hom(V ⊗ U, V ⊗W ).

If V is finite-dimensional, then both j1 and j2 are invertible, by Claim 1.34. Denote
by l1 the scalar multiplication map K ⊗ Hom(U,W ) → Hom(U,W ). The domain
of j1 contains the distinguished element TrV ⊗ IdHom(U,W ).

Definition 2.24. For finite-dimensional V , define

TrV ;U,W = (Hom(j−1
2 , l1) ◦ j1)(TrV ⊗ IdHom(U,W ))

= l1 ◦ [TrV ⊗ IdHom(U,W )] ◦ j−1
2 .

Note that the finite-dimensionality of V is used in the Definition, since j2 must
be invertible, but U and W may be arbitrary vector spaces.

Example 2.25. A map of the form j2(A ⊗ B) : V ⊗ U → V ⊗W , for finite-
dimensional V , and A : V → V , B : U →W , has trace

TrV ;U,W (j2(A⊗B)) = l1((j1(TrV ⊗ IdHom(U,W )))(A⊗B)) = TrV (A) · B.
In the V = K case, the trace is an invertible map. Denote scalar multiplication

maps lW : K⊗W →W and lU : K⊗ U → U .

Theorem 2.26. For any vector spaces U , W ,

TrK;U,W = Hom(l−1
U , lW ) : Hom(K⊗ U,K⊗W ) → Hom(U,W ).

Proof. For any φ ∈ K∗, F ∈ Hom(U,W ), the equation (φ(1) · F ) ◦ lU =
lW ◦ [φ ⊗ F ] from Lemma 1.38 can be rewritten using j2 : K∗ ⊗ Hom(U,W ) →
Hom(K⊗ U,K⊗W ),

Hom(l−1
U , lW ) ◦ j2 = l1 ◦ (j1((dK(1))⊗ IdHom(U,W ))) : φ⊗ F �→ φ(1) · F.

The equality follows from Example 2.7, where TrK = dK(1):

Hom(l−1
U , lW ) = l1 ◦ (j1((dK(1))⊗ IdHom(U,W ))) ◦ j−1

2 = TrK;U,W .

In the U = W = K case, the generalized trace is related to the scalar trace as
in the following Theorem.

Theorem 2.27. For finite-dimensional V , the scalar multiplication map lV :
V ⊗K → V , and any H ∈ End(V ),

(TrV ;K,K(l
−1
V ◦H ◦ lV ))(1) = TrV (H).

Equivalently,

(2.6) TrV ;K,K(l
−1
V ◦H ◦ lV ) = TrV (H) · IdK.
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Proof. In the following diagram,

End(V )∗ ⊗ End(K∗)
a1 ��

j1

��

End(V )∗⊗Hom(K,K∗)

j3

��

End(V )∗ ⊗K∗

kEnd(V ),K∗

��

a5��

Hom(End(V )⊗K∗,K⊗K∗)
a2 ��

Hom(IdEnd(V )⊗K∗ ,l1)
��

Hom(End(V )⊗K,K⊗K∗)

Hom(IdEnd(V )⊗K
,l1)

��
Hom(End(V )⊗K∗,K∗)

a3 �� Hom(End(V )⊗K,K∗)

Hom(End(V ⊗K),K∗)

Hom(j2,IdK∗ )

��

Hom(Hom(V⊗K,V ),K∗)
a6 ��a4�� Hom(End(V ),K∗)

Hom(l2,IdK∗)
������������������

the horizontal arrows are

a1 = [IdEnd(V )∗ ⊗Hom(m, IdK∗)]

a2 = Hom([IdEnd(V ) ⊗m], IdK⊗K∗)

a3 = Hom([IdEnd(V ) ⊗m], IdK∗)

a4 = Hom(Hom(IdV ⊗K, lV ), IdK∗)

a5 = [IdEnd(V )∗ ⊗Hom(IdK,m)]

a6 = Hom(Hom(lV , IdV ), IdK∗),

for m : K → K∗ as in Definition 1.20, so that m(α) : λ �→ λ · α. So there is not
much going on besides scalar multiplication, including the map l2 : End(V )⊗K →
End(V ).

Starting with the element TrV ⊗ IdK∗ in the space in the upper left corner, its
output under the composite map going downward and then right to the lower right
corner is, using Definition 2.24, TrV ;K,K ◦Hom(lV , l

−1
V ), as in the LHS of the claim

(2.6). The output in the path going right and then downward is

kEnd(V ),K∗(TrV ⊗ (m−1 ◦ IdK∗ ◦m)) = kEnd(V ),K∗(TrV ⊗ IdK) : H �→ TrV (H) · IdK,

corresponding to the RHS of the claim. The claimed equality follows from just the
commutativity of the diagram, without using any special properties of the trace
TrV .

The upper left block is commutative by Lemma 1.37 and the middle left block
is commutative by Lemma 1.6. For the commutativity of the lower block, it is
enough, by Lemma 1.6, to check this equality, for A ∈ End(V ), α, β ∈ K, v ∈ V :

Hom(IdV ⊗K, lV ) ◦ j2 ◦ [IdEnd(V ) ⊗m] :

A⊗ α �→ lV ◦ [A⊗ (m(α))] : v ⊗ β �→ lV ((A(v)) ⊗ (β · α)) = β · α · A(v),
Hom(lV , IdV ) ◦ l2 :

A⊗ α �→ (α ·A) ◦ lV : v ⊗ β �→ (α · A)(β · v).
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Checking the commutativity of the block on the right, for Φ ∈ End(V )∗, φ ∈ K∗,

Hom(IdEnd(V )⊗K, l1) ◦ j3 ◦ [IdEnd(V )∗ ⊗Hom(IdK,m)] :

Φ⊗ φ �→ l1 ◦ [Φ⊗ (m ◦ φ)] :
A⊗ α �→ (Φ(A)) · (m(φ(α))) : β �→ (Φ(A)) · β · φ(α),

Hom(l2, IdK∗) ◦ kEnd(V ),K∗ :

Φ⊗ φ �→ (kEnd(V ),K∗(Φ⊗ φ)) ◦ l2 :

A⊗ α �→ (kEnd(V ),K∗(Φ⊗ φ))(α ·A) = (Φ(α ·A)) · φ : β �→ (Φ(α ·A)) · φ(β).

2.2.2. Properties of the generalized trace.
The next Theorems in this Section are straightforward linear algebra identities

for the generalized trace.

Remark 2.28. Versions of some of the results in this Section are stated in a
more general context of category theory, and given different proofs, in [Maltsiniotis]
§3.5 or [JSV] §2. The result of Theorem 2.26 is related to a property called “van-
ishing” by [JSV], and Theorem 2.29 and Theorem 2.30 are “naturality” properties
([JSV]).

An analogue of Lemma 2.6 applies to maps A : V → V ′ and B : V ′ ⊗ U →
V ⊗W , using the canonical maps

jU : Hom(V, V ′)⊗ End(U) → Hom(V ⊗ U, V ′ ⊗ U),

jW : Hom(V, V ′)⊗ End(W ) → Hom(V ⊗W,V ′ ⊗W ).

Theorem 2.29. For finite-dimensional V and V ′,

TrV ;U,W (B ◦ (jU (A⊗ IdU ))) = TrV ′;U,W ((jW (A⊗ IdW )) ◦B).

Proof. In the following diagram,

M11
a1 ��

j1

��

M12

j′′1
��

M13
a2��

j′1
��

M21
a3 ��

Hom(j−1
2 ,l1)

��

M22

Hom((j′′2 )−1,l1)

��

M23
a4��

Hom((j′2)
−1,l1)

��
M31

Hom(j2,l
−1
1 )

��

a5 �� M32

Hom(j′′2 ,l−1
1 )

��

M33

Hom(j′2,l
−1
1 )

��

a6��

the objects are

M11 = End(V )∗ ⊗ End(Hom(U,W ))

M21 = Hom(End(V )⊗Hom(U,W ),K⊗Hom(U,W ))

M31 = Hom(Hom(V ⊗ U, V ⊗W ),Hom(U,W ))

M12 = Hom(V ′, V )∗ ⊗ End(Hom(U,W ))

M22 = Hom(Hom(V ′, V )⊗Hom(U,W ),K⊗Hom(U,W ))

M32 = Hom(Hom(V ′ ⊗ U, V ⊗W ),Hom(U,W ))

M13 = End(V ′)∗ ⊗ End(Hom(U,W ))

M23 = Hom(End(V ′)⊗Hom(U,W ),K⊗Hom(U,W ))

M33 = Hom(Hom(V ′ ⊗ U, V ′ ⊗W ),Hom(U,W )),
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where the left and right columns are the maps from the definition of trace and the
horizontal arrows in the diagram are

a1 = [Hom(A, IdV )
∗ ⊗ IdEnd(Hom(U,W ))]

a2 = [Hom(IdV ′ , A)∗ ⊗ IdEnd(Hom(U,W ))]

a3 = Hom([Hom(A, IdV )⊗ IdHom(U,W )], IdK⊗Hom(U,W ))

a4 = Hom([Hom(IdV ′ , A)⊗ IdHom(U,W )], IdK⊗Hom(U,W ))

a5 = Hom(Hom(jU (A⊗ IdU ), IdV ⊗W ), IdHom(U,W ))

a6 = Hom(Hom(IdV ′⊗U , jW (A⊗ IdW )), IdHom(U,W )).

The two quantities in the statement of the Theorem are

TrV ;U,W (B ◦ (jU (A⊗ IdU ))) = (a5(TrV ;U,W ))(B),

T rV ′;U,W ((jW (A⊗ IdW )) ◦B) = (a6(TrV ′;U,W ))(B).

Each of the squares in the diagram is commutative, by Lemma 1.6 and Lemma
1.37. By Lemma 2.6, Hom(A, IdV )

∗(TrV ) = Hom(IdV ′ , A)∗(TrV ′), so

a1(TrV ⊗ IdHom(U,W )) = (Hom(A, IdV )
∗(TrV ))⊗ IdHom(U,W )

= (Hom(IdV ′ , A)∗(TrV ′))⊗ IdHom(U,W )

= a2(TrV ′ ⊗ IdHom(U,W )).

The Theorem follows from the commutativity of the diagram:

a5(TrV ;U,W ) = (a5 ◦Hom(j−1
2 , l1) ◦ j1)(TrV ⊗ IdHom(U,W ))

= (Hom((j′′2 )
−1, l1) ◦ j′′1 ◦ a1)(TrV ⊗ IdHom(U,W ))

= (Hom((j′′2 )
−1, l1) ◦ j′′1 ◦ a2)(TrV ′ ⊗ IdHom(U,W ))

= (a6 ◦Hom((j′2)
−1, l1) ◦ j′1)(TrV ′ ⊗ IdHom(U,W ))

= a6(TrV ′;U,W ).

The general strategy for the preceding proof will be repeated in some subse-
quent proofs. To derive an equality involving the generalized trace, a diagram is
set up with the maps from Definition 2.24 on the left and right. The lowest row
will be the desired theorem, and the top row is the “key step,” which is either
obvious, or which uses the previously derived properties of the scalar valued trace.
There will be little choice in selecting canonical maps as horizontal arrows, and the
commutativity of the diagram will give the theorem as a consequence of the key
step. We remark that the canonical maps m, n, and q will not be needed until
Section 2.3.
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Theorem 2.30. If V is finite-dimensional, then for any maps A : V ⊗ U →
V ⊗W , B : W → W ′, and C : U ′ → U , the composite [IdV ⊗B] ◦A ◦ [IdV ⊗ C] :
V ⊗ U ′ → V ⊗W ′ has trace

TrV ;U ′,W ′([IdV ⊗B] ◦A ◦ [IdV ⊗ C]) = B ◦ (TrV ;U,W (A)) ◦ C.
Proof. In the following diagram,

M11
a1 ��

j1

��

M12

j′′1
��

M13
a2��

j′1
��

M21
a3 ��

Hom(j−1
2 ,l1)

��

M22

Hom(j−1
2 ,l′1)

��

M23
a4��

Hom((j′2)
−1,l′1)

��
M31

Hom(j2,l
−1
1 )

��

a5 �� M32

Hom(j2,(l
′
1)

−1)

��

M33

Hom(j′2,(l
′
1)

−1)

��

a6��

the objects are

M11 = End(V )∗ ⊗ End(Hom(U,W ))

M21 = Hom(End(V )⊗Hom(U,W ),K⊗Hom(U,W ))

M31 = Hom(Hom(V ⊗ U, V ⊗W ),Hom(U,W ))

M12 = End(V )∗ ⊗Hom(Hom(U,W ),Hom(U ′,W ′))
M22 = Hom(End(V )⊗Hom(U,W ),K⊗Hom(U ′,W ′))
M32 = Hom(Hom(V ⊗ U, V ⊗W ),Hom(U ′,W ′))
M13 = End(V )∗ ⊗ End(Hom(U ′,W ′))
M23 = Hom(End(V )⊗Hom(U ′,W ′),K ⊗Hom(U ′,W ′))
M33 = Hom(Hom(V ⊗ U ′, V ⊗W ′),Hom(U ′,W ′)),

where the left and right columns are the maps from the definition of trace and the
horizontal arrows in the diagram are

a1 = [IdEnd(V )∗ ⊗Hom(IdHom(U,W ),Hom(C,B))]

a2 = [IdEnd(V )∗ ⊗Hom(Hom(C,B), IdHom(U ′,W ′))]

a3 = Hom(IdEnd(V )⊗Hom(U,W ), [IdK ⊗Hom(C,B)])

a4 = Hom([IdEnd(V ) ⊗Hom(C,B)], IdK⊗Hom(U ′,W ′))

a5 = Hom(IdHom(V ⊗U,V⊗W ),Hom(C,B))

a6 = Hom(Hom([IdV ⊗ C], [IdV ⊗B]), IdHom(U ′,W ′)).

The two quantities in the statement of the Theorem are

TrV ;U ′,W ′([IdV ⊗B] ◦A ◦ [IdV ⊗ C]) = (a6(TrV ;U ′,W ′))(A)

B ◦ (TrV ;U,W (A)) ◦ C = (a5(TrV ;U,W ))(A).

Squares except the lower left commute by Lemma 1.6 and Lemma 1.37; for the
remaining square, let λ ∈ K, E ∈ Hom(U,W ):

(l′1 ◦ [IdK ⊗Hom(C,B)])(λ ⊗ E) = l′1(λ⊗ (B ◦ E ◦ C)) = λ · (B ◦ E ◦ C)
(Hom(C,B) ◦ l1)(λ⊗ E) = B ◦ (λ ·E) ◦ C = λ · (B ◦ E ◦ C).
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The “key step” uses a property of the identity map, and not any properties of the
trace:

a1(TrV ⊗ IdHom(U,W )) = TrV ⊗Hom(C,B) = a2(TrV ⊗ IdHom(U ′,W ′))

The Theorem follows from the commutativity of the diagram:

a5(TrV ;U,W ) = (a5 ◦Hom(j−1
2 , l1) ◦ j1)(TrV ⊗ IdHom(U,W ))

= (Hom(j−1
2 , l′1) ◦ j′′1 ◦ a1)(TrV ⊗ IdHom(U,W ))

= (Hom(j−1
2 , l′1) ◦ j′′1 ◦ a2)(TrV ⊗ IdHom(U ′,W ′))

= (a6 ◦Hom((j′2)
−1, l′1) ◦ j′1)(TrV ⊗ IdHom(U ′,W ′))

= a6(TrV ;U ′,W ′).

Corollary 2.31. If V and V ′ are finite-dimensional then for any maps A :
V → V ′, B :W →W ′, C : U ′ → U , the following diagram is commutative.

Hom(V ⊗ U, V ⊗W )
TrV ;U,W �� Hom(U,W )

Hom(C,B)

��

Hom(V ′ ⊗ U, V ⊗W )

Hom([A⊗IdU ],IdV ⊗W )

��

Hom([IdV ′⊗C],[A⊗B])

��
Hom(V ′ ⊗ U ′, V ′ ⊗W ′)

TrV ′;U′,W ′ �� Hom(U ′,W ′)

Proof. This follows from Theorem 2.29 and Theorem 2.30.

Lemma 2.32. The following diagram is commutative.

V ∗
1 ⊗ V ∗

2 ⊗W1 ⊗W2
s ��

[j⊗IdW1⊗W2 ]

��

V ∗
1 ⊗W1 ⊗ V ∗

2 ⊗W2

[kV1W1⊗kV2W2 ]

��
Hom(V1 ⊗ V2,K⊗K)⊗W1 ⊗W2

[Hom(IdV1⊗V2 ,l)⊗IdW1⊗W2 ]

��

Hom(V1,W1)⊗Hom(V2,W2)

j

��
(V1 ⊗ V2)

∗ ⊗W1 ⊗W2

kV1⊗V2,W1⊗W2 �� Hom(V1 ⊗ V2,W1 ⊗W2)

Proof. The map s switches the middle two factors of the tensor product (as
in Example 1.29), and l is multiplication of elements of K.

φ1 ⊗ φ2 ⊗ w1 ⊗ w2 �→ (j ◦ [kV1W1 ⊗ kV2W2 ] ◦ s)(φ1 ⊗ φ2 ⊗ w1 ⊗ w2)

= [(kV1W1(φ1 ⊗ w1))⊗ (kV2W2(φ2 ⊗ w2))] :

v1 ⊗ v2 �→ ((φ(v1)) · w1)⊗ ((φ2(v2)) · w2),

φ1 ⊗ φ2 ⊗ w1 ⊗ w2 �→ kV1⊗V2,W1⊗W2((l ◦ [φ1 ⊗ φ2])⊗ w1 ⊗ w2) :

v1 ⊗ v2 �→ φ1(v1) · φ2(v2) · w1 ⊗ w2.
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Remark 2.33. The above result appears in [K] §II.2, and is related to a matrix
algebra equation in [Magnus] §3.6.

Theorem 2.34. For finite-dimensional V and U , and A : V ⊗ U → V ⊗ U ,

TrU (TrV ;U,U (A)) = TrV⊗U (A).

Proof. As in Lemma 2.6, the maps kV V and kUU are abbreviated k and k′,
and the corresponding map for V⊗U is denoted k′′ : (V ⊗U)∗⊗V⊗U → End(V ⊗U).
By Lemma 2.32, these k maps are related by the following commutative diagram.

V ∗ ⊗ V ⊗ U∗ ⊗ U
[k⊗k′] ��

s

��

End(V )⊗ End(U)

j2

��

V ∗ ⊗ U∗ ⊗ V ⊗ U

[j⊗IdV ⊗U ]

��
Hom(V ⊗ U,K⊗K)⊗ V ⊗ U

[Hom(IdV ⊗U ,l)⊗IdV ⊗U ]

��
(V ⊗ U)∗ ⊗ V ⊗ U

k′′
�� End(V ⊗ U)

The composite of maps in the left column is abbreviated a1. In particular, since U
and V are assumed finite-dimensional, all the arrows in the square are invertible.
In the following diagram,

End(V )∗ ⊗ End(End(U))
a2 ��

j1

��

(V ∗ ⊗ V )∗ ⊗ End(U∗ ⊗ U)

j′1
��

a−1
2

��

Hom(End(V )⊗End(U),K⊗End(U))
a3 ��

Hom(j−1
2 ,l1)

��

Hom(V ∗⊗V ⊗U∗⊗U,K⊗U∗⊗U)

Hom(a−1
1 ,k′◦l′1)

��
Hom(End(V ⊗ U),End(U))

a4 ��

Hom(j2,l
−1
1 )

��

Hom(IdEnd(V⊗U),TrU )

��

Hom((V ⊗ U)∗ ⊗ V ⊗ U,End(U))

Hom(a1,(l
′
1)

−1◦(k′)−1)

��

Hom(Id(V⊗U)∗⊗V⊗U ,TrU )

��
End(V ⊗ U)∗ k′′∗

�� ((V ⊗ U)∗ ⊗ V ⊗ U)∗

the horizontal arrows are

a2 = [k∗ ⊗Hom(k′, (k′)−1)]

a−1
2 = [(k∗)−1 ⊗Hom((k′)−1, k′)]

a3 = Hom([k ⊗ k′], [IdK ⊗ (k′)−1])

a4 = Hom(k′′, IdEnd(U)),

and the statement of the Theorem is that

Hom(IdEnd(V⊗U), T rU )(TrV ;U,U ) = TrV⊗U .

The upper square is commutative by Lemma 1.37, and Lemma 1.6 applies easily
to the commutativity of the lower square, and to that of the middle square using
k′′ ◦a1 = j2 ◦ [k⊗k′], from the first diagram, and l1 ◦ [IdK⊗k′] = k′ ◦ l′1, by Lemma
1.38.
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The commutativity of this square,

V ∗ ⊗ V ⊗ U∗ ⊗ U
l′1◦(j′1(EvV ⊗IdU∗⊗U )) ��

a1

��

U∗ ⊗ U

EvU

��
(V ⊗ U)∗ ⊗ V ⊗ U

EvV ⊗U �� K

(EvV ⊗U ◦ a1)(φ ⊗ v ⊗ ξ ⊗ u) = EvV ⊗U ((l◦[φ⊗ ξ])⊗ v ⊗ u)

= φ(v) · ξ(u)
(EvU ◦ l′1 ◦ (j′1(EvV ⊗ IdU∗⊗U )))(φ ⊗ v ⊗ ξ ⊗ u) = EvU (φ(v) · ξ ⊗ u)

= φ(v) · ξ(u),
implies that the distinguished elements EvV ⊗ IdU∗⊗U and EvV ⊗U are related by
the right column of maps in the second diagram:

EvV ⊗ IdU∗⊗U �→ TrU ◦ k′ ◦ l′1 ◦ (j′1(EvV ⊗ IdU∗⊗U )) ◦ a−1
1

= EvU ◦ l′1 ◦ (j′1(EvV ⊗ IdU∗⊗U )) ◦ a−1
1

= EvV ⊗U .

The above equation used the definition of TrU . Along the top row, the key step
uses the definition of TrV :

a−1
2 (EvV ⊗ IdU∗⊗U ) = ((k∗)−1(EvV ))⊗ (k′ ◦ IdU∗⊗U ◦ (k′)−1) = TrV ⊗ IdEnd(U).

The Theorem follows:

TrU ◦ TrV ;U,U = (Hom(IdEnd(V ⊗U), T rU ) ◦Hom(j−1
2 , l1) ◦ j1)(TrV ⊗ IdEnd(U))

= (Hom(IdEnd(V ⊗U), T rU )◦Hom(j−1
2 , l1) ◦j1◦a−1

2 )(EvV ⊗IdU∗⊗U )

= (k′′∗)−1(EvV ⊗U )

= TrV⊗U .

Remark 2.35. The previous Theorem appears in slightly different form in [K]
§II.3. The following Corollary is a well-known identity for the (scalar valued) trace
([B] §II.4.4, [Magnus] §1.10, [K] §II.6).

Corollary 2.36. For finite-dimensional V and U , and A : V → V , B : U →
U ,

TrV⊗U (j2(A⊗B)) = TrV (A) · TrU (B).

Proof. As in Example 2.25,

TrV⊗U (j2(A⊗B)) = TrU (TrV ;U,U (j2(A⊗B)))

= TrU (TrV (A) ·B)

= TrV (A) · TrU (B).
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The result of Corollary 2.36 could also be proved directly using methods similar
to the previous proof, and could be stated as the equality

j∗2 (TrV⊗U ) = (Hom(IdEnd(V )⊗End(U), l) ◦ j)(TrV ⊗ TrU ) ∈ (End(V )⊗ End(U))∗,

or
TrV⊗U ◦ j2 = l ◦ [TrV ⊗ TrU ].

Corollary 2.37. ([G2] §I.5) For finite-dimensional V and U , and A : V → V ,
B : U → U ,

TrHom(V,U)(Hom(A,B)) = TrV (A) · TrU (B).

Proof. By Lemma 1.62, Hom(A,B) = kV U ◦ [A∗ ⊗ B] ◦ k−1
V U , so Lemma 2.6,

Corollary 2.36, and Lemma 2.5 apply:

TrHom(V,U)(Hom(A,B)) = TrHom(V,U)(kV U ◦ [A∗ ⊗B] ◦ k−1
V U )

= TrV ∗⊗U ([A
∗ ⊗B])

= TrV ∗(A∗) · TrU (B)

= TrV (A) · TrU (B).

Theorem 2.38. For finite-dimensional V and V ′, and A : V ⊗ V ′ ⊗ U →
V ⊗ V ′ ⊗W ,

TrV⊗V ′;U,W (A) = TrV ′;U,W (TrV ;V ′⊗U,V ′⊗W (A)).

Proof. In the following diagram,

M11
a1 ��

j′1
��

M12

j′′1
��

M21
a2 ��

Hom((j′2)
−1,l1)

��

M22

Hom((j′′2 )−1,l1)

��
M31

a3 ��

Hom(j′2,l
−1
1 )

��

M32

Hom(j′′2 ,l−1
1 )

��

the objects are

M11 = End(V ′)∗ ⊗ End(Hom(U,W ))

M21 = Hom(End(V ′)⊗Hom(U,W ),K⊗Hom(U,W ))

M31 = Hom(Hom(V ′ ⊗ U, V ′ ⊗W ),Hom(U,W ))

M12 = End(V ⊗ V ′)∗ ⊗ End(Hom(U,W ))

M22 = Hom(End(V ⊗ V ′)⊗Hom(U,W ),K⊗Hom(U,W ))

M32 = Hom(Hom(V ⊗ V ′ ⊗ U, V ⊗ V ′ ⊗W ),Hom(U,W )),

the horizontal arrows are

a1 = [(TrV ;V ′,V ′)∗ ⊗ IdEnd(Hom(U,W ))]

a2 = Hom([TrV ;V ′,V ′ ⊗ IdHom(U,W )], IdK⊗Hom(U,W ))

a3 = Hom(TrV ;V ′⊗U,V ′⊗W , IdHom(U,W )),

and the statement of the Theorem is that

a3(TrV ′;U,W ) = TrV⊗V ′;U,W .
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The commutativity of this square,

End(V )⊗End(V ′)⊗Hom(U,W )
[j′′′2 ⊗IdHom(U,W )]��

[IdEnd(V )⊗j′2]
��

End(V ⊗V ′)⊗Hom(U,W )

j′′2
��

End(V )⊗Hom(V ′⊗U, V ′⊗W )
j2 �� Hom(V ⊗V ′⊗U, V ⊗V ′⊗W )

is easy to check, and together with that of the diagram:

End(V )⊗End(V ′)⊗Hom(U,W )
[j′′′2 ⊗IdHom(U,W )]��

[IdEnd(V )⊗j′2]
��

End(V ⊗V ′)⊗Hom(U,W )

[TrV ;V ′,V ′⊗IdHom(U,W )]

��
End(V )⊗Hom(V ′⊗U, V ′⊗W )

j1(TrV ⊗IdHom(V ′⊗U,V ′⊗W ))

��

End(V ′)⊗Hom(U,W )

j′2
��

K⊗Hom(V ′ ⊗ U, V ′ ⊗W )
l′1 �� Hom(V ′ ⊗ U, V ′ ⊗W )

D ⊗ E ⊗ F �→ (j′2 ◦ [(TrV ;V ′,V ′ ◦ j′′′2 )⊗ IdHom(U,W )])(D⊗E⊗F )
= j′2((TrV ;V ′,V ′(j′′′2 (D ⊗ E))) ⊗ F )

= (TrV (D)) · j′2(E ⊗ F )

D ⊗ E ⊗ F �→ (l′1 ◦ (j(TrV ⊗ j′2)))(D ⊗ E ⊗ F )

= l′1((TrV (D))⊗ (j′2(E ⊗ F )))

= (TrV (D)) · j′2(E ⊗ F ),

implies

TrV ;V ′⊗U,V ′⊗W ◦ j′′2 = l′1 ◦ (j1(TrV ⊗ IdHom(V ′⊗U,V ′⊗W ))) ◦ j−1
2 ◦ j′′2

= l′1 ◦ (j1(TrV ⊗ IdHom(V ′⊗U,V ′⊗W )))

◦[IdEnd(V ) ⊗ j′2] ◦ [(j′′′2 )−1 ⊗ IdHom(U,W )]

= j′2 ◦ [TrV ;V ′,V ′ ⊗ IdHom(U,W )],

which is what is needed to show that the lower square of the first diagram is com-
mutative. Its upper square is commutative by Lemma 1.37, and the distinguished
elements in the top row are related by Theorem 2.34:

a1(TrV ′⊗ IdHom(U,W )) = (TrV ′ ◦ TrV ;V ′,V ′)⊗ IdHom(U,W ) = TrV⊗V ′ ⊗ IdHom(U,W ).

The Theorem follows:

a3(TrV ;U,W ) = (a3 ◦Hom((j′2)
−1, l1) ◦ j′1)(TrV ′ ⊗ IdHom(U,W ))

= (Hom((j′′2 )
−1, l1) ◦ j′′1 ◦ a1)(TrV ′ ⊗ IdHom(U,W ))

= (Hom((j′′2 )
−1, l1) ◦ j′′1 )(TrV⊗V ′ ⊗ IdHom(U,W ))

= TrV⊗V ′;U,W .
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Remark 2.39. The result of the above Theorem is another “vanishing” prop-
erty of the generalized trace ([JSV]).

The maps

j3 : Hom(V1 ⊗ U1, V1 ⊗W1)⊗Hom(V2 ⊗ U2, V2 ⊗W2)

→ Hom(V1 ⊗ U1 ⊗ V2 ⊗ U2, V1 ⊗W1 ⊗ V2 ⊗W2),

j4 : Hom(U1,W1)⊗Hom(U2,W2) → Hom(U1 ⊗ U2,W1 ⊗W2)

appear in the following Theorem comparing the trace of a tensor product to the
tensor product of traces. There are also some switching maps, as in Theorem 2.34,

s1 : V1 ⊗W1 ⊗ V2 ⊗W2 → V1 ⊗ V2 ⊗W1 ⊗W2

s2 : V1 ⊗ V2 ⊗ U1 ⊗ U2 → V1 ⊗ U1 ⊗ V2 ⊗ U2.

Theorem 2.40. For finite-dimensional V1 and V2, and maps A : V1 ⊗ U1 →
V1 ⊗W1 and B : V2 ⊗ U2 → V2 ⊗W2,

TrV1⊗V2;U1⊗U2,W1⊗W2(s1◦(j3(A⊗B))◦s2) = j4((TrV1;U1,W1(A))⊗(TrV2 ;U2,W2(B))).

Proof. In the following diagram,

M11
a1 ��

j1

��

M12

j5

��

M13
a2��

j6

��

M14
[j⊗j]◦s3��

[j11⊗j21 ]

��
M21

a3 ��

a−1
5

��

M22

a−1
6

��

M23
a4��

a−1
7

��

M24
Hom(s4,s5)◦j7��

a−1
8

��
M31

a5

��

a9 �� M32

a6

��

M33

a7

��

a10�� M34

a8

��

j8��
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the objects are

M11 = End(V1 ⊗ V2)
∗ ⊗ End(Hom(U1 ⊗ U2,W1 ⊗W2))

M21 = Hom(End(V1 ⊗ V2)⊗Hom(U1 ⊗ U2,W1 ⊗W2),

K⊗Hom(U1 ⊗ U2,W1 ⊗W2))

M31 = Hom(Hom(V1 ⊗ V2 ⊗ U1 ⊗ U2, V1 ⊗ V2 ⊗W1 ⊗W2),

Hom(U1 ⊗ U2,W1 ⊗W2))

M12 = (End(V1)⊗ End(V2))
∗ ⊗

Hom(Hom(U1,W1)⊗Hom(U2,W2),Hom(U1 ⊗ U2,W1 ⊗W2))

M22 = Hom(End(V1)⊗ End(V2)⊗Hom(U1,W1)⊗Hom(U2,W2),

K⊗Hom(U1 ⊗ U2,W1 ⊗W2))

M32 = Hom(Hom(V1 ⊗ U1, V1 ⊗W1)⊗Hom(V2 ⊗ U2, V2 ⊗W2),

Hom(U1 ⊗ U2,W1 ⊗W2))

M13 = Hom(End(V1)⊗ End(V2),K⊗K)⊗ End(Hom(U1,W1)⊗Hom(U2,W2))

M23 = Hom(End(V1)⊗ End(V2)⊗Hom(U1,W1)⊗Hom(U2,W2),

K⊗K⊗Hom(U1,W1)⊗Hom(U2,W2))

M33 = Hom(Hom(V1 ⊗ U1, V1 ⊗W1)⊗Hom(V2 ⊗ U2, V2 ⊗W2),

Hom(U1,W1)⊗ Hom(U2,W2))

M14 = End(V1)
∗ ⊗ End(Hom(U1,W1))⊗ End(V2)

∗ ⊗ End(Hom(U2,W2))

M24 = Hom(End(V1)⊗Hom(U1,W1),K⊗Hom(U1,W1))⊗
Hom(End(V2)⊗Hom(U2,W2),K⊗Hom(U2,W2))

M34 = Hom(Hom(V1 ⊗ U1, V1 ⊗W1),Hom(U1,W1))⊗
Hom(Hom(V2 ⊗ U2, V2 ⊗W2),Hom(U2,W2));

the left, right columns define TrV1⊗V2;U1⊗U2,W1⊗W2 and TrV1;U1,W1 ⊗ TrV2;U2,W2 .
The arrows are

a1 = [(j′2)
∗ ⊗Hom(j4, IdHom(U1⊗U2,W1⊗W2))]

a2 = [Hom(IdEnd(V1)⊗End(V2), lK)⊗Hom(IdHom(U1,W1)⊗Hom(U2,W2), j4)]

a3 = Hom([j′2 ⊗ j4], IdK⊗Hom(U1⊗U2,W1⊗W2))

a4 = Hom(IdEnd(V1)⊗End(V2)⊗Hom(U1,W1)⊗Hom(U2,W2), [lK ⊗ j4])

a5 = Hom(j2, l
−1
1 )

a6 = Hom([j12 ⊗ j22 ] ◦ s4, l−1
1 )

a7 = Hom([j12 ⊗ j22 ] ◦ s4, (l ◦ l)−1)

a8 = [Hom(j12 , (l
1
1)

−1)⊗Hom(j22 , (l
2
1)

−1)]

a9 = Hom(Hom(s2, s1) ◦ j3, IdHom(U1⊗U2,W1⊗W2))

a10 = Hom(IdHom(V1⊗U1,V1⊗W1)⊗Hom(V2⊗U2,V2⊗W2), j4).

The Theorem claims the two maps

TrV1⊗V2;U1⊗U2,W1⊗W2 ◦Hom(s2, s1) ◦ j3 = a9(TrV1⊗V2;U1⊗U2,W1⊗W2),

j4 ◦ (j8(TrV1;U1,W1 ⊗ TrV2;U2,W2)) = (a10 ◦ j8)(TrV1;U1,W1 ⊗ TrV2;U2,W2)
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are equal. The diagram is commutative— all six squares are easy to check, for
example, the upper left and upper middle follow from Lemma 1.37, and each of the
remaining four involves two arrows with switching maps. The equality along the
top row,

a1 : TrV1⊗V2 ⊗ IdHom(U1⊗U2,W1⊗W2) �→ (TrV1⊗V2 ◦ j′2)⊗ j4,

a2 ◦ [j ⊗ j] ◦ s3 : TrV1 ⊗ IdHom(U1,W1) ⊗ TrV2 ⊗ IdHom(U2,W2)

�→ (lK ◦ [TrV1 ⊗ TrV2 ])⊗ j4,

follows from Corollary 2.36. This key step, together with the commutativity of the
diagram, proves the Theorem:

a9 : (TrV1⊗V2;U1⊗U2,W1⊗W2)

�→ (a9 ◦ a−1
5 ◦ j1)(TrV1⊗V2 ⊗ IdHom(U1⊗U2,W1⊗W2))

= (a−1
6 ◦ j5 ◦ a1)(TrV1⊗V2 ⊗ IdHom(U1⊗U2,W1⊗W2))

= (a−1
6 ◦ j5 ◦ a2 ◦ [j ⊗ j] ◦ s3)(TrV1 ⊗ IdHom(U1,W1) ⊗ TrV2 ⊗ IdHom(U2,W2))

= (a10 ◦ j8 ◦ a−1
8 ◦ [j11 ⊗ j21 ])(TrV1 ⊗ IdHom(U1,W1) ⊗ TrV2 ⊗ IdHom(U2,W2))

= (a10 ◦ j8)(TrV1;U1,W1 ⊗ TrV2;U2,W2).

Remark 2.41. The maps j4, from the previous Theorem, and

j0 : Hom(V ⊗ U1, V ⊗W1)⊗Hom(U2,W2) → Hom(V ⊗ U1 ⊗ U2, V ⊗W1 ⊗W2)

appear in the following Corollary about the compatibility of the trace and the tensor
product, related to a “superposing” identity of [JSV].

Corollary 2.42. For finite-dimensional V , and maps A : V ⊗U1 → V ⊗W1,
B : U2 →W2,

TrV ;U1⊗U2,W1⊗W2(j0(A⊗B)) = j4((TrV ;U1,W1(A))⊗B).

Proof. It can be checked that the following diagram is commutative.

V ⊗ U1 ⊗K⊗ U2

j3(A⊗(l−1
W2

◦B◦lU2 )) �� V ⊗W1 ⊗K⊗W2

s1

��
V ⊗K⊗ U1 ⊗ U2

s2

��

[lV ⊗IdU1⊗U2 ]

��

V ⊗K⊗W1 ⊗W2

[lV ⊗IdW1⊗W2 ]

��
V ⊗ U1 ⊗ U2

j0(A⊗B) �� V ⊗W1 ⊗W2

Theorem 2.29, the diagram, the previous Theorem, and finally Theorem 2.26 apply:

LHS = TrV ;U1⊗U2,W1⊗W2((j0(A⊗B)) ◦ [lV ⊗ IdU1⊗U2 ] ◦ [l−1
V ⊗ IdU1⊗U2 ])

= TrV⊗K;U1⊗U2,W1⊗W2([l
−1
V ⊗ IdW1⊗W2 ] ◦ (j0(A⊗B)) ◦ [lV ⊗ IdU1⊗U2 ])

= TrV⊗K;U1⊗U2,W1⊗W2(s1 ◦ (j3(A⊗ (l−1
W2

◦B ◦ lU2))) ◦ s2)
= j4((TrV ;U1,W1(A)) ⊗ (TrK;U2,W2(Hom(lU2 , l

−1
W2

)(B))))

= j4((TrV ;U1,W1(A)) ⊗B).
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Notation 2.43. Denote the composite maps

j̃U = Hom(IdV ⊗U , l) ◦ j : V ∗ ⊗ U∗ → (V ⊗ U)∗

j̃W = Hom(IdV ⊗W , l) ◦ j : V ∗ ⊗W ∗ → (V ⊗W )∗,

where l is multiplication K⊗K → K.

If V is finite-dimensional then these j̃ maps are invertible. A composition like
this already appeared in Lemma 2.32, and these maps appear in the next Theorem
2.44, relating the trace of the transpose to the transpose of the trace, using t maps
as in Notation 1.9. The j̃ maps appear again in the next Chapter, but the tilde
notation will only be used when abbreviating is more useful than not.

Theorem 2.44. For finite-dimensional V and a map H : V ⊗ U → V ⊗W ,

TrV ∗;W∗,U∗ (̃j −1
U ◦ (tV ⊗U,V⊗W (H)) ◦ j̃W ) = tUW (TrV ;U,W (H)).

Proof. In the following diagram,

M11
a1 ��

j1

��

M12

j′′1
��

M13
a2��

j′1
��

M21
a3 ��

Hom(j−1
2 ,l1)

��

M22

Hom(j−1
2 ,l′1)

��

M23
a4��

Hom((j′2)
−1,l′1)

��
M31

Hom(j2,l
−1
1 )

��

a5 �� M32

Hom(j2,(l
′
1)

−1)

��

M33

Hom(j′2,(l
′
1)

−1)

��

a6��

the objects are

M11 = End(V )∗ ⊗ End(Hom(U,W ))

M21 = Hom(End(V )⊗Hom(U,W ),K⊗Hom(U,W ))

M31 = Hom(Hom(V ⊗ U, V ⊗W ),Hom(U,W ))

M12 = End(V )∗ ⊗Hom(Hom(U,W ),Hom(W ∗, U∗))
M22 = Hom(End(V )⊗Hom(U,W ),K⊗Hom(W ∗, U∗))
M32 = Hom(Hom(V ⊗ U, V ⊗W ),Hom(W ∗, U∗))
M13 = End(V ∗)∗ ⊗ End(Hom(W ∗, U∗))
M23 = Hom(End(V ∗)⊗Hom(W ∗, U∗),K ⊗Hom(W ∗, U∗))
M33 = Hom(Hom(V ∗ ⊗W ∗, V ∗ ⊗ U∗),Hom(W ∗, U∗)),

the arrows are

a1 = [IdEnd(V )∗ ⊗Hom(IdHom(U,W ), tUW )]

a2 = [t∗V V ⊗Hom(tUW , IdHom(W∗,U∗))]

a3 = Hom(IdEnd(V )⊗Hom(U,W ), [IdK ⊗ tUW ])

a4 = Hom([tV V ⊗ tUW ], IdK⊗Hom(W∗,U∗))

a5 = Hom(IdHom(V ⊗U,V⊗W ), tUW )

a6 = Hom(Hom(̃jW , j̃ −1
U ) ◦ tV⊗U,V ⊗W , IdHom(W∗,U∗)),

and the two quantities in the statement of the Theorem are

tUW (TrV ;U,W (H)) = (a5(TrV ;U,W ))(H)

TrV ∗;W∗,U∗(Hom(̃jW , j̃ −1
U )(tV ⊗U,V⊗W (H))) = (a6(TrV ∗;W∗,U∗))(H).
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The diagram is commutative, for example, the lower right square:

E ⊗ F �→ (Hom(IdV ∗⊗W∗ , j̃U ) ◦ j′2 ◦ [tV V ⊗ tUW ])(E ⊗ F )

= j̃U ◦ (j′2((tV V (E))⊗ (tUW (F )))) :

φ⊗ ξ �→ j̃U ((E
∗(φ)) ⊗ (F ∗(ξ))) :

v ⊗ u �→ φ(E(v)) · ξ(F (u)),
E ⊗ F �→ (Hom(̃jW , IdV ∗⊗U∗) ◦ tV⊗U,V ⊗W ◦ j2)(E ⊗ F )

= (tV ⊗U,V⊗W (j2(E ⊗ F ))) ◦ j̃W :

φ⊗ ξ �→ (̃jW (φ⊗ ξ)) ◦ (j2(E ⊗ F )) :

v ⊗ u �→ φ(E(v)) · ξ(F (u)).
Lemma 2.5 implies the equality of the outputs of the distinguished elements in the
top row:

a1(TrV ⊗ IdHom(U,W )) = TrV ⊗ tUW

a2(TrV ∗ ⊗ IdHom(W∗,U∗)) = (t∗V V (TrV ∗))⊗ tUW

= TrV ⊗ tUW ,

and the Theorem follows from the commutativity of the diagram:

a5(TrV ;U,W ) = (a5 ◦Hom(j−1
2 , l1) ◦ j1)(TrV ⊗ IdHom(U,W ))

= (Hom(j−1
2 , l′1) ◦ j′′1 ◦ a1)(TrV ⊗ IdHom(U,W ))

= (Hom(j−1
2 , l′1) ◦ j′′1 ◦ a2)(TrV ∗ ⊗ IdHom(W∗,U∗))

= (a6 ◦Hom((j′2)
−1, l′1) ◦ j′1)(TrV ∗ ⊗ IdHom(W∗,U∗))

= a6(TrV ∗;W∗,U∗).

Exercise 2.45. Given a direct sum V = V1 ⊕ V2, and A : V1 ⊗ U → V1 ⊗W ,
and B : V2 ⊗ U → V2 ⊗W , define A ⊕ B : V ⊗ U → V ⊗W using the projections
and inclusions from Example 1.81:

A⊕B = [Q1 ⊗ IdW ] ◦A ◦ [P1 ⊗ IdU ] + [Q2 ⊗ IdW ] ◦B ◦ [P2 ⊗ IdU ].

If V is finite-dimensional, then

TrV ;U,W (A⊕B) = TrV1;U,W (A) + TrV2;U,W (B).

Hint. The proof proceeds exactly as in Proposition 2.12, using Theorem 2.29.

Exercise 2.46. For V = V1 ⊕ V2 as above, and K : V ⊗ U → V ⊗W ,

TrV ;U,W (K) = TrV1;U,W ([P1 ⊗ IdW ] ◦K ◦ [Q1 ⊗ IdU ])

+TrV2;U,W ([P2 ⊗ IdW ] ◦K ◦ [Q2 ⊗ IdU ]).

Hint. Using Theorem 2.29 and Lemma 1.36,

TrVi;U,W ([Pi ⊗ IdW ] ◦K ◦ [Qi ⊗ IdU ]) = TrV ;U,W ([(Qi ◦ Pi)⊗ IdW ] ◦K).

The proof proceeds exactly as in Proposition 2.13.
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Proposition 2.47. For finite-dimensional V1 and V2, maps A : V1 ⊗ U1 →
V2⊗W2, B : V2⊗U2 → V1⊗W1, and switching maps as in the following diagrams,

V1 ⊗ U2 ⊗ U1

s1

��
V1 ⊗ U1 ⊗ U2

[A⊗IdU2 ]

��
V2 ⊗W2 ⊗ U2

s2

��
V2 ⊗ U2 ⊗W2

[B⊗IdW2 ]

��
V1 ⊗W1 ⊗W2

V2 ⊗ U2 ⊗ U1

[B⊗IdU1 ]

��
V1 ⊗W1 ⊗ U1

s3

��
V1 ⊗ U1 ⊗W1

[A⊗IdW1 ]

��
V2 ⊗W2 ⊗W1

s4

��
V2 ⊗W1 ⊗W2

the traces of the composites are equal:

TrV1;U2⊗U1,W1⊗W2([B ⊗ IdW2 ] ◦ s2 ◦ [A⊗ IdU2 ] ◦ s1)
= TrV2;U2⊗U1,W1⊗W2(s4 ◦ [A⊗ IdW1 ] ◦ s3 ◦ [B ⊗ IdU1 ]).

Proof. The canonical map

j : Hom(V2, V1)⊗Hom(U2,W1) → Hom(V2 ⊗ U2, V1 ⊗W1)

is invertible by the finite-dimensionality hypothesis and Claim 1.34. Also consider
a map

Q1
1 : K → End(W2) : 1 �→ IdW2 ,

as in (2.4) (and again not necessarily from some direct sum as in Example 2.9),
and analogously

Q̃1
1 : K → End(U1) : 1 �→ IdU2 .
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The claim of the Proposition is that the lower block of this diagram is commutative,
starting with B ⊗ 1 in the upper right.

Hom(V2, V1)⊗Hom(U2,W1)⊗K
[j⊗IdK] ��

[j⊗Q̃1
1]

��

Hom(V2 ⊗ U2, V1 ⊗W1)⊗K
[IdHom(V2⊗U2,V1⊗W1)⊗Q̃1

1]

��������
������

������
�����

[IdHom(V2⊗U2,V1⊗W1)⊗Q1
1] ��

Hom(V2 ⊗ U2, V1 ⊗W1)⊗ End(U1)

j′′

��

Hom(V2 ⊗ U2, V1 ⊗W1)⊗ End(W2)

j′

��
Hom(V2 ⊗ U2 ⊗ U1, V1 ⊗W1 ⊗ U1)

Hom(IdV2⊗U2⊗U1 ,s4⊗[A⊗IdW1 ]◦s3)

��

Hom(V2 ⊗ U2 ⊗W2, V1 ⊗W1 ⊗W2)

Hom(s2⊗[A⊗IdU2 ]◦s1,IdV1⊗W1⊗W2 )

��
Hom(V2 ⊗ U2 ⊗ U1, V2 ⊗W1 ⊗W2)

TrV2;U2⊗U1,W1⊗W2

��

Hom(V1 ⊗ U2 ⊗ U1, V1 ⊗W1 ⊗W2)

TrV1;U2⊗U1,W1⊗W2��������
������

������
�����

Hom(U2 ⊗ U1,W1 ⊗W2)

The upper triangle of the above diagram is commutative, so to prove the claim
it is enough, by the invertibility of the upper arrow [j ⊗ IdK], to check the outside
of the diagram, starting with B1 ⊗ B2 ⊗ 1 in the upper left, for B1 : V2 → V1,
B2 : U2 → W1, so that the downward composite on the left side is equal to the
composite path going clockwise around the right.

The following easily checked diagram shows how the B2 factor commutes with
A.

V1 ⊗ U2 ⊗ U1

s1

��

[IdV1⊗[B2⊗IdU1 ]] �� V1 ⊗W1 ⊗ U1

s3

��
V1 ⊗ U1 ⊗ U2

[A⊗IdU2 ]

��

[IdV1⊗U1⊗B2] �� V1 ⊗ U1 ⊗W1

[A⊗IdW1 ]

��
V2 ⊗W2 ⊗ U2

s2

��

[IdV2⊗W2⊗B2] �� V2 ⊗W2 ⊗W1

s4

��
V2 ⊗ U2 ⊗W2

[IdV2⊗[B2⊗IdW2 ]] �� V2 ⊗W1 ⊗W2

Using Theorem 2.29,

TrV1;U2⊗U1,W1⊗W2([[B1 ⊗B2]⊗ IdW2 ] ◦ s2 ◦ [A⊗ IdU2 ] ◦ s1)
= TrV1;U2⊗U1,W1⊗W2([B1⊗ IdW1⊗W2 ]◦ [IdV2⊗ [B2 ⊗ IdW2 ]] ◦ s2◦ [A⊗ IdU2 ] ◦ s1)
= TrV1;U2⊗U1,W1⊗W2([B1⊗ IdW1⊗W2 ] ◦ s4◦ [A⊗ IdW1 ] ◦ s3◦ [IdV1⊗ [B2 ⊗ IdU1 ]])

= TrV2;U2⊗U1,W1⊗W2(s4◦ [A⊗ IdW1 ] ◦ s3◦ [IdV1⊗ [B2⊗ IdU1 ]] ◦ [B1⊗ IdU2⊗U1 ])

= TrV2;U2⊗U1,W1⊗W2(s4 ◦ [A⊗ IdW1 ] ◦ s3 ◦ [[B1 ⊗B2]⊗ IdU1 ]).
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Exercise 2.48. Using various switching maps, Proposition 2.47 can be used
to prove related identities. For example, given maps:

A′ : U1 ⊗ V1 → V2 ⊗W2

B′ : U2 ⊗ V2 → V1 ⊗W1

s5 : V1 ⊗ U2 ⊗ U1 → U2 ⊗ U1 ⊗ V1

s6 : V2 ⊗ U2 ⊗ U1 → U1 ⊗ U2 ⊗ V2,

the following identity can be proved as a consequence of Proposition 2.47:

TrV1;U2⊗U1,W1⊗W2([B
′ ⊗ IdW2 ] ◦ [IdU2 ⊗A′] ◦ s5)

= TrV2;U2⊗U1,W1⊗W2(s4 ◦ [A′ ⊗ IdW1 ] ◦ [IdU1 ⊗B′] ◦ s6).(2.7)

Hint. Let A = A′ ◦ s and B = B′ ◦ s for appropriate switching maps s.

Remark 2.49. Equation (2.7) is related to [PS] Proposition 2.7, on the “cyclic-
ity” of the generalized trace.

2.3. Vector valued trace

In analogy with Definition 2.24, but with no space U , the “vector valued” or
“W -valued” trace of a map V → V ⊗W should be an element ofW . The results on
the generalized trace have analogues in this case, but the construction uses different
canonical maps.

2.3.1. Defining the vector valued trace.
The following Definition 2.50 applies to an arbitrary vector space W and a

finite-dimensional space V to define the W -valued trace

TrV ;W : Hom(V, V ⊗W ) →W,

in terms of the previously defined (scalar) trace TrV , and canonical maps

n : End(V )⊗W → Hom(V, V ⊗W )

j′1 : End(V )∗ ⊗ End(W ) → Hom(End(V )⊗W,K⊗W ),

where j′1 is another canonical j map in analogy with j1 from Definition 2.24, and
n is invertible by Lemma 1.44.

Definition 2.50. For finite-dimensional V ,

TrV ;W = (Hom(n−1, lW ) ◦ j′1)(TrV ⊗ IdW )

= lW ◦ [TrV ⊗ IdW ] ◦ n−1.

Example 2.51. A map of the form n(A ⊗ w) : V → V ⊗ W , for finite-
dimensional V , A : V → V , and w ∈W , has trace

TrV ;W (n(A⊗ w)) = lW ((j′1(TrV ⊗ IdW ))(A⊗ w)) = TrV (A) · w.
The vector valued trace is related to the generalized trace in two different ways

by Theorem 2.52 and Theorem 2.53, which use the two different variants of the
q maps from Notation 1.49. Theorem 2.52 relates Definition 2.24 to the case of
Definition 2.50 where W is replaced by the vector space Hom(U,W ).
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Theorem 2.52. For finite-dimensional V , and a map K : V → V⊗Hom(U,W ),

TrV ;Hom(U,W )(K) = TrV ;U,W (q(n′ ◦K)).

Proof. The maps

q : Hom(V,Hom(U, V ⊗W )) → Hom(V ⊗ U, V ⊗W ),

n′ : V ⊗Hom(U,W ) → Hom(U, V ⊗W )

are as in Definition 1.46 and Notation 1.41.
In the following diagram,

M11

Hom(n−1,l1) ��

Hom(j−1
2 ,l1)

��

M12
Hom(n,l−1

1 )

��

M21

Hom(q,IdHom(U,W )) ��

Hom(j2,l
−1
1 )

��

M22

Hom(Hom(IdV ,n′),IdHom(U,W ))

��

the objects are

M11 = Hom(End(V )⊗Hom(U,W ),K⊗Hom(U,W ))

M21 = Hom(Hom(V ⊗U, V ⊗W ),Hom(U,W ))

M12 = Hom(Hom(V, V ⊗Hom(U,W )),Hom(U,W ))

M22 = Hom(Hom(V,Hom(U, V ⊗W )),Hom(U,W )).

The square is commutative by Lemma 1.6 and Lemma 1.52.
Definition 2.24 and Definition 2.50 are related in this case by lW = l1 and

j′1 = j1. The Theorem follows:

TrV ;Hom(U,W ) = (Hom(n−1, l1) ◦ j1)(TrV ⊗ IdHom(U,W ))

= (Hom(j−1
2 ◦ q ◦Hom(IdV , n

′), l1) ◦ j1)(TrV ⊗ IdHom(U,W ))

= Hom(q ◦Hom(IdV , n
′), IdHom(U,W ))(TrV ;U,W ).(2.8)

Considering that q and n′ are invertible by Lemma 1.47 and Lemma 1.44, line (2.8)
can be written as:

(2.9) TrV ;U,W = TrV ;Hom(U,W ) ◦Hom(IdV , (n
′)−1) ◦ q−1.

Theorem 2.53. For finite-dimensional V , and a map F : V ⊗ U → V ⊗W ,

TrV ;W ◦ (q−1(F )) = TrV ;U,W (F ).

Proof. The map

(2.10) q : Hom(U,Hom(V, V ⊗W )) → Hom(V ⊗ U, V ⊗W )

is as in (1.5) from Notation 1.49.
In the following diagram, the map n is as in Definition 2.50, so that the down-

ward composite in the right column is

Hom(IdU , T rV ;W ) : Hom(U,Hom(V, V ⊗W )) → Hom(U,W ).

The downward composite in the left column is TrV ;U,W as in Definition 2.24. The
other maps n1 and n2 are as indicated in the diagram. The claim can be re-written
in a way analogous to Equation (2.9) from Theorem 2.52:

(2.11) TrV ;U,W = Hom(IdU , T rV ;W ) ◦ q−1,
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which will follow from the commutativity of the diagram.

Hom(V ⊗ U, V ⊗W ) Hom(U,Hom(V, V ⊗W ))q
��

End(V )⊗Hom(U,W )

j2

��

n1

��

[TrV ⊗IdHom(U,W )]

��

Hom(U,End(V )⊗W )

Hom(IdU ,n)

��

Hom(IdU ,[TrV ⊗IdW ])

��
K⊗Hom(U,W )

l1

��

n2

�� Hom(U,K⊗W )

Hom(IdU ,lW )

�����
�����

�����
�����

��

Hom(U,W )

The upper square is commutative by a version of Lemma 1.52 with some re-ordering;
we briefly re-state its Proof for this case: for A ∈ End(V ), B ∈ Hom(U,W ), v ∈ V ,
u ∈ U ,

(q ◦Hom(IdU , n) ◦ n1) : A⊗B �→ q(n ◦ (n1(A⊗B))) :

v ⊗ u �→ ((n ◦ (n1(A⊗B)))(u))(v)

= (n(A ⊗ (B(u))))(v) = (A(v)) ⊗ (B(u))

= (j2(A⊗B))(v ⊗ u).

The commutativity of the middle square uses Lemma 1.42 and IdHom(U,W ) =
Hom(IdU , IdW ), but not any special properties of TrV . The lower triangle is easily

checked.

Definition 2.50 is related to the scalar trace, as in Definition 2.3, when W = K.

Theorem 2.54. For finite-dimensional V and H : V → V ⊗ K,

TrV (lV ◦H) = TrV ;K(H).

Proof. Let l2 : End(V )∗ ⊗ K → End(V )∗ be another scalar multiplication
map. The following diagram is commutative.

End(V )∗ ⊗K∗

j′1
��

End(V )∗ ⊗K

l2

��

[IdEnd(V )∗⊗m]
��

Hom(End(V )⊗K,K⊗ K)

Hom(n−1,lK)

��
Hom(V, V ⊗K)∗

Hom(n,l−1
K

)

��

End(V )∗
Hom(IdV ,lV )∗

��

For λ, μ ∈ K, Φ ∈ End(V )∗, A ∈ End(V ),

Φ⊗ λ �→ (j′1 ◦ [IdEnd(V )∗ ⊗m])(Φ⊗ λ) = j′1(Φ⊗ (m(λ))) :

A⊗ μ �→ (Φ(A))⊗ (μ · λ),
Φ⊗ λ �→ (Hom(n, l−1

K
) ◦Hom(IdV , lV )

∗ ◦ l2)(Φ⊗ λ)

= l−1
K

◦ ((λ·Φ) ◦Hom(IdV , lV ))◦n :

A⊗ μ �→ l−1
K

((λ · Φ)(lV ◦ (n(A⊗ μ)))) = 1⊗ (λ · Φ(μ ·A)),
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since (lV ◦ (n(A ⊗ μ))) : v �→ lV ((A(v)) ⊗ μ) = (μ · A)(v). The Theorem follows
from [IdEnd(V )∗ ⊗m](TrV ⊗ 1) = TrV ⊗ IdK:

Hom(IdV , lV )
∗(TrV ) = (Hom(IdV , lV )

∗ ◦ l2)(TrV ⊗ 1)

= (Hom(n−1, lK) ◦ j′1 ◦ [IdEnd(V )∗ ⊗m])(TrV ⊗ 1)

= TrV ;K.

Definition 2.24 and Definition 2.50 are related in the case U = K:

Theorem 2.55. For finite-dimensional V and H : V → V ⊗W ,

TrV ;K,W (H ◦ lV ) : 1 �→ TrV ;W (H).

Proof. The following diagram is commutative:

End(V )∗⊗End(Hom(K,W ))

j1

��

a1 �� End(V )∗⊗End(W )

j′1
��

Hom(End(V )⊗Hom(K,W ),K⊗Hom(K,W ))
a2 ��

Hom(j−1
2 ,l1)

��

Hom(End(V )⊗W,K⊗W )

Hom(n−1,lW )

��
Hom(Hom(V ⊗K, V ⊗W ),Hom(K,W ))

a3 ��

Hom(j2,l
−1
1 )

��

Hom(Hom(V, V ⊗W ),W )

Hom(n,l−1
W )

��

where the horizontal arrows are

a1 = [IdEnd(V )∗ ⊗Hom(m,m−1)]

a2 = Hom([IdEnd(V ) ⊗m], [IdK ⊗m−1])

a3 = Hom(Hom(lV , IdV⊗W ),m−1).

The statement of the Theorem becomes

a3(TrV ;K,W ) = TrV ;W .

The top square is commutative by Lemma 1.37. The lower square is commutative
by Lemma 1.6, Lemma 1.38, and Lemma 1.43. The Theorem follows from a1(TrV ⊗
IdHom(K,W )) = TrV ⊗ IdW :

a3(TrV ;K,W ) = (a3 ◦Hom(j−1
2 , l1) ◦ j1)(TrV ⊗ IdHom(K,W ))

= (Hom(n−1, lW ) ◦ j′1 ◦ a1)(TrV ⊗ IdHom(K,W ))

= (Hom(n−1, lW ) ◦ j′1)(TrV ⊗ IdW )

= TrV ;W .

Exercise 2.56. The result of Theorem 2.27,

TrV (H) = (TrV ;K,K(l
−1
V ◦H ◦ lV ))(1),

can be given a different proof using the vector valued trace as an intermediate step.

Hint. By Theorem 2.54 and Theorem 2.55,

TrV = Hom(IdV , l
−1
V )∗(Hom(Hom(lV , IdV⊗K),m

−1)(TrV ;K,K)).
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Corollary 2.57. For H : K → K⊗W , TrK;W (H) = lW (H(1)).

Proof. Theorem 2.55 applies, with lK : K⊗K → K:

TrK;W (H) = (TrK;K,W (H ◦ lK))(1).
By Theorem 2.26, this quantity is equal to

(Hom(l−1
K
, lW )(H ◦ lK))(1) = lW (H(1)).

2.3.2. Properties of the vector valued trace.
The following results on the W -valued trace are corollaries of results from

Section 2.2. In most cases, Theorem 2.55 applies, leading to a straightforward
calculation.

Corollary 2.58. For finite-dimensional V and V ′, and A : V → V ′, B :
V ′ → V ⊗W ,

TrV ;W (B ◦A) = TrV ′;W ((jW (A⊗ IdW )) ◦B).

Proof. Theorem 2.29 and Theorem 2.55 apply, using the map lV ′ : V ′ ⊗K →
V ′, and the equation A ◦ lV = lV ′ ◦ (jK(A⊗ IdK)), a version of Lemma 1.38.

TrV ;W (B ◦A) = (TrV ′;K,W (B ◦A ◦ lV ))(1)
= (TrV ;K,W (B ◦ lV ′ ◦ (jK(A⊗ IdK))))(1)

= (TrV ′;K,W ((jW (A⊗ IdW )) ◦B ◦ lV ′))(1)

= TrV ′,W ((jW (A⊗ IdW )) ◦B).

Corollary 2.59. For finite-dimensional V , and A : V → V ⊗W , B : W →
W ′,

TrV ;W ′([IdV ⊗B] ◦A) = B(TrV ;W (A)).

Proof. By Theorem 2.30 and Theorem 2.55,

TrV ;W ′([IdV ⊗B] ◦A) = (TrV ;K,W ′([IdV ⊗B] ◦A ◦ lV ))(1)
= (B ◦ (TrV ;K,W (A ◦ lV )))(1) = B(TrV ;W (A)).

Corollary 2.60. If V and V ′ are finite-dimensional then for any maps A :
V → V ′, B :W →W ′, the following diagram is commutative.

Hom(V, V ⊗W )
TrV ;W �� W

B

��

Hom(V ′, V ⊗W )

Hom(A,IdV ⊗W )

��

Hom(IdV ′ ,[A⊗B])

��
Hom(V ′, V ′ ⊗W ′)

TrV ′;W ′ �� W ′

Proof. This follows from Corollary 2.58 and Corollary 2.59.
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Lemma 2.61. For a direct sum W = W1 ⊕ W2 with data Pi, Qi, there is
also a direct sum Hom(V, V ⊗W ) = Hom(V, V ⊗ W1) ⊕ Hom(V, V ⊗ W2), with
projections Hom(IdV , [IdV ⊗ Pi]) and inclusions Hom(IdV , [IdV ⊗ Qi]). If V is
finite-dimensional, then the map TrV ;W : Hom(V, V ⊗W ) →W respects the direct
sums, and each induced map is equal to a Wi-valued trace:

TrV ;Wi = Pi ◦ TrV ;W ◦Hom(IdV , [IdV ⊗Qi]) : Hom(V, V ⊗Wi) →Wi.

Proof. The projections and inclusions are as in Example 1.81 and Example

1.82. The claims follow from Definition 1.88 and Corollary 2.59.

Corollary 2.62. For finite-dimensional V and V ′, and A : V ⊗ V ′ → V ⊗
V ′ ⊗W ,

TrV⊗V ′;W (A) = TrV ′;W (TrV ;V ′,V ′⊗W (A)).

Proof. Using Theorem 2.30, Theorem 2.38, and Theorem 2.55, and the scalar
multiplication identity lV⊗V ′ = [IdV ⊗ lV ′ ] : V ⊗ V ′ ⊗K → V ⊗ V ′,

TrV⊗V ′;W (A) = (TrV⊗V ′;K,W (A ◦ lV⊗V ′))(1)

= (TrV⊗V ′;K,W (A ◦ [IdV ⊗ lV ′ ]))(1)

= (TrV ′;K,W (TrV ;V ′⊗K,V ′⊗W (A ◦ [IdV ⊗ lV ′ ])))(1)

= (TrV ′;K,W ((TrV ;V ′,V ′⊗W (A)) ◦ lV ′))(1)

= TrV ′;W (TrV ;V ′,V ′⊗W (A)).

Exercise 2.63. Let V be finite-dimensional and denote by n′′ the map

n′′ : W ⊗Hom(U,W ′) → Hom(U,W ⊗W ′)
: w ⊗ E �→ (u �→ w ⊗ (E(u))).

For A : V → V ⊗W , B : U →W ′,

TrV ;U,W⊗W ′(j′0(A⊗B)) = n′′((TrV ;W (A)) ⊗B).

Hint. By Theorem 2.30, Theorem 2.55, Corollary 2.42, and the equations

(j′0(A⊗B)) ◦ [IdV ⊗ lU ] = [A⊗ (B ◦ lU )] = [(A ◦ lV )⊗B],

(TrV ;U,W⊗W ′(j′0(A⊗B))) ◦ lU = TrV ;K⊗U,W⊗W ′([A⊗ (B ◦ lU )])
= TrV ;K⊗U,W⊗W ′([(A ◦ lV )⊗B])

= j4((TrV ;K,W (A ◦ lV ))⊗B)

=⇒ TrV ;U,W⊗W ′ (j′0(A⊗B)) = (j4((TrV ;K,W (A ◦ lV ))⊗B)) ◦ l−1
U :

u �→ ((TrV ;K,W (A ◦ lV ))(1)) ⊗ (B(u))

= (TrV ;W (A))⊗ (B(u))

= (n′′((TrV ;W (A))⊗B))(u).
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Corollary 2.64. For finite-dimensional V1 and V2, and maps A : V1 → V1 ⊗
W1, B : V2 → V2 ⊗W2, the following identity holds:

TrV1⊗V2;W1⊗W2(s1 ◦ (j′3(A⊗B))) = (TrV1;W1(A)) ⊗ (TrV2;W2(B)) ∈ W1 ⊗W2.

Proof. The canonical j3 map is as in Theorem 2.40,

j′3 : Hom(V1, V1 ⊗W1)⊗Hom(V2, V2 ⊗W2) → Hom(V1 ⊗ V2, V1 ⊗ V2 ⊗W1 ⊗W2),

and s1 is a switching map. In the following diagram,

M11
a1 ��

j′3
��

M12
j3 �� M13

a2

��
M21

a3 �� M22
a4 �� M23

the objects are

M11 = Hom(V1, V1 ⊗W1)⊗Hom(V2, V2 ⊗W2)

M21 = Hom(V1 ⊗ V2, V1 ⊗W1 ⊗ V2 ⊗W2)

M12 = Hom(V1 ⊗K, V1 ⊗W1)⊗Hom(V2 ⊗K, V2 ⊗W2)

M22 = Hom(V1 ⊗ V2 ⊗K, V1 ⊗W1 ⊗ V2 ⊗W2)

M13 = Hom(V1 ⊗K⊗ V2 ⊗K, V1 ⊗W1 ⊗ V2 ⊗W2)

M23 = Hom(V1 ⊗ V2 ⊗K⊗K, V1 ⊗W1 ⊗ V2 ⊗W2),

and the arrows are

a1 = [Hom(lV1 , IdV1⊗W1)⊗Hom(lV2 , IdV1⊗W2)]

a2 = Hom(s2, IdV1⊗W1⊗V2⊗W2)

a3 = Hom(lV1⊗V2 , IdV1⊗W1⊗V2⊗W2)

a4 = Hom([IdV1⊗V2 ⊗ lK], IdV1⊗W1⊗V2⊗W2).

The diagram is commutative, by Lemma 1.37 and a scalar multiplication identity.
By Theorem 2.55, Theorem 2.30, Theorem 2.40, and the diagram,

LHS = (TrV1⊗V2;K,W1⊗W2(s1 ◦ (j′3(A⊗B)) ◦ lV1⊗V2))(1)

= (TrV1⊗V2;K,W1⊗W2(s1◦(j3((A ◦ lV1)⊗(B ◦ lV2)))◦s2 ◦ [IdV1⊗V2 ⊗ l−1
K

]))(1)

= ((TrV1⊗V2;K⊗K,W1⊗W2(s1 ◦ (j3((A ◦ lV1)⊗ (B ◦ lV2))) ◦ s2)) ◦ l−1
K

)(1)

= (j4((TrV1;K,W1(A ◦ lV1))⊗ (TrV2;K,W2(B ◦ lV2))))(1 ⊗ 1)

= (TrV1;W1(A))⊗ (TrV2;W2(B)) = RHS.

Example 2.65. If L is finite-dimensional and EvL : L∗ ⊗ L→ K is invertible,
as in Lemma 2.21, then TrL;W is invertible, because it is a composite of invertible
maps by Definition 2.50:

TrL;W = lW ◦ [TrL ⊗ IdW ] ◦ n−1 : Hom(L,L⊗W ) →W.

Also by Lemma 2.21 and Example 2.51, for any w ∈W ,

TrL;W (n(IdL ⊗ w)) = 1 · w = w.
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Exercise 2.66. For a direct sum V = V1 ⊕ V2 as in Definition 1.77, and maps
A : V1 → V1 ⊗W , B : V2 → V2 ⊗W , define A ⊕ B : V → V ⊗W , using the
inclusions from Example 1.81:

A⊕B = [Q1 ⊗ IdW ] ◦A ◦ P1 + [Q2 ⊗ IdW ] ◦B ◦ P2.

If V is finite-dimensional, then

TrV ;W (A⊕B) = TrV1;W (A) + TrV2;W (B).

Hint. The proof proceeds exactly as in Proposition 2.12, using Corollary 2.58.

Exercise 2.67. If V is finite-dimensional and V = V1 ⊕ V2, then for K : V →
V ⊗W ,

TrV ;W (K) = TrV1;W ([P1 ⊗ IdW ] ◦K ◦Q1) + TrV2;W ([P2 ⊗ IdW ] ◦K ◦Q2).

Hint. Using Corollary 2.58 and Lemma 1.36,

TrVi;W ([Pi ⊗ IdW ] ◦K ◦Qi) = TrV ;W ([(Qi ◦ Pi)⊗ IdW ] ◦K).

The proof proceeds exactly as in Proposition 2.13.

2.4. Equivalence of alternative definitions

In [JSV] §3, the canonical trace of a map F : V ⊗ U → V ⊗W is defined in
terms of category theory. In the context and notation of these notes, the definition
of [JSV] can be interpreted as saying that TrV ;U,W (F ) is the following composite
map from U to W :

(2.12) U �� V ∗ ⊗ V ⊗ U
[IdV ∗⊗F ] �� V ∗ ⊗ V ⊗W

lW ◦[EvV ⊗IdW ] �� W,

where the first arrow is defined for u ∈ U by:

u �→ (k−1(IdV ))⊗ u.

As mentioned after Theorem 2.10, this map could be expressed in terms of maps
lU : K ⊗ U → U and an inclusion Q1

1 : K → End(V ) : 1 �→ IdV as in Example 2.9
and Equation (2.4).

Notation 2.68. For finite-dimensional V , k : V ∗ ⊗ V → End(V ), a switching
map s : V ∗ ⊗ V → V ⊗ V ∗, and the map Q1

1 : K → End(V ) : 1 �→ IdV , define
ηV : K → V ⊗ V ∗ by:

ηV = s ◦ k−1 ◦Q1
1.

The switching map is included for later convenience in Theorem 2.96. The
arrow in (2.12) can then be described as follows:

[s−1 ⊗ IdU ] ◦ [ηV ⊗ IdU ] ◦ l−1
U

= [k−1 ⊗ IdU ] ◦ [Q1
1 ⊗ IdU ] ◦ l−1

U : U → V ∗ ⊗ V ⊗ U(2.13)

: u �→ (k−1(IdV ))⊗ u.

The following Theorem shows that the formula (2.12) for TrV ;U,W (F ) coincides with
Definition 2.24. V must be finite-dimensional, but U and W may be arbitrary.
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Theorem 2.69. For finite-dimensional V , F : V ⊗ U → V ⊗W , and u ∈ U ,

(TrV ;U,W (F ))(u)=(lW ◦ [EvV ⊗ IdW ] ◦ [IdV ∗ ⊗ F ] ◦ [k−1⊗ IdU ])(IdV ⊗ u).

Proof. The following diagram is commutative, where the top arrow is a1 =
[IdEnd(V ∗) ⊗ j2].

End(V ∗)⊗Hom(V ⊗ U, V ⊗W )

j

��

End(V ∗)⊗ End(V )⊗Hom(U,W )a1

��

[j⊗IdHom(U,W )]

��
Hom(V ∗ ⊗ V ⊗ U, V ∗ ⊗ V ⊗W )

Hom([k−1⊗IdU ],[EvV ⊗IdW ])

��

End(V ∗ ⊗ V )⊗Hom(U,W )

[Hom(k−1,EvV )⊗IdHom(U,W )]

��

j
��

Hom(End(V )⊗ U,K⊗W )

Hom(IdEnd(V )⊗U ,lW )

��

End(V )∗ ⊗Hom(U,W )
j

��

[(dEnd(V )(IdV ))⊗IdHom(U,W )]

��
Hom(End(V )⊗ U,W )

dEnd(V )⊗U,W (IdV ⊗u)

��

K⊗Hom(U,W )

l1

��
W Hom(U,W )

dUW (u)
��

The upper and lower squares are easy to check (the maps dUW , dEnd(V )⊗U,W are as
in Definition 1.13), and the middle square is commutative by Lemma 1.37. Starting
with IdV ∗ ⊗ F in the upper left corner, the RHS of the Theorem is the output of
the composition in the left column. The top three arrows in the right column come
from the construction in Theorem 2.10,

TrV (A) = ((dEnd(V )(IdV )) ◦Hom(k−1, EvV ) ◦ j)(IdV ∗ ⊗A),

so that the composite of a−1
1 = [IdEnd(V ∗) ⊗ j−1

2 ] with the right column of maps

takes IdV ∗ ⊗F to TrV ;U,W (F ) = l1((j1(TrV ⊗ IdHom(U,W )))(j
−1
2 (F ))). The lowest

arrow plugs u into TrV ;U,W (F ), giving the LHS of the Theorem, so the equality

follows directly from the commutativity of the diagram.

Corollary 2.70. For finite-dimensional V and A : V → V ⊗W ,

TrV ;W (A) = (lW ◦ [EvV ⊗ IdW ] ◦ [IdV ∗ ⊗A] ◦ k−1)(IdV ).

Proof. By Theorem 2.69 and Theorem 2.55,

LHS = (TrV ;K,W (A ◦ lV ))(1)
= (lW ◦ [EvV ⊗ IdW ] ◦ [IdV ∗ ⊗ (A ◦ lV )] ◦ [k−1 ⊗ IdK])(IdV ⊗ 1)

= RHS.

This shows, in analogy with Theorem 2.10 and (2.12) from Theorem 2.69, that
the W -valued trace of A is the output of the distinguished element k−1(IdV ) under
the composite map

(2.14) V ∗ ⊗ V
[IdV ∗⊗A] �� V ∗ ⊗ V ⊗W

lW ◦[EvV ⊗IdW ] �� W.

So, Corollary 2.70 could be used as an alternative, but equivalent, definition of
vector valued trace. This Section continues with some identities for the vector
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valued trace, some of which (Theorem 2.74, Corollary 2.88, Corollary 2.108) could
also be used in alternative approaches to the definition of TrV ;W .

2.4.1. A vector valued canonical evaluation.

Definition 2.71. The distinguished element

EvV W ∈ Hom(Hom(V,W )⊗ V,W )

is the canonical evaluation map, defined by

EvVW (A⊗ v) = A(v).

In the W = K case, EvV K is the distinguished element EvV ∈ (V ∗ ⊗ V )∗ from
Definition 2.2. The scalar evaluation EvV and vector valued evaluation EvV W are
related as follows.

Lemma 2.72. For any V and W , let s′ : V ⊗W →W ⊗V be a switching map.
The following diagram is commutative.

V ∗ ⊗ V ⊗W
[EvV ⊗IdW ]

��

[IdV ∗⊗s′]
��

K ⊗W

l

��

V ∗ ⊗W ⊗ V

[kV W⊗IdV ]

��
Hom(V,W )⊗ V

EvV W

�� W

Proof.

φ⊗ v ⊗ w �→ (l ◦ [EvV ⊗ IdW ])(φ ⊗ v ⊗ w)

= φ(v) · w,
φ⊗ v ⊗ w �→ (EvV W ◦ [kV W ⊗ IdV ] ◦ [IdV ∗ ⊗ s′])(φ ⊗ v ⊗ w)

= EvV W ((kV W (φ⊗ w)) ⊗ v)

= φ(v) · w.

The canonical evaluation maps have the following naturality property.

Lemma 2.73. For any vector spaces U , V , V ′, W , and any maps G : V ′ → V ,
B : U →W , the following diagram is commutative.

Hom(V, U)⊗ V
EvV U �� U

B

��

Hom(V, U)⊗ V ′

[IdHom(U,V )⊗G]

��

[Hom(G,B)⊗IdV ′ ]
��

Hom(V ′,W )⊗ V ′ EvV ′W �� W
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Proof. For A ∈ Hom(V, U), v ∈ V ′,

B ◦ EvV U ◦ [IdHom(V,U) ⊗G] :

A⊗ v �→ B(EvV U (A⊗ (G(v)))) = B(A(G(v))),

EvV ′W ◦ [Hom(G,B)⊗ IdV ′ ] :

A⊗ v �→ EvV ′W ((B ◦A ◦G)⊗ v) = (B ◦A ◦G)(v).

Theorem 2.74. For a map

n′ : Hom(V,W )⊗ V → Hom(V, V ⊗W ),

if V is finite-dimensional, then

TrV ;W ◦ n′ = EvVW .

Proof. The map n′ is as in Notation 1.41. The conclusion is equivalent to the
formula TrV ;W (n′(A⊗ v)) = A(v), for A ∈ Hom(V,W ) and v ∈ V .

The claimed equality TrV ;W ◦ n′ = EvV W appears in the lower triangle in the
following diagram, so it follows from the commutativity of the rest of the diagram.

End(V )⊗W
[TrV ⊗IdW ]

����
���

���
���

n

��

V ∗ ⊗ V ⊗W
[kV V ⊗IdW ]��

[EvV ⊗IdW ]

��

















[IdV ∗⊗s′]

��
kV,V ⊗W

��
��
��
��
��
��
��
��
�

����
��
��
��
��
��
��
��
�

K⊗W

l

��

V ∗ ⊗W ⊗ V

[kV W⊗IdV ]

��
Hom(V, V ⊗W )

TrV ;W

����
���

���
���

��
Hom(V,W )⊗ V

n′
��

EvV W

��




















W

The front left square is Definition 2.50, and the upper triangle is Definition 2.3,
together with Lemma 1.36. The front right square is exactly Lemma 2.72. The
back square is commutative, where the back left triangle is exactly Lemma 1.65,
and the back right triangle is a variation on Lemma 1.65, with an extra switching
s′ and the differently ordered n′, checked by the following calculation.

φ⊗ v ⊗ w �→ (n′ ◦ [kV W ⊗ IdV ] ◦ [IdV ∗ ⊗ s′])(φ ⊗ v ⊗ w)(2.15)

= n′((kV W (φ⊗ w)) ⊗ v) :

u �→ v ⊗ (φ(u) · w) = (kV,V ⊗W (φ⊗ v ⊗ w))(u).

Recall the canonical map eWV V : End(V ) → Hom(Hom(V,W ) ⊗ V,W ) from
Definition 1.56. In the following diagram (adapted from part of the diagram from
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Lemma 2.5), the left triangle is commutative by Lemma 1.58.

Hom(Hom(V,W )⊗ V,W )

End(V )

eWV V

��

tWV V

��

Hom(Hom(V, V ⊗W ),W )

Hom(n′,IdW )
������������������

End(Hom(V,W ))

q

���������������������������

The three spaces on the left side of the diagram each contain a distinguished ele-
ment, giving an analogue of Equation (2.1):

(2.16) EvV W = q(IdHom(V,W )) = q(tWV V (IdV )) = eWV V (IdV ).

For finite-dimensional V , Theorem 2.74 gives:

TrV ;W = EvV W ◦ (n′)−1(2.17)

= ((Hom(n′, IdW ))−1 ◦ q)(IdHom(V,W )))(2.18)

= ((Hom(n′, IdW ))−1 ◦ eWV V )(IdV ).

where line (2.18) is an analogue of Equation (2.2) from Lemma 2.5.
Using Equation (2.17) as a definition for the vector valued trace allows some

proofs to be simplified and avoids scalar multiplication. For example, the following
result re-states Corollary 2.59 but gives a simpler proof.

Corollary 2.75. For any V , W , W ′, if V is finite-dimensional and B ∈
Hom(W,W ′) then

TrV ;W ′ ◦Hom(IdV , [IdV ⊗B]) = B ◦ TrV ;W : Hom(V, V ⊗W ) →W ′.

Proof. For n′ as in Theorem 2.74 and an analogous map n′′, the downward
composite in the left column of the following diagram is TrV ;W = EvV W ◦ (n′)−1,
and in the right column is TrV ;W ′ .

Hom(V, V ⊗W )
Hom(IdV ,[IdV ⊗B]) �� Hom(V, V ⊗W ′)

Hom(V,W )⊗ V

n′

��

[Hom(IdV ,B)⊗IdV ] ��

EvV W

��

Hom(V,W ′)⊗ V

n′′

��

EvV W ′
��

W
B �� W ′

The blocks are commutative; the upper by Lemma 1.42 and the lower by Lemma

2.73 (in the case G = IdV ).
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Corollary 2.76. For finite-dimensional V , and maps

n′ : Hom(V,W )⊗ V → Hom(V, V ⊗W )

q : Hom(U,Hom(V, V ⊗W )) → Hom(V ⊗ U, V ⊗W )

F : V ⊗ U → V ⊗W,

the following diagram is commutative.

U
TrV ;U,W (F ) ��

(n′)−1◦(q−1(F )) �����
����

����
����

� W

Hom(V,W )⊗ V

EvV W

��

Proof. The invertible map q is as in Theorem 2.53, where Equation (2.11)
states the commutativity of the upper triangle in the following diagram. The com-
mutativity of the lower triangle follows from Lemma 1.6 and Theorem 2.74, and
the claim follows.

Hom(V ⊗ U, V ⊗W )

TrV ;U,W

��

Hom(U,Hom(V, V ⊗W ))
q

��

Hom(IdU ,TrV ;W )

������
����

����
����

����
����

����
����

Hom(U,W ) Hom(U,Hom(V,W )⊗ V )
Hom(IdU ,EvV W )

��

Hom(IdU ,n′)

��

Theorem 2.77. Denote

n1 : End(V )⊗ U → Hom(V, V ⊗ U).

If V is finite-dimensional then, for any F : V ⊗ U → V ⊗W and u ∈ U ,

(TrV ;U,W (F ))(u) = TrV ;W (F ◦ (n1(IdV ⊗ u))).

Proof. Consider the following diagram.

U �� V ∗⊗V ⊗U
[k⊗IdU ]

��

[IdV ∗⊗F ] ��

kV,V ⊗U

��
��
��
��
��

  ��
��
��
��
��

V ∗⊗V ⊗W

kV,V ⊗W

  ��
��
��
��
��
��
��
��
��
��
�

[IdV ∗⊗s′]
��

[EvV ⊗IdW ]�� K⊗W

lW

��

K⊗ U

lU

��

[Q1
1⊗IdU ] �� End(V )⊗ U

n1�����
���

���
���

�
V ∗⊗W⊗V

[kV W⊗IdV ]

��
Hom(V, V⊗U)

Hom(IdV,F )
�� Hom(V,V⊗W ) Hom(V,W )⊗V

n′
��

EvV W

�� W

The composition from U to W clockwise along the upper row gives TrV ;U,W (F ) by
Theorem 2.69. The left square is from (2.13), and the right block is Lemma 2.72.
The center left triangle with the n1 map is exactly Lemma 1.65, and the center
right triangle with the n′ map is the variation on Lemma 1.65 copied from (2.15)
in the Proof of Theorem 2.74. The center block is commutative by Lemma 1.62.
The claim follows from Theorem 2.74:

LHS = EvV W ((n′)−1(F ◦ (n1(IdV ⊗ u)))) = RHS.
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Although Corollary 2.76 and Theorem 2.77 have arrived by different approaches,
their formulas for the generalized trace are closely related. For F : V ⊗U → V ⊗W ,
from Corollary 2.76,

TrV ;U,W (F ) = EvV W ◦ (n′)−1 ◦ (q−1(F )).

From Theorem 2.77,

TrV ;U,W (F ) = EvV W ◦ (n′)−1 ◦Hom(IdV , F ) ◦ n1 ◦ [Q1
1 ⊗ IdU ] ◦ l−1

U .

Using Lemma 1.47, the composite Hom(IdV , F ) ◦ n1 ◦ [Q1
1 ⊗ IdU ] ◦ l−1

U is equal to
q−1(F ):

Hom(IdV , F ) ◦ n1 ◦ [Q1
1 ⊗ IdU ] ◦ l−1

U : u �→ F ◦ (n1(IdV ⊗ u)) :

v �→ F (v ⊗ u),

q−1(F ) : u �→ (q−1(F ))(u) :

v �→ F (v ⊗ u).(2.19)

Similarly for the vector valued trace formula, Corollary 2.70 and Theorem 2.74
are related by the following commutative diagram.

V ∗ ⊗ V
[IdV ∗⊗A] ��

k

��

V ∗ ⊗ V ⊗W

kV,V ⊗W

��

[EvV ⊗IdW ] �� K⊗W
lW �� W

End(V )
Hom(IdV ,A) �� Hom(V, V ⊗W ) Hom(V,W )⊗ V

n′
��

EvV W

�������������

The left square is commutative by Lemma 1.62, and the right block is from the
Proof of Theorem 2.77. Starting with IdV ∈ End(V ), the composition clockwise
along the upper row gives TrV ;W (A) ∈ W as in (2.14) from Corollary 2.70, and
counterclockwise along the lower row gives EvV W ((n′)−1(A)), which also equals
TrV ;W (A) by Theorem 2.74.

Lemma 2.78. For any U , V , W , the following diagram is commutative.

U ⊗Hom(V,W )⊗ V

[n⊗IdV ]

��

[IdU⊗EvV W ] �� U ⊗W

Hom(V, U ⊗W )⊗ V

EvV,U⊗W

!!����������������������

Proof. Both paths take u ⊗ A ⊗ v ∈ U ⊗ Hom(V,W ) ⊗ V to u ⊗ (A(v)) ∈
U ⊗W .

Theorem 2.79. For any V , U , W , and F : V ⊗ U → V ⊗W , if V is finite-
dimensional then the n maps in the following diagram are invertible:

V ⊗ U
F �� V ⊗W

V ⊗Hom(V, U)⊗ V

[n2⊗IdV ]

��

[IdV ⊗EvV U ]

��

V ⊗Hom(V,W )⊗ V

[n′
2⊗IdV ]

��

[IdV ⊗EvV W ]

��

Hom(V, V ⊗ U)⊗ V
[Hom(IdV ,F )⊗IdV ]

�� Hom(V, V ⊗W )⊗ V
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and the diagram is commutative, in the sense that

F ◦ [IdV ⊗ EvV U ] ◦ [n2 ⊗ IdV ]
−1

= [IdV ⊗ EvV W ] ◦ [n′
2 ⊗ IdV ]

−1 ◦ [Hom(IdV , F )⊗ IdV ].

Proof. The n2, n
′
2 maps are defined as they appear in the diagram, with

subscript notation used to avoid duplication with the labels appearing elsewhere in
this Section; they are invertible by Lemma 1.44.

By Lemma 2.78, the upward composite on the left, [IdV ⊗EvV U ]◦ [n2⊗IdV ]−1,
is equal to EvV,V⊗U , and similarly the upward composite on the right is equal to

EvV,V⊗W . The claim then follows from Lemma 2.73.

In the following Theorem 2.80, diagram (2.20) is a generalization of the diagram
from Theorem 2.79.

Theorem 2.80. Given maps

F : V ⊗ U → V ⊗W

a1 : V ⊗Hom(X,U)⊗ V → V ⊗ U

a2 : V ⊗Hom(X,W )⊗ V → V ⊗W,

if V is finite-dimensional then the following are equivalent.

(1) The diagram (2.20) is commutative, in the sense that

F ◦ a1 ◦ [n2 ⊗ IdV ]
−1

= a2 ◦ [n′
2 ⊗ IdV ]

−1 ◦ [Hom(IdX , F )⊗ IdV ].

(2) The diagram (2.21) is commutative, in the sense that

F ◦ a1 ◦ [IdV ⊗ n3]
−1 ◦ n−1

4

= a2 ◦ [IdV ⊗ n′
3]

−1 ◦ (n′
4)

−1 ◦Hom(IdX , [F ⊗ IdV ]).

(2.20)

V ⊗ U
F �� V ⊗W

V ⊗Hom(X,U)⊗ V

[n2⊗IdV ]

��

a1

��

V ⊗Hom(X,W )⊗ V

[n′
2⊗IdV ]

��

a2

��

Hom(X,V ⊗ U)⊗ V
[Hom(IdX ,F )⊗IdV ]

�� Hom(X,V ⊗W )⊗ V

(2.21)

V ⊗ U
F �� V ⊗W

V ⊗Hom(X,U)⊗ V

[IdV ⊗n3]

��

a1

��

V ⊗Hom(X,W )⊗ V

[IdV ⊗n′
3]

��

a2

��

V ⊗Hom(X,U ⊗ V )

n4

��

V ⊗Hom(X,W ⊗ V )

n′
4

��
Hom(X,V ⊗ U ⊗ V )

Hom(IdX ,[F⊗IdV ])
�� Hom(X,V ⊗W ⊗ V )
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Proof. The four n maps are defined as they appear in the diagram; they are
invertible by Lemma 1.44. The diagrams have the same arrows a1, a2, F , so showing
the composite maps counter-clockwise from V ⊗Hom(X,U)⊗V to V ⊗Hom(X,W )⊗
V are equal to each other is enough to establish the claimed equivalence. The left
arrow in the following diagram is copied from the left column of (2.20) and the
upper and right arrows match the left column of (2.21). Introducing the lower
arrow n5 gives a commutative diagram by Lemma 1.45.

V ⊗Hom(X,U)⊗ V
[IdV ⊗n3]

��

[n2⊗IdV ]

��

V ⊗Hom(X,U ⊗ V )

n4

��
Hom(X,V ⊗ U)⊗ V n5

�� Hom(X,V ⊗ U ⊗ V )

With an analogous diagram for right column arrows of (2.20) and (2.21), replacing
U with W and introducing n′

5 : Hom(X,V ⊗W ) ⊗ V → Hom(X,V ⊗W ⊗ V ),
Lemma 1.45 gives the equation n′

4 ◦ [IdV ⊗ n′
3] = n′

5 ◦ [n′
2 ⊗ IdV ]. The equality

follows,

[n′
2 ⊗ IdV ]

−1 ◦ [Hom(IdX , F )⊗ IdV ] ◦ [n2 ⊗ IdV ]

= [IdV ⊗ n′
3]

−1◦ (n′
4)

−1◦ n′
5◦ [Hom(IdX , F )⊗ IdV ] ◦ n−1

5 ◦ n4◦ [IdV ⊗ n3]

= [IdV ⊗ n′
3]

−1 ◦ (n′
4)

−1 ◦Hom(IdX , [F ⊗ IdV ]) ◦ n4 ◦ [IdV ⊗ n3],(2.22)

line (2.22) using Lemma 1.42.

Lemma 2.81. For a switching map s : V ⊗V → V ⊗V , if k : V ∗⊗V → End(V )
is invertible, then the following map:

v �→ (lV ◦ [EvV ⊗ IdV ] ◦ [IdV ∗ ⊗ s] ◦ [k−1 ⊗ IdV ])(IdV ⊗ v)

is equal to the identity map IdV .

Proof. For the special case of Lemma 2.72 with W = V , s′ = s, the above
composite map is EvV V , so the given expression is

v �→ EvV V (IdV ⊗ v) = IdV (v) = v.

Example 2.82. If V is finite-dimensional, then the generalized trace of the
switching map s : V ⊗ V → V ⊗ V is:

(2.23) TrV ;V,V (s) = IdV ,

by the formula from Theorem 2.69 and Lemma 2.81:

TrV ;V,V (s) : v �→ (lV ◦ [EvV ⊗ IdV ] ◦ [IdV ∗ ⊗ s] ◦ [k−1⊗ IdV ])(IdV ⊗ v) = v.

Remark 2.83. Equation (2.23) is related to the “yanking” property of [JSV].

The following Lemma is analogous to Lemma 2.81.

Lemma 2.84. For a switching involution

s′′ : V ∗ ⊗ V ⊗ V ∗ → V ∗ ⊗ V ⊗ V ∗ : φ⊗ v ⊗ ψ �→ ψ ⊗ v ⊗ φ,

if k : V ∗ ⊗ V → End(V ) is invertible, then the following map:

φ �→ (lV ∗ ◦ [EvV ⊗ IdV ] ◦ s′′ ◦ [k−1 ⊗ IdV ∗ ])(IdV ⊗ φ)

is equal to the identity map IdV ∗ .
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Proof. The following diagram is commutative; the calculation is similar that
in the Proof of Lemma 2.72. Abbreviate t = tV V as in Lemma 2.5.

V ∗ ⊗ V ⊗ V ∗
[EvV ⊗IdV ∗ ]

��

s′′

��

K ⊗ V ∗

lV ∗

��

V ∗ ⊗ V ⊗ V ∗

[k⊗IdV ∗ ]
��

End(V )⊗ V ∗

[t⊗IdV ∗ ]
��

End(V ∗)⊗ V ∗
EvV ∗V ∗

�� V ∗

Starting with IdV ⊗ φ, the commutativity of the diagram and the existence of k−1

give:

(lV ∗ ◦ [EvV ⊗ IdV ] ◦ s′′ ◦ [k−1 ⊗ IdV ∗ ])(IdV ⊗ φ)(2.24)

= EvV ∗V ∗((t(IdV ))⊗ φ) = Id∗V (φ) = φ.

Theorem 2.85. If k : V ∗ ⊗ V → End(V ) is invertible, then dV : V → V ∗∗ is
invertible.

Proof. The following map, temporarily denoted B : V ∗∗ → V , is an inverse:

B : Φ �→ lV ([Φ⊗ IdV ](k
−1(IdV ))).

For any V , W , and v ∈ V , the following diagram is commutative (the two paths
V ∗ ⊗W →W are equal compositions).

V ∗ ⊗W
kV W ��

[(dV (v))⊗IdW ]

��

Hom(V,W ) Hom(V,W )⊗K
l��

[IdHom(V,W )⊗(m(v))]

��
K⊗W

lW �� W Hom(V,W )⊗ V
EvV W��

In the caseW = V , starting with IdV in the top middle gives the following equality:

(B ◦ dV )(v) = lV ([(dV (v))⊗ IdV ](k
−1(IdV )))

= EvV V (IdV ⊗ v) = v.

To check the composite in the other order, in the second diagram, s′′′ is another
switching map as indicated in the diagram, ηV and s are as in (2.13), the block is
commutative, and the composition in the left column acts as the identity map, by
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(2.24) from Lemma 2.84.

V ∗

l−1
V ∗

��
K⊗ V ∗

[ηV ⊗IdV ∗ ]
��

V ⊗ V ∗ ⊗ V ∗

[s⊗IdV ∗ ]
��

V ∗ ⊗ V ⊗ V ∗

s′′

��

[[Φ⊗IdV ]⊗IdV ∗ ] �� K⊗ V ⊗ V ∗

s′′′

��
V ∗ ⊗ V ⊗ V ∗

[EvV ⊗IdV ∗ ]
��

V ∗ ⊗K⊗ V

[IdV ∗⊗lV ]

��
K⊗ V ∗

lV ∗
��

V ∗ ⊗ V

EvV
��

V ∗ Φ �� K

The conclusion is:

Φ(φ) = (EvV ◦ [IdV ∗ ⊗ lV ] ◦ s′′′ ◦ [[Φ⊗ IdV ]⊗ IdV ∗ ])((k−1(IdV )) ⊗ φ)

= EvV (φ⊗ (lV ([Φ⊗ IdV ](k
−1(IdV )))))

= φ(lV ([Φ⊗ IdV ](k
−1(IdV ))))

= φ(B(Φ)) = ((dV ◦B)(Φ))(φ).

Proposition 2.86. Given U , V , W , a map G : U → Hom(V,W ), and the
canonical map

q : Hom(U,Hom(V,W )) → Hom(U ⊗ V,W ),

if V is finite-dimensional then

(2.25) q(G) = TrV ;W ◦ n′ ◦ [G⊗ IdV ].

Proof. q is as in Definition 1.46, and n′ is as in Theorem 2.74, which gives,
for u⊗ v ∈ U ⊗ V ,

(TrV ;W ◦ n′ ◦ [G⊗ IdV ])(u ⊗ v) = (EvV W ◦ [G⊗ IdV ])(u⊗ v)

= (G(u))(v)

= (q(G))(u ⊗ v).

Equation (2.25) from Proposition 2.86 can also be re-written, for F = q(G) ∈
Hom(U ⊗ V,W ),

F = EvV W ◦ [(q−1(F ))⊗ IdV ] = TrV ;W ◦ n′ ◦ [(q−1(F ))⊗ IdV ].
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Theorem 2.87. For vector spaces V and Z, let s1 : V ⊗ V → V ⊗ V be the
switching map and denote

n : End(V )⊗ V ⊗ Z → Hom(V, V ⊗ V ⊗ Z).

If V is finite-dimensional then for any B ∈ V ⊗ Z,

TrV ;V ⊗Z([s1 ⊗ IdZ ] ◦ (n(IdV ⊗B))) = B.

Proof. The following diagram is commutative, the lower triangle by Lemma
1.65 and the upper block in a variation on Lemma 1.65 that is straightforward to
check.

End(V )⊗ V ⊗ Z

n

��

V ∗ ⊗ V ⊗ V ⊗ Z
[kV V ⊗IdV ⊗Z ]��

[[IdV ∗⊗s1]⊗IdZ ]

��
Hom(V, V ⊗ V ⊗ Z)

Hom(IdV ,[s1⊗IdZ ])

��

V ∗ ⊗ V ⊗ V ⊗ Z

kV,V ⊗V ⊗Z""�����
����

����
����

��

[kV V ⊗IdV ⊗Z ]

��
Hom(V, V ⊗ V ⊗ Z) End(V )⊗ V ⊗ Zn

��

So the LHS of the claim is:

TrV,V⊗Z([s1 ⊗ IdZ ] ◦ (n(IdV ⊗B)))

= (TrV ;V ⊗Z ◦Hom(IdV , [s1 ⊗ IdZ ]) ◦ n)(IdV ⊗B)

= (TrV ;V ⊗Z ◦ n ◦ [kV V ⊗ IdV ⊗Z ]

◦[[IdV ∗ ⊗ s1]⊗ IdZ ] ◦ [k−1
V V ⊗ IdV ⊗Z ])(IdV ⊗B).

Let s3 : V ⊗ Z → Z ⊗ V be another switching, and let s2 and s4 be the switchings
as indicated:

(2.26) s2 = [IdV ∗ ⊗ s4] : V
∗ ⊗ V ⊗ (V ⊗ Z) → V ∗ ⊗ (V ⊗ Z)⊗ V.

Using W = V ⊗ Z and this s4 in the role of s′ from the diagram from the Proof of
Theorem 2.74, the commutativity of that diagram continues the chain of equalities:

= (EvV,V⊗Z ◦ [kV,V⊗Z ⊗ IdV ] ◦ [IdV ∗ ⊗ s4]

◦[[IdV ∗ ⊗ s1]⊗ IdZ ] ◦ [k−1
V V ⊗ IdV⊗Z ])(IdV ⊗B)

= (EvV,V⊗Z ◦ [kV,V⊗Z ⊗ IdV ] ◦ [IdV ∗⊗V ◦ s3] ◦ [k−1
V V ⊗ IdV ⊗Z ])(IdV ⊗B)

= (EvV,V⊗Z ◦ [kV,V⊗Z ⊗ IdV ] ◦ [k−1
V V ⊗ s3])(IdV ⊗B).(2.27)

The commutativity of the following diagram, using Lemma 1.36, Lemma 1.65, and
a variation on Lemma 2.78,

V ∗ ⊗ V ⊗ Z ⊗ V

[kV V ⊗IdZ⊗V ]

��

[kV,V ⊗Z⊗IdV ] �� Hom(V, V ⊗ Z)⊗ V

EvV,V ⊗Z

��

End(V )⊗ Z ⊗ V

[n2⊗IdV ]

!!����������������������

End(V )⊗ V ⊗ Z
[EvV,V ⊗IdZ ] ��

[IdEnd(V )⊗s3]

��

V ⊗ Z
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brings line (2.27) to the conclusion:

= [EvV,V ⊗ IdZ ](IdV ⊗B) = B.

The switching s3 : V ⊗Z → Z⊗V from Theorem 2.87 appears in the following
Corollaries, which are related to constructions in [Stolz-Teichner].

Corollary 2.88. Given vector spaces V , W , and a map A : V → V ⊗W , if
V is finite-dimensional and there exist a vector space Z and a factorization of the
form

A = [IdV ⊗B2] ◦ [B1 ⊗ IdV ] ◦ l−1,

for l : K⊗ V → V , B1 : K → V ⊗ Z, and B2 : Z ⊗ V →W , then

TrV ;W (A) = (B2 ◦ s3 ◦B1)(1).

Proof. It is straightforward to check that the following diagram is com-
mutative. The s1 is the switching from Theorem 2.87, and temporarily denote
V1 = V2 = V , to keep track of switching, so that as in Equation (2.26), s4 :
V1 ⊗ (V2 ⊗ Z) → (V2 ⊗ Z)⊗ V1.

V1

n(IdV ⊗(B1(1)))

��

K⊗ V1

[B1⊗IdV ]

��

l
��

V2 ⊗ Z ⊗ V1

V1 ⊗ V2 ⊗ Z

s4

		













[s1⊗IdZ ] ����
���

���
���

�

V2 ⊗ V1 ⊗ Z

[IdV ⊗s3]

��

The following equalities use the commutativity of the diagram, Corollary 2.59 (or
Corollary 2.75) twice, and Theorem 2.87 applied to B = B1(1) ∈ V ⊗ Z.

TrV ;W (A) = TrV ;W ([IdV ⊗B2] ◦ [B1 ⊗ IdV ] ◦ l−1)

= B2(TrV ;Z⊗V ([B1 ⊗ IdV ] ◦ l−1))

= B2(TrV ;Z⊗V ([IdV ⊗ s3] ◦ [s1 ⊗ IdZ ] ◦ (n(IdV ⊗ (B1(1))))))

= (B2 ◦ s3)(TrV ;V ⊗Z([s1 ⊗ IdZ ] ◦ (n(IdV ⊗ (B1(1))))))

= (B2 ◦ s3)(B1(1)).

Corollary 2.89. Given a vector space V and a map A : V → V , if V is
finite-dimensional and there exist a vector space Z and a factorization of the form

A = lV ◦ [IdV ⊗B2] ◦ [B1 ⊗ IdV ] ◦ l−1,

for lV : V ⊗K → V , l : K⊗ V → V , B1 : K → V ⊗ Z, and B2 : Z ⊗ V → K, then

TrV (A) = (B2 ◦ s3 ◦B1)(1).

Proof. Theorem 2.54 and Corollary 2.88 apply.
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Corollary 2.90. Given vector spaces V , W , and a map A : V ⊗U → V ⊗W ,
if V is finite-dimensional and there exist a vector space Z and a factorization of
the form

A = [IdV ⊗B2] ◦ [B1 ⊗ IdV ] ◦ s5,
for s5 : V ⊗ U → U ⊗ V , B1 : U → V ⊗ Z, and B2 : Z ⊗ V →W , then

TrV ;U,W (A) = B2 ◦ s3 ◦B1.

Proof. Theorem 2.30 applies:

TrV ;U,W (A) = TrV ;U,W ([IdV ⊗B2] ◦ [B1 ⊗ IdV ] ◦ s5)
= B2 ◦ (TrV ;U,Z⊗V ([B1 ⊗ IdV ] ◦ s5)),

so to prove the claim it is enough to check

(2.28) TrV ;U,Z⊗V ([B1 ⊗ IdV ] ◦ s5) = s3 ◦B1

for B1 ∈ Hom(U, V ⊗ Z). In the following diagram, temporarily denote by a1 the
following map,

a1 = j ◦ [IdHom(U,V ⊗Z) ⊗Q1
1] ◦ l−1

Hom(U,V ⊗Z) :

B1 �→ [B1 ⊗ IdV ],

for Q1
1 : K → End(V ) as in Example 2.9.

V ⊗Hom(U,Z)
s′3 ��

n′′

��

Hom(U,Z)⊗ V

n1

��
Hom(U, V ⊗ Z)

Hom(IdV ,s3)
��

a1

��

Hom(U,Z ⊗ V )

Hom(U ⊗ V, V ⊗ Z ⊗ V )

Hom(s5,IdV ⊗Z⊗V )

��

Hom(V, V ⊗Hom(U,Z ⊗ V ))

Hom(IdV ,n′)
��

TrV ;Hom(U,Z⊗V )

��

Hom(V ⊗ U, V ⊗ Z ⊗ V )

TrV ;U,Z⊗V

		��������������������������������
Hom(V,Hom(U, V ⊗ Z ⊗ V ))q

��

The maps n′′, n′, n1, as in Definition 1.40 and Notation 1.41, are all invertible,
by the finite-dimensionality of V and Lemma 1.44. The commutativity of the top
block, with the switching maps, is easily checked. The commutativity of the lower
right triangle is Theorem 2.52. So, the claim of (2.28) is that the lower left triangle
is commutative, and this will follow from showing that the outer part of the diagram
is commutative, starting with v0 ⊗B3 ∈ V ⊗Hom(U,Z).

For v ∈ V , u ∈ U , the following maps are equal. The first step uses the formula
for the inverse of the canonical map q from Lemma 1.47.

(q−1((a1(n
′′(v0 ⊗B3))) ◦ s5))(v) : u �→ ((a1(n

′′(v0 ⊗B3))) ◦ s5)(v ⊗ u)

= [(n′′(v0 ⊗B3))⊗ IdV ](u ⊗ v)

= v0 ⊗ (B3(u))⊗ v,

n′([IdV ⊗ n1](v0 ⊗B3 ⊗ v)) : u �→ v0 ⊗ ((n1(B3 ⊗ v))(u))

= v0 ⊗ (B3(u))⊗ v.(2.29)
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Denote, as in Definition 1.20,

m(v0 ⊗B3) : K → V ⊗Hom(U,Z) : 1 �→ v0 ⊗B3,

so that

v0 ⊗B3 ⊗ v = ([(m(v0 ⊗B3))⊗ IdV ] ◦ l−1)(v),

and from (2.29),

q−1((a1(n
′′(v0 ⊗B3))) ◦ s5) = n′ ◦ [IdV ⊗ n1] ◦ [(m(v0 ⊗B3))⊗ IdV ] ◦ l−1.

The conclusion uses Corollary 2.88:

v0 ⊗B3 �→ TrV ;Hom(U,Z⊗V )((n
′)−1 ◦ (q−1((a1(n

′′(v0 ⊗B3))) ◦ s5)))
= TrV ;Hom(U,Z⊗V )([IdV ⊗ n1] ◦ [(m(v0 ⊗B3))⊗ IdV ] ◦ l−1)

= (n1 ◦ s′3 ◦ (m(v0 ⊗B3)))(1) = (n1 ◦ s′3)(v0 ⊗B3).

Example 2.91. Consider V = V1 = V2 and s4 : V1 ⊗ (V2 ⊗Z) → (V2 ⊗Z)⊗V1
as in Equation (2.26) and the Proof of Corollary 2.88. Then

TrV ;V⊗Z,Z⊗V (s4) = s3.

This is a special case of Corollary 2.90, with U = V ⊗ Z, W = Z ⊗ V , s5 = s4,
B1 = IdV⊗Z , and B2 = IdZ⊗V .

Example 2.92. Using Theorem 2.30 and Example 2.91,

TrV ;Z⊗V,V⊗Z(s
−1
4 ) = TrV ;Z⊗V,V⊗Z([IdV ⊗ s−1

3 ] ◦ s4 ◦ [IdV ⊗ s−1
3 ])

= s−1
3 ◦ (TrV ;V⊗Z,Z⊗V (s4)) ◦ s−1

3

= s−1
3 .

Example 2.93. Formula (2.23) from Example 2.82 also follows as a special
case; for the switching map s1 : V ⊗V → V ⊗V as in Theorem 2.87, TrV ;V,V (s1) =

IdV . This is the case of Corollary 2.90 with U = V , Z = K, B1 = l−1
V , B2 = l,

A = s1 = s5 = [IdV ⊗ l] ◦ [l−1
V ⊗ IdV ] ◦ s5, and s3 : V ⊗K → K⊗ V , so

TrV ;V,V (s5) = l ◦ s3 ◦ l−1
V = IdV .

Theorem 2.94. For finite-dimensional V and U , a switching map s :W⊗U →
U ⊗W , and A : V ⊗ U → V ⊗W ,

TrV ;U,W (A) = TrV⊗U ;U,W ([IdV ⊗ s] ◦ [A⊗ IdU ]).

Proof. Using Theorem 2.38, Theorem 2.30, Corollary 2.42, an easily checked
equality relating the switching maps s and s′ : U ⊗ U → U ⊗ U , Theorem 2.30
again, and finally Example 2.82,

RHS = TrU ;U,W (TrV ;U⊗U,U⊗W ([IdV ⊗ s] ◦ [A⊗ IdU ]))

= TrU ;U,W (s ◦ (TrV ;U⊗U,W⊗U ([A⊗ IdU ])))

= TrU ;U,W (s ◦ [(TrV ;U,W (A)) ⊗ IdU ])

= TrU ;U,W ([IdU ⊗ (TrV ;U,W (A))] ◦ s′)
= (TrV ;U,W (A)) ◦ (TrU ;U,U (s

′))
= TrV ;U,W (A).
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Exercise 2.95. For finite-dimensional V andW , a switching map s :W⊗U →
U ⊗W , and A : V ⊗ U → V ⊗W ,

TrV ;U,W (A) = TrV⊗W ;U,W ([A⊗ IdW ]⊗ [IdV ⊗ s]).

Hint. The steps are analogous to the steps in the Proof of Theorem 2.94. If U
and W are both finite-dimensional, then the equality of the RHS of this equation

with the RHS from Theorem 2.94 follows directly from Theorem 2.29.

2.4.2. Coevaluation and dualizability.

Theorem 2.96. For finite-dimensional V , ηV : K → V ⊗ V ∗ as in Notation
2.68, and scalar multiplication maps lV : K ⊗ V → V , lV ∗ : K ⊗ V ∗ → V ∗,
l1 : V ⊗K → V , l2 : V ∗ ⊗K → V ∗,

l1 ◦ [IdV ⊗ EvV ] ◦ [ηV ⊗ IdV ] ◦ l−1
V = IdV ,

and

lV ∗ ◦ [EvV ⊗ IdV ∗ ] ◦ [IdV ∗ ⊗ ηV ] ◦ l−1
2 = IdV ∗ .

Proof. In the following two diagrams, V = V1 = V2 = V3 — the subscripts are
added just to track the action of the switchings and other canonical maps. In the
first diagram, the upper left square uses the formula (2.13) with k−1 from Notation
2.68, and is commutative by Lemma 1.36. The s5 notation in the right half is from
Corollary 2.90 and Example 2.93. The first claim is that the lower left part of the
diagram is commutative.

Hom(V2, V1)⊗ V3 V ∗
2 ⊗ V1 ⊗ V3

[k⊗IdV ]��

[s⊗IdV ]

��

[IdV ∗⊗s5] �� V ∗
2 ⊗ V3 ⊗ V1

[EvV ⊗IdV ]

��
K⊗ V3

[Q1
1⊗IdV ]

��

[ηV ⊗IdV ] ��

lV

����
���

���
���

���
���

���
���

���
V1 ⊗ V ∗

2 ⊗ V3

[IdV ⊗EvV ]

��

K⊗ V1

lV

�����
��
��
��
��
��
��
��
��
��
��
�

V1 ⊗K

l1
��
V

The commutativity of the right half of the diagram is easy to check. The first claim
follows from checking that the identity map is equal to the composite of maps
starting at V and going clockwise. Lemma 2.81 applies.

l1 ◦ [IdV ⊗ EvV ] ◦ [ηV ⊗ IdV ] ◦ l−1
V

= lV ◦ [EvV ⊗ IdV ] ◦ [IdV ∗ ⊗ s5] ◦ [k−1 ⊗ IdV ] ◦ [Q1
1 ⊗ IdV ] ◦ l−1

V(2.30)

= IdV .

The expression (2.30) is also equal to TrV ;V,V (s5) = IdV as in Examples 2.82 and
2.93.

For the second claim, consider the second diagram, where s′′ is the switching
involution from Lemma 2.84 and s′′′′ is another switching map so that the upper
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block is easily seen to be commutative.

Hom(V2, V1)⊗ V ∗
3 V ∗

2 ⊗ V1 ⊗ V ∗
3[k⊗IdV ∗ ]

��

s′′

�����
���

���
���

���
���

���
���

�

V ∗
3 ⊗Hom(V2, V1)

s′′′′
��������������������
V ∗
3 ⊗ V ∗

2 ⊗ V1
[IdV ∗⊗k]��

[IdV ∗⊗s]

��
V ∗
3 ⊗K

[IdV ∗⊗Q1
1]

��

[IdV ∗⊗ηV ] ��

l2

##��
���

���
���

���
���

���
���

���
�

V ∗
3 ⊗ V1 ⊗ V ∗

2

[EvV ⊗IdV ∗ ]
��

K⊗ V ∗
2

lV ∗
��
V ∗

As in the first diagram, the definition of ηV is used in the left square, and the
second claim is that the lower left part of the second diagram is commutative. The
calculation is again to check the clockwise composition, and Lemma 2.84 applies.

lV ∗ ◦ [EvV ⊗ IdV ∗ ] ◦ [IdV ∗ ⊗ ηV ] ◦ l−1
2

= lV ∗ ◦ [EvV ⊗ IdV ∗ ] ◦ s′′ ◦ [k−1 ⊗ IdV ∗ ] ◦ s′′′′ ◦ [IdV ∗ ⊗Q1
1] ◦ l−1

2

= lV ∗ ◦ [EvV ⊗ IdV ∗ ] ◦ s′′ ◦ [k−1 ⊗ IdV ∗ ] ◦ [Q1
1 ⊗ IdV ∗ ] ◦ l−1

V ∗

= IdV ∗ .

Definition 2.97. A vector space V is dualizable means: there exists (D, ε, η),
where D is a vector space, and ε : D⊗ V → K and η : K → V ⊗D are linear maps
such that the following diagrams (involving various scalar multiplication maps) are
commutative.

K⊗ V

��

[η⊗IdV ] �� V ⊗D ⊗ V

[IdV ⊗ε]

��
V V ⊗K��

D ⊗ K

��

[IdD⊗η] �� D ⊗ V ⊗D

[ε⊗IdD]

��
D K⊗D��

Example 2.98. Given V as in Theorem 2.96, the space D = V ∗ and the maps
ε = EvV and η = ηV = s ◦ k−1 ◦Q1

1 satisfy the identities from Definition 2.97.

Remark 2.99. In category theory and other generalizations of this construction
([Stolz-Teichner], [PS]), η is called a coevaluation map. A more general notion,
with left and right duals, is considered by [Maltsiniotis].



2.4. EQUIVALENCE OF ALTERNATIVE DEFINITIONS 97

Lemma 2.100. If V is dualizable, with duality data (D, ε, η), then there is an
invertible map D → V ∗.

Proof. It is equivalent, by Example 1.28 and Lemma 1.22, to show there is
an invertible map Hom(K, D) → Hom(K ⊗ V,K). Denote:

A : Hom(K, D) → Hom(K⊗ V,K)(2.31)

δ �→ (λ⊗ v �→ ε((δ(λ)) ⊗ v)),

B : Hom(K⊗ V,K) → Hom(K, D)

φ �→ (λ �→ (l ◦ [φ⊗ IdD] ◦ l−1 ◦ η)(λ)),
where l denotes various scalar multiplications. The following diagrams are commu-
tative, where unlabeled arrows are scalar multiplications or their inverses.

K
δ ��

η

��

D

��
V ⊗D

��

D ⊗K

[IdD⊗η]

��
K⊗ V ⊗D

[[δ⊗IdV ]⊗IdD]��

[(A(δ))⊗IdD] �����
����

����
����

� D ⊗ V ⊗D

[ε⊗IdD]

��
K ⊗D

��
D

K⊗ V

[η⊗IdV ]

��
V ⊗D ⊗ V

[IdV ⊗ε]

��

�� K⊗ V ⊗D ⊗ V

[[φ⊗IdD]⊗IdV ]

��
V ⊗K

��

K⊗D ⊗ V

��
V

��

D ⊗ V

ε

��
K⊗ V

φ �� K

In the left diagram, the top square is easily checked and the lower triangle uses the
formula for A. The composition in the right column gives the identity map for D
by Definition 2.97, so IdD ◦ δ = B(A(δ)) : K → D.

In the right diagram, the left column gives the identity map for K ⊗ V by
Definition 2.97. For λ⊗ v ∈ K⊗ V ,

(A ◦B)(φ) : λ⊗ v �→ ε(((B(φ))(λ)) ⊗ v)

= ε(((l ◦ [φ⊗ IdD] ◦ l−1 ◦ η)(λ)) ⊗ v)

= (ε ◦ [(l ◦ [φ⊗ IdD] ◦ l−1 ◦ η)⊗ IdV ])(λ⊗ v)

= (φ ◦ IdK⊗V )(λ ⊗ v).

Lemma 2.101. If V is dualizable, with two triples of duality data: (D1, ε1, η1)
and (D2, ε2, η2), then the map a12 : D1 → D2,

D1
�� D1 ⊗K

[IdD1⊗η2] �� D1 ⊗ V ⊗D2

[ε1⊗IdD2 ] �� K⊗D2
�� D2

has inverse given by the map a21 : D2 → D1,

D2
�� D2 ⊗K

[IdD2⊗η1] �� D2 ⊗ V ⊗D1

[ε2⊗IdD1 ] �� K⊗D1
�� D1

and a12 satisfies the identities [IdV ⊗ a12] ◦ η1 = η2 and ε2 ◦ [a12 ⊗ IdV ] = ε1.
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Proof. Some of the arrows in the following diagram are left unlabeled, but
they involve only identity maps, scalar multiplications and their inverses, and the
given η1, η2, ε1, ε2 maps.

D1

��
D1 ⊗K

��

�� D1 ⊗ V ⊗D2

�� ����
���

���
���

�

D1 ⊗K⊗ V ⊗D1

��

D1 ⊗ V ⊗D2 ⊗K

��    
    

    
   

K⊗D2

��
D1 ⊗ V ⊗D1

$$��������������

��

D1 ⊗ V ⊗D2 ⊗ V ⊗D1

�� �����
����

����
����

D2

��
D1 ⊗ V ⊗K⊗D1

%%!!!!!!!!!!!!!!
K⊗D2 ⊗ V ⊗D1

��

D2 ⊗K

�����
���

���
���

K⊗D1

��

D2 ⊗ V ⊗D1
��

D1

The composition in the left column gives the identity map D1 → D1, and the
middle left block is commutative, involving the composite [IdV ⊗ ε2] ◦ [η2 ⊗ IdV ].
The commutativity of the upper, right, and lower blocks is easy to check. The
composite D1 → D2 → D1 clockwise from the top is equal to a21 ◦ a12, and the
commutativity of the diagram establishes the claim that a21 ◦a12 = IdD1 ; checking
the inverse in the other order follows from relabeling the subscripts.

For the identity [IdV ⊗ a12] ◦ η1 = η2, consider the following diagram.

K
η2 ��

η1

��

V ⊗D2
�� K⊗ V ⊗D2

[[η1⊗IdV ]⊗IdD2 ]

��

V ⊗K⊗D2

��

V ⊗D1
��

[IdV ⊗a12]

��""""""""""""""""""
V ⊗D1 ⊗K

[IdV ⊗[IdD1⊗η2]]
�� V ⊗D1 ⊗ V ⊗D2

[IdV ⊗[ε1⊗IdD2 ]]
�������������������

The lower block uses the definition of a12. The right block involves η1 and ε1 so
that one of the identities from Definition 2.97 applies. The claim is that the left
triangle is commutative, and this follows from the easily checked commutativity of
the outer rectangle.
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Similarly for the identity ε2 ◦ [a12 ⊗ IdV ] = ε1, consider the following diagram.

D1 ⊗ V ⊗D2 ⊗ V
[IdD1⊗[IdV ⊗ε2]] ��

[[ε1⊗IdD2 ]⊗IdV ]

��

D1 ⊗ V ⊗K �� D1 ⊗ V

ε1

��

[a12⊗IdV ]

&&""
""
""
""
""
""
""
""
""

�����
���

���
��

D1 ⊗K⊗ V

[[IdD1⊗η2]⊗IdV ]

�����������������������

K⊗D2 ⊗ V �� D2 ⊗ V ε2
�� K

The left block uses the definition of a12. The top block involves η2 and ε2 so that one
of the identities from Definition 2.97 applies. The claim is that the right triangle is
commutative, and this follows from the easily checked commutativity of the outer

rectangle.

In the case D = V ∗ from Example 2.98, the maps from Lemma 2.100 and 2.101
agree (up to composition with trivial invertible maps as in the following Exercise)
and so they are canonical.

Exercise 2.102. Applying Lemma 2.100 to the triple (V ∗, EvV , ηV ) from Ex-
ample 2.98 gives a map A such that the left diagram is commutative. If V is also
dualizable with (D2, ε2, η2), then the maps B from Lemma 2.100 and a12 from
Lemma 2.101 make the right diagram commutative.

V ∗ IdV ∗ ��

m

��

V ∗

Hom(l,IdK)

��
Hom(K, V ∗) A �� Hom(K⊗ V,K)

D2

m

��

V ∗a12��

Hom(l,IdK)

��
Hom(K, D2) Hom(K⊗ V,K)

B��

Hint. The first claim is left as an exercise. For the second claim, consider
φ ∈ V ∗, λ ∈ K; the following quantities agree, showing the right diagram is com-
mutative.

(m ◦ a12)(φ) : λ �→ (m(a12(φ)))(λ) = λ · a12(φ)
= λ · (l ◦ [EvV ⊗ IdD2 ] ◦ [IdV ∗ ⊗ η2] ◦ l−1)(φ)

= λ · (l ◦ [EvV ⊗ IdD2 ])(φ ⊗ (η2(1))),

(B ◦Hom(l, IdK))(φ) : λ �→ (B(φ ◦ l))(λ)
= (l ◦ [(φ ◦ l)⊗ IdD2 ] ◦ l−1 ◦ η2)(λ)
= (l ◦ [(φ ◦ l)⊗ IdD2 ])(1 ⊗ (η2(λ)))

= (l ◦ [φ⊗ IdD2 ])(η2(λ)).
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Lemma 2.103. If V is dualizable, with (D, ε, η), then D is dualizable, with
duality data (V, ε ◦ s, s ◦ η), where s : V ⊗D → D ⊗ V is a switching map.

Proof. In the following diagram, V = V1 = V2.

V1 ⊗K
[IdV ⊗η] ��

��

V1 ⊗ V2 ⊗D

s1

��

[IdV ⊗s]�� V1 ⊗D ⊗ V2

[s⊗IdV ]

��
K⊗ V1

[η⊗IdV ] ��

��

V2 ⊗D ⊗ V1

[IdV ⊗ε]

��

D ⊗ V1 ⊗ V2s2
��

[ε⊗IdV ]

��
V V2 ⊗K�� K⊗ V2��

Unlabeled arrows are obvious switching or scalar multiplication. The s1, s2 switch-
ings are as indicated by the subscripts. The lower left square is commutative, by
the first identity from Definition 2.97, and the other small squares are easy to check,
so the large square is commutative, which is the second identity for (V, ε ◦ s, s ◦ η)
from Definition 2.97 applied to D.

Similarly, in the following diagram, D = D1 = D2.

K⊗D1

��

[η⊗IdD] �� V ⊗D2 ⊗D1

s′1
��

[s⊗IdD]�� D2 ⊗ V ⊗D1

[IdD⊗s]

��
D1 ⊗K

��

[IdD⊗η] �� D1 ⊗ V ⊗D2

[ε⊗IdD]

��

D2 ⊗D1 ⊗ V
s′2

��

[IdD⊗ε]

��
D K⊗D2

�� D ⊗K��

Again, the lower left square is commutative by hypothesis, and the commutativity
of the large square is the first identity for (V, ε◦s, s◦η) from Definition 2.97 applied

to D.

Lemma 2.104. If V is dualizable, then dV is invertible.

Proof. Let a1 : D → V ∗ be the invertible map from Lemma 2.100, defined in
terms of ε and A1 = A from (2.31). The transposes of these maps appear in the
right square of the diagram.

By Lemma 2.103, D is also dualizable, with an evaluation map ε ◦ s, which
defines A2 as in (2.31) and an invertible map a2 : V → D∗ from Lemma 2.100
again. These maps appear in the top square of the diagram.

Hom(K, V )
A2 �� (K⊗D)∗

V

mV

��

a2 ��

dV

�����
����

����
����

����
D∗

l∗D

��

(Hom(K, D))∗
m∗

D

��

V ∗∗

a∗
1

��

(K⊗ V )∗∗
l∗∗V

��

A∗
1

��
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The two squares in the diagram are commutative by construction. The follow-
ing calculation checks that a∗1 ◦ dV : V → D∗ is equal to a2.

l∗D ◦ a∗1 ◦ dV = l∗D ◦m∗
D ◦A∗

1 ◦ (l∗∗V )−1 ◦ dV
= ((l−1

V )∗ ◦A1 ◦mD ◦ lD)∗ ◦ dV :

v �→ (dV (v)) ◦ ((l−1
V )∗ ◦A1 ◦mD ◦ lD) :

λ⊗ u �→ (dV (v))((A1(mD(λ · u))) ◦ l−1
V )

= (A1(mD(λ · u)))(1⊗ v)

= ε(((mD(λ · u))(1))⊗ v)

= ε((λ · u)⊗ v),

A2 ◦mV : v �→ A2(mV (v)) :

λ⊗ u �→ (ε ◦ s)(((mV (v))(λ)) ⊗ u)

= (ε ◦ s)((λ · v)⊗ u)

= ε(u⊗ (λ · v)).

It follows that dV = (a∗1)
−1 ◦ a2 is invertible.

Theorem 2.105. Given V , the following are equivalent.

(1) k : V ∗ ⊗ V → End(V ) is invertible.
(2) V is dualizable.
(3) d : V → V ∗∗ is invertible.
(4) V is finite-dimensional.

Proof. The Proof of Theorem 2.96 only used the property that k is invertible
to show that V is dualizable, with D = V ∗, ε = EvV , and η = ηV = s ◦ k−1 ◦Q1

1;
this is the implication (1) =⇒ (2). Lemma 2.104 just showed (2) =⇒ (3), and
Theorem 2.85 showed directly that (1) =⇒ (3). The implication (3) =⇒ (4) was
stated without proof in Claim 1.16 and the implication (4) =⇒ (1) was stated in

Lemma 1.64, which was proved using Claim 1.34.

Remark 2.106. In the special case where (D, ε, η) = (V ∗, EvV , ηV ) from Ex-
ample 2.98, the map a1 from Lemma 2.104 is IdV ∗ as in Exercise 2.102, and the
map a2 is exactly dV . This shows that Lemma 2.100 (establishing that A2 has an
inverse, B) is related to Theorem 2.85 (showing that dV has an inverse); the second
diagram from the Proof of Theorem 2.85 is similar to the right diagram from the
Proof of Lemma 2.100.

The following result is a generalization of Theorem 2.69.

Theorem 2.107. If V is dualizable, with any duality data (D2, ε2, η2), and
s2 : V ⊗D2 → D2 ⊗ V is the switching map, then for any F : V ⊗ U → V ⊗W ,

(TrV ;U,W (F ))(u)=(lW ◦ [ε2 ⊗ IdW ] ◦ [IdD2 ⊗ F ] ◦ [(s2 ◦ η2)⊗ IdU ] ◦ l−1
U )(u).

Proof. By Theorem 2.105, V must be finite-dimensional, so the trace exists.
By Theorem 2.96 (the Proof of which uses Theorem 2.69) and Example 2.98, there
is another triple (D1, ε1, η1) = (V ∗, EvV , ηV ) satisfying Definition 2.97. There is an
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invertible map a12 : V ∗ → D2 by Lemma 2.101. Consider the following diagram.

W

End(V )⊗ U V ∗⊗V ⊗U
[k⊗IdU ]
��

[s⊗IdU ]

��

[IdV ∗⊗F ]�� V ∗⊗V ⊗W

[[a12⊗IdV ]⊗IdW ]

''#
##

##
##

##
##

##
##

##
##

[EvV ⊗IdW ] �� K⊗W
lW

��

K⊗ U

[Q1
1⊗IdU ]

��

[ηV ⊗IdU ]��

[η2⊗IdU ] ����
���

���
���

� V ⊗V ∗⊗U
[[IdV ⊗a12]⊗IdU ]

��
U

l−1
U

��

V ⊗D2 ⊗ U
[s2⊗IdU ]

�� D2 ⊗ V ⊗ U
[IdD2⊗F ]

�� D2 ⊗ V ⊗W

[ε2⊗IdW ]

��

The composition from U to W along the top row gives TrV ;U,W (F ) by Theorem
2.69. The left square is from Theorem 2.96 and the left and right triangles are
commutative by Lemma 2.101. The RHS of the Theorem is the path from U to
W along the lowest row, so the claimed equality follows from the easily checked

commutativity of the middle block.

Corollary 2.108. If V is dualizable, with any duality data (D, ε, η), and s :
V ⊗D → D ⊗ V is the switching map, then for any A : V → V ⊗W ,

TrV ;W (A) = (lW ◦ [ε ⊗ IdW ] ◦ [IdD ⊗A] ◦ s ◦ η)(1).
Proof. This follows from Theorem 2.107 in the same way that Corollary 2.70

follows from Theorem 2.69. By Theorem 2.55,

LHS = (TrV ;K,W (A ◦ lV ))(1)
= (lW ◦ [ε⊗ IdW ] ◦ [IdD ⊗ (A ◦ lV )] ◦ [(s ◦ η)⊗ IdK] ◦ l−1

K
)(1)

= RHS.

This generalizes Corollary 2.70 by showing that, for any duality data (D, ε, η),
the W -valued trace of A is the output of 1 under the composite map

K
η �� V ⊗D

s �� D ⊗ V
[IdD⊗A] �� D ⊗ V ⊗W

lW ◦[ε⊗IdW ] �� W.

Corollary 2.109. If V is dualizable, with any duality data (D, ε, η), and s :
V ⊗D → D ⊗ V is the switching map, then for any A : V → V ,

TrV (A) = (ε ◦ [IdD ⊗A] ◦ s ◦ η)(1).
Proof. By Theorem 2.54 and Corollary 2.108,

LHS = TrV ;K(l
−1
V ◦A)

= (lK ◦ [ε ⊗ IdK] ◦ [IdD ⊗ (l−1
V ◦A)] ◦ s ◦ η)(1)

= RHS.
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This generalizes Theorem 2.10 and the map K → K from (2.6) by showing that
for any (D, ε, η), the trace of A ∈ End(V ) is the output of 1 under the composite
map

K
η �� V ⊗D

s �� D ⊗ V
[IdD⊗A] �� D ⊗ V

ε �� K.

As mentioned at the beginning of this Section, the above results can be used
as definitions of the trace: Theorem 2.107 for TrV ;U,W , Corollary 2.108 for TrV ;W ,
and Corollary 2.109 for TrV . The proofs that these formulas are equivalent to the
definitions from the previous Sections show that the trace can be calculated using
any choice of duality data (D, ε, η), and that the output does not depend on the
choice. Using this approach can also lead to simpler proofs of some properties of
the trace.

Exercise 2.110. The result of Theorem 2.27,

TrV (H) = (TrV ;K,K(l
−1
V ◦H ◦ lV ))(1),

can be given a different (and simpler) proof using a choice of duality (D, ε, η).

Hint. In the following diagram,

V ⊗D ⊗K
[s⊗IdK]�� D ⊗ V ⊗K

[IdD⊗lV ]

(($
$$

$$
$$

$$
$$

$$
$$

$$
[IdD⊗(l−1

V ◦H◦lV )] �� D ⊗ V ⊗K

[ε⊗IdK] ##��
���

���
��

[IdD⊗lV ]

��

K⊗K

[η⊗IdK]

��

l1
��

K⊗K

l1
��

K
η �� V ⊗D

s �� D ⊗ V
[IdD⊗H] �� D ⊗ V

ε �� K

the lower row is copied from Corollary 2.109, corresponding to TrV (H) · IdK as in
(2.6) from Theorem 2.27. The clockwise path from K to K is TrV ;K,K(l

−1
V ◦H ◦ lV ),

by Theorem 2.107, in the case U = W = K. The middle block in the diagram is
commutative by Lemma 1.36, and the left and right blocks by versions of Lemma

1.38, and the claim follows from the commutativity of the diagram.

Remark 2.111. Theorem 2.27, Exercise 2.56, and Exercise 2.110 give some
details omitted from [C2] Example 2.13.

Big Exercise 2.112. Theorem 2.30, and some of the other results of Section
2.2.2, can be proved starting with Theorem 2.107 as a definition of the generalized

trace.

Exercise 2.113. For any spaces D, U , V , the arrows in this diagram are
invertible.

Hom(U ⊗D,Hom(V, U))
q �� Hom(U ⊗D ⊗ V, U)

Hom(D ⊗ U,Hom(V, U))

Hom(s,IdHom(V,U))

��

Hom(U ⊗D ⊗ V, U ⊗K)

Hom(IdU⊗D⊗V ,lU )

��

If V is dualizable with data (D, ε, η), then on the right, there is a distinguished ele-
ment [IdU ⊗ε] ∈ Hom(U⊗D⊗V, U⊗K). In the case (D, ε, η) = (V ∗, EvV , ηV ) from
Example 2.98, there is a distinguished element kV U ∈ Hom(V ∗ ⊗U,Hom(V, U)) on
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the left, and the two elements are related by the composition of arrows in the path.

Big Exercise 2.114. For a dualizable space V , define (as in [PS] §2) the mate
of a map A : V ⊗ U → V ⊗W with respect to duality data (D, ε, η) as the map
Am : D ⊗ U → D ⊗W given by the composition in the following diagram.

D ⊗ V ⊗ U ⊗D
[IdD⊗[A⊗IdD]]�� D ⊗ V ⊗W ⊗D

[ε⊗IdW⊗D]

��
D ⊗ U ⊗ V ⊗D

[IdD⊗[s⊗IdD]]

��

K⊗W ⊗D

l

��
D ⊗ U ⊗K

[IdD⊗U⊗η]

��

W ⊗D

s

��
D ⊗ U

l−1

��

Am
�� D ⊗W

Then (as in [PS] §7),

TrD;U,W (Am) = TrV ;U,W (A).

In particular, LHS does not depend on the choice of (D, ε, η).

Hint. By Lemma 2.103, D is dualizable, so by Theorem 2.107, LHS exists.
The formula from Theorem 2.107 does not depend on the choice of duality data
for D; it is convenient to choose to use (V, ε ◦ s, s ◦ η) from Lemma 2.103. In the
following diagram, the lower middle block uses maps from the above definition of
Am, including

a = [IdV ⊗ [IdD ⊗ [A⊗ IdD]]].

V ⊗D ⊗ U
[s⊗IdU ] �� D ⊗ V ⊗ U

[IdD⊗A] ��

��

D ⊗ V ⊗W
[ε⊗IdW ] �� K⊗W

l

��

K⊗ U

[η⊗IdU ]

��

D ⊗K⊗ V ⊗ U

��

K⊗D ⊗ V ⊗W

��

D ⊗ V ⊗D ⊗ V ⊗ U

s0

��

D ⊗ V ⊗D ⊗ V ⊗W

��

U

��

��

V ⊗D ⊗ V ⊗ U ⊗D
a �� V ⊗D ⊗ V ⊗W ⊗D

��

��

W

V ⊗D ⊗ U ⊗ V ⊗D

��

V ⊗K ⊗W ⊗D

��
K⊗ U

[(s◦η)⊗IdU ]

��

V ⊗D ⊗ U ⊗K

��

V ⊗W ⊗D

��
D ⊗ V ⊗ U

[s−1⊗IdU ] �� V ⊗D ⊗ U

��

[IdV ⊗Am] �� V ⊗D ⊗W
[(ε⊗s)⊗IdW ] �� K⊗W

l

��
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By Theorem 2.107, the path from U to W along the top row is TrV ;U,W (A), and
from U to W along the lowest row is TrD;U,W (Am). The claimed equality follows
from the commutativity of the diagram. The maps in the top middle block are as in
the next diagram, with notation D = D1 = D2 and V = V1 = V2 = V3 to indicate
various switching maps.

D2 ⊗ V2 ⊗ U
[IdD⊗A] �� D1 ⊗ V3 ⊗W

D2 ⊗K⊗ V2 ⊗ U

[l⊗IdV ⊗U ]

��
[l⊗A]

��%%%%%%%%%%%%%%%%%%%%%%%%%%

[[IdD⊗η]⊗IdV ⊗U ]

��

K⊗D1 ⊗ V3 ⊗W

[l⊗IdW ]

��

D2 ⊗ V1 ⊗D1 ⊗ V2 ⊗ U

[[ε⊗IdD]⊗A]
��%%%%%%%%%%%%%%%%%%%%%%%%%

[IdD⊗V ⊗D⊗A]
��

s0

��

D2 ⊗ V1 ⊗D1 ⊗ V3 ⊗W

[ε⊗IdD⊗V ⊗W ]

��

s

��
V1 ⊗D1 ⊗ V2 ⊗ U ⊗D2

a �� V1 ⊗D1 ⊗ V3 ⊗W ⊗D2

The above diagram is commutative; the middle block involving both η and ε uses one
of the properties from Definition 2.97. Using these maps as specified in the above
right column, it is also easy to check that the right block from the big diagram is
commutative.

To check that the left block from the big diagram is commutative, note that
the path going up from U to D⊗V ⊗U takes input u to output ((s◦η)(1))⊗u, and
the downward path also takes u to ((s ◦ η)(1)) ⊗ u. So, it is enough to check that
((s◦η)(1))⊗u has the same output along the two paths leading to V ⊗D⊗V ⊗U⊗D.
This is shown in the next diagram, where the numbering V = V1 = V2 and D =
D1 = D2 is chosen to match the left column of the previous diagram.

V1 ⊗D1 ⊗ V2 ⊗ U ⊗D2

[IdV ⊗D⊗s]

�����
���

���
���

���
���

���
���

D2⊗V1⊗D1⊗V2⊗U

s0

!!�������������������������������������������
V1 ⊗D1 ⊗D2 ⊗ V2 ⊗ U

[s⊗IdV ⊗U ]
�� V1 ⊗D1 ⊗ U ⊗ V2 ⊗D2

[IdV ⊗[IdD⊗[s⊗IdD]]]

��

[IdV ⊗D⊗U⊗s]""�����
����

����
����

�

V1 ⊗D1 ⊗ U ⊗D2 ⊗ V2

[IdV ⊗D⊗s−1
1 ]

��

D ⊗K⊗ V ⊗ U

[[IdD⊗η]⊗IdV ⊗U ]

��

[l⊗IdV ⊗U ]

��

K⊗D ⊗ V ⊗ U
[s⊗IdV ⊗U ]
��

[η⊗s1]

��

V ⊗D ⊗ U ⊗K

[IdV ⊗[IdD⊗V ⊗η]]

��

s
""�����

����
����

����
�

[IdV ⊗l]

��

K⊗ V ⊗D ⊗ U

l

��&&&&
&&&&

&&&&
&&&&

&&

[[IdK⊗s]⊗IdU ]

��

D ⊗ V ⊗ U V ⊗D ⊗ U
[s⊗IdU ]

��
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All the blocks in the last diagram are commutative, except for the center right
block. However, starting with (η(1))⊗ u ∈ V ⊗D⊗U in the lower right corner, all
paths leading upward to V ⊗D ⊗ V ⊗ U ⊗D give the same output. The upward
right column, and the clockwise path around the left side, correspond, respectively,

to the lower half and the upper half of the left block in the big diagram.



CHAPTER 3

Bilinear Forms

As a special case of Definition 1.23, consider a bilinear function V × V � K,
which takes as input an ordered pair of elements of a vector space V and gives as
output an element of K (a scalar), so that it is K-linear in either input when the
other is fixed. Definition 3.1 encodes this idea in a convenient way using linear
maps, as described in Example 1.55. This Chapter examines the trace of a bilinear
form on a finite-dimensional space V , with respect to a metric g on V .

3.1. Symmetric bilinear forms

Definition 3.1. A bilinear form h on a vector space V is a K-linear map
h : V → V ∗.

For vectors u, v ∈ V , a bilinear form h acts on u to give an element of the dual,
h(u) ∈ V ∗, which then acts on v to give (h(u))(v) ∈ K.

Definition 3.2. The transpose map, TV ∈ End(Hom(V, V ∗)), is defined by

TV = Hom(dV , IdV ∗) ◦ tV V ∗ : h �→ h∗ ◦ dV .
Lemma 3.3. TV is an involution.

Proof. The effect of the map TV is to switch the two inputs:

(3.1) ((TV (h))(u))(v) = ((h∗ ◦ dV )(u))(v) = (dV (u))(h(v)) = (h(v))(u),

so the claim is obvious from Equation (3.1). This is also a corollary of Lemma 4.4
from Section 4.1, which considers some other approaches to bilinear forms and the

definition of transpose, using different spaces and canonical maps.

Definition 3.4. A bilinear form h is symmetric means: h = TV (h). h is

antisymmetric means: h = −TV (h).
If h is symmetric, then (h(u))(v) = (h(v))(u), and if h is antisymmetric, then

(h(u))(v) = −(h(v))(u).

Notation 3.5. If 1
2 ∈ K, then the involution TV on Hom(V, V ∗) produces, as

in Lemma 1.119, a direct sum of the subspaces of symmetric and antisymmetric
forms on V , denoted Hom(V, V ∗) = Sym(V )⊕Alt(V ).

In particular, any bilinear form h is canonically the sum of a symmetric form
and an antisymmetric form,

(3.2) h =
1

2
· (h+ TV (h)) +

1

2
· (h− TV (h)).

107
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Lemma 3.6. If 1
2 ∈ K, then the canonical map kUU∗ : U∗ ⊗ U∗ → Hom(U,U∗)

respects the direct sums:

kUU∗ : S2(U∗)⊕ Λ2(U∗) → Sym(U)⊕Alt(U).

Proof. The direct sums are from Example 1.124, produced by the involution
s on U∗⊗U∗, and Notation 3.5, produced by the involution TU . It is easily checked
that the following diagram is commutative.

U∗ ⊗ U∗

kUU∗
��

s �� U∗ ⊗ U∗

kUU∗
��

Hom(U,U∗)
TU �� Hom(U,U∗)

So kUU∗ respects the direct sums by Lemma 1.126.

Definition 3.7. For a map H : U → V , and a bilinear form h : V → V ∗, the
map H∗ ◦ h ◦H is a bilinear form on U , called the pullback of h.

Lemma 3.8. For any vector spaces U , V , and any map H : U → V , the
following diagram is commutative.

Hom(V, V ∗)
TV ��

Hom(H,H∗)
��

Hom(V, V ∗)

Hom(H,H∗)
��

Hom(U,U∗)
TU �� Hom(U,U∗)

If, further, 1
2 ∈ K, then the map h �→ H∗ ◦ h ◦H respects the direct sums:

Hom(H,H∗) : Sym(V )⊕Alt(V ) → Sym(U)⊕Alt(U).

Proof. Using Lemma 1.6 and Lemma 1.14, the transpose of the pullback of a
bilinear form h : V → V ∗ is the pullback of the transpose:

TU (H
∗ ◦ h ◦H) = (H∗ ◦ h ◦H)∗ ◦ dU = H∗ ◦ h∗ ◦H∗∗ ◦ dU

= H∗ ◦ h∗ ◦ dV ◦H = H∗ ◦ (TV (h)) ◦H.

The claim about the direct sums from Notation 3.5 follows from Lemma 1.126.

So, if h ∈ Sym(V ), then its pullback satisfies H∗ ◦ h ◦ H ∈ Sym(U). The
pullback of an antisymmetric form is similarly antisymmetric

Notation 3.9. If an arbitrary vector space V is a direct sum of V1 and V2, as
in Definition 1.77, and h1 : V1 → V ∗

1 , h2 : V2 → V ∗
2 , then

(3.3) P ∗
1 ◦ h1 ◦ P1 + P ∗

2 ◦ h2 ◦ P2 : V → V ∗

will be called the direct sum h1 ⊕ h2 of the bilinear forms h1 and h2.

The expression (3.3) is the same construction as in Lemma 1.86, applied to the
direct sum V ∗ = V ∗

1 ⊕ V ∗
2 from Example 1.84.
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Theorem 3.10. TV (h1 ⊕ h2) = (TV1(h1))⊕ (TV2(h2)).

Proof.

LHS = (P ∗
1 ◦ h1 ◦ P1)

∗ ◦ dV + (P ∗
2 ◦ h2 ◦ P2)

∗ ◦ dV
= P ∗

1 ◦ h∗1 ◦ P ∗∗
1 ◦ dV + P ∗

2 ◦ h∗2 ◦ P ∗∗
2 ◦ dV

= P ∗
1 ◦ h∗1 ◦ dV1 ◦ P1 + P ∗

2 ◦ h∗2 ◦ dV2 ◦ P2

= P ∗
1 ◦ (TV1(h1)) ◦ P1 + P ∗

2 ◦ (TV2(h2)) ◦ P2 = RHS,

using Lemma 1.6 and Lemma 1.14.

It follows that the direct sum of symmetric forms is symmetric, and that the
direct sum of antisymmetric forms is antisymmetric.

The following Lemma will be convenient in some of the theorems about the
tensor product of symmetric forms.

Lemma 3.11. ([B] §II.4.4) For A : U1 → U2 and B : V1 → V2, the following
diagram is commutative.

U∗
2 ⊗ V ∗

2

[A∗⊗B∗] ��

j

��

U∗
1 ⊗ V ∗

1

j

��
Hom(U2 ⊗ V2,K⊗K)

Hom([A⊗B],IdK⊗K) ��

Hom(IdU2⊗V2 ,l)

��

Hom(U1 ⊗ V1,K⊗K)

Hom(IdU1⊗V1 ,l)

��
(U2 ⊗ V2)

∗ [A⊗B]∗ �� (U1 ⊗ V1)
∗

Proof. The scalar multiplication K⊗ K → K is denoted l. The top square is

commutative by Lemma 1.37, and the lower one by Lemma 1.6.

Theorem 3.12. If h1 : U → U∗ and h2 : V → V ∗, then

Hom(IdU⊗V , l) ◦ j ◦ [h1 ⊗ h2] : (U ⊗ V ) → (U ⊗ V )∗

is a bilinear form such that

TU⊗V (Hom(IdU⊗V , l) ◦ j ◦ [h1 ⊗ h2])

is equal to

Hom(IdU⊗V , l) ◦ j ◦ [(TU (h1))⊗ (TV (h2))].

Proof. First, for any U , V , the following diagram is commutative:

U ⊗ V
dU⊗V ��

[dU⊗dV ]

��

(U ⊗ V )∗∗
Hom(IdU⊗V ,l)∗ �� Hom(U ⊗ V,K⊗K)∗

j∗

��
U∗∗ ⊗ V ∗∗ j �� Hom(U∗ ⊗ V ∗,K⊗K)

Hom(IdU∗⊗V ∗ ,l) �� (U∗ ⊗ V ∗)∗
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u⊗ v �→ (j∗ ◦Hom(IdU⊗V , l)
∗ ◦ dU⊗V )(u⊗ v) :

φ⊗ ξ �→ (dU⊗V (u⊗ v))(Hom(IdU⊗V , l)([φ⊗ ξ]))

= l([φ⊗ ξ](u⊗ v))

= φ(u) · ξ(v),
u⊗ v �→ (Hom(IdU∗⊗V , l) ◦ j ◦ [dU ⊗ dV ])(u ⊗ v)

= l ◦ [(dU (u))⊗ (dV (v))] :

φ⊗ ξ �→ φ(u) · ξ(v).
Note that the bottom row of the diagram is one of the columns of the diagram in
Lemma 3.11 in the case U2 = U∗, V2 = V ∗. The statement of the Theorem follows,
using the above commutativity and Lemma 3.11.

TU⊗V (h1 ⊗ h2) = (Hom(IdU⊗V , l) ◦ j ◦ [h1 ⊗ h2])
∗ ◦ dU⊗V

= [h1 ⊗ h2]
∗ ◦ j∗ ◦Hom(IdU⊗V , l)

∗ ◦ dU⊗V

= [h1 ⊗ h2]
∗ ◦Hom(IdU∗⊗V ∗ , l) ◦ j ◦ [dU ⊗ dV ]

= Hom(IdU⊗V , l) ◦ j ◦ [h∗1 ⊗ h∗2] ◦ [dU ⊗ dV ]

= Hom(IdU⊗V , l) ◦ j ◦ [(TU (h1))⊗ (TV (h2))].

Notation 3.13. The bilinear form Hom(IdU⊗V , l)◦j ◦ [h1⊗h2] from the above
Theorem will be called the tensor product of bilinear forms, and denoted {h1⊗h2},
in analogy with the brackets from Notation 1.35. As defined, the tensor product
bilinear form acts as

({h1 ⊗ h2}(u1 ⊗ v1))(u2 ⊗ v2) = (h1(u1))(u2) · (h2(v1))(v2).
When h1 and h2 are symmetric forms, it is clear from this formula that {h1⊗h2}

is also symmetric, but the above proof, using Definition 3.4, makes explicit the
roles of the symmetry and the scalar multiplication. It also follows that the tensor
product of antisymmetric forms is symmetric.

There is a distributive law for the direct sum and tensor product of bilinear
forms. Let V be a direct sum of V1 and V2, and recall, from Example 1.81, that
V ⊗ U is a direct sum of V1 ⊗ U and V2 ⊗ U , with projection maps [Pi ⊗ IdU ].

Theorem 3.14. For bilinear forms h1, h2, g on arbitrary vector spaces V1, V2,
U , the following bilinear forms on V ⊗ U are equal:

{(h1 ⊕ h2)⊗ g} = {h1 ⊗ g} ⊕ {h2 ⊗ g}.
Proof. Unraveling the definitions, and applying Lemma 3.11 and Lemma 1.36

gives the claimed equality:

RHS = [P1 ⊗ IdU ]
∗ ◦Hom(IdV1⊗U , l) ◦ j ◦ [h1 ⊗ g] ◦ [P1 ⊗ IdU ]

+[P2 ⊗ IdU ]
∗ ◦Hom(IdV2⊗U , l) ◦ j ◦ [h2 ⊗ g] ◦ [P2 ⊗ IdU ]

= Hom(IdV ⊗U , l) ◦ j ◦ [P ∗
1 ⊗ IdU ] ◦ [h1 ⊗ g] ◦ [P1 ⊗ IdU ]

+Hom(IdV ⊗U , l) ◦ j ◦ [P ∗
2 ⊗ IdU ] ◦ [h2 ⊗ g] ◦ [P2 ⊗ IdU ]

= Hom(IdV ⊗U , l) ◦ j ◦ [(P ∗
1 ◦ h1 ◦ P1 + P ∗

2 ◦ h2 ◦ P2)⊗ g]

= LHS.
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3.2. Metrics

Theorem 3.15. Given a bilinear form g : V → V ∗, if g is symmetric or
antisymmetric then the following are equivalent.

(1) V is finite-dimensional and there exists P : V ∗ → V such that P ◦g = IdV .
(2) V is finite-dimensional and there exists Q : V ∗ → V such that g ◦ Q =

IdV ∗ .
(3) g is invertible.

Proof. Let g be symmetric; the antisymmetric case is similar.
If g is invertible, then from g∗ ◦ dV = g and Lemma 1.12,

(g−1)∗ ◦ g = (g∗)−1 ◦ g = dV

is invertible, so V is finite-dimensional by Claim 1.16, which implies (1) and (2).
Assuming (1) and using Claim 1.16,

IdV ∗ = Id∗V = (P ◦ g)∗ = g∗ ◦ P ∗ = g ◦ d−1
V ◦ P ∗,

so g has a left inverse and a right inverse, and (3) follows, as in Exercise 0.54.
Similarly, assuming (2),

IdV ∗∗ = Id∗V ∗ = (g ◦Q)∗ = Q∗ ◦ g∗ = Q∗ ◦ g ◦ d−1
V ,

so dV = Q∗ ◦ g =⇒ IdV = d−1
V ◦ Q∗ ◦ g, and g has a right inverse and a left

inverse.

The invertibility condition in Theorem 3.15 implies a non-degeneracy property:
for each non-zero v ∈ V , there exists a vector u ∈ V so that (g(v))(u) �= 0.

Definition 3.16. A metric g on V is a symmetric, invertible map g : V → V ∗.

By Theorem 3.15, a metric exists only on finite-dimensional vector spaces.

Theorem 3.17. Given a metric g on V , the bilinear form dV ◦g−1 : V ∗ → V ∗∗

is a metric on V ∗.

Proof. To show dV ◦ g−1 is symmetric, use the definition of TV ∗ and Lemma
1.17:

TV ∗(dV ◦ g−1) = (dV ◦ g−1)∗ ◦ dV ∗ = (g−1)∗ ◦ d∗V ◦ dV ∗ = (g∗)−1 = dV ◦ g−1.

The last step uses the symmetry of g. This map is invertible by Theorem 3.15 and

Claim 1.16.

The bilinear form dV ◦ g−1 could be called the metric induced by g on V ∗, or
the dual metric. It acts on elements φ, ξ ∈ V ∗ as

((dV ◦ g−1)(φ))(ξ) = ξ(g−1(φ)).

This construction can be iterated to define metrics on V ∗∗, etc.

Corollary 3.18. If g1 is a metric on V1 and g2 is a metric on V2, then g1⊕g2
is a metric on V = V1 ⊕ V2.

Proof. The direct sum g1 ⊕ g2 as in Notation 3.9 is symmetric by Theorem
3.10, and is invertible by Lemma 1.86. Specifically, the inclusion maps Q1, Q2 are
used to construct an inverse to the expression (3.3):

(Q1 ◦ g−1
1 ◦Q∗

1 +Q2 ◦ g−1
2 ◦Q∗

2) ◦ (P ∗
1 ◦ g1 ◦ P1 + P ∗

2 ◦ g2 ◦ P2) = IdV ,(3.4)

(P ∗
1 ◦ g1 ◦ P1 + P ∗

2 ◦ g2 ◦ P2) ◦ (Q1 ◦ g−1
1 ◦Q∗

1 +Q2 ◦ g−1
2 ◦Q∗

2) = IdV ∗ .
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Corollary 3.19. If g1 and g2 are metrics on U and V , then {g1 ⊗ g2} is a
metric on U ⊗ V .

Proof. The bilinear form

{g1 ⊗ g2} = Hom(IdU⊗V , l) ◦ j ◦ [g1 ⊗ g2]

as in Notation 3.13 is symmetric by Theorem 3.12, j is invertible by the finite-
dimensionality (Claim 1.34), and the inverse of Hom(IdU⊗V , l) ◦ j ◦ [g1 ⊗ g2] :
U ⊗ V → (U ⊗ V )∗ is

[g−1
1 ⊗ g−1

2 ] ◦ j−1 ◦Hom(IdU⊗V , l
−1).

Exercise 3.20. If h1, h2, and g are metrics on V1, V2, and U , and h = h1⊕h2 is
the direct sum bilinear form on V = V1⊕V2, then the induced tensor product metric
{h⊗g} on V ⊗U coincides with the induced direct sum metric on (V1⊗U)⊕(V2⊗U),

as in Theorem 3.14.

3.3. Isometries

Example 3.21. If h is a metric on V , and H : U → V is invertible, then the
pullback H∗ ◦ h ◦H (as in Definition 3.7) is a metric on U , since it is symmetric by
Lemma 3.8, and has inverse H−1 ◦ h−1 ◦ (H∗)−1.

Remark 3.22. The pullback of a metric h by an arbitrary linear map H need
not be a metric, for example, the case where H is the inclusion of a lightlike line in
Minkowski space. See also Definition 3.106.

Definition 3.23. A K-linear map H : U → V is an isometry, with respect to
metrics g on U and h on V , means: H is invertible, and g = H∗ ◦ h ◦ H , so the
diagram is commutative.

U
H ��

g

��

V

h
��

U∗ V ∗
H∗

��

This means that the metric g is equal to the pullback of h by H , and that for
elements of U ,

(g(u1))(u2) = (h(H(u1)))(H(u2)).

It follows immediately from the definition that the composite of isometries is an
isometry, that the inverse of an isometry is an isometry, and that IdV and −IdV
are isometries.

Remark 3.24. The equation g = H∗ ◦ h ◦H does not itself require that H−1

exists, and one could consider non-surjective “isometric embeddings,” but invert-
ibility will be assumed as part of Definition 3.23, just for convenience.

Exercise 3.25. If h : V → V ∗ and H : U → V , and H∗ ◦ h ◦H : U → U∗ is

invertible, then H is a linear monomorphism.

Theorem 3.26. Any metric g : U → U∗ is an isometry with respect to itself,
g, and the dual metric, dU ◦ g−1.
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Proof. The pullback by g of the dual metric is

g∗ ◦ dU ◦ g−1 ◦ g = g,

by the symmetry of g.

Theorem 3.27. Given a metric g on U , dU : U → U∗∗ is an isometry with
respect to g and the dual of the dual metric dU∗ ◦ (dU ◦ g−1)−1 = dU∗ ◦ g ◦ d−1

U on
U∗∗.

Proof. By the identity d∗U ◦ dU∗ = IdU∗ from Lemma 1.17,

g = d∗U ◦ dU∗ ◦ g ◦ d−1
U ◦ dU .

Theorem 3.28. Given metrics g1, g2, h1, and h2 on U1, U2, V1, and V2, if
A : U1 → U2 and B : V1 → V2 are isometries, then [A⊗B] : U1 ⊗ V1 → U2 ⊗ V2 is
an isometry with respect to the induced metrics.

Proof. The statement of the Theorem is that

{g1 ⊗ h1} = [A⊗B]∗ ◦ {g2 ⊗ h2} ◦ [A⊗B].

The RHS can be expanded, and then Lemma 3.11 applies:

RHS = [A⊗B]∗ ◦Hom(IdU2⊗V2 , l) ◦ j ◦ [g2 ⊗ h2] ◦ [A⊗B]

= Hom(IdU1⊗V1 , l) ◦ j ◦ [A∗ ⊗B∗] ◦ [g2 ⊗ h2] ◦ [A⊗B]

= Hom(IdU1⊗V1 , l) ◦ j ◦ [g1 ⊗ h1] = LHS.

The last step uses Lemma 1.36 and g1 = A∗ ◦ g2 ◦A, h1 = B∗ ◦ h2 ◦B.

Lemma 3.29. For vector spaces U1, U2, V1, V2, and maps F : V1 → V ∗
2 ,

E : U∗
1 → U2, if V1 is finite-dimensional then the following diagram is commutative.

U∗
1 ⊗ V1

pU1V1 ��

[(dU2◦E)⊗F ]

��

V ∗∗
1 ⊗ U∗

1

[(F◦d−1
V1

)⊗E]

��
U∗∗
2 ⊗ V ∗

2 V ∗
2 ⊗ U2pV2U2

��

Proof. The p maps are as in Notation 1.72.

φ⊗ v �→ (pV2U2 ◦ [(F ◦ d−1
V1

)⊗ E] ◦ pU1V1)(φ⊗ v)

= (pV2U2 ◦ [(F ◦ d−1
V1

)⊗ E])((dV1 (v)) ⊗ φ)

= pV2U2((F (v)) ⊗ (E(φ)))

= (dU2(E(φ))) ⊗ (F (v)) = [(dU2 ◦ E)⊗ F ](φ⊗ v).
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Theorem 3.30. Given metrics g and h on U and V , the canonical map fUV :
U∗ ⊗ V → (V ∗ ⊗ U)∗ is an isometry with respect to the induced metrics.

Proof. The diagram is commutative, where the compositions in the left and
right columns define the induced metrics.

U∗ ⊗ V
fUV ��

[(dU◦g−1)⊗h]

��

pUV

��''
'''

'''
'''

''
'''

''
'''

''
''

(V ∗ ⊗ U)∗

Hom(IdV ∗⊗U ,l−1)

��
Hom(V ∗ ⊗ U,K⊗K)

Hom(IdV ∗⊗U ,l)

��

j−1

��
U∗∗ ⊗ V ∗

j

��

V ∗∗ ⊗ U∗

j

��

[(h◦d−1
V )⊗g−1]

��
Hom(U∗ ⊗ V,K⊗K)

Hom(IdU∗⊗V ,l)

��

V ∗ ⊗ U

[(dV ◦h−1)⊗g]

��

dV ∗⊗U

��fV U""







pV U

�������������������������

(U∗ ⊗ V )∗ (V ∗ ⊗ U)∗∗
f∗
UV

��

The lower triangle is commutative by Lemma 1.71. The two blocks with f and p
maps are commutative by Lemma 1.74, and the block in the middle is commutative

by Lemma 3.29.

Lemma 3.31. Given metrics g and h on U and V , let U = U1⊕U2, with direct
sum data Qi, Pi, and let V = V1 ⊕ V2, with data Q′

i, P
′
i . Suppose that for i = 1 or

2, the bilinear form (Q′
i)

∗ ◦ h ◦Q′
i is a metric on Vi. If H : U → V is an isometry

that respects the direct sums, then the bilinear form Q∗
i ◦ g ◦Qi is a metric on Ui,

and the induced map P ′
i ◦H ◦Qi : Ui → Vi is an isometry.

Proof. The induced map P ′
i ◦ H ◦ Qi is invertible, as in Lemma 1.89. The

following calculation (which uses the property that H respects the direct sums)
shows that the bilinear form Q∗

i ◦ g ◦ Qi is equal to the pullback of (Q′
i)

∗ ◦ h ◦Q′
i

by the map P ′
i ◦H ◦Qi, so it is a metric as in Example 3.21, and P ′

i ◦H ◦Qi is an
isometry, by Definition 3.23.

(P ′
i ◦H ◦Qi)

∗ ◦ ((Q′
i)

∗ ◦ h ◦Q′
i) ◦ (P ′

i ◦H ◦Qi)

= Q∗
i ◦H∗ ◦ (P ′

i )
∗ ◦ (Q′

i)
∗ ◦ h ◦Q′

i ◦ P ′
i ◦H ◦Qi

= (Q′
i ◦ P ′

i ◦H ◦Qi)
∗ ◦ h ◦Q′

i ◦ P ′
i ◦H ◦Qi

= (H ◦Qi ◦ Pi ◦Qi)
∗ ◦ h ◦H ◦Qi ◦ Pi ◦Qi

= Q∗
i ◦H∗ ◦ h ◦H ◦Qi

= Q∗
i ◦ g ◦Qi.



3.4. TRACE WITH RESPECT TO A METRIC 115

3.4. Trace with respect to a metric

Definition 3.32. With respect to a metric g on V , the trace of a bilinear form
h on V is defined by

Trg(h) = TrV (g
−1 ◦ h).

By Lemma 2.6, this is the same as TrV ∗(h ◦ g−1), and another way to write
the definition is

Trg = Hom(IdV , g
−1)∗(TrV ) ∈ Hom(V, V ∗)∗.

Theorem 3.33. Given a metric g on V , if h is any bilinear form on V , then
Trg(TV (h)) = Trg(h).

Proof.

Trg(h
∗ ◦ dV ) = TrV ∗(h∗ ◦ dV ◦ g−1) = TrV ∗(h∗ ◦ (g−1)∗)

= TrV ∗((g−1 ◦ h)∗) = TrV (g
−1 ◦ h) = Trg(h),

using the symmetry of g and Lemma 2.5.

Corollary 3.34. If 1
2 ∈ K, then the trace of an antisymmetric form is 0 with

respect to any metric g.

Theorem 3.35. Given a metric g on V , if TrV (IdV ) �= 0, then Hom(V, V ∗) =
K⊕ ker(Trg).

Proof. Since Trg(g) = TrV (IdV ) �= 0, Lemmas 1.100 and 1.101 apply. For
any h : V → V ∗ there is a canonical decomposition of h into two terms: one that
is a scalar multiple of g and the other that has trace zero with respect to g:

h =
Trg(h)

TrV (IdV )
· g +

(
h− Trg(h)

TrV (IdV )
· g
)
.

Corollary 3.36. Given a metric g on V , if both 1
2 ∈ K and TrV (IdV ) �= 0,

then Hom(V, V ∗) admits a direct sum K⊕ Sym0(V, g)⊕Alt(V ), where Sym0(V, g)
is the kernel of the restriction of Trg to Sym(V ).

Proof. Using Theorem 3.33, Theorem 1.125 applies. The canonical decom-
position of any bilinear form h into three terms, corresponding to (1.13) with
w = v = g, is:

h =
Trg(h)

TrV (IdV )
· g +

(
1

2
(h+ TV (h))− Trg(h)

TrV (IdV )
· g
)
+

1

2
(h− TV (h)).

Proposition 3.37. Given a metric g on V , the trace is “invariant under pull-
back,” that is, for an invertible map H : U → V ,

TrH∗◦g◦H(H∗ ◦ h ◦H) = Trg(h).

Proof.

TrH∗◦g◦H(H∗ ◦ h ◦H) = TrU (H
−1 ◦ g−1 ◦ (H∗)−1 ◦H∗ ◦ h ◦H)

= TrU (H
−1 ◦ g−1 ◦ h ◦H)

= TrV (g
−1 ◦ h) = Trg(h),
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by Lemma 2.6.

Proposition 3.38. Given metrics g1, g2 on V1, V2, if V = V1 ⊕ V2, then for
any bilinear forms h1 : V1 → V ∗

1 , h2 : V2 → V ∗
2 ,

Trg1⊕g2(h1 ⊕ h2) = Trg1(h1) + Trg2(h2).

Proof. Using the formula (3.4) for (g1⊕g2)−1 from Corollary 3.18, and Lemma
2.6,

LHS = TrV ((Q1 ◦g−1
1 ◦Q∗

1 +Q2 ◦ g−1
2 ◦Q∗

2) ◦ (P ∗
1 ◦ h1◦ P1 + P ∗

2 ◦ h2 ◦ P2))

= TrV (Q1 ◦ g−1
1 ◦ h1 ◦ P1 +Q2 ◦ g−1

2 ◦ h2 ◦ P2)

= TrV1(P1 ◦Q1 ◦ g−1
1 ◦ h1) + TrV2(P2 ◦Q2 ◦ g−1

2 ◦ h2) = RHS.

Proposition 3.39. Given metrics g and h on U and V , for bilinear forms
E : U → U∗ and F : V → V ∗,

Tr{g⊗h}({E ⊗ F}) = Trg(E) · Trh(F ).

Proof. Using the formula from Corollary 3.19, there is a convenient cancella-
tion, and then Corollary 2.36 applies:

Tr{g⊗h}({E ⊗ F}) = TrU⊗V ([g
−1 ⊗ h−1] ◦ j−1 ◦Hom(IdU⊗V , l

−1)

◦Hom(IdU⊗V , l) ◦ j ◦ [E ⊗ F ])

= TrU⊗V (j2((g
−1 ◦ E)⊗ (h−1 ◦ F )))

= Trg(E) · Trh(F ).
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3.5. The induced metric on Hom(U, V )

Definition 3.40. Given metrics g and h on U and V , define a bilinear form b
on Hom(U, V ), acting on elements A, B : U → V as:

(b(B))(A) = TrV (A ◦ g−1 ◦B∗ ◦ h).

b can be written as a composite:

b = Hom(IdHom(U,V ), T rV ) ◦ tVV U ◦Hom(h, g−1) ◦ tUV ,

using the generalized transpose tVV U from Definition 1.7. By Lemma 2.6, b can also
be written as a trace with respect to g:

(b(B))(A) = TrU (g
−1 ◦B∗ ◦ h ◦A) = Trg(B

∗ ◦ h ◦A).

Theorem 3.41. Given metrics g and h on U and V , the induced tensor product
metric on U∗ ⊗ V is equal to the pullback of the bilinear form b by the canonical
map kUV .

Proof. The diagram is commutative, where the composition in the left column
defines the induced metric (as in Theorem 3.30), and the composition in the right
column defines the bilinear form b.

U∗ ⊗ V
kUV ��

[(dU◦g−1)⊗h]

��

pUV

����
���

���
���

���
Hom(U, V )

tUV

��
V ∗∗ ⊗ U∗ kV ∗U∗ ��

[(h◦d−1
V )⊗g−1]

��

Hom(V ∗, U∗)

Hom(h,g−1)

��
U∗∗ ⊗ V ∗

j

��

V ∗ ⊗ U
kV U ��

pV U

��

fV U

))��
��
��
��
��
��
��
��
��
��
�

Hom(V, U)

tVV U

��
eV U

�����
���

���
���

���
���

���
���

���
���

���
��

Hom(U∗⊗ V,K⊗K)

Hom(IdU∗⊗V ,l)

��

Hom(Hom(U, V ),End(V ))

Hom(IdHom(U,V ),TrV )

��
(U∗ ⊗ V )∗ Hom(U, V )∗

k∗
UV

��

The three squares in the upper half of the diagram are commutative, by Lemma
3.29, Lemma 1.75, and Lemma 1.62 (with h◦d−1

V = h∗ because h is symmetric). The
left triangle in the lower half is commutative by Lemma 1.74, and the middle triangle
is just the definition fV U = eV U ◦kV U from Notation 1.69. Checking the lower right
triangle, starting with D ∈ Hom(V, U), uses (kUV (φ⊗ v)) ◦D = kV V ((D

∗(φ))⊗ v),
which follows from Lemma 1.62:

Hom(D, IdV ) ◦ kUV = kV V ◦ [D∗ ⊗ IdV ],
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and the definition of the trace (Definition 2.24):

D �→ (k∗UV ◦Hom(IdHom(U,V ), T rV ) ◦ tVV U )(D)

= TrV ◦ (tVV U (D)) ◦ kUV :

φ⊗ v �→ TrV ((t
V
V U (D))(kUV (φ⊗ v)))

= TrV ((kUV (φ ⊗ v)) ◦D)

= ((k−1
V V )

∗(EvV ))(kV V ((D
∗(φ)) ⊗ v))

= EvV ((φ ◦D)⊗ v)

= φ(D(v)) = (eV U (D))(φ ⊗ v).

In particular, the pullback k∗UV ◦ b◦kUV = {(dU ◦g−1)⊗h} from Theorem 3.41
acts on φ, ψ ∈ U∗ and v, w ∈ V as:

ψ(g−1(φ)) · (h(v))(w) = ({(dU ◦ g−1)⊗ h}(φ⊗ v))(ψ ⊗ w)

= (b(kUV (φ⊗ v)))(kUV (ψ ⊗ w))(3.5)

= TrU (g
−1 ◦ (kUV (φ⊗ v))∗ ◦ h ◦ (kUV (ψ ⊗ w))).

Corollary 3.42. Given metrics g and h on U and V , b is a metric on
Hom(U, V ).

Proof. This follows from Example 3.21, where k−1
UV is the invertible map

relating the metric on U∗ ⊗ V to the bilinear form b, proving that b is symmetric

and invertible, and kUV and k−1
UV are isometries.

Corollary 3.43. Given metrics g and h on U and V , the canonical map
eUV : Hom(U, V ) → (V ∗ ⊗ U)∗ is an isometry with respect to the induced metrics.

Proof. This follows from Theorem 3.30, since eUV = fUV ◦ k−1
UV .

Remark 3.44. Historically, the b metric involving the trace has been called
the “Hilbert-Schmidt” metric; we will just refer to it as the metric on Hom(U, V )
induced by metrics on U and V and will usually use the b notation. The relation-
ship between the metric b and the tensor product metric seems to be well-known,
although possibly not in this generality. A special case of a Hermitian version of
Theorem 3.41 appears in [Bhatia] §I.4, and a positive definite version for endomor-
phisms in [G2] §III.4. Matrix versions of Theorem 3.41 appear in [Neudecker],
[L], and [HJ] §4.2.

Theorem 3.45. If A : U2 → U1 is an isometry with respect to metrics g2, g1,
and B : V1 → V2 is an isometry with respect to metrics h1, h2, then Hom(A,B) :
Hom(U1, V1) → Hom(U2, V2) is an isometry with respect to the induced metrics.

Proof. The hypotheses are h1 = B∗ ◦ h2 ◦ B, and g2 = A∗ ◦ g1 ◦ A. For E,
F ∈ Hom(U1, V2), the pullback of the induced metric on Hom(U2, V2) is

(b(B ◦ F ◦A))(B ◦ E ◦A) = TrV2(B ◦ E ◦A ◦ g−1
2 ◦A∗ ◦ F ∗ ◦B∗ ◦ h2)

= TrV1(E ◦ g−1
1 ◦ F ∗ ◦B∗ ◦ h2 ◦B)

= TrV1(E ◦ g−1
1 ◦ F ∗ ◦ h1).
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Theorem 3.46. With respect to the b metrics induced by g1, g2, h1, h2 on U1,
U2, V1, V2, the map j : Hom(U1, V1) ⊗ Hom(U2, V2) → Hom(U1 ⊗ U2, V1 ⊗ V2) is
an isometry.

Proof. For A1, B1 : U1 → V1, A2, B2 : U2 → V2, the statement of the
Theorem is that the tensor product metric and pullback metric are equal:

(b(B1))(A1) · (b(B2))(A2) = (b(j(B1 ⊗B2)))(j(A1 ⊗A2)).

Computing the RHS, using the metrics {g1 ⊗ g2}, and {h1 ⊗ h2}, gives:
RHS = TrV1⊗V2([A1 ⊗A2] ◦ [g−1

1 ⊗ g−1
2 ] ◦ j−1 ◦Hom(IdU1⊗U2 , l

−1)

◦[B1 ⊗B2]
∗ ◦Hom(IdV1⊗V2 , l) ◦ j ◦ [h1 ⊗ h2])

= TrV1⊗V2([A1 ⊗A2] ◦ [g−1
1 ⊗ g−1

2 ] ◦ [B∗
1 ⊗B∗

2 ] ◦ [h1 ⊗ h2])

= TrV1⊗V2([(A1 ◦ g−1
1 ◦B∗

1 ◦ h1)⊗ (A2 ◦ g−1
2 ◦B∗

2 ◦ h2)])
= TrV1(A1 ◦ g−1

1 ◦B∗
1 ◦ h1) · TrV2(A2 ◦ g−1

2 ◦B∗
2 ◦ h2).

The first step uses Lemma 3.11, and the second step uses Lemma 1.36, and finally

Corollary 2.36 gives a product of traces equal to LHS.

Theorem 3.47. Given metrics g and h on U and V , the map tUV : Hom(U, V ) →
Hom(V ∗, U∗) is an isometry with respect to the induced metrics.

Proof. Calculating the pullback, for A, B ∈ Hom(U, V ) gives

(b(B∗))(A∗) = TrU∗(A∗ ◦ (dV ◦ h−1)−1 ◦B∗∗ ◦ dU ◦ g−1)

= TrU∗(A∗ ◦ h ◦ d−1
V ◦B∗∗ ◦ dU ◦ g−1)

= TrU∗(A∗ ◦ h ◦B ◦ g−1)

= TrV (B ◦ g−1 ◦A∗ ◦ h)
= (b(B))(A).

Corollary 3.48. Given a metric g on V , TV : Hom(V, V ∗) → Hom(V, V ∗) is
an isometry with respect to the induced b metric.

Proof. By Definition 3.2, TV = Hom(dV , IdV ∗)◦tV V ∗ , which is a composition

of isometries, by Theorem 3.27, Theorem 3.45, and Theorem 3.47.

3.6. Orthogonal direct sums

Definition 3.49. A direct sum U = U1 ⊕ U2 ⊕ · · · ⊕ Uν , with inclusion maps
Qi, is orthogonal with respect to a metric g on U means: Q∗

I ◦ g ◦Qi = 0Hom(Ui,U∗
I )

for i �= I.

Equivalently, the direct sum is orthogonal if and only if g : U → U∗ respects
the direct sums (as in Definition 1.88), where the direct sum structure on U∗ is as
in Example 1.84.

Lemma 3.50. Given U with a metric g, if U = U1 ⊕ U2 and U = U ′
1 ⊕ U ′

2 are
equivalent direct sums, and one is orthogonal with respect to g, then so is the other.

Proof. This follows from Lemma 1.98.
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Example 3.51. Given metrics g1, g2 on U1, U2, if U = U1 ⊕ U2, then the
direct sum is orthogonal with respect to the induced metric from Corollary 3.18,
g = g1 ⊕ g2 = P ∗

1 ◦ g1 ◦ P1 + P ∗
2 ◦ g2 ◦ P2.

Theorem 3.52. Given a metric g on U , if TrU (IdU ) �= 0, then any direct sum
End(U) = K⊕End0(U) from Example 2.9 is orthogonal with respect to the b metric
induced by g.

Proof. As noted in Lemma 1.100 and Example 2.9, any such direct sum is
technically not unique, but equivalent to any other choice, so the non-uniqueness
does not affect the claimed orthogonality by Lemma 3.50.

If A ∈ End0(U) = ker(TrU ), then the b metric applied to A and any element

of the line spanned by IdU is TrU (A ◦ g−1 ◦ (λ · IdU )∗ ◦ g) = λ · TrU (A) = 0.

Theorem 3.53. Given a metric g on U , if TrU (IdU ) �= 0, then the direct sum
Hom(U,U∗) = K ⊕ ker(Trg) from Theorem 3.35 is orthogonal with respect to the
induced metric.

Proof. Such a direct sum is as in Lemmas 1.100 and 1.101.
If E ∈ ker(Trg), then the b metric applied to E and any scalar multiple of g is

TrU∗(E ◦ g−1 ◦ (λ · g)∗ ◦ dU ◦ g−1) = λ · TrU∗(E ◦ g−1) = 0.

Lemma 3.54. Given a metric g on U , if U = U1 ⊕ U2 is an orthogonal direct
sum with respect to g, then the involution on U from Example 1.122, K = Q1 ◦
P1 −Q2 ◦ P2, and similarly −K, are isometries with respect to g.

Proof. Using the orthogonality,

(±K)∗ ◦ g ◦ (±K) = (Q1 ◦ P1 −Q2 ◦ P2)
∗ ◦ g ◦ (Q1 ◦ P1 −Q2 ◦ P2)

= (Q1 ◦ P1 +Q2 ◦ P2)
∗ ◦ g ◦ (Q1 ◦ P1 +Q2 ◦ P2) = g.

Lemma 3.55. Given a metric g on U , if 1
2 ∈ K and K ∈ End(U) is an invo-

lution and an isometry with respect to g, then the direct sum produced by K, as in
Lemma 1.119, is orthogonal.

Proof. Using the isometry property, K∗ ◦ g ◦K = g, so using the involution
property, K∗ ◦ g = g ◦K. To check that g respects the direct sum, as in Definition
1.88, use Qi ◦ Pi =

1
2 · (IdU ±K) as in Lemma 1.119:

g ◦Qi ◦Pi = g ◦ 1

2
· (IdU ±K) =

1

2
· (IdU∗ ±K∗) ◦ g = (Qi ◦ Pi)

∗ ◦ g = P ∗
i ◦Q∗

i ◦ g.

Theorem 3.56. Given a metric g on U , if 1
2 ∈ K, then the direct sum

Hom(U,U∗) = Sym(U)⊕Alt(U)

is orthogonal with respect to the induced metric.

Proof. This follows from Lemma 3.55, Lemma 3.3, and Corollary 3.48.

Corollary 3.57. Given a metric g on U , If 1
2 ∈ K and TrU (IdU ) �= 0, then

the direct sum
Hom(U,U∗) = K ⊕ Sym0(U, g)⊕Alt(U)

is orthogonal with respect to the induced metric.
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There is a converse to the construction of Example 3.51: if a direct sum is
orthogonal with respect to a given metric g, then metrics are induced on the sum-
mands.

Theorem 3.58. Given a metric g on U and a direct sum U = U1 ⊕ U2 with
projections and inclusions Pi, Qi, if the direct sum is orthogonal with respect to g,
then each of the maps gi = Q∗

i ◦ g ◦Qi : Ui → U∗
i is a metric, and g = g1 ⊕ g2.

Proof. The pullback gi has inverse Pi ◦ g−1 ◦ P ∗
i by Lemma 1.89, and is

symmetric by Lemma 3.8, so it is a metric. Since g respects the direct sums,
P ∗
i ◦Q∗

i ◦ g = g ◦Qi ◦ Pi, so using the definition of direct sum of bilinear forms,

g1 ⊕ g2 = P ∗
1 ◦Q∗

1 ◦ g ◦Q1 ◦ P1 + P ∗
2 ◦Q∗

2 ◦ g ◦Q2 ◦ P2

= g ◦ (Q1 ◦ P1 +Q2 ◦ P2) = g.

Example 3.59. Theorem 3.58, applied to the above direct sums, demonstrates
that under suitable hypotheses, a metric g on U induces metrics on End0(U),
ker(Trg), Sym(U), Sym0(U, g), and Alt(U).

Theorem 3.60. Given metrics g and h on U and V , if U = U1 ⊕ U2 is an
orthogonal direct sum with respect to g, then the direct sum U ⊗ V = (U1 ⊗ V ) ⊕
(U2⊗V ), as in Example 1.81, is orthogonal with respect to the tensor product metric
{g⊗h}, and the metric on Ui⊗V induced by the direct sum coincides with {gi⊗h}.

Proof. Using Lemma 3.11, and the inclusion maps [Qi ⊗ IdV ] : Ui ⊗ V →
U ⊗ V ,

[QI ⊗ IdV ]
∗ ◦Hom(IdU⊗V , l) ◦ j ◦ [g ⊗ h] ◦ [Qi ⊗ IdV ]

= Hom(IdUI⊗V , l) ◦ j ◦ [Q∗
I ⊗ Id∗V ] ◦ [g ⊗ h] ◦ [Qi ⊗ IdV ]

= Hom(IdUI⊗V , l) ◦ j ◦ [(Q∗
I ◦ g ◦Qi)⊗ h].

For i �= I, the result is zero, showing the direct sum is orthogonal, and for i = I,
the calculation shows that the tensor product of the induced metric gi = Q∗

i ◦g ◦Qi

and h is equal to the metric induced by {g ⊗ h} and [Qi ⊗ IdV ] on Ui ⊗ V .

Theorem 3.61. Given metrics g and h on U and V , if V = V1⊕V2, with direct
sum data Q′

i, P
′
i , is an orthogonal direct sum with respect to h, and U = U1⊕U2, and

H : U → V is an isometry with respect to g and h which respects the direct sums,
then the direct sum U1⊕U2 is orthogonal with respect to g, and P ′

i ◦H ◦Qi : Ui → Vi
is an isometry with respect to the induced metrics.

Proof. It is straightforward to check that H∗ : V ∗ → U∗ respects the direct
sums. It follows that g = H∗ ◦ h ◦H is a composite of maps that respect the direct
sums, so U1 ⊕ U2 is orthogonal with respect to g. The induced metrics on Ui and

Vi are as in Theorem 3.58, and the last claim is a special case of Lemma 3.31.

3.7. Topics and applications

The following facts about the trace, metrics, and direct sums are left as exer-
cises; their proofs are short and lend themselves to the methods and notation of the
previous Sections. Some of the results generalize well-known properties of metrics
on real vector spaces that appear in topics in geometry, algebra, or applications. A
few of the results, labeled Lemmas, will be needed later.
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3.7.1. Foundations of geometry.

Proposition 3.62. Let U and V be vector spaces, and let h : V → V ∗ be an
invertible K-linear map. Suppose H is just a function with domain U and target
V , which is not necessarily linear, but which is right cancellable. If there is some
K-linear map g : U → U∗ so that

((h ◦H)(u)) ◦H = g(u)

for all u ∈ U , then H is K-linear.

Proof. The right cancellable property in the category of sets is as in Exercise
6.18: A ◦H = B ◦H =⇒ A = B, for any, not necessarily linear, functions A and
B.

For K-linearity, two equations must hold. First, for any λ ∈ K, u ∈ U ,

((h ◦H)(λ · u)) ◦H = g(λ · u) = λ · g(u) = λ · ((h ◦H)(u)) ◦H
=⇒ (h ◦H)(λ · u) = λ · (h ◦H)(u)

=⇒ h(H(λ · u)) = h(λ ·H(u))

=⇒ H(λ · u) = λ ·H(u).

Second, for any u1, u2 ∈ U ,

((h ◦H)(u1 + u2)) ◦H = g(u1 + u2) = g(u1) + g(u2)

= ((h ◦H)(u1)) ◦H + ((h ◦H)(u2)) ◦H
= ((h ◦H)(u1) + (h ◦H)(u2)) ◦H

=⇒ (h ◦H)(u1 + u2) = (h ◦H)(u1) + (h ◦H)(u2)

=⇒ h(H(u1 + u2)) = h(H(u1) +H(u2))

=⇒ H(u1 + u2) = H(u1) +H(u2).

Proposition 3.63. Let U and V be vector spaces, and let g : U → U∗, h :
V → V ∗ be symmetric bilinear forms. Suppose H is just a function with domain
U and target V , which is not necessarily linear. If 1

2 ∈ K and H(0U ) = 0V and H
satisfies

(h(H(v)−H(u)))(H(v) −H(u)) = (g(v − u))(v − u)

for all u, v ∈ U , then H also satisfies

((h ◦H)(u)) ◦H = g(u)

for all u ∈ U .

Proof. Expanding the RHS of the hypothesis identity using the symmetric
property of g,

(g(v − u))(v − u) = (g(v))(v) − (g(v))(u)− (g(u))(v) + (g(u))(u)

= (g(v))(v) − 2(g(u))(v) + (g(u))(u).
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Expanding the LHS, using the symmetric property of h and H(0U ) = 0V ,

(h(H(v) −H(u)))(H(v)−H(u))

= (h(H(v)))(H(v)) − (h(H(v)))(H(u)) − (h(H(u)))(H(v)) + (h(H(u)))(H(u))

= (h(H(v) −H(0U )))(H(v) −H(0U ))− 2(h(H(u)))(H(v))

+(h(H(u)−H(0U )))(H(u) −H(0U ))

= (g(v − 0U ))(v − 0U )− 2(h(H(u)))(H(v)) + (g(u− 0U ))(u − 0U ).

Setting the above quantities equal, cancelling like terms, and using 1
2 ∈ K, the

conclusion follows.

Proposition 3.64. Let U and V be vector spaces, and let g : U → U∗ be a
metric on U . Suppose h is just a function with domain V and target V ∗, which is
not necessarily linear. If 1

2 ∈ K and H : U → V is a K-linear map satisfying

((h ◦H)(u))(H(u)) = (g(u))(u)

for all u ∈ U , then H satisfies

(h(H(v)−H(u)))(H(v) −H(u)) = (g(v − u))(v − u)

for all u, v ∈ U , and ker(H) = {0U}.
Proof. To establish the claimed identity, use the linearity of H :

LHS = (h(H(v − u)))(H(v − u)) = RHS.

Suppose H(u) = 0V . Then, for any v ∈ U ,

((h ◦H)(v))(H(v)) = (h(H(v) −H(u)))(H(v)−H(u))

= (g(v − u))(v − u)

= (g(v))(v) − (g(v))(u) − (g(u))(v) + (g(u))(u)

= ((h ◦H)(v))(H(v)) − 2(g(u))(v) + ((h ◦H)(u))(H(u)),

the last step using the symmetric property of g. Using h(H(u)) ∈ V ∗ and H(u) =
0V , the last term is 0, so cancelling like terms and using 1

2 ∈ K, the conclusion is
that (g(u))(v) = 0. Since this holds for all v, g(u) = 0U∗ , and g is invertible, so

u = 0U .

Corollary 3.65. Given a vector space V and metrics g and h on V , if 1
2 ∈ K

and H is just a function with domain V and target V , which is not necessarily
linear, then the following are equivalent.

(1) H : V � V is right cancellable, and for all u ∈ V ,

((h ◦H)(u)) ◦H = g(u).

(2) H : V � V is right cancellable, H(0V ) = 0V , and for all u, v ∈ V ,

(h(H(v) −H(u)))(H(v)−H(u)) = (g(v − u))(v − u).

(3) H : V → V is K-linear, and for all u ∈ V ,

((h ◦H)(u))(H(u)) = (g(u))(u).

(4) H : V → V is an isometry with respect to g and h.
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Proof. For (1) =⇒ (3), the linearity is Proposition 3.62 and the identity
obviously follows. Since V is finite-dimensional, a K-linear map V → V with
trivial kernel must be invertible by Claim 0.56 (and therefore right cancellable),
so Proposition 3.64 gives (3) =⇒ (2). (2) =⇒ (1) is Proposition 3.63. It
is immediate from Definition 3.23 that (4) =⇒ (1), and also (4) =⇒ (3).
Finally, the linearity of (3), the identity of (1), and the above mentioned invertibility
together imply (4). The implications (1) ⇐⇒ (4) =⇒ (3) did not require
1
2 ∈ K.

3.7.2. More isometries.

Exercise 3.66. Given metrics on U and V , the switching map s : U ⊗ V →
V ⊗ U : u ⊗ v �→ v ⊗ u, as in Example 1.29, is an isometry with respect to the

induced tensor product metrics.

Lemma 3.67. Every map h : K → K∗ is of the form hν , where for ν ∈ K,
(hν(λ))(μ) = ν ·λ ·μ. If ν �= 0, then hν is a metric on K, with inverse map 1

ν ·TrK.
Proof. For any h, let ν = (h(1))(1); then (h(λ))(μ) = λ · μ · (h(1))(1). For

any ν, hν = ν · h1, and hν is clearly symmetric. If ν = 0 then h = 0Hom(K,K∗). If

ν �= 0, then hν is invertible, with inverse 1
ν · TrK, by Example 2.7:

((
1

ν
· TrK) ◦ hν)(λ) = 1

ν
· TrK(hν(λ)) = 1

ν
· (hν(λ))(1) = 1

ν
· ν · λ · 1 = λ.

(hν ◦ ( 1
ν
· TrK))(A) = hν(

1

ν
·A(1)) : μ �→ ν · 1

ν
· A(1) · μ = A(μ).

A canonical such metric on K is h1 = (TrK)
−1. h1 is also equal to the map

m : K → Hom(K,K) as in Definition 1.20, with inverse dK(1) = TrK as in Lemma
1.22 and Example 2.7. In particular, hν = ν ·m.

Exercise 3.68. For three copies of the scalar field, Kα, Kβ, Kγ , with metrics
hα, hβ , hγ , if β = α ·γ ∈ K, then the map TrK : Hom(Kα,Kβ) → Kγ is an isometry
with respect to the induced b metric and hγ .

Hint. For A, B ∈ End(K), the pullback metric is, by Example 2.7,

(hγ(TrK(A)))(TrK(B)) = (hγ(A(1)))(B(1)) = γ ·A(1) · B(1).

The induced metric b on Hom(Kα,Kβ) gives

TrK(A ◦ (hα)−1 ◦B∗ ◦ hβ) = (A ◦ (hα)−1 ◦B∗ ◦ hβ)(1)
= A(α−1 · TrK(B∗(hβ(1))))

= A(α−1 · (hβ(1))(B(1)))

= A(α−1 · β · 1 · B(1))

=
β

α
· A(1) ·B(1).
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Lemma 3.69. Given a metric g on U , the scalar multiplication map from Ex-
ample 1.28, lU : U ⊗ K → U , is an isometry, with respect to the tensor product
metric {g ⊗ hν} and ν · g.

Proof. Calculating the pullback of ν · g gives:

(ν · g(lU (u1 ⊗ λ)))(lU (u2 ⊗ μ)) = λ · μ · ν · (g(u1))(u2),
and the tensor product metric is

({g ⊗ hν}(u1 ⊗ λ))(u2 ⊗ μ) = ν · λ · μ · (g(u1))(u2).

Exercise 3.70. Given a metric g on U , the canonical mapm : U → Hom(K, U)
from Definition 1.20, m(u) : λ �→ λ · u, is an isometry with respect to g and the
metric b induced by h1 and g.

Hint. The pullback of the metric b induced by the more general map hν is,
using Lemma 3.67,

(b(m(u1)))(m(u2)) = TrK((h
ν)−1 ◦ (m(u1))

∗ ◦ g ◦ (m(u1)))

= (hν)−1((m(u1))
∗(g((m(u2))(1))))

= ν−1 · TrK((g((m(u2))(1))) ◦ (m(u1)))

= ν−1 · (g((m(u2))(1)))((m(u1))(1))

= ν−1 · (g(u2))(u1).
If U �= {0U}, then ν = 1 is necessary for equality.

Lemma 3.71. Given a metric g on V , and a direct sum V = K ⊕ U with
inclusions Qi, if the direct sum is orthogonal with respect to g, then the induced
metric Q∗

1 ◦ g ◦Q1 on K is equal to hν , for ν = (g(Q1(1)))(Q1(1)).

Proof. Q∗
1 ◦ g ◦Q1 = hν for some ν �= 0, by Lemma 3.67 and Theorem 3.58.

ν = (hν(1))(1) = ((Q∗
1 ◦ g ◦Q1)(1))(1) = (g(Q1(1)))(Q1(1)).

Exercise 3.72. Given a metric g on V and an orthogonal direct sum V = K⊕U
as in Lemma 3.71, if α ∈ K satisfies

(g(Q1(α)))(Q1(α)) = 1,

then

dKU (α) : Hom(K, U) → U : A �→ A(α)

is an isometry with respect to the induced metrics.

Hint. Let hν and gU be the metrics induced by g on K and U from Lemma
3.71, so ν = (g(Q1(1)))(Q1(1)). For A,B ∈ Hom(K, U), the pullback of gU by
dKU (α) gives:

(gU ((dKU (α))(A)))((dKU (α))(B)) = (gU (A(α)))(B(α))

= α2 · (gU (A(1)))(B(1)).
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The calculation for the induced metric on Hom(K, U) is:

(b(A))(B) = TrK((h
ν)−1 ◦A∗ ◦ gU ◦B)

= (hν)−1((gU (B(1))) ◦A)
= ν−1 · (gU (B(1)))(A(1)).

If α2ν = 1, then the outputs are equal; the converse holds for U �= {0U}. The
above calculation works for any metric on U , and is similar to that from Exercise

3.70.

Lemma 3.73. Given metrics on U , V , andW , the canonical map n : Hom(U, V )⊗
W → Hom(U, V ⊗W ) is an isometry with respect to the induced metrics.

Proof. This follows from the fact that j, lU , and m are isometries, Lemma
1.43, where n = [IdHom(U,V ) ⊗m−1] ◦ j ◦Hom(lU , IdV ⊗W ), and Theorems 3.28 and

3.45. It could also be checked directly.

Exercise 3.74. Given a metric g on U , the dual metric on U∗ and the metric
b on Hom(U,K), induced by g and h1, coincide.

Hint. For φ ∈ U∗, and the more general metric hν on K, the identity

((hν(1)) ◦ φ)(λ) = ν · 1 · φ(λ) = (ν · φ)(λ)

is used in computing the b metric for φ, ξ ∈ U∗:

TrK(ξ ◦ g−1 ◦ φ∗ ◦ hν) = ξ(g−1(φ∗(hν(1)))) = ξ(g−1((hν(1)) ◦ φ))
= ξ(g−1(ν · φ)) = ν · ξ(g−1(φ)).

The dual metric on U∗ results in the quantity ξ(g−1(φ)), so ν = 1 is necessary for
equality in the case U �= {0U}, and, in general, if hν is the metric on K, then the b

metric on Hom(U,K) is equal to ν · dU ◦ g−1.

Exercise 3.75. Given metrics on U1 and U2, if A : U2 → U1 is an isometry,

then A∗ : U∗
1 → U∗

2 is an isometry with respect to the dual metrics.

Exercise 3.76. Given metrics on U and V , the map p : U ⊗ V → V ∗∗ ⊗U , as
in Notation 1.72, is an isometry with respect to the induced tensor product metrics.
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Exercise 3.77. Given metrics g, h, and y on U , V , and W , the map q :
Hom(V,Hom(U,W )) → Hom(V ⊗U,W ), as in Definition 1.46, is an isometry with
respect to the induced metrics.

Hint. All the maps in the following commutative diagram are isometries.

V ∗ ⊗ U∗ ⊗W
[j⊗IdW ] ��

[IdV ∗⊗kUW ]

��

Hom(V ⊗ U,K⊗K)⊗W

[Hom(IdV ⊗U ,l)⊗IdW ]

��
V ∗ ⊗Hom(U,W )

kV,Hom(U,W )

��

(V ⊗ U)∗ ⊗W

kV ⊗U,W

��
Hom(V,Hom(U,W ))

q �� Hom(V ⊗ U,W )

Lemma 3.78. Given finite-dimensional vector spaces V and L, if

EvL : L∗ ⊗ L→ K

is invertible, then dV L : V → Hom(Hom(V, L), L) is invertible.

Proof. Recall dV L from Definition 1.13.

V
dV L ��

dV

��

Hom(Hom(V, L), L)

Hom(kV L,IdL)

��
V ∗∗

Hom(IdV ∗ ,Q1
1)

((((
(((((

(((((
(((((

(((((
(( Hom(V ∗ ⊗ L,L)

Hom(V ∗, L∗ ⊗ L)
Hom(IdV ∗ ,kLL)

��

Hom(IdV ∗ ,EvL)

��

Hom(V ∗,End(L))

q

��

The lower triangle is commutative, by the calculation from the Proof of Proposition
2.21, and so is the upper part of the diagram:

v �→ (q ◦Hom(IdV ∗ , Q1
1) ◦ dV )(v)

= q(Q1
1 ◦ (dV (v))) :

φ⊗ u �→ (Q1
1(φ(v)))(u) = (φ(v) · IdL)(u) = φ(v) · u,

v �→ (Hom(kV L, IdL) ◦ dV L)(v)

= (dV L(v)) ◦ kV L :

φ⊗ u �→ (kV L(φ ⊗ u))(v) = φ(v) · u.
dV L is invertible because all the other maps in the outer rectangle are invertible.

Proposition 3.79. For V , L, and EvL as in Lemma 3.78, if there is some
metric y on L, and EvL is an isometry with respect to the induced metric on L∗⊗L
and h1 on K, then dV L is an isometry with respect to any metric g on V , and the
induced metric on Hom(Hom(V, L), L).

Proof. By Theorem 3.45 and the hypothesis on EvL, Hom(IdV ∗ , EvL) is an
isometry with respect to the b metric on Hom(V ∗, L∗ ⊗ L), and the b metric on
V ∗∗ = Hom(V ∗,K), induced by dV ◦g−1 on V ∗ and h1 on K. By Theorem 3.27, dV
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is an isometry from V to V ∗∗ with respect to the dual metric, which by Exercise
3.74, is the same as the b metric on Hom(V ∗,K). Referring to the diagram from

Lemma 3.78, dV L is equal to a composite of isometries.

3.7.3. Antisymmetric forms and symplectic forms.

Exercise 3.80. Given a bilinear form g : V → V ∗, if g satisfies (g(v))(v) = 0
for all v ∈ V , then g is antisymmetric. If 1

2 ∈ K, then, conversely, an antisymmetric

form g satisfies (g(v))(v) = 0.

Big Exercise 3.81. Given a bilinear form g : V → V ∗, the following are
equivalent.

(1) For all u, v ∈ V , if (g(u))(v) = 0, then (g(v))(u) = 0.
(2) g ∈ Sym(V ) ∪ Alt(V ).

Hint. (2) =⇒ (1) is easy; a proof of the well-known converse is given by [J]
§6.1. A bilinear form satisfying either equivalent condition is variously described

by the literature as “orthosymmetric” or “reflexive.”

Definition 3.82. A bilinear form h : U → U∗ is a symplectic form means: h
is antisymmetric and invertible.

Recall from Theorem 3.15 that the invertibility implies U is finite-dimensional.

Exercise 3.83. Given a symplectic form h on V , the bilinear form dV ◦ h−1 :
V ∗ → V ∗∗ is a symplectic form on V ∗.

Hint. This is an analogue of Theorem 3.17. The antisymmetric property im-

plies the equality dV ◦ h−1 = −(h∗)−1.

Given a symplectic form h on V , the above Exercise suggests there are two
opposite ways h could induce a symplectic form on V ∗:

dV ◦ h−1 = −(h∗)−1,(3.6)

−dV ◦ h−1 = (h∗)−1.(3.7)

Exercise 3.84. The tensor product of symplectic forms is a metric.

The following Definition is analogous to Definition 3.23.

Definition 3.85. A map H : U → V is a symplectic isometry, with respect to
symplectic forms g on U , and h on V , means: H is invertible, and g = H∗ ◦ h ◦H .

Lemma 3.86. A symplectic form h : U → U∗ is a symplectic isometry with

respect to itself and the symplectic form −dV ◦ h−1 from (3.7).

Exercise 3.87. Given V with metric g and symplectic form h, the following
are equivalent.

(1) g is a symplectic isometry with respect to h and the symplectic form
dV ◦ h−1 from (3.6).

(2) h−1 ◦ g ∈ End(V ) is an involution.
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Exercise 3.88. Given V with metric g and symplectic form h, the following
are equivalent.

(1) g is a symplectic isometry with respect to h and the symplectic form
−dV ◦ h−1 from (3.7).

(2) h is an isometry with respect to g and the dual metric dV ◦ g−1.
(3) g−1 ◦ h ∈ End(V ) is an isometry with respect to g.
(4) g−1 ◦ h ∈ End(V ) is a symplectic isometry with respect to h.

Hint. The equivalence of (2) and (3) follows from Theorem 3.26.

Exercise 3.89. Given a symplectic form h on U , using either method (3.6)
or (3.7) to induce a symplectic form on the dual space, the double dual U∗∗ has a
canonical symplectic form

dU∗ ◦ (dU ◦ h−1)−1 = −dU∗ ◦ (−dU ◦ h−1)−1 = dU∗ ◦ h ◦ d−1
U .

The map dU : U → U∗∗ is a symplectic isometry with respect to h and the above

symplectic form.

Big Exercise 3.90. Several more of the elementary results on metrics can be

adapted to symplectic forms.

3.7.4. More direct sums.

Exercise 3.91. Given linear maps H : U → V and h : V → V ∗, if H∗ ◦h ◦H :
U → U∗ is invertible, then there is a direct sum V = U⊕ker(H∗◦h). If, in addition,
h is symmetric (or antisymmetric), then h : V → V ∗ respects the induced direct
sums and H∗ ◦ h ◦H : U → U∗ is a metric (respectively, symplectic form) on U . If,
further, h is invertible, then h also induces a metric (respectively, symplectic form)
on ker(H∗ ◦ h).

Hint. H is a linear monomorphism as in Exercise 3.25. Let Q1 = H , and let
P1 = (H∗ ◦ h ◦H)−1 ◦H∗ ◦ h. Then P1 ◦Q1 = IdU , and Q1 ◦ P1 = H ◦ (H∗ ◦ h ◦
H)−1 ◦H∗ ◦h is an idempotent on V . The kernel of Q1 ◦P1 is equal to the kernel of
H∗ ◦h; let Q2 denote the inclusion of this subspace in V , and define the projection
P2 onto this subspace as in Example 1.113: P2 = IdV −Q1 ◦ P1 = Q2 ◦ P2.

The direct sum V = U ⊕ker(H∗ ◦h) induces a direct sum V ∗ = U∗⊕ (ker(H∗ ◦
h))∗ as in Example 1.84. If h is symmetric (or antisymmetric), then H∗◦h◦H is also
symmetric (respectively, antisymmetric) by Lemma 3.8, and a metric (respectively,
symplectic form) on U , so U is finite-dimensional and dU is invertible. Consider
the two expressions:

h ◦Q1 ◦ P1 = h ◦H ◦ (H∗ ◦ h ◦H)−1 ◦H∗ ◦ h,
P ∗
1 ◦Q∗

1 ◦ h = h∗ ◦H∗∗ ◦ (H∗ ◦ h∗ ◦H∗∗)−1 ◦H∗ ◦ h.
If h = ±h∗ ◦ dV , then, using Lemma 1.14,

h ◦Q1 ◦ P1 = ±h∗ ◦ dV ◦H ◦ (H∗ ◦ (±h∗ ◦ dV ) ◦H)−1 ◦H∗ ◦ h
= h∗ ◦H∗∗ ◦ dU ◦ (H∗ ◦ h∗ ◦H∗∗ ◦ dU )−1 ◦H∗ ◦ h,

so h ◦Q1 ◦ P1 = P ∗
1 ◦Q∗

1 ◦ h, and h respects the direct sums.
If, further, h is invertible, then h is a metric (respectively, symplectic form)

that respects the direct sums V → V ∗, so V = U ⊕ ker(H∗ ◦ h) is an orthogonal

direct sum with respect to h, and Theorem 3.58 applies.
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Exercise 3.92. Given V = V1⊕V2, U = U1⊕U2, with projection and inclusion
maps Pi, Qi on V , P ′

i , Q
′
i on U , if A : U1 → V1 and B : U2 → V2 are isometries

with respect to metrics gi on Ui, hi on Vi, then

A⊕B = Q1 ◦A ◦ P ′
1 +Q2 ◦B ◦ P ′

2 : U → V

is an isometry with respect to the induced metrics.

Hint. The invertibility is by Lemma 1.86. The rest of the claim is that

g1 ⊕ g2 = (A⊕B)∗ ◦ (h1 ⊕ h2) ◦ (A⊕B).

The RHS can be expanded:

RHS = (P ′∗
1 ◦A∗ ◦Q∗

1 + P ′∗
2 ◦B∗ ◦Q∗

2)

◦(P ∗
1 ◦ h1 ◦ P1 + P ∗

2 ◦ h2 ◦ P2)

◦(Q1 ◦A ◦ P ′
1 +Q2 ◦B ◦ P ′

2)

= P ′∗
1 ◦A∗ ◦ h1 ◦A ◦ P ′

1 + P ′∗
2 ◦B∗ ◦ h2 ◦B ◦ P ′

2

= P ′∗
1 ◦ g1 ◦ P ′

1 + P ′∗
2 ◦ g2 ◦ P ′

2 = LHS.

The last step uses g1 = A∗ ◦ h1 ◦A, g2 = B∗ ◦ h2 ◦B.

Exercise 3.93. Given metrics g1 and g2 on V1 and V2, if V = V1 ⊕ V2 and
W = V1 ⊕ V2 are direct sums with data P ′

i , Q
′
i and Pi, Qi, respectively, then the

map Q′
1 ◦ P1 + Q′

2 ◦ P2 : W → V is an isometry with respect to the direct sum
metrics from Corollary 3.18.

Hint. This is a special case of Exercise 3.92. The construction of the invertible

map Q′
1 ◦P1 +Q′

2 ◦P2 :W → V is a special case of the map from Lemma 1.86.

Exercise 3.94. Given metrics g1 and g2 on V1 and V2, if V = V1 ⊕ V2, then
the dual of the metric g1⊕g2 from Corollary 3.18 is dV ◦ (g1⊕g2)−1 : V ∗ → V ∗∗, as
in Theorem 3.17. For the direct sum V ∗ = V ∗

1 ⊕ V ∗
2 from Example 1.84, the direct

sum of the dual metrics is (dV1 ◦ g−1
1 )⊕ (dV2 ◦ g−1

2 ). These two metrics on V ∗ are
equal.

Hint. Lemma 1.14 applies to the direct sum formula (3.3) and the inverse

(3.4).

Example 3.95. Given 1
2 ∈ K, and given V with metric g and an involution

K1 : V → V , producing a direct sum V1 ⊕ V2 as in Lemma 1.119, suppose the
bilinear forms Q∗

i ◦ g ◦ Qi are metrics for i = 1, 2 (this is the case, for example,
when K1 is an isometry, by Lemma 3.55 and Theorem 3.58). If K2 is another
involution on V that is an isometry and anticommutes with K1, then K2 respects
the direct sums V1 ⊕ V2 → V2 ⊕ V1 as in Lemma 1.127, and the induced maps
P2 ◦ K2 ◦ Q1 : V1 → V2 and P1 ◦ K2 ◦ Q2 : V2 → V1, as in Theorem 1.136, are
isometries by Lemma 3.31.

Lemma 3.96. Given 1
2 ∈ K, and given V with metric g and an involution

K : V → V , producing a direct sum V = V1 ⊕ V2 with data Pi, Qi as in Lemma
1.119, suppose the direct sum is orthogonal with respect to g (this is the case, for
example, when K is an isometry, by Lemma 3.55). Let K ′ be another involution
on V that is an isometry and anticommutes with K, and which produces a direct
sum V = V ′

1 ⊕ V ′
2 , with data P ′

i , Q
′
i. If β ∈ K satisfies β2 = 2, then for i = 1, 2,

I = 1, 2, the map β · P ′
I ◦Qi : Vi → V ′

I is an isometry.
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Proof. The map β · P ′
I ◦ Qi : Vi → V ′

I is invertible by Theorem 1.137. The
induced metric on Vi is Q

∗
i ◦ g ◦Qi and on V ′

I is (Q′
I)

∗ ◦ g ◦Q′
I , by Lemma 3.55 and

Theorem 3.58. From the Proof of Lemma 3.55, g ◦Q′
I ◦ P ′

I = (P ′
I)

∗ ◦ (Q′
I)

∗ ◦ g.
(β · P ′

I ◦Qi)
∗ ◦ ((Q′

I)
∗ ◦ g ◦Q′

I) ◦ (β · P ′
I ◦Qi)

= β2 ·Q∗
i ◦ (P ′

I)
∗ ◦ (Q′

I)
∗ ◦ g ◦Q′

I ◦ P ′
I ◦Qi

= β2 ·Q∗
i ◦ g ◦Q′

I ◦ P ′
I ◦Qi

= β2 ·Q∗
i ◦ g ◦

1

2
· (IdV ±K ′) ◦Qi.

By hypothesis, g respects the direct sum V1 ⊕ V2, but K
′ reverses the direct sum

as in Lemma 1.127. So, Q∗
i ◦ g ◦K ′ ◦Qi = 0Hom(Vi,V ∗

i ) and the second term in the

last line drops out.

Exercise 3.97. Given metrics g and h on U and V , let U = U1 ⊕ U2 and
V = V1 ⊕ V2 be orthogonal direct sums with respective data Pi, Qi, P

′
i , Q

′
i. If

H : U → V is an isometry such that P ′
2 ◦H ◦ Q1 = 0Hom(U1,V2), and P

′
1 ◦H ◦ Q1

is a linear epimorphism, then P ′
1 ◦H ◦Q2 = 0Hom(U2,V1), so H respects the direct

sums.

Hint.

0Hom(U1,U∗
2 )

= Q∗
2 ◦ g ◦Q1

= Q∗
2 ◦H∗ ◦ h ◦H ◦Q1

= Q∗
2 ◦H∗◦ (Q′

1 ◦ P ′
1 +Q′

2 ◦ P ′
2)

∗◦h◦ (Q′
1 ◦ P ′

1+Q
′
2 ◦ P ′

2) ◦H ◦Q1

= (P ′
1 ◦H ◦Q2)

∗ ◦Q′∗
1 ◦ h ◦Q′

1 ◦ P ′
1 ◦H ◦Q1.

Q′∗
1 ◦ h ◦ Q′

1 is invertible by Theorem 3.58, so P ′
1 ◦ H ◦ Q2 = 0Hom(U2,V1) by the

linear epimorphism property (Definition 0.52).

Exercise 3.98. If U1 = V1 in Exercise 3.97, then the epimorphism property is
not needed in the hypothesis.

Hint.

(P1 ◦H−1 ◦Q′
1) ◦ (P ′

1 ◦H ◦Q1) = P1 ◦H−1 ◦ (Q′
1 ◦ P ′

1 +Q′
2 ◦ P ′

2) ◦H ◦Q1

= P1 ◦Q1 = IdV1 .

Claim 0.56 applies.

Exercise 3.99. Given any vector space V , if U = U1⊕U2 is a direct sum with
projections Pi and inclusions Qi, then as in Example 1.83,

Hom(U, V ) = Hom(U1, V )⊕Hom(U2, V ),

with projections Hom(Qi, IdV ) and inclusions Hom(Pi, IdV ). Given metrics g and h
on U and V , if U1⊕U2 is an orthogonal direct sum, then Hom(U1, V )⊕Hom(U2, V )
is an orthogonal direct sum with respect to the induced b metric.

Hint. Consider A : Ui → V , B : UI → V .

((Hom(PI , IdV )
∗◦ b ◦Hom(Pi, IdV ))(A))(B) = (b(A ◦ Pi))(B ◦ PI)

= TrV (B ◦ PI ◦ g−1◦ (A ◦ Pi)
∗◦ h)

= TrV (B ◦ PI ◦ g−1◦ P ∗
i ◦A∗◦ h).
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By Lemma 1.89, since g : U → U∗ respects the direct sums, so does g−1 : U∗ → U ,
so for i �= I, PI ◦ g−1 ◦ P ∗

i = 0Hom(U∗
i ,UI ). This makes (b(A ◦ Pi))(B ◦ PI) equal to

zero, proving orthogonality.

Exercise 3.100. Given any vector space U , if V = V1 ⊕ V2 is a direct sum
with projections Pi and inclusions Qi, then as in Example 1.82, Hom(U, V ) =
Hom(U, V1)⊕Hom(U, V2), with projections Hom(IdU , Pi) and inclusions Hom(IdU , Qi).
Given metrics g and h on U and V , if V1 ⊕ V2 is an orthogonal direct sum, then
Hom(U, V1)⊕Hom(U, V2) is an orthogonal direct sum with respect to the induced
b metric.

Hint. Consider A : U → Vi, B : U → VI .

((Hom(IdU , QI)
∗◦b◦Hom(IdU , Qi))(A))(B) = (b(Qi ◦A))(QI ◦B)

= TrV (QI ◦B◦g−1◦(Qi◦A)∗◦h)
= TrVI (B◦g−1◦A∗◦Q∗

i ◦h◦QI).

For i �= I, this quantity is zero.

Exercise 3.101. Given a metric g on U , if U = U1⊕U2 is an orthogonal direct
sum with data Qi, Pi, and g1, g2 are the metrics induced on U1, U2 (from Theorem
3.58), and K : U → U∗, then

Trg(K) = Trg1(Q
∗
1 ◦K ◦Q1) + Trg2(Q

∗
2 ◦K ◦Q2).

Hint. By Theorem 3.58, g−1
i = Pi ◦ g−1 ◦ P ∗

i , and from the hint for Exercise
3.99, PI ◦ g−1 ◦ P ∗

i = 0Hom(U∗
i ,UI) for i �= I. Using Lemma 2.6,

Trg(K) = TrV (g
−1 ◦ (Q1 ◦ P1 +Q2 ◦ P2)

∗ ◦K ◦ (Q1 ◦ P1 +Q2 ◦ P2))

= TrV1(P1 ◦ g−1 ◦ (P ∗
1 ◦Q∗

1 + P ∗
2 ◦Q∗

2) ◦K ◦Q1)

+TrV2(P2 ◦ g−1 ◦ (P ∗
1 ◦Q∗

1 + P ∗
2 ◦Q∗

2) ◦K ◦Q2)

= TrV1(P1 ◦ g−1 ◦ P ∗
1 ◦Q∗

1 ◦K ◦Q1)

+TrV2(P2 ◦ g−1 ◦ P ∗
2 ◦Q∗

2 ◦K ◦Q2)

= TrV1(g
−1
1 ◦Q∗

1 ◦K ◦Q1) + TrV2(g
−1
2 ◦Q∗

2 ◦K ◦Q2).

Lemma 3.102. Let V = U ⊕ U∗, with projections and inclusions Pi, Qi. The
direct sum induces a symmetric form on V ,

(3.8) P ∗
1 ◦ P2 + P ∗

2 ◦ dU ◦ P1.

If U is finite-dimensional, then this symmetric form is a metric.

Proof.

(P ∗
1 ◦ P2 + P ∗

2 ◦ dU ◦ P1)
∗ ◦ dV = P ∗

2 ◦ P ∗∗
1 ◦ dV + P ∗

1 ◦ d∗U ◦ P ∗∗
2 ◦ dV

= P ∗
2 ◦ dU ◦ P1 + P ∗

1 ◦ d∗U ◦ dU∗ ◦ P2

= P ∗
1 ◦ P2 + P ∗

2 ◦ dU ◦ P1.

(P ∗
1 ◦ P2 + P ∗

2 ◦ dU ◦ P1) ◦ (Q1◦ d−1
U ◦Q∗

2 +Q2 ◦Q∗
1) = P ∗

2 ◦Q∗
2 + P ∗

1 ◦Q∗
1

= IdV ∗ .
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(Q1◦ d−1
U ◦Q∗

2 +Q2 ◦Q∗
1) ◦ (P ∗

1 ◦ P2 + P ∗
2 ◦ dU ◦ P1) = Q1 ◦ P1 +Q2 ◦ P2

= IdV .

Example 3.103. Given a metric gU on U , if V = U⊕U∗, with direct sum data
Pi, Qi, then the direct sum of the metric gU and its dual dU ◦ g−1

U is a metric on V :

gU ⊕ gU∗ = P ∗
1 ◦ gU ◦ P1 + P ∗

2 ◦ dU ◦ g−1
U ◦ P2,

as in Theorem 3.17 and Corollary 3.18.
The map K = Q2 ◦gU ◦P1+Q1 ◦g−1

U ◦P2 is an involution on V , as in Equation
(1.19) from Theorem 1.136, and it is an isometry with respect to both the above
induced metric gU⊕gU∗ , and the canonical metric gV from (3.8) in Lemma 3.102. In
particular, if 1

2 ∈ K, then Lemma 3.55 applies, so that the direct sum V = V1 ⊕V2,
where

P ′
1 =

1

2
(IdV +K) =

1

2
(IdV +Q2 ◦ gU ◦ P1 +Q1 ◦ g−1

U ◦ P2)

P ′
2 =

1

2
(IdV −K) =

1

2
(IdV −Q2 ◦ gU ◦ P1 −Q1 ◦ g−1

U ◦ P2),

is orthogonal with respect to both metrics on V . Each of the two metrics on V
induces a metric on V1 and on V2.

Exercise 3.104. For V = U ⊕ U∗ and V = V1 ⊕ V2 as in the above Example,
the two induced metrics on V1 are identical, while those on V2 are opposite.

Hint. It is more convenient to check the equality of the inverses of the induced
metrics on V1, using (3.4) from Corollary 3.18 and the formulas from Theorem 3.58:

P ′
1 ◦ g−1

V ◦ (P ′
1)

∗

=
1

2
(IdV +K) ◦ (Q1◦ d−1

U ◦Q∗
2 +Q2 ◦Q∗

1) ◦
1

2
(IdV +K)∗

= P ′
1 ◦ (gU ⊕ gU∗)−1 ◦ (P ′

1)
∗

=
1

2
(IdV +K) ◦ (Q1 ◦ g−1

U ◦Q∗
1 +Q2 ◦ gU ◦ d−1

U ◦Q∗
2) ◦

1

2
(IdV +K)∗

=
1

2
(Q1 ◦ g−1

U ◦Q∗
1 +Q2 ◦ g∗U ◦Q∗

2 +Q2 ◦Q∗
1 +Q1 ◦ d−1

U ◦Q∗
2)

=
1

2
(g−1

V + (gU ⊕ gU∗)−1).

The calculations for the metrics induced on V2 are similar.

Example 3.105. Let V = U ⊕ U∗, with direct sum data Pi, Qi. The direct
sum induces an antisymmetric form on V ,

(3.9) P ∗
2 ◦ dU ◦ P1 − P ∗

1 ◦ P2.

If U is finite-dimensional, then this antisymmetric form is symplectic (Definition
3.82). The construction is similar to the induced symmetric form (3.8) from Lemma
3.102, and canonical up to sign (as in (3.6), (3.7)). The inverse of the symplectic
form is Q1 ◦ d−1

U ◦Q∗
2 −Q2 ◦Q∗

1.
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3.7.5. Isotropic maps and graphs.

Definition 3.106. Given a bilinear form g : V → V ∗, a linear map A : U → V
is isotropic with respect to g means that the pullback of g by A is zero:

A∗ ◦ g ◦A = 0Hom(U,U∗).

Exercise 3.107. Given V = V1 ⊕ V2 with projections and inclusions (P1, P2),
(Q1, Q2), and a bilinear form h : V → V ∗, the following are equivalent.

(1) Q1 and Q2 are both isotropic with respect to h.
(2) The involution K = Q1 ◦ P1 −Q2 ◦ P2 satisfies h = −K∗ ◦ h ◦K.

If, further, 1
2 ∈ K and K ∈ End(V ) is any involution satisfying h = −K∗ ◦ h ◦K,

then the direct sum produced by K has both of the above equivalent properties.

Hint. The expression Q1 ◦ P1 −Q2 ◦ P2 is as in Example 1.122.

Exercise 3.108. Given V = V1 ⊕ V2 with inclusions Qi, bilinear forms g1 :
V1 → V ∗

1 , g2 : V2 → V ∗
2 , and a map A : V1 → V2, the following are equivalent.

(1) g1 = A∗ ◦ g2 ◦A.
(2) The map Q1 + Q2 ◦ A : V1 → V is isotropic with respect to the bilinear

form g1 ⊕ (−g2).
Hint. The first property is that g1 is the pullback of g2 by A as in Definition

3.7; special cases include A being an isometry (Definition 3.23) or a symplectic
isometry (Definition 3.85).

The second property refers to the direct sum of bilinear forms as in (3.3) from
Notation 3.9. The expression Q1 + Q2 ◦ A is from the notion that a “graph” of a

linear map can be defined in terms of a direct sum, as in Exercise 1.107.

Exercise 3.109. ([LP]) Let V = U ⊕ U∗. Given maps E : W → U and
h : U → W ∗, the following are equivalent.

(1) The bilinear form h ◦ E : W →W ∗ is antisymmetric.
(2) The map Q1 ◦E +Q2 ◦ h∗ ◦ dW :W → V is isotropic with respect to the

symmetric form (3.8) on V from Lemma 3.102.

Further, if E is a linear monomorphism, then so is Q1 ◦ E +Q2 ◦ h∗ ◦ dW .

Hint. By Definition 3.106, the second property is that the pullback of the
symmetric form (3.8) on V = U ⊕U∗ from Lemma 3.102 by the map Q1 ◦E+Q2 ◦
h∗ ◦ dW :W → V is 0Hom(W,W∗). The transpose TW (h ◦ E) is E∗ ◦ h∗ ◦ dW .

(Q1◦E +Q2◦ h∗◦ dW )∗◦(P ∗
1 ◦ P2 + P ∗

2 ◦ dU ◦ P1)◦(Q1◦E +Q2◦ h∗◦ dW )

= E∗ ◦ h∗ ◦ dW + d∗W ◦ h∗∗ ◦ dU ◦E
= E∗ ◦ h∗ ◦ dW + h ◦ E.

For any maps F , G, if

(Q1 ◦ E +Q2 ◦ h∗ ◦ dW ) ◦ F = (Q1 ◦ E +Q2 ◦ h∗ ◦ dW ) ◦G,
then

P1 ◦ (Q1 ◦ E +Q2 ◦ h∗ ◦ dW ) ◦ F = P1 ◦ (Q1 ◦ E +Q2 ◦ h∗ ◦ dW ) ◦G
= E ◦ F = E ◦G,

so if E is a linear monomorphism (Definition 0.47), then F = G, proving the second

claim.
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If W = U and E = IdU , then this construction is exactly the graph of h∗ ◦ dU ,
as in Exercise 1.107. A generalization of the construction appears in Section 4.2.

Exercise 3.110. ([LP]) Let V = U ⊕ U∗. Given maps E : W → U and
h : U → W ∗, the following are equivalent.

(1) The bilinear form h ◦ E : W →W ∗ is symmetric.
(2) The map Q1 ◦E +Q2 ◦ h∗ ◦ dW :W → V is isotropic with respect to the

antisymmetric form (3.9) from Example 3.105.

3.7.6. The adjoint.

Definition 3.111. Metrics g, h, on U , V induce an adjoint map,

(3.10) Hom(h, g−1) ◦ tUV : Hom(U, V ) → Hom(V, U) : A �→ g−1 ◦A∗ ◦ h.
Exercise 3.112. Given metrics g and h on U and V , the map (3.10) is an

isometry with respect to the induced b metrics. Also, if A : U → V is an isometry,
then its adjoint is an isometry V → U .

Hint. The first assertion follows from the fact that g, h, and tUV are isometries.
The second claim follows from the following equation, which uses the symmetry of
g and h, and Lemma 1.14:

(3.11) (g−1 ◦A∗ ◦ h)∗ = h∗ ◦A∗∗ ◦ (g−1)∗ = h ◦ d−1
V ◦A∗∗ ◦ dU ◦ g−1 = h ◦A ◦ g−1,

and the hypothesis g = A∗ ◦ h ◦A:
(g−1 ◦A∗ ◦ h)∗ ◦ g ◦ (g−1 ◦A∗ ◦ h) = (h ◦A ◦ g−1) ◦A∗ ◦ h

= h ◦A ◦A−1 = h.

Lemma 3.113. Given metrics g and h on U and V , the composite of adjoint
maps,

(Hom(g, h−1) ◦ tV U ) ◦ (Hom(h, g−1) ◦ tUV ) : Hom(U, V ) → Hom(U, V )

is the identity. In particular, the adjoint map Hom(g, g−1) ◦ tUU : End(U) →
End(U) is an involution.

Proof. Using (3.11),

h−1 ◦ (g−1 ◦A∗ ◦ h)∗ ◦ g = h−1 ◦ (h ◦A ◦ g−1) ◦ g = A.

Exercise 3.114. Given a metric g on U , if TrU (IdU ) �= 0, then the adjoint
map Hom(g, g−1) ◦ tUU respects any direct sum End(U) = K ⊕ End0(U) as in
Example 2.9. The restriction of the adjoint map to End0(U) is an involution and
an isometry.

Hint. The direct sum refers to the construction of Example 2.9, and it is
easily checked that PI ◦Hom(g, g−1) ◦ tUU ◦Qi is zero for i �= I. The direct sum is
orthogonal as in Theorem 3.52, and Theorem 3.61 applies to the map induced by

the adjoint on End0(U).
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Theorem 3.115. Given a metric g on U , the following diagram is commutative,
where s and s′ are switching involutions.

U ⊗ U
s ��

[g⊗g]

��

U ⊗ U

[g⊗g]

��
U∗ ⊗ U∗

kUU∗
��

s′ �� U∗ ⊗ U∗

kUU∗
��

Hom(U,U∗)
tUU∗ �� Hom(U∗∗, U∗)

Hom(dU ,IdU∗) �� Hom(U,U∗)

End(U)

Hom(IdU ,g)

��

t �� End(U∗)

Hom(g∗,IdU∗)

��

Hom(g,g−1) �� End(U)

Hom(IdU ,g)

��

U∗ ⊗ U

k

��

p �� U∗∗ ⊗ U∗

k′

��

[g∗⊗g−1] �� U∗ ⊗ U

k

��

U ⊗ U

[g⊗IdU ]

��

s �� U ⊗ U

[g⊗IdU ]

��

All the horizontal compositions of arrows define involutions, and if 1
2 ∈ K, then

they produce orthogonal direct sums on the spaces in the left column.

Proof. The composite in the third row is TU , and the second square from the
top does not involve the metric g — it was considered in Lemma 3.6.

The composite in the fifth row, [g∗⊗g−1]◦p, is the only involution not considered
earlier. The commutativity of all the squares is easy to check.

The direct sums are produced by the involutions as in Lemma 1.119. The
orthogonality of the direct sum for Hom(U,U∗) was checked in Theorem 3.56, and
the orthogonality of the other direct sums similarly follows from Lemma 3.55 since
all the horizontal arrows are isometries and involutions, or from Theorem 3.61 since
all the vertical arrows are isometries which respect the direct sums, by Lemma
1.126. In particular, the direct sum U∗ ⊗ U∗ = S2(U∗)⊕ Λ2(U∗) from Lemma 3.6

is orthogonal.

Definition 3.116. Given a metric g on U , if 1
2 ∈ K, then the orthogonal

direct sum on End(U), produced by the involution Hom(g, g−1) ◦ t as in Theorem
3.115, defines subspaces of self-adjoint (A = g−1 ◦ A∗ ◦ g) and skew-adjoint (A =

−g−1 ◦A∗ ◦ g) endomorphisms.

Example 3.117. Given a metric g on U , if 1
2 ∈ K, then the bilinear form

h : U → U∗ is a symmetric (or, antisymmetric) form if and only if g−1◦h ∈ End(U)
is self-adjoint (respectively, skew-adjoint). This is the action of the middle left
vertical arrow, and its inverse, from Theorem 3.115, respecting the direct sums
Hom(U,U∗) → End(U).

Exercise 3.118. Given metrics g, h on U , V , if 1
2 ∈ K then for any map

A : U → V ,
Hom(g−1 ◦A∗ ◦ h,A) : End(U) → End(V )

respects the direct sum from Definition 3.116.
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Hint. The following diagram is commutative, using Lemma 1.8 and the sym-
metric property of g and h, so Lemma 1.126 applies.

End(U)

Hom(g−1◦A∗◦h,A)

��

tUU �� End(U∗)
Hom(g,g−1) �� End(U)

Hom(g−1◦A∗◦h,A)

��
End(V )

tV V �� End(V ∗)
Hom(h,h−1) �� End(V )

Exercise 3.119. Given a metric g on V , if 1
2 ∈ K, then a skew-adjoint A ∈

End(V ) satisfies TrV (A) = 0. If, further, TrV (IdV ) �= 0, then any A ∈ End(V )
can be written as a sum of three terms,

A =
TrV (A)

TrV (IdV )
· IdV +A1 +A2,

where A1 and A2 have trace 0, A1 is self-adjoint, and A2 is skew-adjoint.

Hint. The first claim follows from Lemma 2.5 and Lemma 2.6. The second
claim is an analogue of Corollary 3.36. Apply Theorem 1.125 to TrV and the

involution Hom(g, g−1) ◦ t on End(V ) to get a direct sum decomposition.

Exercise 3.120. Given a metric g on U , any scalar α ∈ K, and any vector
u ∈ U , the endomorphism

α · kUU ((g(u))⊗ u) ∈ End(U)

is self-adjoint. If, further, α·(g(u))(u) = 1, then α·kUU ((g(u))⊗u) is an idempotent.

Hint. From the commutativity of the diagram in Theorem 3.115,

(Hom(g, g−1) ◦ tUU )(kUU ((g(u))⊗ u))

= (Hom(g, g−1) ◦ tUU ◦ kUU ◦ [g ⊗ IdU ])(u ⊗ u)

= (kUU ◦ [g ⊗ IdU ] ◦ s)(u ⊗ u)

= kUU ((g(u))⊗ u).

The easily checked idempotent property is related to Exercise 2.15.

Exercise 3.121. Given metrics g, h on U , V , any vector u ∈ U , and any map
A : U → V , the two self-adjoint endomorphisms from Exercise 3.120 are related by
the map from Exercise 3.118:

Hom(g−1 ◦A∗ ◦ h,A)(kUU ((g(u))⊗ u)) = kV V ((h(A(u))) ⊗ (A(u))).

Hint. The left square is commutative by Lemma 1.36, and the right square is
commutative by Lemma 1.62 and Equation (3.11).

U ⊗ U

[A⊗B]

��

[g⊗IdU ] �� U∗ ⊗ U
kUU ��

[(h◦A◦g−1)⊗B]

��

End(U)

Hom(g−1◦A∗◦h,B)

��
V ⊗ V

[h⊗IdV ] �� V ∗ ⊗ V
kV V �� End(V )

The equality follows from the case whereB = A, and starting with u⊗u ∈ U⊗U .
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Exercise 3.122. Given a metric g on U , and an endomorphism A ∈ End(U),
any pair of two of the following three statements implies the remaining third state-
ment.

(1) A is an involution.
(2) A is self-adjoint.
(3) A is an isometry.

3.7.7. Some formulas from applied mathematics.

Remark 3.123. The following few statements are related to the Householder
reflection R.

Exercise 3.124. Given a metric g on U , and an element u ∈ U , if (g(u))(u) �=
0, then the endomorphism

R = IdU − 2

(g(u))(u)
· kUU ((g(u))⊗ u)

is self-adjoint, an involution, and an isometry.

Hint. The second term is from Exercise 3.120. Lemma 1.123 and Exercise
3.122 apply.

Proposition 3.125. Given a metric g on V and 1
2 ∈ K, if u, v ∈ V satisfy

(g(u))(u) = (g(v))(v) �= 0, then there exists an isometry H ∈ End(V ) such that
H(u) = v.

Proof. Such an isometry may not be unique; the following construction is not
canonical, it depends on two cases.

Case 1. If (g(u + v))(u + v) �= 0, then consider the isometry from Exercise
3.124, applied to the vector u+ v:

R = IdV − 2

(g(u+ v))(u + v)
· kV V ((g(u + v))⊗ (u+ v)) :

u �→ u− 2

(g(u+ v))(u + v)
· (g(u+ v))(u) · (u+ v)

= u− 2

2 · (g(u))(u) + 2 · (g(u))(v) · ((g(u))(u) + (g(v))(u)) · (u+ v)

= −v.
Let H = −R.

Case 2. If (g(u+ v))(u + v) = 0, the calculation

(g(u+ v))(u + v) + (g(u − v))(u − v) = 4 · (g(u))(u),
and the assumption 1

2 ∈ K, imply that (g(u − v))(u − v) �= 0, so we can use the
isometry from Exercise 3.124, applied to the vector u− v:

H = R = IdV − 2

(g(u − v))(u − v)
· kV V ((g(u− v))⊗ (u− v)) :

u �→ u− 2

(g(u− v))(u − v)
· (g(u− v))(u) · (u− v)

= u− 2

2 · (g(u))(u)− 2 · (g(u))(v) · ((g(u))(u)− (g(v))(u)) · (u − v)

= v.
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Exercise 3.126. Given a metric g on V and v ∈ V , if (g(v))(v) �= 0, then there
exists a direct sum V = K⊕ker(g(v)) such that any direct sum equivalent to it has
the properties that it is orthogonal and for any A ∈ End(V ),

TrV (Q1 ◦ P1 ◦A) = (g(v))(A(v))

(g(v))(v)
.

If, further, 1
2 ∈ K, then the direct sum produced by the involution −R, for R as in

Exercise 3.124, is such an equivalent direct sum.

Hint. Since g(v) �= 0V ∗ , Lemmas 1.100 and 1.101 give a direct sum V =
K ⊕ ker(g(v)), which is canonical up to equivalence, as follows. Let Q′

2 be the
inclusion of the subspace ker(g(v)) in V . For any α, β ∈ K with α ·β · (g(v))(v) = 1,
define

Qβ
1 : K → V : γ �→ β · γ · v,

Pα
1 = α · g(v) : V → K,

P ′
2 = IdV −Qβ

1 ◦ Pα
1 : V → ker(g(v)).

For the orthogonality of the direct sum, it is straightforward to check, using the

symmetric property of g, that (Pα
1 )∗ ◦ (Qβ

1 )
∗ ◦g = g ◦Qβ

1 ◦Pα
1 , or that (Q

β
1 )

∗ ◦g ◦Q′
2

and (Q′
2)

∗ ◦ g ◦Qβ
1 are both zero. This is also a special case of Exercise 3.91 with

h = g and H = Qβ
1 .

It is also easy to check that

(3.12) Qβ
1 ◦ Pα

1 ◦A = kV V (β · α · ((g(v)) ◦A)⊗ v) ∈ End(V ),

so by the definition of trace,

TrV (Q
β
1 ◦ Pα

1 ◦A) = EvV (β · α · ((g(v)) ◦A)⊗ v)(3.13)

= β · α · (g(v))(A(v)) = (g(v))(A(v))

(g(v))(v)
,(3.14)

where the RHS of (3.14) does not depend on the choice of α, β. Further, if maps
Pi, Qi define any direct sum equivalent to the above orthogonal direct sum, then

that direct sum is also orthogonal by Lemma 3.50, and Qβ
1 ◦ Pα

1 = Q1 ◦ P1 as in
Lemma 1.95, so the LHS of (3.13) is invariant under equivalent direct sums.

Finally, setting A = IdV in (3.12) gives R = IdV − 2 ·Qβ
1 ◦ Pα

1 . If 1
2 ∈ K, then

the direct sum produced by −R as in Lemma 1.119 has Q1◦P1 = 1
2 ·(IdV +(−R)) =

Qβ
1 ◦Pα

1 and the direct sums are equivalent. The A = IdV case of (3.14) also gives
the formula from Example 2.8.

The above steps did not use the invertibility of g, although the notion of or-

thogonal direct sum was defined only with respect to an invertible metric g.

Exercise 3.127. Given a metric g on V and a direct sum of the form V = K⊕U
with projections (P1, P2) and inclusions (Q1, Q2), let v = Q1(1). If the direct sum is
orthogonal with respect to g, then it is equivalent to a direct sum V = K⊕ker(g(v))
from Exercise 3.126. The involution from Lemma 3.54,

−K = −Q1 ◦ P1 +Q2 ◦ P2,
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coincides with the involution from Exercise 3.124,

R = IdV − 2

(g(v))(v)
· kV V ((g(v))⊗ v)

= IdV − 2

((g ◦Q1)(1))(Q1(1))
· kV V (((g ◦Q1)(1))⊗ (Q1(1))) ∈ End(V ).

Hint. First, Lemma 3.71 applies to the orthogonal direct sum: (g(v))(v) =
(g(Q1(1)))(Q1(1)) = ν �= 0. Using orthogonality again, g ◦Q1 ◦ P1 = P ∗

1 ◦Q∗
1 ◦ g,

so for any w ∈ V ,

g(Q1(P1(w))) = P ∗
1 (Q

∗
1(g(w)))

= P1(w) · g(Q1(1)) = P1(w) · g(v) = g(w) ◦Q1 ◦ P1 : v �→
P1(w) · (g(v))(v) = (g(w))(Q1(P1(v))) = (g(w))(P1(v) ·Q1(1))

= P1(Q1(1)) · (g(w))(v) = (g(w))(v)

=⇒ P1(w) =
(g(w))(v)

(g(v))(v)
.

The equivalence of the direct sums follows, using the symmetric property of g:

(Q1 ◦ P1)(w) = P1(w) ·Q1(1) =
(g(w))(v)

(g(v))(v)
· v,

(Qβ
1 ◦ Pα

1 )(w) = α · β · (g(v))(w) · v =
(g(v))(w)

(g(v))(v)
· v.

The claimed equality also follows, as in (3.12):

−K = IdV − 2 ·Q1 ◦ P1 = IdV − 2 ·Qβ
1 ◦ Pα

1 = R.

Exercise 3.128. Given a metric g on V , if TrV (IdV ) �= 0, then for an orthog-

onal direct sum End(V ) = K ⊕ End0(V ) with inclusion Qβ
1 as in Example 2.9 and

Theorem 3.52, the induced metric on K is hν , where ν = β2 · TrV (IdV ) does not
depend on g. The involution R on End(V ) from Exercise 3.127 does not depend on
g or β, and reverses the trace: for any A ∈ End(V ), TrV (R(A)) = −TrV (A).

Hint. Using Lemma 3.71,

ν = (b(Qβ
1 (1)))(Q

β
1 (1)) = TrV (β · IdV ◦ g−1 ◦ (β · IdV )∗ ◦ g) = β2 · TrV (IdV ).

For A ∈ End(V ),

R(A) = A− 2

ν
· (b(Qβ

1 (1)))(A) ·Qβ
1 (1)

= A− 2

ν
· TrV (A ◦ g−1 ◦ (β · IdV )∗ ◦ g) · β · IdV

= A− 2 · TrV (A) · β2

β2 · TrV (IdV ) · IdV .

Remark 3.129. The following few exercises are related to the block vec oper-
ation from [O].
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In the following diagram,

Hom(U⊗V,W ∗⊗X∗)
Hom(IdU⊗V ,̃j)

�����
����

����
����

��

Hom(U,W ∗)⊗Hom(V,X∗)

j
��                

Hom(U⊗V, (W⊗X)∗)

�

��

(U ⊗ V )∗⊗(W ⊗X)∗

kU⊗V,(W⊗X)∗
��

U∗⊗W ∗⊗V ∗⊗X∗

[kUW∗⊗kV X∗ ]

��

s1 ��

s3 �����
����

����
����

��
U∗ ⊗ V ∗ ⊗W ∗ ⊗X∗

[̃j⊗j̃]

��

s2

��
V ∗ ⊗X∗ ⊗ U∗ ⊗W ∗

[̃j⊗j̃]

��

Hom(V ⊗X, (U⊗W )∗)

(V ⊗X)∗ ⊗ (U ⊗W )∗
kV ⊗X,(U⊗W )∗

��

s1, s2, and s3 = s2◦s1 are switching maps, and the various j̃maps are as in Notation
2.43. The top block is commutative, it is similar to the diagram from Lemma 2.32.

Notation 3.130. If three of the four spaces U , V ,W , X are finite-dimensional,
then all of the arrows in the above diagram are invertible. Define the map

� : Hom(U ⊗ V, (W ⊗X)∗) → Hom(V ⊗X, (U ⊗W )∗)

to equal the composite going counter-clockwise around the lower right square in
the diagram.

Exercise 3.131. ([O] Theorem 1) If three of the four spaces U , V , W , X
are finite-dimensional, then for any A ∈ Hom(U ⊗ V, (W ⊗X)∗), the following are
equivalent.

(1) There exist h1 ∈ Hom(U,W ∗), h2 ∈ Hom(V,X∗) such that

A = j̃ ◦ [h1 ⊗ h2].

(2) There exist φ1 ∈ (V ⊗X)∗ and φ2 ∈ (U ⊗W )∗ such that

�(A) = kV ⊗X,(U⊗W )∗(φ1 ⊗ φ2).

In the special case W = U , X = V , (1) can be re-written using Notation 3.13:

(1′) There exist h1 ∈ Hom(U,U∗), h2 ∈ Hom(V, V ∗) such that A = {h1⊗ h2}.

Exercise 3.132. ([O] Corollary 1) If V is finite-dimensional, then for any
A ∈ Hom(V ⊗ V, (V ⊗ V )∗), the following are equivalent.

(1) There exists h ∈ Hom(V, V ∗) such that A = {h⊗ h}.
(2) There exists φ ∈ (V ⊗ V )∗ such that �(A) = kV ⊗V,(V⊗V )∗(φ⊗ φ).

Either (1) or (2) implies that the bilinear form �(A) is symmetric.
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Remark 3.133. The following two Propositions relating the b metric to a trace
on a tensor product space are analogous to a formula involving the “commutation
matrix”K (from Remark 1.76), which appears in [HJ] §4.3, and [Magnus] (exercise
3.9: trK(A′ ⊗B) = trA′B).

Proposition 3.134. Given metrics g and h on U and V , for A, B ∈ Hom(U, V ),

TrV ∗⊗U ([(h ◦ d−1
V )⊗ g−1] ◦ p ◦ [B∗ ⊗A]) = TrU (g

−1 ◦B∗ ◦ h ◦A).
Proof. In the following diagram,

U∗⊗V⊗U∗⊗V
[[(dU◦g−1)⊗h]⊗IdU∗⊗V ]

��

U∗⊗V⊗U∗⊗V
[p⊗IdU∗⊗V ]

��

a1 ��s�� Hom(U,V )⊗Hom(U,V )

[tUV ⊗IdHom(U,V )]

��
U∗∗⊗V ∗⊗U∗⊗V

[j⊗IdU∗⊗V ]

��

V ∗∗⊗U∗⊗U∗⊗V a2 ��

[[IdV ∗∗⊗g−1]⊗[IdU∗⊗h]]

��

Hom(V ∗,U∗)⊗Hom(U,V )

j

��

Hom(U∗⊗V,K⊗K)⊗U∗⊗V
[Hom(IdU∗⊗V,l)⊗IdU∗⊗V ]

��

V ∗∗⊗U⊗U∗⊗V ∗

s

��
(U∗ ⊗ V )∗ ⊗ U∗ ⊗ V

EvU∗⊗V

��

V ∗∗⊗V ∗⊗U∗⊗U

l◦[EvV ∗⊗EvU ]

�����
��
��
��
��
��
��
��
��
��
��
��
�

[kV ∗V ∗⊗kUU ]

��

Hom(V ∗ ⊗ U,U∗ ⊗ V )

Hom(IdV ∗⊗U ,p)

��

End(V ∗)⊗End(U)

l◦[TrV ∗⊗TrU ]
""







j2

��
K End(V ∗ ⊗ U)

TrV ∗⊗U

�� Hom(V ∗⊗U, V ∗∗⊗U∗)a3

��

the arrow s in the top row switches the two V factors, and the abbreviated arrow
labels are

a1 = [kUV ⊗ kUV ]

a2 = [kU∗V ∗ ⊗ kUV ]

a3 = Hom(IdV ∗⊗U , [(h ◦ d−1
V )⊗ g−1]).

The top right square is commutative by Lemmas 1.36 and 1.75. The lower left
triangle is commutative by Corollary 2.36, and the triangle above that by the
definition of trace. Starting with Φ ⊗ φ ⊗ ξ ⊗ v ∈ V ∗∗ ⊗ U∗ ⊗ U∗ ⊗ V , the lower
right square is commutative:

Φ⊗φ⊗ξ⊗v �→ (a3 ◦Hom(IdV ∗⊗U , p) ◦ j ◦ a2)(Φ⊗φ⊗ξ⊗v)
= [(h ◦ d−1

V )⊗g−1] ◦ p ◦ [(kU∗V ∗(Φ⊗φ))⊗(kUV (ξ⊗v))] :
ψ⊗u �→ (h((ξ(u)) · v))⊗(g−1((Φ(ψ)) · φ)),

Φ⊗φ⊗ξ⊗v �→ (j2 ◦ [kV ∗V ∗⊗kUU ] ◦ s ◦ [[IdV ∗∗⊗g−1]⊗[IdU∗⊗h]])(Φ⊗φ⊗ξ⊗v)
= [(kV ∗V ∗(Φ⊗(h(v))))⊗(kUU (ξ⊗(g−1(φ))))] :

ψ⊗u �→ (Φ(ψ) · h(v))⊗(ξ(u) · g−1(φ)).
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Starting with φ⊗w⊗ξ⊗v ∈ U∗⊗V ⊗U∗⊗V , the upper left square is commutative:

φ⊗w⊗ξ⊗v �→(l◦[EvV ∗⊗EvU ]◦s◦[[IdV ∗∗⊗g−1]⊗[IdU∗⊗h]]◦[p⊗IdU∗⊗V ])(φ⊗w⊗ξ⊗v)
= (l ◦ [EvV ∗ ⊗ EvU ] ◦ s)((dV (w)) ⊗ (g−1(φ))⊗ ξ ⊗ (h(v)))

= ((h(v))(w)) · (ξ(g−1(φ))),

φ⊗w⊗ξ⊗v �→(EvU∗⊗V◦[(Hom(IdU∗⊗V,l)◦j◦[(dU ◦g−1)⊗h])⊗IdU∗⊗V ]◦s)(φ⊗w⊗ξ⊗v)
= EvU∗⊗V ((l ◦ [((dU ◦ g−1)(φ)) ⊗ (h(v))]) ⊗ ξ ⊗ w)

= (ξ(g−1(φ))) · ((h(v))(w)).

This last quantity is also the result of the tensor product metric:

({(dU ◦ g−1)⊗ h}(φ⊗ w))(ξ ⊗ v) = (ξ(g−1(φ))) · ((h(v))(w)),

from Corollary 3.19. So the claimed equality follows from the commutativity of
the diagram, and the fact that k−1

UV is an isometry (Theorem 3.41). Starting with
B ⊗A ∈ Hom(U, V )⊗Hom(U, V ):

LHS = (TrV ∗⊗U ◦ a3 ◦Hom(IdV ∗⊗U , p) ◦ j ◦ [tUV ⊗ IdHom(U,V )])(B ⊗A)

= (EvU∗⊗V◦[(Hom(IdU∗⊗V,l)◦j◦[(dU ◦g−1)⊗h])⊗IdU∗⊗V ]◦s ◦ a−1
1 )(B ⊗A)

= ({(dU ◦ g−1)⊗ h}(k−1
UV (B)))(k−1

UV (A))

= (b(B))(A) = RHS.

Proposition 3.135. Given metrics g and h on U and V , for A, B ∈ Hom(U, V ),

Tr{(dV ◦h−1)⊗g}(fUV ◦ [B∗ ⊗A]) = Trg(B
∗ ◦ h ◦A).

Proof. By Lemma 1.74 and the previous Proposition,

LHS = TrV ∗⊗U ([(dV ◦ h−1)⊗ g]−1 ◦ j−1 ◦Hom(IdV ∗⊗U , l)
−1 ◦ fUV ◦ [B∗⊗A])

= TrV ∗⊗U ([(h ◦ d−1
V )⊗ g−1] ◦ p ◦ [B∗ ⊗A])

= TrU (g
−1 ◦B∗ ◦ h ◦A) = RHS.
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3.7.8. Eigenvalues.

Exercise 3.136. Suppose h and g are bilinear forms on V , and g is symmet-
ric. If h(v1) = λ1 · g(v1), and (TV (h))(v2) = λ2 · g(v2), then either λ1 = λ2, or
(g(v1))(v2) = 0.

Hint.

(λ1 − λ2) · (g(v1))(v2) = (λ1 · g(v1))(v2)− (λ2 · g(v2))(v1)
= (h(v1))(v2)− ((TV (h))(v2))(v1) = 0.

Exercise 3.137. Suppose h and g are bilinear forms on V , and g is antisym-
metric. If h(v1) = λ1 · g(v1), and (TV (h))(v2) = λ2 · g(v2), then either λ1 = −λ2,
or (g(v1))(v2) = 0.

Exercise 3.138. If h and g are both symmetric forms (or both antisymmetric),
and h(v1) = λ1 ·g(v1), and h(v2) = λ2 ·g(v2), then either λ1 = λ2, or (g(v1))(v2) = 0.

Exercise 3.139. If g is a bilinear form on V , and E is an endomorphism of V
such that g ◦ E = E∗ ◦ g : V → V ∗, and E(v1) = λ1 · v1, and E(v2) = λ2 · v2, then
either λ1 = λ2, or (g(v1))(v2) = 0.

Hint. When g is a metric, the hypothesis is that E is self-adjoint.

(λ1 − λ2) · (g(v1))(v2) = (λ1 · g(v1))(v2)− (λ2 · g(v1))(v2)
= (g(E(v1)))(v2)− (g(v1))(E(v2))

= ((g ◦ E)(v1))(v2)− ((E∗ ◦ g)(v1))(v2) = 0.

Exercise 3.140. If g is a bilinear form on V , and E is an endomorphism of V
such that g ◦E = −E∗ ◦ g : V → V ∗, and E(v1) = λ1 · v1, and E(v2) = λ2 · v2, then
either λ1 = −λ2, or (g(v1))(v2) = 0. In particular, if 1

2 ∈ K, then either λ1 = 0, or
(g(v1))(v1) = 0.

Hint. This is a skew-adjoint version of the previous Exercise.

Exercise 3.141. Given a metric g on U , a self-adjoint endomorphism H : U →
U , and a nonzero element v ∈ U , there exists λ ∈ K such that H(v) = λ · v if and
only if H commutes with the endomorphism k((g(v)) ⊗ v) from Exercise 3.120.

Hint. The diagram from Exercise 3.121 gives these two equalities:

H ◦ (k((g(v))⊗ v)) = k((g(v))⊗ (H(v))),

(k((g(v)) ⊗ v)) ◦H = k((g(H(v))) ⊗ v).

If H(v) = λ · v, then the two quantities are equal. Conversely, if they are equal,
then for any u ∈ U ,

(k((g(v)) ⊗ (H(v))))(u) = (k((g(H(v))) ⊗ v))(u)

(g(v))(u) · (H(v)) = (g(H(v)))(u) · v.
Since v �= 0U , the non-degeneracy of g implies there is some u so that (g(v))(u) �= 0.

Let λ = (g(H(v)))(u)
(g(v))(u) .
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Exercise 3.142. If g is a bilinear form on V , and E is an endomorphism of V
such that E∗ ◦ g ◦ E = g : V → V ∗, and E(v1) = λ1 · v1, and E(v2) = λ2 · v2, then
either λ1 ·λ2 = 1, or (g(v1))(v2) = 0. In particular, either λ21 = 1, or (g(v1))(v1) = 0.

Hint.

(g(v1))(v2) = ((E∗ ◦ g ◦ E)(v1))(v2) = (g(E(v1)))(E(v2))

= λ1 · λ2 · (g(v1))(v2).

3.7.9. Canonical metrics.

Example 3.143. Given V finite-dimensional, the canonical invertible map

(k∗)−1 ◦ e : End(V ) → End(V )∗

from Lemma 2.1 is a metric on End(V ). It is symmetric by Lemma 1.14 and Lemma
2.1:

((k∗)−1 ◦ e)∗ ◦ dEnd(V ) = e∗ ◦ (k−1)∗∗ ◦ dEnd(V ) = e∗ ◦ d ◦ k−1 = (k∗)−1 ◦ e.
This metric on End(V ) should be called the canonical metric, to distinguish

it from the b metric, induced by a choice of metric on V . The non-degeneracy of
the metric was considered in Proposition 2.16, where it was also shown that for A,
B ∈ End(V ),

(3.15) (((k∗)−1 ◦ e)(A))(B) = TrV (A ◦B).

Example 3.144. Given V finite-dimensional, the canonical map f : V ∗ ⊗V →
(V ∗⊗V )∗ is invertible, and is symmetric by Lemma 1.71, so it is a metric on V ∗⊗V .
The dual metric on (V ∗ ⊗ V )∗ is d ◦ f−1 = (f∗)−1.

This metric on V ∗ ⊗ V is also canonical, and, in general, different from the
tensor product metric induced by a choice of metric on V . By Lemma 1.74, the
metric f is equal to the composite Hom(IdV ∗⊗V , l) ◦ j ◦ p : V ∗ ⊗ V → (V ∗ ⊗ V )∗.

Exercise 3.145. The dual metric dK◦(h1)−1 onK∗ coincides with the (k∗)−1◦e
metric on End(K).

Hint. The metric h1 is as in Lemma 3.67. For φ, ξ ∈ K∗,

((dK ◦ (h1)−1)(φ))(ξ) = ξ(TrK(φ)) = ξ(φ(1)) = φ(1) · ξ(1)
(((k∗)−1 ◦ e)(φ))(ξ) = TrK(φ ◦ ξ) = φ(ξ(1)) = ξ(1) · φ(1).

Exercise 3.146. With respect to the canonical metrics (k∗)−1 ◦ e on End(K)
and h1 on K, TrK is an isometry.

Hint. The canonical metric, applied to A, B ∈ End(K), is:

(((k∗)−1 ◦ e)(A))(B) = TrK(A ◦B) = (A ◦B)(1) = A(B(1)) = B(1) ·A(1).
This coincides with the pullback:

(h1(TrK(A)))(TrK(B)) = (h1(A(1)))(B(1)) = A(1) ·B(1).
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Exercise 3.147. Given finite-dimensional V , the canonical map k : V ∗ ⊗V →
End(V ) is an isometry with respect to the canonical metrics f and (k∗)−1 ◦ e.

Hint. The pullback of (k∗)−1 ◦ e by k agrees with f :

k∗ ◦ (k∗)−1 ◦ e ◦ k = f.

Exercise 3.148. Given finite-dimensional V , the canonical map e : End(V ) →
(V ∗⊗V )∗ is an isometry with respect to the canonical metrics (k∗)−1◦e and (f∗)−1.

Hint. The pullback of (f∗)−1 by e is:

e∗ ◦ (f∗)−1 ◦ e = e∗ ◦ (e∗)−1 ◦ (k∗)−1 ◦ e = (k∗)−1 ◦ e.

It follows that fV V is an isometry, but this also follows from Theorem 3.26.

Exercise 3.149. ([G2] §I.8) Given finite-dimensional U , V , if A : U → V is
invertible, then Hom(A−1, A) : End(U) → End(V ) is an isometry with respect to
the (k∗)−1 ◦ e metrics.

Hint. From the Proof of Lemma 2.6:

(k′∗)−1 ◦ e′ = (k′∗)−1 ◦ e′ ◦Hom(A,A−1) ◦Hom(A−1, A)

= Hom(A−1, A)∗ ◦ (k∗)−1 ◦ e ◦Hom(A−1, A).

Exercise 3.150. For U , V , and invertible A as in the previous Exercise,
[(A−1)∗ ⊗A] : U∗ ⊗ U → V ∗ ⊗ V is an isometry with respect to fUU and fV V .

Hint. This follows from Lemma 1.62:

[(A−1)∗ ⊗A] = k−1
V V ◦Hom(A−1, A) ◦ kUU ,

and could also be checked directly.

Exercise 3.151. Given finite-dimensional V , the transpose t : End(V ) →
End(V ∗) : A �→ A∗ is an isometry with respect to the canonical (k∗)−1 ◦ e metrics.

Hint. From the Proof of Lemma 2.5:

t∗ ◦ (k′∗)−1 ◦ e′ ◦ t = (k∗)−1 ◦ e.

Exercise 3.152. Given finite-dimensional U , V , the map j : End(U)⊗End(V ) →
End(U ⊗V ) is an isometry with respect to the tensor product of canonical metrics,
and the canonical metric on End(U ⊗ V ).

Hint. By Corollary 2.36,

TrU⊗V ((j(A1 ⊗B1)) ◦ (j(A2 ⊗B2))) = TrU⊗V (j((A1 ◦A2)⊗ (B1 ◦B2)))

= TrU (A1 ◦A2) · TrV (B1 ◦B2).
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Exercise 3.153. Given finite-dimensional U , if TrU (IdU ) �= 0, then a direct
sum End(U) = K ⊕ End0(U) from Example 2.9 is orthogonal with respect to the
canonical metric (k∗)−1 ◦ e on End(U), and this induces a canonical metric on
End0(U). The involution from Exercise 3.124, defined in terms of the canonical
metric and the canonical element IdU , is given for A ∈ End(U) by:

R : A �→ A− 2 · TrU (A)

TrU (IdU )
· IdV ,

which is the same as the involution −K from Lemma 3.54 and the involution R
from Exercise 3.128.

Hint. The orthogonality is easy to check; this is also a special case of Exercises

3.126 and 3.127.

Exercise 3.154. Given a metric g on U , the adjoint involution Hom(g, g−1) ◦
tUU on End(U) is an isometry with respect to the canonical metric. If 1

2 ∈ K, then
the direct sum decomposition into self-adjoint and skew-adjoint endomorphisms,
from Definition 3.116, is orthogonal with respect to the canonical metric. On the
space of self-adjoint endomorphisms, the metric induced by the canonical metric
coincides with the metric induced by the induced b metric. On the space of skew-

adjoint endomorphisms, the two induced metrics are opposite.

Exercise 3.155. For any bilinear form g : End(V ) → End(V )∗ (and in par-
ticular, any metric g on End(V )), if V is finite-dimensional then there exists
F ∈ End(End(V )) so that for all A,B ∈ End(V ),

(g(A))(B) = TrV ((F (A)) ◦B).

Hint. Define F = e−1 ◦ k∗ ◦ g. Then by Proposition 2.17,

(g(A))(B) = TrV ((e
−1(k∗(g(A)))) ◦B).

The canonical metric on End(V ) from Example 3.143 is the case F = IdEnd(V ).
The b metric from Definition 3.40 induced by a metric h on V ,

(b(A))(B) = TrV (h
−1 ◦A∗ ◦ h ◦B),

is the case where F is the adjoint involution from Definition 3.111 and Lemma

3.113.

Example 3.156. For the generalized transpose from Definition 1.7 and Exam-
ple 1.53,

tWUV ∈ Hom(Hom(U, V ),Hom(Hom(V,W ),Hom(U,W ))),

and any bilinear form g : Hom(U,W ) → Hom(U,W )∗, the map

Hom(IdHom(U,V ),Hom(IdHom(V,W ), g))

transforms tWUV to the scalar valued trilinear form

Hom(IdHom(V,W ), g) ◦ tWUV ∈ Hom(Hom(U, V ),Hom(Hom(V,W ), (Hom(U,W ))∗)).

For A ∈ Hom(U, V ), B ∈ Hom(V,W ), and C ∈ Hom(U,W ),

Hom(IdHom(V,W ), g) ◦ tWUV : A �→ g ◦ (tWUV (A)) = g ◦Hom(A, IdU ) :

B �→ g(B ◦A) :
C �→ (g(B ◦A))(C).
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In the special case where g is the metric b from Definition 3.40 induced by metrics
g1 on U and g2 on W ,

(g(B ◦A))(C) = TrU (g
−1
1 ◦ (B ◦A)∗ ◦ g2 ◦ C)

= TrU∗(A∗ ◦B∗ ◦ g2 ◦ C ◦ g−1
1 ).

In a different special case where W = U and g is the canonical metric (k∗)−1 ◦ e on
End(U) from Example 3.143,

(g(B ◦A))(C) = TrU (B ◦A ◦ C).
Example 3.157. For any metrics g and h on End(V ), consider the b metric

from Definition 3.40 induced by g and h on End(End(V )),

(b(E))(F ) = TrEnd(V )(F ◦ g−1 ◦ E∗ ◦ h),
for E,F ∈ End(End(V )). The canonical metric on End(End(V )),

(3.16) (k∗End(V ),End(V ))
−1 ◦ eEnd(V ),End(V ),

is not necessarily the same as the b metric. The metrics can be shown to be different
by example, if there exist A,B ∈ End(V ), Ψ,Φ ∈ End(V )∗ such that (h(A))(B) = 0
and Ψ(A) �= 0 and Φ(B) �= 0. From Equation (3.5) and Equation (3.15),

(b(kEnd(V ),End(V )(Φ⊗A)))(kEnd(V ),End(V )(Ψ⊗B))

= Ψ(g−1(Φ))) · (h(A))(B) = 0.

The canonical metric applied to the same inputs has output

TrEnd(V )((kEnd(V ),End(V )(Φ⊗A)) ◦ (kEnd(V ),End(V )(Ψ ⊗B)))

= TrEnd(V )(Φ(B) · kEnd(V ),End(V )(Ψ⊗A))

= Φ(B) ·Ψ(A) �= 0.

So even for g and h as in Example 3.143, the canonical metric is not the same as
the metric canonically induced by canonical metrics!



CHAPTER 4

Vector Valued Bilinear Forms

The notion of a bilinear form h : V → V ∗ can be generalized from the “scalar
valued” case to a “vector valued” (or “W -valued,” or “twisted”) form h : V →
Hom(V,W ), so that for inputs v1, v2 ∈ V , the output (h(v1))(v2) is an element
of W . In the same way as Example 1.55, vector valued bilinear functions B :
V × V � W correspond to W -valued bilinear forms on V , elements of the space
Hom(V,Hom(V,W )). Most of the properties of the scalar valued case generalize,
but some of the canonical maps are different.

4.1. Transpose for vector valued forms

There would appear to be multiple ways to use the already considered canonical
maps to define a transpose operation that switches the inputs for a W -valued form.
One way would be to transform Hom(V,Hom(V,W )) into Hom(V, V ∗) ⊗W , and
then apply [TV ⊗ IdW ], where TV is the transpose for scalar valued forms from
Definition 3.2. Another way would be to start from scratch with canonical maps
from Chapter 1, which is the approach taken with Lemma 4.1 and Definition 4.2.
Of course, these two ways end up with the same result, as shown in Lemma 4.5.

The following Lemma considers a more general domain Hom(V1,Hom(V2,W )),
where V1 and V2 are not necessarily the same. The d map in the diagram is a
generalized double duality from Definition 1.13, the t map is a generalized transpose
from Definition 1.7, the canonical q maps are as in Definition 1.46, and s is a
switching map.

Lemma 4.1. For any V1, V2, W , the following diagram is commutative.

Hom(V1,Hom(V2,W ))
q1 ��

tW
V1,Hom(V2,W )

��

Hom(V1 ⊗ V2,W )

Hom(s,IdW )

��

Hom(Hom(Hom(V2,W ),W ),Hom(V1,W ))

Hom(dV2W ,IdHom(V1,W ))

��
Hom(V2,Hom(V1,W ))

q2 �� Hom(V2 ⊗ V1,W )

Proof. For u ∈ V1, v ∈ V2, and A ∈ Hom(V1,Hom(V2,W )),

(Hom(s, IdW ) ◦ q1)(A) :
v ⊗ u �→ ((q1(A)) ◦ s)(v ⊗ u) = (q1(A))(u ⊗ v) = (A(u))(v),

(q2 ◦Hom(dV2W , IdHom(V1,W )) ◦ tWV1,Hom(V2,W ))(A) :

v ⊗ u �→ (q2((t
W
V1,Hom(V2,W )(A)) ◦ dV2W ))(v ⊗ u)

= ((tWV1,Hom(V2,W )(A))(dV2W (v)))(u) = ((dV2W (v)) ◦A)(u) = (A(u))(v).

149
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Note that the composite Hom(s, IdW )◦q1 could be abbreviated as a re-ordered
q map, as in (1.6) from Notation 1.49. However, the relationship between the
switching maps and the transpose maps in the following Definition will be more
clear without this abbreviation, so here in Section 4.1 and in Section 4.2, all the
q maps will be the version from Definition 1.46 and not the variant (1.5) from
Notation 1.49.

Definition 4.2. Corresponding to the left column in the above diagram, let

(4.1) TV1,V2;W = Hom(dV2W , IdHom(V1,W )) ◦ tWV1,Hom(V2,W ).

Notation 4.3. In the special case V = V1 = V2, abbreviate TV,V ;W = TV ;W .
In the case W = K, TV ;K is exactly TV from Definition 3.2.

The above expression (4.1) for TV1,V2;W (and TV ;W ) uses only Hom spaces and
maps from Section 1.1, without referring to tensor products, the scalar field K,
scalar multiplication, or any dual space like V ∗. The spaces and s and q maps in
Lemma 4.1 use tensor products but no scalars.

Lemma 4.4. For any vector spaces V1, V2, W , TV1,V2;W is invertible. In par-
ticular, for V1 = V2, TV1;W is an involution on Hom(V1,Hom(V1,W )).

Proof. The first claim follows from Lemma 4.1 and the invertibility of the q
maps (Lemma 1.47), and the diagram also shows that

(4.2) TV2,V1;W = T−1
V1,V2;W

.

The second claim is a special case of (4.2). For h : V1 → Hom(V2,W ), and v ∈ V1,
u ∈ V2, it follows from Definition 4.2 that

(4.3) ((TV1,V2;W (h))(u))(v) = (h(v))(u),

as in (3.1) from Lemma 3.3. Instead of using Lemma 4.1 or (4.3), Equation (4.2)
can be checked directly from Definition 4.2, using Lemma 1.6, Lemma 1.14, and
Lemma 1.17:

TV2,V1;W (TV1,V2;W (h)) = Hom((tWV1,Hom(V2,W )(h)) ◦ dV2W , IdW ) ◦ dV1W

= Hom(dV2W , IdW ) ◦Hom(Hom(h, IdW ), IdW ) ◦ dV1W

= Hom(dV2W , IdW ) ◦ dHom(V2,W ),W ◦ h
= h.

Relabeling the subscripts then gives the composite in the other order.

The following Lemma uses a canonical n map from Definition 1.40, so that for
g ⊗ w ∈ Hom(V, V ∗)⊗W , (n(g ⊗ w))(v) = (g(v))⊗ w.

Lemma 4.5. For any V , W , the following diagram is commutative. If V or W
is finite-dimensional, then the kV W and n maps in the diagram are invertible.

Hom(V,Hom(V,W ))

TV ;W

��

tWV,Hom(V,W )

����
���

���
���

�
Hom(V,V ∗⊗W )

Hom(IdV ,kV W )
�� Hom(V,V ∗)⊗W

[TV ⊗IdW ]

��

n
��

Hom(Hom(Hom(V,W ),W ),Hom(V,W ))

Hom(dV W ,IdHom(V,W ))�����
���

���
���

Hom(V,Hom(V,W )) Hom(V,V ∗⊗W )
Hom(IdV ,kV W )

�� Hom(V,V ∗)⊗Wn
��
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Proof. The left triangle is Definition 4.2 for TV ;W . For the right part of the
diagram, starting with g⊗w ∈ Hom(V, V ∗)⊗W ,

g ⊗ w �→ (Hom(dV W,IdHom(V,W ))◦tWV,Hom(V,W )◦Hom(IdV,kV W )◦n)(g⊗w) :
v �→ ((tWV,Hom(V,W )(kV W ◦ (n(g ⊗ w)))) ◦ dV W )(v)

= (dV W (v)) ◦ kVW ◦ (n(g ⊗ w)) :

u �→ (dV W (v))(kV W ((g(u))⊗ w))

= (kV W ((g(u))⊗ w))(v)=(g(u))(v) · w,
g⊗w �→ (Hom(IdV , kV W ) ◦ n ◦ [TV ⊗ IdW ])(g ⊗ w) :

v �→ kVW ((n((TV (g))⊗ w))(v))

= kVW (((TV (g))(v)) ⊗ w) :

u �→ ((TV (g))(v))(u) · w=(g(u))(v) · w.
The invertibility of the canonical maps was stated in Lemma 1.64 and Lemma

1.44.

Lemma 4.6. For any vector spaces U1, U2, V1, V2, W1, W2, and any maps
E : U1 → V1, F : U2 → V2, G :W1 →W2, the following diagram is commutative.

Hom(V1,Hom(V2,W1))
TV1,V2;W1 ��

Hom(E,Hom(F,G))

��

Hom(V2,Hom(V1,W1))

Hom(F,Hom(E,G))

��
Hom(U1,Hom(U2,W2))

TU1,U2,W2 �� Hom(U2,Hom(U1,W2))

Proof. The claim could be checked by calculating how the composites act on
pairs of input vectors, as in Equation (4.3) from the Proof of Lemma 4.4. The
following proof instead shows how the claim follows from only the elementary prop-
erties of the t and d maps.

The diagram can be expanded using Definition 4.2 and Lemma 1.6:

Hom(V1,Hom(V2,W1))
TV1,V2;W1 ��

Hom(IdV1 ,Hom(IdV2 ,G))

��

Hom(V2,Hom(V1,W1))

Hom(IdV2 ,Hom(IdV1 ,G))

��
Hom(V1,Hom(V2,W2))

t
W2
V1,Hom(V2 ,W2)

��

Hom(E,Hom(F,IdW2))

��

M1

a1

��

Hom(dV2W2 ,IdHom(V1,W2))
�� Hom(V2,Hom(V1,W2))

Hom(F,Hom(E,IdW2))

��
Hom(U1,Hom(U2,W2))

t
W2
U1,Hom(U2,W2)

�� M2
Hom(dU2W2 ,IdHom(U1,W2))

�� Hom(U2,Hom(U1,W2))

where

M1 = Hom(Hom(Hom(V2,W2),W2),Hom(V1,W2))

M2 = Hom(Hom(Hom(U2,W2),W2),Hom(U1,W2))

a1 = Hom(Hom(Hom(F, IdW2 ), IdW2),Hom(E, IdW2 )).

The lower left square is commutative by Lemma 1.8. The lower right square is
commutative by Lemma 1.6 and Lemma 1.14. These steps are analogous to the
steps in the Proof of Lemma 3.8.



152 4. VECTOR VALUED BILINEAR FORMS

The commutativity of the upper block states that for h : V1 → Hom(V2,W1),

TV1,V2;W2(Hom(IdV2 , G) ◦ h) = Hom(IdV1 , G) ◦ (TV1,V2;W1(h)).

The following diagram expands the upper block of the previous diagram, so that
the compositions down the left and right sides are TV1,V2;W1 and TV1,V2;W2 from
Definition 4.2, and the claim of the Lemma follows from the commutativity of the
diagram.

Hom(V1,Hom(V2,W1))
Hom(IdV1 ,Hom(IdV2 ,G))��

t
W2
V1,Hom(V2 ,W1)

**)
))

))
))

))
))

))
))

))
))

))

t
W1
V1,Hom(V2,W1)

��

Hom(V1,Hom(V2,W2))

t
W2
V1,Hom(V2,W2)

��
Hom(Hom(Hom(V2,W2),W2),Hom(V1,W2))

Hom(dV2W2 ,IdHom(V1,W2))

��

Hom(Hom(Hom(V2,W1),W2),Hom(V1,W2))

a2

		�������������

a3

��
Hom(Hom(Hom(V2,W1),W1),Hom(V1,W2))

Hom(dV2W1 ,IdHom(V1,W2))

**)
))

))
))

))
))

))
))

))
))

))

Hom(Hom(Hom(V2,W1),W1),Hom(V1,W1))

a4

		�������������

Hom(dV2W1 ,IdHom(V1 ,W1))

��
Hom(V2,Hom(V1,W1))

Hom(IdV2 ,Hom(IdV1 ,G))
�� Hom(V2,Hom(V1,W2))

The inside arrows are:

a2 = Hom(Hom(Hom(IdV2 , G), IdW2 ), IdHom(V1,W2))

a3 = Hom(Hom(IdHom(V2,W1), G), IdHom(V1,W2))

a4 = Hom(IdHom(Hom(V2,W1),W1),Hom(IdV1 , G)).

The upper square and the left square are both commutative by Lemma 1.8. The
lower square is commutative by Lemma 1.6. The commutativity of the right block
follows from Lemma 1.6 and this special case of Lemma 1.14:

Hom(IdHom(V2,W1), G) ◦ dV2W1 = Hom(Hom(IdV2 , G), IdW2 ) ◦ dV2W2 .

Similarly to Lemma 4.5, the following few Lemmas use canonical n maps —
all labeled n, even when some spaces appear in a different order, as in Notation
1.41, so their domain, target, and formula are as indicated by their position in the
diagram.
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Lemma 4.7. For any U , V1, V2, W , the following diagram is commutative. If
U is finite-dimensional, or V1 and V2 are both finite-dimensional, then all the maps
in the diagram are invertible.

Hom(V1, U ⊗Hom(V2,W ))
Hom(IdV1 ,n1) �� Hom(V1,Hom(V2,W ⊗ U))

TV1,V2;W⊗U

��

Hom(V1,Hom(V2,W ))⊗ U

n2

��

[TV1,V2,W⊗IdU ]

��
Hom(V2,Hom(V1,W ))⊗ U

n3

��
Hom(V2,Hom(V1,W )⊗ U)

Hom(IdV2 ,n4) �� Hom(V2,Hom(V1,W ⊗ U))

Proof. Replacing the TV1,V2;W and TV1,V2;W⊗U downward arrows in the above
diagram by the composites with the q maps from Lemma 4.1 gives this diagram.

Hom(V1, U ⊗Hom(V2,W ))
Hom(IdV1 ,n1) �� Hom(V1,Hom(V2,W ⊗ U))

q3

��

Hom(V1,Hom(V2,W ))⊗ U

n2

��

[q1⊗IdU ]

��
Hom(V1 ⊗ V2,W )⊗ U n5

��

[Hom(s,IdW )⊗IdU ]

��

Hom(V1 ⊗ V2,W ⊗ U)

Hom(s,IdW⊗U )

��
Hom(V2 ⊗ V1,W )⊗ U n6

�� Hom(V2 ⊗ V1,W ⊗ U)

Hom(V2,Hom(V1,W ))⊗ U

n3

��

[q2⊗IdU ]

��

Hom(V2,Hom(V1,W )⊗ U)
Hom(IdV2 ,n4) �� Hom(V2,Hom(V1,W ⊗ U))

q4

��

The middle block is commutative by Lemma 1.42. To check the top square, for
h⊗ u ∈ Hom(V1,Hom(V2,W ))⊗ U , v ⊗ x ∈ V1 ⊗ V2,

(q3 ◦Hom(IdV1 , n1) ◦ n2)(h⊗ u) : v ⊗ x �→ (q3(n1 ◦ (n2(h⊗ u))))(v ⊗ x)

= ((n1 ◦ (n2(h⊗ u)))(v))(x)

= (n1(u⊗ (h(v))))(x)

= ((h(v))(x)) ⊗ u,

(n5 ◦ [q1 ⊗ IdU ])(h⊗ u) : v ⊗ x �→ (n5((q1(h))⊗ u))(v ⊗ x)

= ((q1(h))(v ⊗ x)) ⊗ u

= ((h(v))(x)) ⊗ u.

The lowest square is analogous, with some re-ordering.
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The composite Hom(IdV1 , n1) ◦ n2 appearing in the upper left corner of the
diagram from Lemma 4.7 is equal to a composite of the following form, using
different variants of the n maps, as in Notation 1.41:

(4.4)

Hom(V1,Hom(V2,W )⊗ U) �� Hom(V1,Hom(V2,W ⊗ U))

Hom(V1,Hom(V2,W ))⊗ U

��

The spaces can be re-ordered in various ways to state results analogous to Lemma
4.7, with other versions of the n maps but essentially the same Proof. The following
Lemma 4.8 is an analogue of Lemma 4.7 but with a longer composite of n maps.

Lemma 4.8. For any U1, U2, V1, V2, W , the following diagram is commutative.

U1 ⊗Hom(V1,Hom(V2,W ))⊗ U2

[IdU1⊗[TV1,V2;W⊗IdU2 ]]��

[IdU1⊗n2]

��

U1 ⊗Hom(V2,Hom(V1,W ))⊗ U2

[IdU1⊗n3]

��
U1 ⊗Hom(V1, U2 ⊗Hom(V2,W ))

n7

��

U1 ⊗Hom(V2,Hom(V1,W )⊗ U2)

n8

��
Hom(V1, U1 ⊗ U2 ⊗Hom(V2,W ))

Hom(IdV1 ,[IdU1⊗n1])

��

Hom(V2, U1 ⊗Hom(V1,W )⊗ U2)

Hom(IdV2 ,[IdU1⊗n4])

��
Hom(V1, U1 ⊗Hom(V2,W ⊗ U2))

Hom(IdV1 ,n9)

��

Hom(V2, U1 ⊗Hom(V1,W ⊗ U2))

Hom(IdV2 ,n10)

��
Hom(V1,Hom(V2, U1 ⊗W ⊗ U2))

TV1,V2;U1⊗W⊗U2

�� Hom(V2,Hom(V1, U1 ⊗W ⊗ U2))

Proof. As remarked after the Proof of Lemma 4.7, the vertical composites of
n maps could be rearranged into composites of different n maps with the spaces in
different order, as in (4.4), or using variations on Lemma 1.45. Such rearrangements
could be used in a proof of this Lemma as stated or to state and prove analogous
results.

The following Proof is more direct, and analogous to that of Lemma 4.7, replac-
ing the T maps with composites involving the q maps from Lemma 4.1. In the state-
ment of the Lemma and the following diagram, the maps labeled n1, . . . , n4, q1, q2
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are the same that appear in Lemma 4.7.

U1 ⊗Hom(V1 ⊗ V2,W )⊗ U2

[IdU1⊗[Hom(s,IdW )⊗IdU2 ]]��
U1 ⊗Hom(V2 ⊗ V1,W )⊗ U2

U1 ⊗Hom(V1,Hom(V2,W ))⊗ U2

[IdU1⊗[TV1,V2;W⊗IdU2 ]]��

[IdU1⊗[q1⊗IdU2 ]]

��

n7◦[IdU1⊗n2]

��

U1 ⊗Hom(V2,Hom(V1,W ))⊗ U2

[IdU1⊗[q2⊗IdU2 ]]

��

n8◦[IdU1⊗n3]

��
Hom(V1, U1 ⊗ U2 ⊗Hom(V2,W ))

Hom(IdV1 ,n9◦[IdU1⊗n1])

��

Hom(V2, U1 ⊗Hom(V1,W )⊗ U2)

Hom(IdV2 ,n10◦[IdU1⊗n4])

��
Hom(V1,Hom(V2, U1 ⊗W ⊗ U2))

q5

��

TV1,V2;U1⊗W⊗U2

�� Hom(V2,Hom(V1, U1 ⊗W ⊗ U2))

q6

��
Hom(V1 ⊗ V2, U1 ⊗W ⊗ U2)

Hom(s,IdU1⊗W⊗U2 ) �� Hom(V2 ⊗ V1, U1 ⊗W ⊗ U2)

The q and s maps are invertible, and the commutativity around the outside of
the diagram can be checked directly, using the formula for q−1 from Lemma 1.47.
Starting in the upper left corner with U1⊗Hom(V1⊗V2,W )⊗U2, for A ∈ Hom(V1⊗
V2,W ), u ∈ U1, v ∈ U2, y ∈ V1, z ∈ V2,

u⊗A⊗ v �→ q6(n10◦[IdU1⊗ n4] ◦ (n8([IdU1⊗ n3](u⊗ (q−1
2 (A ◦ s))⊗ v)))) :

z ⊗ y �→ ((n10◦[IdU1⊗ n4] ◦ (n8([IdU1⊗ n3](u⊗ (q−1
2 (A ◦ s))⊗ v))))(z))(y)

= (n10([IdU1⊗ n4](u ⊗ ((q−1
2 (A ◦ s))(z))⊗ v)))(y)

= u⊗ (((q−1
2 (A ◦ s))(z))(y))⊗ v

= u⊗ ((A ◦ s)(z ⊗ y))⊗ v = u⊗ (A(y ⊗ z))⊗ v,

u⊗A⊗ v �→ (q5(n9 ◦ [IdU1⊗ n1] ◦ (n7([IdU1⊗ n2](u⊗ (q−1
1 (A))⊗ v))))) ◦ s :

z ⊗ y �→ ((n9 ◦ [IdU1⊗ n1] ◦ (n7([IdU1⊗ n2](u ⊗ (q−1
1 (A)) ⊗ v))))(y))(z)

= (n9([IdU1⊗ n1](u⊗ v ⊗ ((q−1
1 (A))(y)))))(z)

= u⊗ (((q−1
1 (A))(y))(z)) ⊗ v = u⊗ (A(y ⊗ z))⊗ v.

The following Lemma 4.9 shows how TV1,V2;W is related to some switching
maps, which are involutions in the case V1 = V2; an analogue for the scalar case
TV is Theorem 3.115.
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Lemma 4.9. For any V1, V2, W , the following diagram is commutative. If V1
and V2 are both finite-dimensional, then all the arrows are invertible.

V ∗
1 ⊗ V ∗

2 ⊗W
[s2⊗IdW ] ��

[IdV ∗
1
⊗kV2W ]

��
kV1,V ∗

2 ⊗W

++*
**

**
**

**
**

**
**

**
**

**
*

V ∗
2 ⊗ V ∗

1 ⊗W

kV2,V ∗
1 ⊗W

��

[IdV ∗
2
⊗kV1W ]

��    
    

    
  

V ∗
1 ⊗Hom(V2,W )

kV1,Hom(V2,W )

��

V ∗
2 ⊗Hom(V1,W )

n

��

kV2,Hom(V1 ,W )

++*
**

**
**

**
**

**
**

**
**

**
*

Hom(V2, V
∗
1 ⊗W )

Hom(IdV2 ,kV1W )

��

Hom(V1, V
∗
2 ⊗W )

Hom(IdV1 ,kV2W )������
����

����
���

Hom(V1,Hom(V2,W ))
TV1,V2;W

��

q1

��

Hom(V2,Hom(V1,W ))

q2

��
Hom(V1 ⊗ V2,W )

Hom(s1,IdW ) �� Hom(V2 ⊗ V1,W )

(V1 ⊗ V2)
∗ ⊗W

kV1⊗V2,W

��

[s∗1⊗IdW ] �� (V2 ⊗ V1)
∗ ⊗W

kV2⊗V1,W

��

Hom(V1 ⊗ V2,K⊗K)⊗W

[Hom(IdV1⊗V2 ,l)⊗IdW ]

��

Hom(V2 ⊗ V1,K⊗K)⊗W

[Hom(IdV2⊗V1 ,l)⊗IdW ]

��

V ∗
1 ⊗ V ∗

2 ⊗W

[j1⊗IdW ]

��

[s2⊗IdW ] �� V ∗
2 ⊗ V ∗

1 ⊗W

[j2⊗IdW ]

��

Proof. The block with the q maps is exactly Lemma 4.1, and the next lower
block is commutative by Lemma 1.62. The lowest block is easy to check, where
the abbreviation j̃1 = Hom(IdV1⊗V2 , l) ◦ j1 as in Notation 2.43 could be used, so
that the vertical composite is [̃j1 ⊗ IdW ]. Inside the upper rectangle, the blocks on
the left and right are commutative by Lemma 1.62 again, and its upper block is
commutative by a variation on Lemma 1.65. The lower block in the upper rectangle
is commutative: using Definition 4.2 and φ⊗A ∈ V ∗

2 ⊗Hom(V1,W ), u ∈ V1, v ∈ V2,

TV1,V2;W ◦Hom(IdV1 , kV2,W ) ◦ n :

φ⊗A �→ (tWV1,Hom(V2,W )(kV2,W ◦ (n(φ⊗A)))) ◦ dV2,W :

v �→ (dV2,W (v)) ◦ kV2,W ◦ (n(φ⊗A)) :

u �→ (kV2,W (φ⊗ (A(u))))(v)

= φ(v) · (A(u)) = ((kV2,Hom(V1,W )(φ⊗A))(v))(u).

So the top rectangle is commutative.
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Lemma 4.10. For any V1, V2, V3, W , if V1 and V2 are finite-dimensional, then
all the arrows in the following diagram are invertible and the diagram is commuta-
tive.

Hom(V1,Hom(V2,W ))⊗ V3
[TV1,V2;W⊗IdV3 ]��

n1

��

Hom(V2,Hom(V1,W ))⊗ V3

n2

��
Hom(V1, V3 ⊗Hom(V2,W )) Hom(V2,Hom(V1,W )⊗ V3)

Hom(V1, V3 ⊗ V ∗
2 ⊗W )

Hom(IdV1 ,[IdV3⊗kV2W ])

��

Hom(V2, V
∗
1 ⊗W ⊗ V3)

Hom(IdV2 ,[kV1W⊗IdV3 ])

��

V ∗
1 ⊗ V3 ⊗ V ∗

2 ⊗W

kV1,V3⊗V ∗
2 ⊗W

��

s1 �� V ∗
2 ⊗ V ∗

1 ⊗W ⊗ V3

kV2,V ∗
1 ⊗W⊗V3

��

Proof. The following diagram is commutative, where the column on the left
matches the left column in the above diagram, and the column on the right uses
two maps from the diagram in Lemma 4.9.

Hom(V1, V3 ⊗Hom(V2,W )) Hom(V1,Hom(V2,W ))⊗ V3n1

��

Hom(V1, V3 ⊗ V ∗
2 ⊗W )

Hom(IdV1 ,[IdV3⊗kV2W ])

��

Hom(V1, V
∗
2 ⊗W )⊗ V3

[Hom(IdV1 ,kV2W )⊗IdV3 ]

��

n3

��

V ∗
1 ⊗ V3 ⊗ V ∗

2 ⊗W

kV1,V3⊗V ∗
2 ⊗W

��

V ∗
1 ⊗ V ∗

2 ⊗W ⊗ V3

[kV1,V ∗
2

⊗W⊗IdV3 ]

��

[IdV ∗
1
⊗s]

��

The upper square is commutative by Lemma 1.42, and the lower square by a varia-
tion on Lemma 1.65. The above diagram is abbreviated to appear in the left block
of the following diagram, by labeling its four corners (M11, M12, M21, M22), and
its upward vertical composites as the vertical arrows a1, [a2 ⊗ IdV3 ].

M11 M12
n1�� [TV1,V2;W⊗IdV3 ]�� M13

n2 �� Hom(V2,Hom(V1,W )⊗ V3)

Hom(V2, V
∗
1 ⊗W ⊗ V3)

Hom(IdV2 ,[kV1W⊗IdV3 ])

��

M21

a1

��

M22

[a2⊗IdV3 ]

��

[IdV ∗
1
⊗s]

��
[[s2⊗IdW ]⊗IdV3 ]�� M23

[a3⊗IdV3 ]

��

kV2,V ∗
1 ⊗W⊗V3

$$���������������

The other two spaces are similarly related to the right column in the top square
from Lemma 4.9:

M13 = Hom(V2,Hom(V1,W ))⊗ V3

M23 = V ∗
2 ⊗ V ∗

1 ⊗W ⊗ V3,

a3 = Hom(IdV2 , kV1W ) ◦ kV2,V ∗
1 ⊗W ,
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so that the commutativity of the middle block follows from the commutativity of
the top block from Lemma 4.9, together with Lemma 1.36. The right block is
a mirror image analogue of the left block, but without the switching map, so the
verification that it is commutative again uses Lemma 1.42 and Lemma 1.65. Letting
s1 = [[s2 ⊗ IdW ] ⊗ IdV3 ] ◦ [IdV ∗

1
⊗ s−1], the commutativity around the outside of

the diagram gives the claim of the Lemma.

Exercise 4.11. If V1, V2, W have metrics g1, g2, h, then

TV1,V2;W : Hom(V1,Hom(V2,W )) → Hom(V2,Hom(V1,W ))

is an isometry with respect to the induced metrics.

Hint. From Lemma 4.1, TV1,V2;W = q−1
2 ◦ Hom(s, IdW ) ◦ q1 is a composite of

isometries, using Theorem 3.45, Exercise 3.66, and Exercise 3.77. In the special
case V1 = V2, g1 = g2, Exercise 3.122 applies to the involution TV1;W . A further
special case is W = K, so Corollary 3.48 on the involution TV follows from this

claim and Exercise 3.74.

The transpose for bilinear forms can be applied to vector valued trilinear forms:
elements of Hom(X,Hom(Y,Hom(Z,U))), to switch the first and second, or second
and third, inputs in expressions such as ((h(x))(y))(z) ∈ U . A map switching the
first and third inputs can be expressed in terms of T maps, or in terms of q and
s maps in analogy with Lemma 4.1, but in more than one way, as shown by the
following Lemma 4.12 and Equation (4.5).

Lemma 4.12. For any vector spaces X, Y , Z, U , the following diagram is
commutative.

Hom(X,Hom(Y,Hom(Z,U)))

Hom(IdX ,TY,Z;U )

������
����

����
��� TX,Y ;Hom(Z,U)

�����
����

����
����

Hom(X,Hom(Z,Hom(Y, U)))

TX,Z;Hom(Y,U)

��

Hom(Y,Hom(X,Hom(Z,U)))

Hom(IdY ,TX,Z;U )

��
Hom(Z,Hom(X,Hom(Y, U)))

Hom(IdZ ,TX,Y ;U )
�����

����
����

����
Hom(Y,Hom(Z,Hom(X,U)))

TY,Z;Hom(X,U)������
����

����
���

Hom(Z,Hom(Y,Hom(X,U)))

Proof. The claim follows from finding a map

a1 : Hom(X,Hom(Y,Hom(Z,U))) → Hom(Z,Hom(Y,Hom(X,U))),

equal to both downward composites on the left and right sides of the above diagram.
This first diagram corresponds to the right side.
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Hom(X,Hom(Y,Hom(Z,U)))
TX,Y ;Hom(Z,U)

,,++++++
+++++++

+++++++
+++++++

+++++++
+++++++

q1

����
���

���
���

���
���

���
���

��

Hom(Y,Hom(X,Hom(Z,U)))

Hom(IdY ,TX,Z;U )

��

q2

��,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,

Hom(IdY ,q5)

----
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
-

Hom(X⊗Y,Hom(Z,U))

q3

""







Hom(s1,IdHom(Z,U)) ��
Hom(X⊗Y ⊗Z,U)

Hom([s1⊗IdZ ],IdU )

��

Hom(Y ⊗X,Hom(Z,U))

q′3

..���
���

���
���

���
���

���
��

Hom(Y ⊗X⊗Z,U)

Hom([IdY ⊗s2],IdU )

��

Hom(Y,Hom(X⊗Z,U))

Hom(IdY ,Hom(s2,IdU ))

��

q4��

Hom(Y ⊗Z⊗X,U)

Hom([s3⊗IdX ],IdU )

��

Hom(Y,Hom(Z⊗X), U)
q′4

��

Hom(Z⊗Y ⊗X,U) Hom(Y ⊗Z,Hom(X,U))

q′′3

��.......................

Hom(s3,IdHom(X,U))

��
Hom(Z⊗Y,Hom(X,U))

q′′′3

�������������������

Hom(Y,Hom(Z,Hom(X,U)))

TY,Z;Hom(X,U)

��///////
///////

///////
///////

///////
//////

q′2

//00000000000000000000000

Hom(IdY ,q6)

0011111111111111111111111111111111111

Hom(Z,Hom(Y,Hom(X,U)))

q′1

���������������������������

All the arrows are invertible — the q maps convert the transpose maps to switching
maps (recall the convention from Lemma 4.1 that all the q maps here are ordered as
in Definition 1.46). The right blocks are commutative by Lemma 4.1 and Definition
4.2, with the right center block also using Lemma 1.6. The three left blocks are
commutative by Lemma 1.50 and the two center blocks by Lemma 1.51.

This second diagram, corresponding to the left side of the claim, is not exactly
a mirror image of the first but is commutative in the same way, using Lemma 4.1,
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Lemma 1.6, Lemma 1.50, and Lemma 1.51.

Hom(X,Hom(Y,Hom(Z,U)))

Hom(IdX ,TY,Z;U )

��///////
///////

///////
///////

///////
//////

Hom(IdX ,q7)

�����
���

���
���

���
���

���
���

�

Hom(X,Hom(Z,Hom(Y,U)))

TX,Z;Hom(Y,U)

��

Hom(IdX ,q8)

110
00

00
00

00
00

00
00

00
00

00
00

q11

221
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

Hom(X,Hom(Y ⊗Z,U))

q9

�����
����

����
����

��

Hom(IdX ,Hom(s3,IdU ))��
Hom(X,Hom(Z⊗Y,U))

q′9

##..
...

...
...

...
...

...
...

Hom(X⊗Y ⊗Z,U)

Hom([IdX⊗s3],IdU)

��
Hom(X⊗Z,Hom(Y, U))

Hom(s2,IdHom(Y,U))

��

q10 �� Hom(X⊗Z⊗Y, U)

Hom([s2⊗IdY ],IdU)

��
Hom(Z⊗X,Hom(Y, U))

q′10
�� Hom(Z⊗X⊗Y, U)

Hom([IdZ⊗s1],IdU)

��
Hom(Z,Hom(X⊗Y, U))

q′′9

�������������������������

Hom(IdZ,Hom(s1,IdU ))

��

Hom(Z⊗Y ⊗X,U)

Hom(Z,Hom(Y ⊗X,U))

q′′′9

��

Hom(Z,Hom(X,Hom(Y,U)))

Hom(IdZ,TX,Y ;U )

,,++++++
+++++++

+++++++
+++++++

+++++++
+++++++

Hom(IdZ,q′8)

33,,,,,,,,,,,,,,,,,,,,,,,

q12

44-----------------------------------

Hom(Z,Hom(Y,Hom(X,U)))

Hom(IdZ,q′7)

���������������������������

The composites of permutations in the diagrams are equal to the same switching
map s4:

[s3 ⊗ IdX ] ◦ [IdY ⊗ s2] ◦ [s1 ⊗ IdZ ] = [IdZ ⊗ s1] ◦ [s2 ⊗ IdY ] ◦ [IdX ⊗ s3]

= s4 : X ⊗ Y ⊗ Z → Z ⊗ Y ⊗X.

By Lemma 1.51, q3 ◦ q1 = q9 ◦ Hom(IdX , q7) and q′′′3 ◦ q′1 = q′′′9 ◦ Hom(IdZ ◦ q′7).
So, the two diagrams fit together as claimed, with the downward composite in the
left column of the first diagram being equal to the composite in the right column
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of the second, giving the required map

a1 = (q′′′3 ◦ q′1)−1 ◦Hom([s3 ⊗ IdX ]◦[IdY ⊗ s2]◦[s1⊗ IdZ ], IdU ) ◦ q3 ◦ q1(4.5)

= Hom(IdZ , (q
′
7)

−1) ◦ (q′′′9 )−1 ◦Hom(s4, IdU ) ◦ q9 ◦Hom(IdX , q7).

4.2. Symmetric bilinear forms

Definition 4.13. A W -valued form h ∈ Hom(V,Hom(V,W )) is symmetric
means: h = TV ;W (h). h is antisymmetric means: h = −TV ;W (h). Let Sym(V ;W )

denote the subspace of symmetric forms, and Alt(V ;W ) the subspace of antisym-
metric forms.

It follows from Lemma 1.119 and Lemma 4.4 that if 1
2 ∈ K, then TV ;W produces

a direct sum

(4.6) Hom(V,Hom(V,W )) = Sym(V ;W )⊕Alt(V ;W ).

Remark 4.14. The direct sum (4.6) is canonical, and so is the decomposition
of any form h into its symmetric and antisymmetric parts

(4.7)
1

2
(h+ TV ;W (h)) +

1

2
(h− TV ;W (h)).

However, there are several other involutions appearing in the V = V1 = V2 case
of Lemma 4.9, and some of the other spaces admit distinct but equivalent direct
sums as in Example 1.144. Recalling the direct sum V ⊗V = S2V ⊕Λ2V produced
by the involution s as in Example 1.124, Example 1.145 applies to the involutions
TV ;W and Hom(s, IdW ) from Lemma 4.1 and Lemma 4.9, so the map

q : Hom(V,Hom(V,W )) → Hom(V ⊗ V,W )

respects both of the direct sums on the target:

Hom(V ⊗ V,W ) = {A : A ◦ s = A} ⊕ {A : A ◦ s = −A},
Hom(V ⊗ V,W ) = Hom(S2V,W )⊕ Hom(Λ2V,W ).

Example 4.15. It follows from Lemma 4.5 that for a map of the form

h = (Hom(IdV , kVW ) ◦ n1)(g ⊗ w),

with g : V → V ∗, w ∈W , if g is symmetric, or antisymmetric, then so is h.

Definition 4.16. For any U , V , W , the pullback of a W -valued form h : V →
Hom(V,W ) by a map H : U → V is another W -valued form Hom(H, IdW )◦h◦H :
U → Hom(U,W ).

In the case W = K, this coincides with the previously defined pullback (Defi-
nition 3.7).

Lemma 4.17. For maps H : U → V , G : W1 → W2, and a form h : V →
Hom(V,W1),

TU ;W2(Hom(H,G) ◦ h ◦H) = Hom(H,G) ◦ (TV ;W1(h)) ◦H.
The map

Hom(H,Hom(H,G)) : Hom(V,Hom(V,W1)) → Hom(U,Hom(U,W2))

respects the direct sums Sym(V ;W1)⊕Alt(V ;W1) → Sym(U ;W2)⊕Alt(U ;W2).
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Proof. The first claim is a special case of Lemma 4.6. The claim about the

direct sums follows from Lemma 1.126 and Lemma 4.4.

The G = IdW case of Lemma 4.17 shows that the pullback by H : U → V of
a symmetric form h : V → Hom(V,W ) is a symmetric form U → Hom(U,W ), and
similarly, the pullback of an antisymmetric form is antisymmetric.

Notation 4.18. For h1 : V1 → Hom(V1,W ), and h2 : V2 → Hom(V2,W ), and
a direct sum V = V1 ⊕ V2, let h1 ⊕ h2 : V → Hom(V,W ) denote the form

Hom(P1, IdW ) ◦ h1 ◦ P1 +Hom(P2, IdW ) ◦ h2 ◦ P2.

In the W = K case, this is exactly the construction of Notation 3.9.

Lemma 4.19. TV ;W (h1 ⊕ h2) = (TV1;W (h1))⊕ (TV2;W (h2)).

Proof. The proof proceeds exactly as in Theorem 3.10, using Lemma 1.14

and Lemma 1.6.

It follows that the direct sum of symmetric W -valued forms is symmetric, and
similarly, the direct sum of antisymmetric forms is antisymmetric.

Working with the tensor product of vector valued forms is simpler than the
scalar case (Notation 3.13), since the scalar multiplication is omitted. If h1 : V1 →
Hom(V1,W1) and h2 : V2 → Hom(V2,W2) are two vector valued forms, then the
map

j ◦ [h1 ⊗ h2] : V1 ⊗ V2 → Hom(V1 ⊗ V2,W1 ⊗W2)

has output

((j ◦ [h1 ⊗ h2])(u1 ⊗ u2))(v1 ⊗ v2) = ((h1(u1))(v1))⊗ ((h2(u2))(v2)) ∈W1 ⊗W2,

so it is a W1 ⊗W2-valued form.

Theorem 4.20.

TV1⊗V2;W1⊗W2(j ◦ [h1 ⊗ h2]) = j ◦ [(TV1;W1(h1))⊗ (TV2;W2(h2))].

Proof. In analogy with the proof of Theorem 3.12, the following diagram is
commutative:

V1 ⊗ V2

dV1⊗V2,W1⊗W2

��

[dV1W1⊗dV2W2 ] �� M1

j′

��
Hom(Hom(V1⊗V2,W1⊗W2),W1⊗W2)

Hom(j,IdW1⊗W2 )
�� M2

where

M1 = Hom(Hom(V1,W1),W1)⊗Hom(Hom(V2,W2),W2)

M2 = Hom(Hom(V1,W1)⊗Hom(V2,W2),W1 ⊗W2);

v1 ⊗ v2 �→ (Hom(j, IdW1⊗W2) ◦ dV1⊗V2,W1⊗W2)(v1 ⊗ v2)

= (dV1⊗V2,W1⊗W2(v1 ⊗ v2)) ◦ j :
A⊗B �→ [A⊗B](v1 ⊗ v2) = (A(v1))⊗ (B(v2)),

v1 ⊗ v2 �→ (j′ ◦ [dV1W1 ⊗ dV2W2 ])(v1 ⊗ v2)

= j′((dV1W1(v1))⊗ (dV2W2(v2))) :

A⊗B �→ (A(v1))⊗ (B(v2)).
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The statement of the Theorem follows from Lemma 1.6, the above diagram, Lemma
1.37, and Lemma 1.36:

LHS = (tW1⊗W2

V1⊗V2,Hom(V1⊗V2,W1⊗W2)
(j ◦ [h1 ⊗ h2])) ◦ dV1⊗V2,W1⊗W2

= Hom([h1 ⊗ h2], IdW1⊗W2) ◦Hom(j, IdW1⊗W2) ◦ dV1⊗V2,W1⊗W2

= Hom([h1 ⊗ h2], IdW1⊗W2) ◦ j′ ◦ [dV1W1 ⊗ dV2W2 ]

= j ◦ [Hom(h1, IdW1)⊗Hom(h2, IdW2)] ◦ [dV1W1 ⊗ dV2W2 ]

= j ◦ [(TV1;W1(h1))⊗ (TV2;W2(h2))].

It follows that the tensor product of symmetric forms is symmetric, as is the
tensor product of antisymmetric forms.

In the W1 = K case, the tensor product of a scalar valued form h1 : V1 → V ∗
1

and a vector valued form h2 : V2 → Hom(V2,W ) is a form j ◦ [h1 ⊗ h2] with values
in K⊗W . The map Hom(IdV1⊗V2 , lW ) ◦ j ◦ [h1 ⊗ h2] is a W -valued form.

Corollary 4.21. For h1 : V1 → V ∗
1 and h2 : V2 → Hom(V2,W ), the following

W -valued forms are equal.

TV1⊗V2;W (Hom(IdV1⊗V2 , lW ) ◦ j ◦ [h1 ⊗ h2])

= Hom(IdV1⊗V2 , lW ) ◦ j ◦ [(TV1(h1))⊗ (TV2;W (h2))].

Proof. The equality follows immediately from Lemma 4.6, the previous The-

orem, and the equality TV ;K = TV .

Exercise 4.22. Let V = U ⊕ Hom(U,L) be a direct sum with data Pi, Qi.
Then,

(4.8) Hom(P1, IdL) ◦ P2 +Hom(P2, IdL) ◦ dUL ◦ P1

is a symmetric L-valued form on V . If dUL is invertible, then this form is also
invertible.

Hint. The proof that the form (4.8) is symmetric is the same as the calculation
from Lemma 3.102, but using Lemma 1.14 and Lemma 1.17 in their full generality.
If dUL is invertible (for example, as in Proposition 3.78), then the inverse of the
form is

Q1 ◦ d−1
UL ◦Hom(Q2, IdL) +Q2 ◦Hom(Q1, IdL).
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Exercise 4.23. Let V = U ⊕ Hom(U,L) as in Exercise 4.22. Given maps
E :W → U and h : U → Hom(W,L), the following are equivalent.

(1) The L-valued form h ◦ E :W → Hom(W,L) is antisymmetric.
(2) The pullback of the symmetric L-valued form (4.8) by the map

Q1 ◦ E +Q2 ◦Hom(h, IdL) ◦ dWL :W → V

is 0Hom(W,Hom(W,L)).

Hint. The statement is analogous to Exercise 3.109, but uses the generalized

notion of pullback from Definition 4.16.

Exercise 4.24. Suppose V = V1 ⊕ V2, and there is an invertible map g : V →
Hom(V, L) so that these pullbacks are zero:

Hom(Q1, IdL) ◦ g ◦Q1 = 0Hom(V1,Hom(V1,L)),

Hom(Q2, IdL) ◦ g ◦Q2 = 0Hom(V2,Hom(V2,L)).

Then these maps are invertible:

Hom(Q1, IdL) ◦ g ◦Q2 : V2 → Hom(V1, L),

Hom(Q2, IdL) ◦ g ◦Q1 : V1 → Hom(V2, L).

Hint. The inverses are P2 ◦ g−1 ◦Hom(P1, IdL), P1 ◦ g−1 ◦Hom(P2, IdL).

Exercise 4.25. ([EPW]) Let V = V1⊕V2 and g : V → Hom(V, L) be as in the
previous Exercise. Then there is another direct sum V = V1 ⊕Hom(V1, L), defined
by data P1, Q1, and

P ′
2 = Hom(Q1, IdL) ◦ g : V → Hom(V1, L),

Q′
2 = g−1 ◦Hom(P1, IdL) : Hom(V1, L) → V.

If, also, g is symmetric, then g is equal to the L-valued form induced by this direct
sum, as in Exercise 4.22:

g = Hom(P1, IdL) ◦ P ′
2 + Hom(P ′

2, IdL) ◦ dV1,L ◦ P1.

Hint. It is easy to check that P ′
2 ◦Q1 is zero, and P ′

2 ◦Q′
2 is the identity.

Hom(Q2, IdL) ◦ g ◦Q1 ◦ P1 ◦Q′
2

= Hom(Q2, IdL) ◦ g ◦Q1 ◦ P1 ◦ g−1 ◦Hom(P1 ◦ IdL)
= Hom(Q2, IdL) ◦ g ◦ (IdV −Q2 ◦ P2) ◦ g−1 ◦Hom(P1, IdL)

= 0Hom(Hom(V1,L),Hom(V2,L)).

By the previous Exercise, Hom(Q2, IdL) ◦ g ◦Q1 is invertible, so

P1 ◦Q′
2 = 0Hom(Hom(V1,L),V1).

Q1 ◦ P1 +Q′
2 ◦ P ′

2

= Q1 ◦ P1 + (Q1 ◦ P1 +Q2 ◦ P2) ◦Q′
2 ◦ P ′

2 ◦ (Q1 ◦ P1 +Q2 ◦ P2)

= Q1 ◦ P1 +Q2 ◦ P2 ◦ g−1 ◦Hom(P1, IdL) ◦Hom(Q1, IdL) ◦ g ◦Q2 ◦ P2

= Q1 ◦ P1 +Q2 ◦ P2 = IdV ,
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using the inverse formula from the previous Exercise. As for the claimed equality,

RHS = Hom(P1, IdL) ◦Hom(Q1, IdL) ◦ g
+Hom(Hom(Q1, IdL) ◦ g, IdL) ◦ dV1,L ◦ P1

= Hom(P1, IdL) ◦Hom(Q1, IdL) ◦ g ◦ (Q1 ◦ P1 +Q2 ◦ P2) +

Hom(g, IdL) ◦Hom(Hom(Q1, IdL), IdL) ◦ dV1,L ◦ P1

= Hom(P1, IdL) ◦Hom(Q1, IdL) ◦ g ◦Q2 ◦ P2

+Hom(P2, IdL) ◦Hom(Q2, IdL) ◦ g ◦Q2 ◦ P2

+Hom(g, IdL) ◦ dV L ◦Q1 ◦ P1

= Hom(Q1 ◦ P1 +Q2 ◦ P2, IdL) ◦ g ◦Q2 ◦ P2 + (TV L(g)) ◦Q1 ◦ P1

= g ◦ (Q2 ◦ P2 +Q1 ◦ P1) = g.

4.3. Vector valued trace with respect to a metric

A metric g on V suggests that the scalar trace Trg (Definition 3.32) can be
generalized to a vector valued trace map onW -valued forms, but at first there would
appear to be two constructions of a map Trg;W : Hom(V,Hom(V,W )) → W . One
way would be to combine the previously constructed vector valued trace TrV ∗;W
(Definition 2.50) and composition with g−1, and another would be to start with
the scalar trace Trg, and tensor with IdW . Of course, the two approaches have the
same result.

Lemma 4.26. Given a metric g on V , the following diagram is commutative.

Hom(V,Hom(V,W ))
Hom(IdV,k

−1
V W ) ��

Hom(g−1,k−1
V W )

��

Hom(V, V ∗⊗W )
n−1
1 ��

Hom(g−1,IdV ∗⊗W )

�����
���

���
���

���
���

���
���

�
Hom(V, V ∗)⊗W

n1

��

[Hom(g−1,IdV ∗ )⊗IdW ]

�����
��
��
��
��
��
��
��
��
�

[Trg⊗IdW ]

--22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
2

Hom(V ∗, V ∗ ⊗W )

TrV ∗;W

��

Hom(V ∗, V ∗)⊗Wn
��

[TrV ∗⊗IdW ]

��
W K⊗W

lW

��

Proof. The upper left triangle is commutative by Lemma 1.6, and the upper
right block is commutative by Lemma 1.42, with invertible n maps by the finite-
dimensionality of V . The lower square is the definition of TrV ∗;W , and the right

triangle uses the definition of Trg.

Definition 4.27. Given a metric g on V , an arbitrary vector space W , and a
W -valued form h : V → Hom(V,W ), the W -valued trace with respect to g is the
following element of W :

Trg;W (h) = TrV ∗;W (k−1
V W ◦ h ◦ g−1).
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Corollary 2.58 also gives the equality

TrV ∗;W (k−1
V W ◦ h ◦ g−1) = TrV ;W ([g−1 ⊗ IdW ] ◦ k−1

VW ◦ h).
By the previous Lemma,

Trg;W = TrV ∗;W ◦Hom(g−1, k−1
V W ) = lW ◦ [Trg ⊗ IdW ] ◦ n−1

1 ◦Hom(IdV , k
−1
VW ).

Example 4.28. Given a metric g on V , if h is of the form h = (Hom(IdV , kV W )◦
n1)(E ⊗ w), for E : V → V ∗ and w ∈ W , then Trg;W (h) = Trg(E) · w, and if
Trg(E) = 0, then Trg;W (h) = 0W .

The previously defined scalar valued trace with respect to g (Definition 3.32)
is exactly the W = K case of the vector valued case:

Theorem 4.29. Given a metric g on V , for h : V → V ∗, Trg;K(h) = Trg(h).

Proof. By Lemma 1.63, kV K : V ∗ ⊗K → V ∗ is exactly the scalar multiplica-
tion appearing in Theorem 2.54, so that

Trg;K(h) = TrV ∗;K(k
−1
V K

◦ h ◦ g−1) = TrV ∗(h ◦ g−1) = Trg(h).

Theorem 4.30. For any metric hν on K, as in Lemma 3.67, and a form
h : K → Hom(K,W ),

Trhν ;W (h) =
1

ν
· (h(1))(1).

Proof.

Trhν ;W (h) = TrK;W ([(hν)−1 ⊗ IdW ] ◦ k−1
KW ◦ h)

= (lW ◦ [(hν)−1 ⊗ IdW ] ◦ k−1
KW ◦ h)(1)

= (
1

ν
·m−1)(h(1))

=
1

ν
(h(1))(1),

where the first step uses Corollary 2.57, and the last step uses the formula m−1 =
dKW (1), from Definition 1.20. The intermediate step uses the commutativity of the
diagram

W Hom(K,W )
m−1

��

K⊗W

ν·lW

��

[hν⊗IdW ] �� K∗ ⊗W

kKW

��

λ⊗ w �→ (m−1 ◦ kKW ◦ [hν ⊗ IdW ])(λ⊗ w)

= (kKW ((hν(λ)) ⊗ w))(1)

= ν · λ · 1 · w
= (ν · lW )(λ ⊗ w).
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Theorem 4.31. Given a metric g on V , Trg;W (TV ;W (h)) = Trg;W (h).

Proof. Since V must be finite-dimensional, Lemma 4.5 and Lemma 4.26 ap-
ply.

Trg;W ◦ TV ;W = lW ◦ [Trg ⊗ IdW ] ◦ n−1
1 ◦Hom(IdV , k

−1
V W )

◦Hom(IdV , kV W ) ◦ n1 ◦ [TV ⊗ IdW ] ◦ n−1
1 ◦Hom(IdV , k

−1
V W )

= lW ◦ [Trg ⊗ IdW ] ◦ [TV ⊗ IdW ] ◦ n−1
1 ◦Hom(IdV , k

−1
V W )

= lW ◦ [Trg ⊗ IdW ] ◦ n−1
1 ◦Hom(IdV , k

−1
V W )

= Trg;W ,

by Lemma 1.36 and Theorem 3.33, which stated that Trg ◦ TV = Trg.

Corollary 4.32. Given a metric g on V , if h : V → Hom(V,W ) is antisym-

metric and 1
2 ∈ K, then Trg;W (h) = 0W .

Proposition 4.33. Given a metric g on V , the W -valued trace is invariant
under pullback, that is, if H : U → V is invertible, then

TrH∗◦g◦H;W (Hom(H, IdW ) ◦ h ◦H) = Trg;W (h).

Proof. Using Corollary 2.58 and Lemma 1.62,

LHS = TrU∗;W (k−1
UW ◦Hom(H, IdW ) ◦ h ◦H ◦H−1 ◦ g−1 ◦ (H∗)−1)

= TrV ∗;W ([(H∗)−1 ⊗ IdW ] ◦ k−1
UW ◦Hom(H, IdW ) ◦ h ◦ g−1)

= TrV ∗;W (k−1
V W ◦ h ◦ g−1) = RHS.

This statement and proof are analogous to Proposition 3.37.

Theorem 4.34. Given a metric g on V , for any map B :W →W ′,

Trg;W ′(Hom(IdV , B) ◦ h) = B(Trg;W (h)).

Proof. Using Corollary 2.59 and Lemma 1.62,

LHS = TrV ∗;W ′(k−1
V W ′ ◦Hom(IdV , B) ◦ h ◦ g−1)

= TrV ∗,W ′([IdV ∗ ⊗B] ◦ k−1
VW ◦ h ◦ g−1)

= B(TrV ∗;W (k−1
V W ◦ h ◦ g−1)) = RHS.

Corollary 4.35. Given a metric g on V , and maps H : U → V , B : W →W ′,
if H is invertible then the following diagram is commutative.

Hom(V,Hom(V,W ))
Trg,W ��

Hom(H,Hom(H,B))

��

W

B

��
Hom(U,Hom(U,W ′))

TrH∗◦g◦H;W ′ �� W ′

Proof. This follows from Proposition 4.33 and Theorem 4.34.
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Proposition 4.36. Given metrics g1, g2 on V1, V2, and a direct sum V =
V1 ⊕ V2, for W -valued forms h1 : V1 → Hom(V1,W ), h2 : V2 → Hom(V2,W ),

Trg1⊕g2;W (h1 ⊕ h2) = Trg1;W (h1) + Trg2;W (h2) ∈W.

Proof. First, Lemma 1.6 and Lemma 1.62 apply to simplify the following map
from Hom(VI ,W ) to V ∗

i ⊗W :

[Q∗
i ⊗ IdW ] ◦ k−1

V W ◦Hom(PI , IdW )

= k−1
ViW

◦Hom(Qi, IdW ) ◦Hom(PI , IdW ) = k−1
ViW

◦Hom(PI ◦Qi, IdW )

= k−1
ViW

, if i = I, or 0Hom(Hom(VI ,W ),V ∗
i ⊗W ) if i �= I.

Then the formula (3.4) for (g1 ⊕ g2)
−1 from Corollary 3.18 applies:

LHS = TrV ;W ([(g1 ⊕ g2)
−1 ⊗ IdW ] ◦ k−1

V W ◦ (h1 ⊕ h2))

= TrV ;W ([(Q1 ◦ g−1
1 ◦Q∗

1)⊗ IdW ] ◦ k−1
V W ◦Hom(P1, IdW ) ◦ h1 ◦ P1

+[(Q1 ◦ g−1
1 ◦Q∗

1)⊗ IdW ] ◦ k−1
VW ◦Hom(P2, IdW ) ◦ h2 ◦ P2

+[(Q2 ◦ g−1
2 ◦Q∗

2)⊗ IdW ] ◦ k−1
VW ◦Hom(P1, IdW ) ◦ h1 ◦ P1

+[(Q2 ◦ g−1
2 ◦Q∗

2)⊗ IdW ] ◦ k−1
VW ◦Hom(P2, IdW ) ◦ h2 ◦ P2)

= TrV ;W ([(Q1 ◦ g−1
1 )⊗ IdW ] ◦ k−1

V1W
◦ h1 ◦ P1)

+TrV ;W ([(Q2 ◦ g−1
2 )⊗ IdW ] ◦ k−1

V2W
◦ h2 ◦ P2)

= TrV1;W ([(P1 ◦Q1 ◦ g−1
1 )⊗ IdW ] ◦ k−1

V1W
◦ h1)

+TrV2;W ([(P2 ◦Q2 ◦ g−1
2 )⊗ IdW ] ◦ k−1

V2W
◦ h2) = RHS.

The last steps used Corollary 2.58 and Lemma 1.36.

Theorem 4.37. For metrics g1, g2 on V1, V2, and vector valued forms h1 :
V1 → Hom(V1,W1), h2 : V2 → Hom(V2,W2),

Tr{g1⊗g2};W1⊗W2
(j ◦ [h1 ⊗ h2]) = (Trg1;W1(h1))⊗ (Trg2;W2(h2)) ∈ W1 ⊗W2.

Proof. The following diagram is commutative.

V1 ⊗ V2 ⊗W1 ⊗W2

[[g1⊗g2]⊗IdW1⊗W2 ]

��

V1 ⊗W1 ⊗ V2 ⊗W2

[[g1⊗IdW1 ]⊗[g2⊗IdW2 ]]

��

s1
��

V ∗
1 ⊗ V ∗

2 ⊗W1 ⊗W2
s ��

[j⊗IdW1⊗W2 ]

��

V ∗
1 ⊗W1 ⊗ V ∗

2 ⊗W2

[kV1W1⊗kV2W2 ]

��
Hom(V2 ⊗ V2,K⊗K)⊗W1 ⊗W2

[Hom(IdV1⊗V2 ,l)⊗IdW1⊗W2 ]

��

Hom(V1,W1)⊗Hom(V2,W2)

j

��
(V1 ⊗ V2)

∗ ⊗W1 ⊗W2

kV1⊗V2,W1⊗W2 �� Hom(V1 ⊗ V2,W1 ⊗W2)

The commutativity of the lower part is exactly Lemma 2.32. The top square is easy
to check, where the s1 map is as in Theorem 2.40. The statement of the Theorem
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follows from Corollary 2.64, using Lemma 1.36 and the formula for {g1 ⊗ g2}−1

from Corollary 3.19:

LHS = TrV1⊗V2;W1⊗W2([([g
−1
1 ⊗ g−1

2 ] ◦ j−1 ◦Hom(IdV1⊗V2 , l
−1))⊗ IdW1⊗W2 ]

◦k−1
V1⊗V2,W1⊗W2

◦ j ◦ [h1 ⊗ h2])

= TrV1⊗V2;W1⊗W2(s1 ◦ [[g−1
1 ⊗ IdW1 ]⊗ [g−1

2 ⊗ IdW2 ]]

◦[k−1
V1W1

⊗ k−1
V2W2

] ◦ [h1 ⊗ h2])

= TrV1⊗V2;W1⊗W2(s1 ◦ (j′3(([g−1
1 ⊗ IdW1 ] ◦ k−1

V1W1
◦ h1)

⊗([g−1
2 ⊗ IdW2 ] ◦ k−1

V2W2
◦ h2))))

= (TrV1;W1([g
−1
1 ⊗ IdW1 ] ◦ k−1

V1W1
◦ h1))

⊗(TrV2;W2([g
−1
2 ⊗ IdW2 ] ◦ k−1

V2W2
◦ h2)) = RHS.

Corollary 4.38. For metrics g1, g2 on V1, V2, a scalar valued form h1 : V1 →
V ∗
1 , and a W -valued form h2 : V2 → Hom(V2,W ),

Tr{g1⊗g2};W (Hom(IdV1⊗V2 , lW ) ◦ j ◦ [h1 ⊗ h2]) = Trg1(h1) · Trg2;W (h2).

Proof. Using Theorem 4.34, the previous Theorem, and Theorem 4.29,

LHS = lW (Tr{g1⊗g2};K⊗W (j ◦ [h1 ⊗ h2]))

= lW ((Trg1;K(h1))⊗ (Trg2;W (h2))) = RHS.

Theorem 4.39. If 1
2 ∈ K, and g and y are metrics on V and W , then the direct

sum Sym(V ;W )⊕Alt(V ;W ) is orthogonal with respect to the induced metric.

Proof. Since V is finite-dimensional, all the arrows in the diagram for Lemma
4.5 are invertible. Let H = Hom(IdV , kV W ) ◦ n1, so H and H−1 are isometries by
Theorem 3.41, Theorem 3.45, and Lemma 3.73. Also, [TV ⊗ IdW ] is an isometry by
Corollary 3.48 and Theorem 3.28, so by Lemma 4.5 and Definition 4.2, TV ;W is an
isometry, and an involution by Lemma 4.4. Then Lemma 3.55 applies to the direct

sum produced by TV ;W .

By Theorem 3.56 and Theorem 3.60, Hom(V, V ∗) ⊗W = (Sym(V ) ⊗W ) ⊕
(Alt(V ) ⊗ W ) is an orthogonal direct sum. Since H respects the direct sums,
by Lemma 4.5 and Lemma 1.126, it follows from Theorem 3.61 that the maps
between Sym(V )⊗W and Sym(V ;W ), and between Alt(V )⊗W and Alt(V ;W ),
are isometries.

Theorem 4.40. If TrV (IdV ) �= 0, and g is a metric on V , then there is a
direct sum Hom(V,Hom(V,W )) = W ⊕ ker(Trg;W ). If y is a metric on W , then
the direct sum is orthogonal with respect to the induced metric.

Proof. By Theorem 3.53, Hom(V, V ∗) = K⊕ker(Trg) is an orthogonal direct
sum, with data P ′′

1 = α · Trg, Q′′
1 : λ �→ λ · β · g, with α · β · TrV (IdV ) = 1 as in

Example 2.9. Also, P ′′
2 = IdHom(V,V ∗)−Q′′

1 ◦P ′′
1 , and Q

′′
2 is just the inclusion of the

subspace ker(Trg) in Hom(V, V ∗). By Example 1.81, Hom(V, V ∗) ⊗W is a direct
sum of K⊗W and (ker(Trg))⊗W , with data Pi = [P ′′

i ⊗ IdW ], Qi = [Q′′
i ⊗ IdW ].
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Let H = Hom(IdV , kV W )◦n1, and let P ′
1 = α ·Trg;W , so that the following diagram

is commutative by Lemma 4.26.

Hom(V,Hom(V,W ))

α·Trg;W

��

Hom(V, V ∗)⊗W
H

��

[(α·Trg)⊗IdW ]

��
W K⊗W

lW

��

Let Q′
2 be the inclusion of ker(Trg;W ) in Hom(V,Hom(V,W )), which is a linear

monomorphism so that P ′
1◦Q′

2 = 0Hom(ker(Trg;W ),W ). Define H2 : (ker(Trg))⊗W →
ker(Trg;W ) by H2 = H ◦Q2; the image of H2 is contained in ker(Trg;W ) by Lemma
4.26, so Q′

2 ◦ H2 = H ◦ Q2. Theorem 1.102 applies, so that Hom(V,Hom(V,W ))
has a direct sum structure W ⊕ ker(Trg;W ), and H respects the direct sums. By
Theorem 3.60, if W has a metric y, then the direct sum Hom(V, V ∗)⊗W = (K ⊗
W ) ⊕ ((ker(Trg)) ⊗W ) is orthogonal with respect to the induced metric. Since
H is an isometry (as mentioned in the proof of the previous Theorem), it follows
from Theorem 3.61 that W ⊕ ker(Trg;W ) is orthogonal with respect to the induced

metric.

Corollary 4.41. The metric induced onW by the direct sum from the previous
Theorem is β2 · TrV (IdV ) · y.

Proof. The induced metric on K ⊗W is {hν ⊗ y}, for ν = β2 · TrV (IdV ) by
Theorem 3.60 and Lemma 3.71. By Theorem 3.61, P ′

1 ◦H ◦ Q1 = lW ◦ P1 ◦Q1 =
lW : K⊗W →W is an isometry, so by Lemma 3.69, the metric in the target must

be ν · y.
Corollary 4.42. Given a metric g on V , if both 1

2 ∈ K and TrV (IdV ) �= 0,
then there is a direct sum Hom(V,Hom(V,W )) = W ⊕ Sym0(g;W ) ⊕ Alt(V ;W ),
where Sym0(g;W ) is the kernel of the restriction of Trg;W to Sym(V ;W ). If W

has a metric y, then there is an orthogonal direct sum.

Exercise 4.43. For K : V → Hom(V,W ), an orthogonal direct sum V =
V1 ⊕V2 with respect to a metric g on V , and the induced metrics g1, g2, on V1, V2,

Trg;W (K) = Trg1;W (Hom(Q1, IdW ) ◦K ◦Q1) + Trg2;W (Hom(Q2, IdW ) ◦K ◦Q2).

Hint. In analogy with Exercise 3.101, Lemma 1.62 and Corollary 2.58 apply:

LHS = TrV ∗;W (k−1
V W ◦K ◦ g−1)

= TrV ∗;W (k−1
V W ◦K◦(Q1 ◦ P1 +Q2 ◦ P2) ◦ g−1◦(Q1 ◦ P1 +Q2 ◦ P2)

∗)

= TrV ∗;W (k−1
V W ◦K ◦Q1 ◦ P1 ◦ g−1 ◦ P ∗

1 ◦Q∗
1)

+TrV ∗;W (k−1
V W ◦K ◦Q2 ◦ P2 ◦ g−1 ◦ P ∗

2 ◦Q∗
2)

= TrV1;W ([Q∗
1 ⊗ IdW ] ◦ k−1

V W ◦K ◦Q1 ◦ g−1
1 )

+TrV2;W ([Q∗
2 ⊗ IdW ] ◦ k−1

VW ◦K ◦Q2 ◦ g−1
2 )

= TrV1;W (k−1
V1W

◦Hom(Q1, IdW ) ◦K ◦Q1 ◦ g−1
1 )

+TrV2;W (k−1
V2W

◦Hom(Q2, IdW ) ◦K ◦Q2 ◦ g−1
2 ) = RHS.
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4.4. Revisiting the generalized trace

We return to some notions introduced in Section 2.4. Recall, from Notation
2.68, the map ηV = s ◦ k−1 ◦Q1

1 : K → V ⊗ V ∗.

Notation 4.44. For finite-dimensional V , consider the following diagram.

End(V )⊗ U

n1

11
11

11
11

11
11

551
11

11
11

11
11

1

V ∗ ⊗ V ⊗ U
[k⊗IdU ]

��

[s⊗IdU ]

�����
���

���
���

�

kV,V ⊗U

66--
--
--
--
--
--
--
--
--
--
--
--
--

K⊗ U

[Q1
1⊗IdU ]

		������������� [ηV ⊗IdU ] ��

lU
��

V ⊗ V ∗ ⊗ U

[IdV ⊗kV U ]

�����
���

���
���

���
���

���
���

���
���

��

U

ηV U

��
V ⊗Hom(V, U)

n2 �� Hom(V, V ⊗ U)

The top block is from (2.13), the back triangle is commutative by Lemma 1.65,
and the right block is also commutative by a variation on Lemma 1.65. So, a map
ηV U : U → V ⊗Hom(V, U) can be defined by the following equal formulas:

ηV U = [IdV ⊗ kV U ] ◦ [ηV ⊗ IdU ] ◦ l−1
U

= n−1
2 ◦ n1 ◦ [Q1

1 ⊗ IdU ] ◦ l−1
U :

u : �→ n−1
2 (n1(IdV ⊗ u)).

This map ηUV is a generalized coevaluation.

With the above notation, Theorem 2.77 can be re-stated in terms of ηV U .

Corollary 4.45. For finite-dimensional V , n2 as in the above diagram, any
F : V ⊗ U → V ⊗W , and u ∈ U ,

(TrV ;U,W (F ))(u) = TrV ;W (F ◦ (n2(ηV U (u)))).

Proof. The following diagram is a modification of the diagram from the Proof
of Theorem 2.77.

End(V )⊗ U V ∗ ⊗ V ⊗ U
[k⊗IdU ]
�� [IdV ∗⊗F ] ��

[s⊗IdU ]

��

kV,V ⊗U

**)
))

))
))

))
))

))
))

))
))

))
V ∗ ⊗ V ⊗W

kV,V ⊗W

��

[EvV ⊗IdW ] �� K⊗W

lW

��
K⊗ U

[Q1
1⊗IdU ]

��

lU

��

[ηV ⊗IdU ]�� V ⊗ V ∗ ⊗ U

[IdV ⊗kV U ]

��

Hom(V, V ⊗W )
TrV ;W �� W

U
ηV U �� V ⊗Hom(V, U)

n2 �� Hom(V, V ⊗ U)

Hom(IdV ,F )

��

Hom(V,W )⊗ V

n′
%%!!!!!!!!!!!!!!

EvV W

��

The diagram is commutative; the left blocks and lower middle triangle by the
construction of ηV and ηV U in Notation 4.44, the upper middle triangle by Lemma
1.62, and the right block copied from the Proof of Theorem 2.77. The path from
U to W along the top row is TrV ;U,W (F ) by Theorem 2.69, and equals the same



172 4. VECTOR VALUED BILINEAR FORMS

composite map from U to W along the lower row, so

TrV ;U,W (F ) : u �→ EvVW ((n′)−1(F ◦ (n2(ηV U (u)))))(4.9)

= TrV ;W (F ◦ (n2(ηV U (u))))

= TrV ;W (F ◦ (n1(IdV ⊗ u))).

The composition in (4.9) from the lower path in the diagram, or equivalently

(4.10) TrV ;U,W (F ) = EvV W ◦ (n′)−1 ◦Hom(IdV , F ) ◦ n2 ◦ ηV U : U → W,

has two interesting properties: it does not involve scalar multiplication or duals
(except in the construction of ηV U ), and the maps ηV U and EvV W appear in sym-
metric roles.

Notation 4.44 also allows for a comparison between (4.10) and the formula from
Corollary 2.76,

TrV ;U,W (F ) = EvV W ◦ (n′)−1 ◦ (q−1(F )).

As in (2.19), using n2◦ηV U : u �→ n1(IdV ⊗u), the composite Hom(IdV , F )◦n2◦ηV U

is equal to q−1(F ):

Hom(IdV , F ) ◦ n2 ◦ ηV U : u �→ F ◦ (n1(IdV ⊗ u)) :

v �→ F (v ⊗ u) = ((q−1(F ))(u))(v).

Exercise 4.46. In the case U = K, these maps are equal: ηV U = ηV K = ηV .

Lemma 4.47. For finite-dimensional V and V ′, and maps A : U → U ′, B :
V → V ′, the following diagram is commutative.

U
ηV U ��

A

��

V ⊗Hom(V, U)

[B⊗Hom(IdV ,A)]

��
V ′ ⊗Hom(V, U ′)

U ′ ηV ′U′ �� V ′ ⊗Hom(V ′, U ′)

[IdV ′⊗Hom(B,IdU′)]

��
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Proof. First consider this diagram, with switching maps s, s′, and s′′, and
where the k maps are invertible by Lemma 1.64.

V ∗ ⊗ V
s ��

[IdV ∗⊗B]

773
33

33
33

33
33

33
33

33
3

kV V

��

V ⊗ V ∗

[B⊗IdV ∗ ]

((4
44

44
44

44
44

44
44

44

End(V )

Hom(IdV ,B)

��
Hom(V, V ′) V ∗ ⊗ V ′kV V ′�� s′′ �� V ′ ⊗ V ∗

End(V ′)

Hom(B,IdV ′ )

��

V ′∗ ⊗ V ′

kV ′V ′

�� [B∗⊗IdV ′ ]

��""""""""""""""""""
s′ �� V ′ ⊗ V ′∗

[IdV ′⊗B∗]

��55555555555555555

The right blocks are commutative by Lemma 1.39 and the left blocks by Lemma
1.62. The distinguished elements IdV and IdV ′ have the same image in Hom(V, V ′):

Hom(IdV , B)(IdV ) = B ◦ IdV = B = IdV ′ ◦B = Hom(B, IdV ′)(IdV ′).

By the commutativity of the blocks in in the diagram,

(s′′ ◦ k−1
V V ′)(B) = ([B ⊗ IdV ∗ ] ◦ s ◦ k−1

V V )(IdV )(4.11)

= ([IdV ′ ⊗B∗] ◦ s′ ◦ k−1
V ′V ′)(IdV ′).
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In this second diagram, the commutativity of the center left block is the claim of
the Theorem.

End(V )⊗ U

K⊗ U

lU

��

[Q1
1⊗IdU ]

��                
V ∗ ⊗ V ⊗ U

[kV V ⊗IdU ]

��

[s⊗IdU ]

��
V ⊗ V ∗ ⊗ U

[IdV ⊗kV U ]

��
[B⊗[IdV ∗⊗A]]

��		
			

			
			

			
			

			
			

		

U

A

��

ηUV

�� V ⊗ Hom(V, U)

[B⊗Hom(IdV ,A)]

��
V ′ ⊗ Hom(V, U ′) V ′ ⊗ V ∗ ⊗ U ′

[IdV ′⊗kV U′ ]
��

U ′ ηU′V ′ �� V ′ ⊗Hom(V ′, U ′)

[IdV ′⊗Hom(B,IdU′)]

��

V ′ ⊗ V ′∗ ⊗ U ′

[IdV ′⊗kV ′U′ ]

�� [IdV ′⊗[B∗⊗IdU′ ]]

���������������������������

K⊗ U ′

lU′

��

[Q̃1
1⊗IdU′ ] �����

����
����

����
� V ′∗ ⊗ V ′ ⊗ U ′

[s′⊗IdU′ ]

��

[kV ′V ′⊗IdU′ ]
��

End(V ′)⊗ U ′

The upper and lower left blocks are from the definition of the ηUV , ηU ′V ′ maps from
Notation 4.44, and the right blocks are commutative by Lemma 1.36 and Lemma
1.62. So to establish the claim it is enough to check that these two paths from U
to V ′ ⊗ V ∗ ⊗ U ′ define the same composite.

[B ⊗ [IdV ∗ ⊗A]] ◦ [s⊗ IdU ] ◦ [k−1
V V ⊗ IdU ] ◦ [Q1

1 ⊗ IdU ] ◦ l−1
U :(4.12)

u �→ ([B ⊗ [IdV ∗ ⊗A]] ◦ [s⊗ IdU ] ◦ [k−1
V V ⊗ IdU ])(IdV ⊗ u)

= (([B ⊗ IdV ∗ ] ◦ s ◦ k−1
V V )(IdV ))⊗ (A(u)),

[IdV ′ ⊗ [B∗ ⊗ IdU ′ ]] ◦ [s′ ◦ IdU ′ ] ◦ [k−1
V ′V ′ ⊗ IdU ′ ] ◦ [Q̃1

1 ⊗ IdU ′ ] ◦ l−1
U ′ ◦A :(4.13)

u �→ ([IdV ′ ⊗ [B∗ ⊗ IdU ′ ]] ◦ [s′ ◦ IdU ′ ] ◦ [k−1
V ′V ′ ⊗ IdU ′ ])(IdV ′ ⊗ (A(u)))

= (([IdV ′ ⊗B∗] ◦ s′ ◦ k−1
V ′V ′)(IdV ′))⊗ (A(u)).

The maps (4.12) and (4.13) are equal by (4.11).

The following pair of Theorems are analogues of Theorem 2.96; the idea is that
ηV U and EvV W satisfy identities analogous to the abstractly defined evaluation
and coevaluation maps as in Definition 2.97. Theorem 4.49 uses the transpose for
vector valued forms from Definition 4.2.
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Theorem 4.48. For any U and V , if V is finite-dimensional then the following
composite is equal to a switching map:

[IdV ⊗ EvV U ] ◦ [ηV U ⊗ IdV ] = s0 : U ⊗ V → V ⊗ U.

Proof. The claim is analogous to the first identity from Theorem 2.96, and
the proof is also analogous. The labeling V = V1 = V2 = V3 is introduced to track
the action of the switching s maps. The upper and middle left squares are from
the diagram from Notation 4.44. The claim is that the lower left triangle in the
following diagram is commutative.

Hom(V2, V1)⊗ U ⊗ V3 V ∗
2 ⊗ V1 ⊗ U ⊗ V3

[IdV ∗⊗s−1
4 ]

��

[[s⊗IdU ]⊗IdV ]

��

[[k⊗IdU ]⊗IdV ]
�� V ∗

2 ⊗ V3 ⊗ V1 ⊗ U

[EvV ⊗IdV ⊗U ]

��

K⊗ U ⊗ V3

[[Q1
1⊗IdU ]⊗IdV ]

��

[[ηV ⊗IdU ]⊗IdV ]��

[lU⊗IdV ]

��

V1 ⊗ V ∗
2 ⊗ U ⊗ V3

[[IdV ⊗kV U ]⊗IdV ]

��
U ⊗ V3

[ηV U⊗IdV ] ��

s0

�����
����

����
����

����
� V1 ⊗Hom(V2, U)⊗ V3

[IdV ⊗EvV U ]

��

K⊗ V1 ⊗ U

lV ⊗U""    
    

    
    

 

V ⊗ U

The commutativity of the right block is easy to check, where the switching map s4
is as in Theorem 2.87 and Corollary 2.88. The composition starting at U ⊗ V in
the lower left and going all the way around the diagram clockwise to V ⊗ U is the
trace, as in Theorem 2.69, of s−1

4 , and the computation of Example 2.92 applies.

[IdV ⊗ EvV U ] ◦ [ηV U ⊗ IdV ]

= lV⊗U ◦ [EvV ⊗ IdV ⊗U ] ◦ [IdV ∗ ⊗ s−1
4 ] ◦ [(k−1 ◦Q1

1)⊗ IdU⊗V ] ◦ [l−1
U ⊗ IdV ]

= TrV ;U⊗V,V⊗U (s
−1
4 ) = s−1

3 = s0.

Theorem 4.49. For any U and V , if V is finite-dimensional, then the n maps
indicated in the following diagram are invertible,

Hom(V, U)
Hom(IdV ,ηV U )�� Hom(V, V ⊗Hom(V, U)) Hom(V,Hom(V, U))⊗ Vn1

��

[TV ;U⊗IdV ]

��
Hom(V,Hom(V, U)⊗ V )

Hom(IdV ,EvV U )

��&&&&&&&&&&&&&&&&&&
Hom(V,Hom(V, U))⊗ Vn2

��

and the diagram is commutative in the sense that this composite map is equal to
the identity map:

Hom(IdV , EvV U ) ◦ n2 ◦ [TV ;U ⊗ IdV ] ◦ n−1
1 ◦Hom(IdV , ηV U ) = IdHom(V,U).

Proof. The claim is analogous to the second identity from Theorem 2.96, and
the overall proof is also analogous. As in the Proof of Theorem 4.48, the labeling
V = V1 = V2 = V3 is introduced to track the action of the n, p, and s maps in this
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“main diagram.”

V ∗
1 ⊗ U

kV U

""
















K⊗ V ∗
1 ⊗ U

lV ∗⊗U

��

[Q1
1⊗IdV ∗⊗U ]

��
Hom(V1, U)

Hom(IdV ,ηV U )

��

V ∗
2 ⊗ V3 ⊗ V ∗

1 ⊗ U
[k⊗IdV ∗⊗U ]

��

[p⊗IdV ∗⊗U ]

1100
00

00
00

00
00

00
00

00
00

00
00

Hom(V2,V3)⊗ V ∗
1 ⊗U

[t⊗IdV ∗⊗U ]

��
Hom(V1, V3⊗Hom(V2, U)) V ∗

1 ⊗ V3 ⊗ V ∗
2 ⊗ U

a1

��

[s′′⊗IdU ]

��

s1

��

Hom(V ∗
3 ,V

∗
2 )⊗ V ∗

1 ⊗U

Hom(V1,Hom(V2, U))⊗ V3

n1

��

[TV ;U⊗IdV ]

��

V ∗
2 ⊗ V ∗

1 ⊗ U ⊗ V3

a2

�����
���

���
���

���
���

���
���

� p′
�� V ∗∗

3 ⊗ V ∗
2 ⊗ V ∗

1 ⊗ U

[IdV ∗∗⊗s4]

��

[k′⊗IdV ∗⊗U ]

��

Hom(V2,Hom(V1, U))⊗ V3

n2

��

V ∗∗
3 ⊗ V ∗

1 ⊗ U ⊗ V ∗
2

[EvV ∗⊗IdU⊗V ∗ ]

��
Hom(V2,Hom(V1, U)⊗ V3)

Hom(IdV ,EvV U )

��

K⊗ U ⊗ V ∗
2

lU⊗V ∗

��
Hom(V2, U) V ∗

2 ⊗ U
kV U

�� U ⊗ V ∗
2

s−1
3

��

The abbreviations tV V = t, kV V = k, kV ∗V ∗ = k′, and the map p are as in the
notation from Lemma 2.5. The switching involution s′′ appeared in Lemma 2.84.
The composite t ◦ Q1

1 : K → End(V ∗) is equal to another inclusion, temporarily

denoted Q̃1
1, that maps 1 to IdV ∗ = Id∗V = t(IdV ) as in Equation (2.4). So, the

composition in the right column is the trace, as in Theorem 2.69, of s4, and the
computation of Example 2.91 applies:

lU⊗V ∗ ◦ [EvV ∗ ⊗ IdU⊗V ∗ ] ◦ [IdV ∗∗ ⊗ s4] ◦ [((k′)−1 ◦ Q̃1
1)⊗ IdV ∗⊗U ] ◦ l−1

V ∗⊗U

= TrV ;V ∗⊗U,U⊗V ∗(s4) = s3.

The p, k, and n maps are invertible by the finite-dimensionality of V ; in the right
center block, the triangle with k, t, and p is commutative by Lemma 1.75, and it
is easy to check that the other triangle with p′ is also commutative. The claim
of the Theorem is that the composition in the left column gives the identity map;
this will follow if we can find a1 and a2 as indicated that make the main diagram
commutative.

The following maps, and s1 in the above diagram, are from Lemma 4.10, in the
case V = V1 = V2 = V3, U =W :

a1 = Hom(IdV , [IdV ⊗ kV U ]) ◦ kV,V⊗V ∗⊗U

a2 = Hom(IdV , [kV U ⊗ IdV ]) ◦ kV,V ∗⊗U⊗V .
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The commutativity of the left center block then follows from Lemma 4.10, so to
prove the Theorem it only remains to show that these maps a1, a2 make the upper
and lower blocks of the main diagram commutative.

To check the lower block, start with ψ ⊗ φ ⊗ u ⊗ v ∈ V ∗ ⊗ V ∗ ⊗ U ⊗ V at its
top, and w ∈ V .

Hom(IdV , EvV U ) ◦Hom(IdV , [kV U ⊗ IdV ]) ◦ kV,V ∗⊗U⊗V :

ψ ⊗ φ⊗ u⊗ v �→ EvV U ◦ [kV U ⊗ IdV ] ◦ (kV,V ∗⊗U⊗V (ψ ⊗ φ⊗ u⊗ v)) :

w �→ EvV U ([kV U ⊗ IdV ](ψ(w) · φ⊗ u⊗ v))

= EvV U (ψ(w) · (kV U (φ ⊗ u))⊗ v) = ψ(w) · φ(v) · u,
kV U ◦ s−1

3 ◦ lU⊗V ∗ ◦ [EvV ∗ ⊗ IdU⊗V ∗ ] ◦ [IdV ∗∗ ⊗ s4] ◦ p′ :
ψ ⊗ φ⊗ u⊗ v �→ (kV U ◦ s−1

3 ◦ lU⊗V ∗ ◦ [EvV ∗ ⊗ IdU⊗V ∗ ])((dV (v)) ⊗ φ⊗ u⊗ ψ)

= (kV U ◦ s−1
3 )(φ(v) · u⊗ ψ) = φ(v) · kV U (ψ ⊗ u) :

w �→ φ(v) · ψ(w) · u.

In the following diagram, the two lower right commutative squares are from
the definition of ηV U .

V ∗
2 ⊗ V3 ⊗ V ∗

1 ⊗ U

[k⊗IdV ∗⊗U ]

��
Hom(V2, V3)⊗ V ∗

1 ⊗ U

[s5⊗IdU ]

��

V ∗
1 ⊗ V3 ⊗ V ∗

2 ⊗ U

[s′′⊗IdU ]
��&&&&&&&&&&&&&&&&&&&

kV,V ⊗V ∗⊗U

��
K⊗ V ∗

1 ⊗ U

lV ∗⊗U

��

[Q1
1⊗IdV ∗⊗U ]

$$               
V ∗
1 ⊗Hom(V2, V3)⊗ U

kV,End(V )⊗U

��

Hom(V, V3 ⊗ V ∗
2 ⊗ U)

Hom(V1,Hom(V2, V3)⊗ U) Hom(V1, V
∗
2 ⊗ V3 ⊗ U)

Hom(IdV ,[k⊗IdU ])
��

Hom(IdV ,[s⊗IdU ])

��

Hom(IdV ,[s⊗IdU ])

��

V ∗
1 ⊗ U

kV U �����
����

����
����

� Hom(V1,K⊗ U)
Hom(IdV ,[ηV ⊗IdU ])

��

Hom(IdV ,lU )

��

Hom(IdV ,[Q1
1⊗IdU ])

��

Hom(V1, V3 ⊗ V ∗
2 ⊗ U)

Hom(IdV ,[IdV ⊗kV U ])

��
Hom(V1, U)

Hom(IdV ,ηV U )
�� Hom(V1, V3 ⊗Hom(V2, U))

To check the commutativity of the upper right block, start with φ ⊗ v ⊗ ψ ⊗ u ∈
V ∗
1 ⊗ V3 ⊗ V ∗

2 ⊗ U and w ∈ V :

Hom(IdV , [k ⊗ IdU ]) ◦Hom(IdV , [s
−1 ⊗ IdU ]) ◦ kV,V ⊗V ∗⊗U :

φ⊗ v ⊗ ψ ⊗ u �→ [(k ◦ s−1)⊗ IdU ] ◦ (kV,V⊗V ∗⊗U (φ⊗ v ⊗ ψ ⊗ u)) :

w �→ [(k ◦ s−1)⊗ IdU ](φ(w) · v ⊗ ψ ⊗ u) = φ(w) · (k(ψ ⊗ v))⊗ u,

kV,End(V )⊗U ◦ [s5 ⊗ IdU ] ◦ [k ⊗ IdV ∗⊗U ] ◦ [s′′ ⊗ IdU ] :

φ⊗ v ⊗ ψ ⊗ u �→ kV,End(V )⊗U (φ⊗ (k(ψ ⊗ v))⊗ u) :

w �→ φ(w) · (k(ψ ⊗ v))⊗ u.
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To check the commutativity of the left block, start with α⊗ φ⊗ u ∈ K⊗ V ∗ ⊗ U :

kV,End(V )⊗U ◦ [s5 ⊗ IdU ] ◦ [Q1
1 ⊗ IdV ∗⊗U ] :

α⊗ φ⊗ u �→ kV,End(V )⊗U (φ⊗ (α · IdV )⊗ u) :

v �→ (φ(v)) · (α · IdV )⊗ u,

Hom(IdV , [Q
1
1 ⊗ IdU ]) ◦Hom(IdV , l

−1
U ) ◦ kV U ◦ lV ∗⊗U :

α⊗ φ⊗ u �→ [Q1
1 ⊗ IdU ] ◦ l−1

U ◦ (kV U (α · φ⊗ u)) :

v �→ (α · φ(v)) · IdV ⊗ u.

The downward composite of the four arrows in the right column equals the previ-
ously defined a1. So, the above calculation is enough to establish the commutativity
of the top block in the main diagram:

Hom(IdV , ηV U ) ◦ kV U = a1 ◦ [(s′′)−1 ⊗ IdU ] ◦ [(k−1 ◦Q1
1)⊗ IdV ∗⊗U ] ◦ l−1

V ∗⊗U .

As mentioned earlier, this proves the claim of the Theorem.
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4.5. Topics and applications

4.5.1. Quadratic forms.

Proposition 4.50. Given vector spaces V , W , and a function q : V � W , if
1
2 ∈ K then the following are equivalent.

(1) There exists a symmetric W -valued form h1 : V → Hom(V,W ) such that
for all v ∈ V ,

q(v) = (h1(v))(v).

(2) There exists a W -valued bilinear form h2 : V → Hom(V,W ) such that for
all v ∈ V ,

q(v) = (h2(v))(v).

(3) There exists a bilinear function B1 : V × V �W such that for all v ∈ V ,

q(v) = B1(v, v).

(4) For any α ∈ K and v ∈ V , q(α · v) = α2 · q(v), and the function B2 :
V × V � W defined by

B2(u, v) = q(u+ v)− q(u)− q(v)

is bilinear.
(5) For any α ∈ K and v ∈ V , q(α · v) = α2 · q(v), and the function B3 :

V × V � W defined by

B3(u, v) = q(u) + q(v)− q(u− v)

is bilinear.
(6) For any α ∈ K and v ∈ V , q(α · v) = α2 · q(v), and the function B4 :

V × V � W defined by

B4(u, v) = q(u+ v)− q(u− v)

is bilinear.
(7) For all u, v ∈ V , q satisfies:

(4.14) q(u+ v) + q(u− v) = 2 · q(u) + 2 · q(v),
and the function B4 : V × V �W defined by

B4(u, v) = q(u+ v)− q(u− v)

satisfies, for all α ∈ K, B4(α · u, v) = α ·B4(u, v).

Proof. As in Notation 0.41, the� arrow symbol refers to functions which are
not necessarily linear. The functions B1, . . . , B4 are bilinear as in Definition 1.23.

The implication (1) =⇒ (2) is trivial. For (2) =⇒ (3), define B1 by
B1(u, v) = (h2(u))(v), and similarly for (3) =⇒ (2), define h2 by the formula
h2(u) : v �→ B1(u, v). The correspondence between h2 and B1 is a W -valued
version of the construction from Example 1.55.

Now, assuming (3), so that B1 is bilinear and q(v) = B1(v, v), the first property
from (4), (5) and (6) is immediate:

q(α · v) = B1(α · v, α · v) = α2 · B1(v, v) = α2 · q(v).
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Expanding B2, B3, B4 in terms of B1:

B2(u, v) = q(u+ v)− q(u)− q(v)

= B1(u+ v, u + v)− B1(u, u)−B1(v, v)

= B1(u, v) +B1(v, u).

B3(u, v) = q(u) + q(v)− q(u− v)

= B1(u, u) +B1(v, v) −B1(u− v, u− v)

= B1(u, v) +B1(v, u).

B4(u, v) = q(u+ v)− q(u− v)

= B1(u+ v, u + v)− B1(u− v, u− v)

= B1(u, v) +B1(v, u) +B1(u, v) +B1(v, u).(4.15)

The bilinearity of B1 implies the bilinearity of B1(u, v) + B1(v, u), so (3) implies
(4), (5), and (6). The relation B4 = B2 + B3 also shows that any two of (4), (5),
and (6) together imply the third.

For (3) =⇒ (7), expanding (4.14) in terms of B1 shows LHS = RHS (a
related quantity already appeared in Proposition 3.125), and B4 is bilinear as in
(4.15).

So far, the implications have not yet used 1
2 ∈ K. To show (6) =⇒ (3), given

the bilinear form B4, define B1(u, v) =
(
1
2

)2 · B4(u, v), so that B1 is bilinear, and
for any v ∈ V ,

B1(v, v) =

(
1

2

)2

· (q(v + v)− q(v − v))

=

(
1

2

)2

· (q((1 + 1) · v)− q(0 · v))

=

(
1

2

)2

· ((1 + 1)2 · q(v)− 02 · q(v)) = q(v).(4.16)

Similar calculations using 1
2 ∈ K would directly show (4) =⇒ (3) and (5) =⇒ (3).

For (7) =⇒ (3), Equation (4.14) with u = v = 0V gives q(0V ) = 0W , and with
u = 0V gives q(−v) = q(v). Then

B4(v, u) = q(v + u)− q(v − u) = q(v + u)− q(u− v) = B4(u, v).

It follows that B4(u, α ·v) = B4(α ·v, u) = α ·B4(v, u) = α ·B4(u, v). The following
calculation shows that 2 ·B4 is additive in the first entry, using (4.14) in steps (4.18)
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and (4.20) and some add-and-subtract steps in (4.17) and (4.19).

2 ·B4(u1 + u2, v)

= 2 · q(u1 + u2 + v)− 2 · q(u1 + u2 − v)

= 2 · q(u1 + u2 + v) + 2 · q(u1 − v)− 2 · q(u1 + u2 − v)− 2 · q(u1 + v)

+2 · q(u1 + v)− 2 · q(u1 − v)(4.17)

= q(2 · u1 + u2) + q(u2 + 2 · v)− q(2 · u1 + u2)− q(u2 − 2 · v)
+2 · q(u1 + v)− 2 · q(u1 − v)(4.18)

= q(u2 + 2 · v) + q(u2)− q(u2 − 2 · v)− q(u2)

+2 · q(u1 + v)− 2 · q(u1 − v)(4.19)

= 2 · q(u2 + v) + 2 · q(v)− 2 · q(u2 − v)− 2 · q(−v)
+2 · q(u1 + v)− 2 · q(u1 − v)(4.20)

= 2 ·B4(u1, v) + 2 · B4(u2, v).

By symmetry again, 2 · B4 is bilinear, and so is B1 =
(
1
2

)2 · B4. The following
calculation establishing (3) using (4.14) is different from (4.16):

B1(v, v) =

(
1

2

)2

· (q(v + v)− q(v − v))

=

(
1

2

)2

· (q(v + v) + q(v − v))

=

(
1

2

)2

· (2 · q(v) + 2 · q(v)) = q(v).

Finally, to show (2) =⇒ (1) using 1
2 ∈ K, let h1 be the symmetric part of h2

as in (3.2) and (4.6):

(h1(u))(v) =
1

2
· ((h2(u))(v) + (h2(v))(u))

=⇒ (h1(v))(v) =
1

2
· (q(v) + q(v)) = q(v).

Definition 4.51. Assuming 1
2 ∈ K, a function q : V � W satisfying any of

the equivalent properties from Proposition 4.50 is a W -valued quadratic form.

Remark 4.52. The equations from (4), (5), and (6) are known as polarization
formulas. Equation (4.14) from (7) is the parallelogram law for q. The case where
1
2 /∈ K is more complicated and not considered here; the remaining statements here

in Section 4.5.1 will all assume 1
2 ∈ K.

Exercise 4.53. Given a quadratic form q, the symmetric form h1 from Propo-
sition 4.50 is unique.

Hint. This is a statement about symmetric forms rather than quadratic forms:
the claim is that if h0 and h1 are both symmetric forms and (h0(v))(v) = (h1(v))(v)
for all v ∈ V , then h0 = h1. The hint is to expand (h0(u + v))(u + v) and use
1
2 ∈ K.
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Exercise 4.54. The set Q(V ;W ) ofW -valued quadratic forms on V is a vector
space. The map fV W defined by fVW : Q(V ;W ) → Sym(V ;W ) : q �→ h1 as in
Exercise 4.53 is linear and invertible.

Hint. Q(V ;W ) is a subspace of F(V,W ) as in Example 6.28.

Definition 4.55. For vector spaces U , V , W , define a linear map tWUV by:

tWUV : Hom(U, V ) → Hom(Q(V ;W ),Q(U ;W ))

H �→ (q �→ q ◦H).

Exercise 4.56. There are a few things to check in Definition 4.55: first, that
for H : U → V , the composite q ◦ H is a quadratic form, second, that tWUV (H) is
linear, and third, that tWUV is linear. Further, the following diagram is commutative.

Q(V ;W )
tWUV (H) ��

fV W

��

Q(U ;W )

fUW

��
Sym(V ;W ) ��

� �

��

Sym(U ;W )� �

��
Hom(V,Hom(V,W ))

Hom(H,Hom(H,IdW )) �� Hom(U,Hom(U,W ))

The middle horizontal arrow is the map induced by Hom(H,Hom(H, IdW )) as in
Lemma 4.17.

Hint. The linearity of tWUV (H) can be checked directly, but also follows from
the commutativity of the upper block in the diagram. It is enough to check the
commutativity of the large block from upper left to lower right; temporarily denote
the left inclusion QV and the right inclusion QU . For q with fV W (q) = h1,

Hom(H, IdW ) ◦ (QV (fV W (q))) ◦H : v �→ (h1(H(v))) ◦H :

u �→ (h1(H(v)))(H(u)).(4.21)

Then QU ◦ fUW ◦ (tWUV (H)) : q �→ QU (fUW (q ◦ H)) = h0 is the unique W -valued
bilinear form that is symmetric and that has the property (q ◦H)(u) = (h0(u))(u).
However, q(H(u)) = (h1(H(u)))(H(u)), so Hom(H,Hom(H, IdW ))(QV (h1)) from
(4.21) has both these properties and is equal to h0 by uniqueness, proving the

commutativity of the diagram.

Exercise 4.57. tWV V (IdV ) = IdQ (V ;W ). For H : U → V and A : V → X ,

tWUX(A ◦H) = tWUV (H) ◦ tWVX(A).

In particular, if H has a linear left (or right) inverse, then tWUV (H) has a linear right

(or left) inverse.

Proposition 4.58. ([HK] §10.2) Suppose U is finite-dimensional and W �=
{0W}. For H : U → U , the following are equivalent.

(1) tWUU (H) : Q(U ;W ) → Q(U ;W ) is one-to-one.
(2) H is invertible.
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Proof. The (2) =⇒ (1) direction follows from Exercise 4.57.
For the other direction, suppose, contrapositively, that H is not invertible; then

by Lemma 1.19 (which uses the finite-dimensional property of U), H∗ : U∗ → U∗ is
not invertible. By Claim 0.56 (using the finite-dimensional property of U∗), H∗ is
not one-to-one and there exists φ ∈ U∗ so that φ �= 0U∗ and H∗(φ) = φ ◦H = 0U∗ .
Pick any w ∈W with w �= 0W , and define a bilinear form

g = kU,Hom(U,W )(φ ⊗ (kUW (φ⊗ w))) ∈ Hom(U,Hom(U,W )).

g �= 0Hom(U,Hom(U,W )) because there is some x ∈ U with φ(x) �= 0, and

(g(x))(x) = (φ(x) · kUW (φ⊗ w))(x) = φ(x) · φ(x) · w �= 0W .

Also, g is symmetric:

(g(v1))(v2) = (φ(v1) · kUW (φ⊗ w))(v2) = φ(v1) · φ(v2) · w,
(g(v2))(v1) = (φ(v2) · kUW (φ⊗ w))(v1) = φ(v2) · φ(v1) · w.

q = f−1
UW (g) is the quadratic form q(v) = φ(v) · φ(v) · w, and again using v = x,

q �= 0Q (U ;W ).

However, tWUU (H) : q �→ q ◦H , and for any u ∈ U ,

(q ◦H)(u) = q(H(u)) = φ(H(u)) · φ(H(u)) · w = 0 · 0 · w = 0W .

So q ◦H = 0Q (U ;W ), and tWUU (H) is not one-to-one.

4.5.2. Algebras.

Definition 4.59. A vector space V together with a V -valued bilinear form
h : V → End(V ) is an algebra (V, h).

Definition 4.60. For any algebra (V, h) with V finite-dimensional, the canon-
ical metric (k∗)−1 ◦ e on End(V ) from Example 3.143 (and Equation (3.15)) pulls
back by h to give a scalar bilinear form on V , the Cartan-Killing form

κ = h∗ ◦ (k∗)−1 ◦ e ◦ h : v �→ κ(v) : u �→ TrV ((h(v)) ◦ (h(u))).
The CK form κ is symmetric by Lemma 4.17 (or Lemma 3.8 or Lemma 2.6),

but is not necessarily a metric on V .

Theorem 4.61. Given an algebra (V, h), suppose Q : U → V satisfies, for any
u ∈ U , v ∈ V ,

(4.22) (h(Q(u)))(v) ∈ Q(U).

If Q is one-to-one, then for any left inverse of Q, P : V � U ,

(4.23) h1 : U → End(U) : u �→ P ◦ (h(Q(u))) ◦Q
defines an algebra (U, h1), and h1 does not depend on the choice of P . If, further,
V is finite-dimensional, with CK form κ, then the CK form κ1 of (U, h1) is the
pullback of κ by Q.

Proof. Using P ◦Q = IdU and the property (4.22), for any u ∈ U and v ∈ V ,

(h(Q(u)))(v) ∈ Q(U)

=⇒ Q(P ((h(Q(u)))(v))) = (h(Q(u)))(v),

=⇒ Q ◦ P ◦ (h(Q(u))) = h(Q(u)).(4.24)
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Note that if P ′ : V � U is any other (not necessarily linear) left inverse of Q, then
composing P ′ with both sides of (4.24) gives, for all u ∈ U :

P ◦ (h(Q(u))) = P ′ ◦ (h(Q(u))),

so the expression (4.23) does not depend on the choice of P and defines h1 uniquely.
Further, because h(Q(u)) ∈ End(V ) has image contained in Q(U) by (4.22), the
composite P ◦ (h(Q(u))) : V → U is linear by Exercise 0.51, which justifies the use
of End(U) as the target space in (4.23). It remains to check that h1 is linear; for
u1, u2, u3 ∈ U ,

h1(u1 + u2) = P ◦ (h(Q(u1 + u2))) ◦Q
= P ◦ (h(Q(u1)) + h(Q(u2))) ◦Q :

u3 �→ P ((h(Q(u1)))(Q(u3)) + (h(Q(u2)))(Q(u3)))

= P ((h(Q(u1)))(Q(u3))) + P ((h(Q(u2)))(Q(u3))),(4.25)

= (h1(u1) + h1(u2))(u3).

where step (4.25) is from Equation (0.1) in Exercise 0.51. The scaling property
for h1 similarly follows from Exercise 0.51. The conclusion is that if Q : U → V
is one-to-one, then some left inverse exists (as in Exercise 0.48) and (U, h1) is an
algebra as claimed. If P is a linear left inverse, then the expression (4.23) can be
denoted h1 = Hom(Q,P ) ◦ h ◦Q.

For finite-dimensional V , U is also finite-dimensional (Exercise 0.50). The CK
form on U can be computed for u1, u2 ∈ U , using the linearity of the composites
P ◦ (h(Q(u1))) and P ◦ (h(Q(u2))) so that Lemma 2.6 applies in step (4.26), and
using Equation (4.24) in step (4.27):

(κ1(u1))(u2) = TrU ((P ◦ (h(Q(u1))) ◦Q) ◦ (P ◦ (h(Q(u2))) ◦Q))

= TrV ((Q ◦ P ◦ (h(Q(u1)))) ◦ (Q ◦ P ◦ (h(Q(u2)))))(4.26)

= TrV ((h(Q(u1))) ◦ (h(Q(u2))))(4.27)

= ((Q∗ ◦ κ ◦Q)(u1))(u2).

In particular, κ1 = Q∗ ◦ κ ◦Q also does not depend on P .

Remark 4.62. The above property (4.22) represents the notion of an ideal of
the algebra (V, h). The next Theorem describes an algebra which is a direct sum
of ideals.

Theorem 4.63. Given an algebra (V, h), suppose there is a direct sum V = U1⊕
U2, with projections (P1, P2) and inclusions (Q1, Q2). The following are equivalent.

(1) h respects the direct sums

U1 ⊕ U2 → Hom(V, U1)⊕Hom(V, U2).

(2) For both i = 1, 2, and all u ∈ Ui, v ∈ V ,

(h(Qi(u)))(v) ∈ Qi(Ui).

Proof. In (1), the direct sum is as in Example 1.82, so the assumption is

h ◦Qi ◦ Pi = Hom(IdV , Qi) ◦Hom(IdV , Pi) ◦ h.
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For any u ∈ Ui, v ∈ V ,

h(Qi(u)) = h(Qi(Pi(Qi(u))))

= Qi ◦ Pi ◦ (h(Qi(u))) :

v �→ Qi(Pi((h(Qi(u)))(v))) ∈ Qi(Ui),

so (1) =⇒ (2). Conversely, assuming (2), for u ∈ Ui, v ∈ V , and different indices
i �= I,

(h(Qi(u)))(v) ∈ Qi(Ui)

=⇒ (h(Qi(u)))(v) = Qi(Pi((h(Qi(u)))(v)))

=⇒ h(Qi(u)) = Qi ◦ Pi ◦ (h(Qi(u)))

=⇒ h ◦Qi = Hom(IdV , Qi ◦ Pi) ◦ h ◦Qi

=⇒ Hom(IdV , PI) ◦ h ◦Qi = Hom(IdV , PI) ◦Hom(IdV , Qi ◦ Pi) ◦ h ◦Qi

= 0Hom(Ui,Hom(V,UI)),

so by Lemma 1.87, h respects the direct sums as in (1).

For a direct sum as in Theorem 4.63, Theorem 4.61 applies, so that each Ui

has an algebra structure (Ui, hi), and if V is finite-dimensional, then each (Ui, hi)
has CK form κi = Q∗

i ◦ κ ◦Qi.

Theorem 4.64. For an algebra (V, h), the following are equivalent.

(1) For all u, v, w ∈ V ,

(h(u))((h(v))(w)) = (h((h(u))(v)))(w).

(2) For any u ∈ V , this diagram is commutative.

V
h(u) ��

h
��

V

h
��

End(V )
Hom(IdV ,h(u))�� End(V )

Proof. (1) is equivalent to: for all u, v,

(h(u)) ◦ (h(v)) = h((h(u))(v)),

which is equivalent to Hom(IdV , h(u)) ◦ h = h ◦ (h(u)) for all u, which is (2).

Definition 4.65. An algebra (V, h) satisfying either equivalent property from
Theorem 4.64 is an associative algebra.

Example 4.66. The generalized transpose from Definition 1.7 and Example
1.53,

tVV V : End(V ) → End(End(V )) : A �→ Hom(A, IdV ) : B �→ B ◦A,
defines an associative algebra (End(V ), tVV V ). Using Corollary 2.37,

(κ(A))(B) = TrEnd(V )((t
V
V V (A)) ◦ (tVV V (B)))

= TrEnd(V )(Hom(A, IdV ) ◦Hom(B, IdV ))

= TrEnd(V )(Hom(B ◦A, IdV ))
= TrV (B ◦A) · TrV (IdV ),
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so the form κ for the algebra (End(V ), tVV V ) is a scalar multiple of the canonical
metric from Example 3.143.

Definition 4.67. For any vector space V , define the linear map ad,

ad : End(V ) → End(End(V )) :

A �→ Hom(IdV , A)−Hom(A, IdV ) :

B �→ A ◦B −B ◦A.
Theorem 4.68. For an algebra (V, h), if h is antisymmetric then the following

are equivalent.

(1) For all u, v, w ∈ V ,

(h((h(v))(w)))(u) + (h((h(w))(u)))(v) + (h((h(u))(v)))(w) = 0V .

(2) For any v ∈ V , this diagram is commutative.

V
h(v) ��

h

��

V

h

��
End(V )

ad(h(v)) �� End(V )

Proof. The first property is the Jacobi identity for h. In (2), the map ad :

End(V ) → End(End(V )) is as in Definition 4.67. Using the antisymmetric property,
(1) is equivalent to

(h((h(v))(w)))(u) = (h(v))((h(w))(u)) − (h(w))((h(v))(u))

for all u, v, w, which is equivalent to, for all v, w,

h((h(v))(w)) = (h(v)) ◦ (h(w)) − (h(w)) ◦ (h(v))
= (ad(h(v)))(h(w)).

This is equivalent to h ◦ (h(v)) = (ad(h(v))) ◦ h for all v, which is (2).

Definition 4.69. An algebra (V, h) with h antisymmetric and satisfying either
equivalent property from Theorem 4.68 is a Lie algebra.

Exercise 4.70. If 1
2 ∈ K and h : V → End(V ) satisfies (1) from Theorem 4.64,

then its antisymmetric part 1
2 (h− TV ;V (h)) from (4.7) satisfies (1) from Theorem

4.68. Similarly, h − TV ;V (h) satisfies the Jacobi identity even without assuming
1
2 ∈ K. So for any associative algebra (V, h), there is a Lie algebra (V, h−TV ;V (h)).

Example 4.71. (End(V ), ad) is a Lie algebra. This uses the construction of
Exercise 4.70 applied to (End(V ), tVV V ) from Example 4.66, although with the op-
posite sign, so that ad = TV ;V (t

V
V V ) − tVV V . For finite-dimensional V , the form κ

is the pullback of the canonical metric on End(End(V )) (from Equation (3.16)) by
ad (or by its opposite, −ad),

κ = (±ad)∗ ◦ (k∗End(V ),End(V ))
−1 ◦ eEnd(V ),End(V ) ◦ (±ad).
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Using Equation (3.15), Lemma 2.6, and Corollary 2.37,

(κ(A))(B) = TrEnd(V )((ad(A)) ◦ (ad(B)))(4.28)

= TrEnd(V )((Hom(IdV , A)−Hom(A, IdV )) ◦ (Hom(IdV , B)−Hom(B, IdV )))

= TrEnd(V )(Hom(IdV , A ◦B)−Hom(A,B)−Hom(B,A) + Hom(B◦A, IdV ))
= 2 · TrV (IdV ) · TrV (A ◦B)− 2 · TrV (A) · TrV (B).

Example 4.72. Direct sums of ideals as in Theorem 4.63 are considered in the
Lie algebra case by [Humphreys] §II.5. If V is finite-dimensional and TrV (IdV ) �=
0, then Theorem 4.61 applies to the Lie algebra (End(V ), ad) and the direct sum
End(V ) = K⊕End0(V ) from Example 2.9. The corresponding CK forms are κ1 =
0Hom(K,K∗) and κ2 = Q∗

2 ◦ κ ◦Q2, so that for trace 0 elements A, B ∈ End0(V ), the
pullback of (4.28) by the inclusion Q2 gives (κ2(A))(B) = 2 ·TrV (IdV )·TrV (A◦B).

Example 4.73. For a vector space U , with 1
2 ∈ K, and a metric g : U → U∗,

recall from Definition 3.116 the direct sum on End(U) produced by the involution
Hom(g, g−1)◦t, defining subspaces of self-adjoint and skew-adjoint endomorphisms,
temporarily denoted here by:

End(U) = sa⊕ so

= {A = g−1 ◦A∗ ◦ g} ⊕ {A = −g−1 ◦A∗ ◦ g}.
Let (P1, P2), (Q1, Q2) denote the projection and inclusions for the direct sum. Then
with Hom(Q2, P2)◦ad◦Q2 : so → End(so) as in (4.23), (so,Hom(Q2, P2)◦ad◦Q2)
is a Lie algebra. It is a subalgebra, but not an ideal, of (End(U), ad), so Theorem
4.61 and Theorem 4.63 do not apply.

Definition 4.74. An algebra (V, h) is a one-sided division algebra means that
for every v �= 0V , h(v) is invertible. (V, h) is a two-sided division algebra means

that for every v �= 0V , both h(v) and (TV ;V (h))(v) are invertible.

4.5.3. Curvature tensors.

Example 4.75. Consider V with a metric g, and an End(V )-valued bilinear
form R ∈ Hom(V,Hom(V,End(V ))).

If 1
2 ∈ K and R satisfies

(4.29) TV ;End(V )(R) = −R
so that R ∈ Alt(V ; End(V )), then by Corollary 4.32,

Trg;End(V )(R) = 0End(V ).

If 1
2 ∈ K and R satisfies

(4.30) Hom(IdV ,Hom(IdV ,Hom(g, g−1) ◦ t))(R) = −R
so that for any u, v ∈ V ,

(R(u))(v) = −g−1 ◦ ((R(u))(v))∗ ◦ g ∈ End(V ),

then (R(u))(v) is skew-adjoint with respect to g and, as in Exercise 3.119,

Hom(IdV ,Hom(IdV , T rV ))(R) : u �→
((Hom(IdV , T rV )) ◦R)(u) : v �→ (TrV ◦ (R(u)))(v)

= TrV ((R(u))(v)) = 0

=⇒ Hom(IdV ,Hom(IdV , T rV ))(R) = 0Hom(V,V ∗).(4.31)
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There is another trace that is not necessarily zero even under both of the above
conditions. Define:

Ric = (Hom(IdV ,Hom(IdV , T rV )) ◦Hom(IdV , TV ;V )) (R) ∈ Hom(V, V ∗).

If TrV (IdV ) �= 0, then Theorem 3.35 and Theorem 3.53 apply — there is a canon-
ical, orthogonal decomposition:

(4.32) Ric =
Trg(Ric)

TrV (IdV )
· g +

(
Ric− Trg(Ric)

TrV (IdV )
· g
)
.

Remark 4.76. For a smooth manifold where V is a tangent vector space over
K = R and g is a pseudo-Riemannian metric, the linear algebra properties of the
Riemann curvature tensor Ri

qkl at a point are modeled by a form R as in Example

4.75, with the symmetries (4.29), (4.30), and (4.33). Its trace Ric is the Ricci
curvature tensor, and Trg(Ric) from (4.32) is the scalar curvature. See [DFN] §30.

Remark 4.77. The second term from (4.32) is the trace-free Ricci tensor.
There are other interesting linear combinations of Ric and g, including the trace-
reversed Ricci tensor,

Ric− 2 · Trg(Ric)
TrV (IdV )

· g,

and the Einstein tensor,

Ric− 1

2
· Trg(Ric) · g.

Proposition 4.78. If 1
2 ∈ K and R ∈ Hom(V,Hom(V,End(V ))) satisfies

(4.29) and (4.31), and additionally has the property

(4.33) (TV ;End(V ) ◦Hom(IdV , TV ;V ) + Hom(IdV , TV ;V ) ◦ TV ;End(V ))(R) = −R,
then Ric is symmetric.

Proof. Using Lemma 4.6 and Equations (4.33), (4.31), and (4.29),

TV (Ric) = (TV ;K ◦Hom(IdV ,Hom(IdV , T rV )) ◦Hom(IdV , TV ;V ))(R)

= (Hom(IdV ,Hom(IdV , T rV )) ◦ TV ;End(V ) ◦Hom(IdV , TV ;V ))(R)

= −Hom(IdV ,Hom(IdV , T rV ))(R)

−(Hom(IdV ,Hom(IdV , T rV )) ◦Hom(IdV , TV ;V ) ◦ TV ;End(V ))(R)

= −0Hom(V,V ∗)

−(Hom(IdV ,Hom(IdV , T rV )) ◦Hom(IdV , TV ;V ))(−R) = Ric.

If, further, TrV (IdV ) �= 0, then it follows that the second, trace-free term in (4.32)

is also symmetric.

Remark 4.79. The lowered-index curvature tensor Riqkl is modeled by the
multilinear form R′ in the following Example 4.80. Then Proposition 4.81 demon-
strates the symmetry property Riqkl = Rkliq .

Example 4.80. For V , g, and R ∈ Hom(V,Hom(V,End(V ))) as in Example
4.75, define

R′ = Hom(IdV ,Hom(IdV ,Hom(IdV , g)))(R) ∈ Hom(V,Hom(V,Hom(V, V ∗))),
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so that for u, v ∈ V , (R′(u))(v) = g ◦ ((R(u))(v)) : V → V ∗. As in Theorem 3.115
and Example 3.117, if 1

2 ∈ K and (R(u))(v) is skew-adjoint then (R′(u))(v) is an
antisymmetric form, so if R has property (4.30) then R′ satisfies

(4.34) Hom(IdV ,Hom(IdV , TV ))(R
′) = −R′.

By Lemma 4.6,

Hom(IdV ,Hom(IdV ,Hom(IdV , g))) ◦ TV ;End(V )

= TV ;Hom(V,V ∗) ◦Hom(IdV ,Hom(IdV ,Hom(IdV , g))),

so if R has property (4.29), then R′ satisfies

(4.35) TV ;Hom(V,V ∗)(R
′) = −R′.

Similarly by Lemma 4.6,

Hom(IdV ,Hom(IdV ,Hom(IdV , g))) ◦Hom(IdV , TV ;V )

= Hom(IdV , TV ;V ∗) ◦Hom(IdV ,Hom(IdV ,Hom(IdV , g))),

so if R has property (4.33), then R′ satisfies
(4.36)
(TV ;Hom(V,V ∗) ◦Hom(IdV , TV ;V ∗) + Hom(IdV , TV ;V ∗) ◦ TV ;Hom(V,V ∗))(R

′) = −R′.

Proposition 4.81. If 1
2 ∈ K and R′ ∈ Hom(V,Hom(V,Hom(V, V ∗))) satisfies

(4.34), (4.35), and (4.36), then R′ is a fixed point of the involution
(4.37)
Hom(IdV , TV ;V ∗) ◦ TV ;Hom(V,V ∗) ◦Hom(IdV ,Hom(IdV , TV )) ◦Hom(IdV , TV ;V ∗).

Proof. Temporarily denote the involutions:

a1 = TV ;Hom(V,V ∗)

a2 = Hom(IdV , TV ;V ∗)

a3 = Hom(IdV ,Hom(IdV , TV )).

Properties (4.34) and (4.35) then can be stated:

(4.38) a1(R
′) = a3(R

′) = −R′.

By Lemma 4.6, a1 ◦ a3 = a3 ◦ a1, and this is enough to show that the composite
a2 ◦ a1 ◦ a3 ◦ a2 from (4.37) is an involution. Lemma 4.12 gives the relations:

a2 ◦ a1 ◦ a2 = a1 ◦ a2 ◦ a1
a3 ◦ a2 ◦ a3 = a2 ◦ a3 ◦ a2.

Starting with property (4.36), applying a3 to both sides, and then using (4.38)
gives:

(a1 ◦ a2 + a2 ◦ a1)(R′) = −R′(4.39)

=⇒ (a3 ◦ a1 ◦ a2 + a3 ◦ a2 ◦ a1)(R′) = a3(−R′)
(a1 ◦ a2 ◦ a3 ◦ a2 ◦ a3 + a2 ◦ a3 ◦ a2 ◦ a3 ◦ a1)(R′) = R′

=⇒ (a1 ◦ a2 ◦ a3 ◦ a2 + a2 ◦ a3 ◦ a2 ◦ a3)(R′) = −R′.(4.40)

Applying a2 ◦ a1 ◦ a3 ◦ a2 to both sides of (4.39) gives:

(a2 ◦ a1 ◦ a3 ◦ a2 ◦ a1 ◦ a2)(R′)
+(a2 ◦ a1 ◦ a3 ◦ a2 ◦ a2 ◦ a1)(R′) = (a2 ◦ a1 ◦ a3 ◦ a2)(−R′)
(a2 ◦ a3 ◦ a2 ◦ a1 + a2 ◦ a1)(R′) = −(a2 ◦ a1 ◦ a3 ◦ a2)(R′).(4.41)
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Applying a1 to both sides of (4.41) gives:

(a1 ◦ a2 ◦ a3 ◦ a2 ◦ a1 + a1 ◦ a2 ◦ a1)(R′) = −(a1 ◦ a2 ◦ a1 ◦ a3 ◦ a2)(R′)
(a1 ◦ a2 ◦ a3 ◦ a2 + a1 ◦ a2)(−R′) = −(a2 ◦ a1 ◦ a2 ◦ a3 ◦ a2)(R′)

=⇒ (a1 ◦ a2 ◦ a3 ◦ a2 + a1 ◦ a2)(R′) = −(a2 ◦ a1 ◦ a3 ◦ a2)(R′).(4.42)

Adding (4.39) and (4.40) and subtracting (4.41) and (4.42), there are cancellations
using (4.38) again, to get:

0Hom(V,Hom(V,Hom(V,V ∗))) = −2 ·R′ + 2 · (a2 ◦ a1 ◦ a3 ◦ a2)(R′),

which proves the claim.

4.5.4. Partially symmetric forms. A map A ⊗ V ⊗ V → F is called a
“trilinear F -form” in [EHM], and it is “partially symmetric” means that it is
invariant under switching of the V factors. Such forms, of course, lie in the scope
of these notes, and it will also be convenient to consider maps of the form

V ⊗ U → Hom(V,W ),

as in the vector valued forms of Sections 4.2 and 4.3, but with the domain twisted
by U . The two notions are related, as already seen in the Proof of Lemma 4.12.

Some of the statements in this Section will use variant q maps as in Notation
1.49. For arbitrary V , U , W , X , define

(4.43) q : Hom(X ⊗ U,Hom(V,W )) → Hom(V ⊗X ⊗ U,W )

so that for G : X ⊗ U → Hom(V,W ), v ∈ V , x ∈ X , and u ∈ U ,

q(G) : v ⊗ x⊗ u �→ (G(x ⊗ u))(v).

In the following Lemma, TV is the transpose map from Definition 3.2, and q1 is the
q map from (4.43) in the case X = V .

Lemma 4.82. The following diagram is commutative.

Hom(V,V ∗)⊗Hom(U,W )

j

��

[TV⊗IdHom(U,W )]�� Hom(V,V ∗)⊗Hom(U,W )

j

��
Hom(V ⊗ U, V ∗ ⊗W )

Hom(IdV ⊗U ,kV W )

��

Hom(V ⊗ U, V ∗ ⊗W )

Hom(IdV ⊗U ,kV W )

��
Hom(V ⊗ U,Hom(V,W ))

q1

��

Hom(V ⊗ U,Hom(V,W ))

q1

��
Hom(V ⊗ V ⊗ U,W )

Hom([s⊗IdU ],IdW ) �� Hom(V ⊗ V ⊗ U,W )

Proof. Without stating all the details, the upper part of the diagram is anal-
ogous to the diagram from Lemma 4.5, and the lower part is analogous to the

diagram from Lemma 4.1.

Definition 4.83. Define TV ;U,W ∈ End(Hom(V ⊗ U,Hom(V,W ))) by

TV ;U,W = q−1
1 ◦Hom([s⊗ IdU ], IdW ) ◦ q1.
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With this construction, the TV ;U,W maps are analogous to, but not a special
case of, the maps TV1,V2;W from Lemma 4.1 and Definition 4.2. If V is finite-
dimensional, then j and k in the above diagram are invertible, and by the Lemma,

TV ;U,W = Hom(IdV ⊗U , kV W ) ◦ j ◦ [TV ⊗ IdHom(U,W )] ◦ j−1 ◦Hom(IdV ⊗U , k
−1
VW ).

As in Section 4.2, TV ;U,W is an involution, and if 1
2 ∈ K, then it produces a di-

rect sum structure on Hom(V ⊗ U,Hom(V,W )), by Lemma 1.119. The other two
involutions in the above diagram also produce direct sums, and by Lemma 1.126,
the maps q1 and Hom(IdV ⊗U , kVW ) ◦ j respect these direct sums, although the
comments about Example 1.145 in Remark 4.14 apply here also.

Exercise 4.84. With respect to induced metrics, TV ;U,W is an isometry, and
if 1

2 ∈ K, then it produces an orthogonal direct sum.

Hint. Use Definition 4.83 to show TV ;U,W is a composition of isometries. Then

Lemma 3.55 applies, as in Theorem 4.39.

Definition 4.85. A map G : V ⊗ U → Hom(V,W ) is partially symmetric

means: TV ;U,W (G) = G. More generally, a map G : X ⊗ U → Hom(V,W ) is
partially symmetric with respect to a map H : V → X means that G ◦ [H ⊗ IdU ] :
V ⊗ U → Hom(V,W ) is partially symmetric.

Lemma 4.86. ([EHM]) For any V , U , W , X, and G : X ⊗ U → Hom(V,W ),
the following diagram is commutative.

K⊗X ⊗ U

[Q1
1⊗IdX⊗U ]

��

l �� X ⊗ U

G

��

End(V )⊗X ⊗ U

n

��
Hom(V, V ⊗X ⊗ U)

Hom(IdV ,q(G)) �� Hom(V,W )

V ∗ ⊗ V ⊗X ⊗ U
[IdV ∗⊗(q(G))] ��

kV,V ⊗X⊗U

��

V ∗ ⊗W

kV W

��

Proof. The lower square uses Lemma 1.62. In the upper square, the maps
are n as in Definition 1.40, and an inclusion Q1

1 : λ → λ · IdV as in Example 2.9
and Equation (2.4).

λ⊗ x⊗ u �→ (Hom(IdV , q(G)) ◦ n ◦ [Q1
1 ⊗ IdX⊗U ])(λ ⊗ x⊗ u)

= (q(G)) ◦ (n(λ · IdV ⊗ x⊗ u)) :

v �→ (q(G))(λ · v ⊗ x⊗ u)

= λ · (G(x ⊗ u))(v) = ((G ◦ l)(λ⊗ x⊗ u))(v).

Theorem 4.87. For any spaces U , V , W , X, Y , and any maps G : X ⊗ U →
Hom(V,W ), M : Y → X ⊗ U , the following are equivalent.

(q(G)) ◦ [IdV ⊗M ] = 0Hom(V ⊗Y,W )

⇐⇒ G ◦M = 0Hom(Y,Hom(V,W )).



192 4. VECTOR VALUED BILINEAR FORMS

Proof. Let q be the map from Equation (4.43), and let q2 be another such
map in the following diagram.

Hom(X ⊗ U,Hom(V,W ))
q ��

Hom(M,IdHom(V,W ))

��

Hom(V ⊗X ⊗ U,W )

Hom([IdV ⊗M ],IdW )

��
Hom(Y,Hom(V,W ))

q2 �� Hom(V ⊗ Y,W )

The diagram is commutative by Lemma 1.50. So, q2(G ◦M) = (q(G)) ◦ [IdV ⊗M ].
Since q2 is invertible (Lemma 1.47), G ◦M is zero if and only if its output under

q2 is also zero.

Example 4.88. Suppose there is some direct sum V ⊗ X ⊗ U = W1 ⊕W2,
with projections Pi : V ⊗X ⊗U →Wi. Then, for qi : Hom(X ⊗U,Hom(V,Wi)) →
Hom(V ⊗X ⊗ U,Wi) and M : Y → X ⊗ U ,

Pi ◦ [IdV ⊗M ] = 0Hom(V⊗Y,Wi) ⇐⇒ (q−1
i (Pi)) ◦M = 0Hom(Y,Hom(V,Wi)).

The following Theorem uses the the switching involution s as in Lemma 4.82,
and the direct sum V ⊗ V = S2V ⊕ Λ2V produced by s as in Example 1.124, with
projections (P1, P2) and inclusions (Q1, Q2).

Theorem 4.89. Let H : V → X, and suppose there is some direct sum

V ⊗X = Z1 ⊕ Z2

with operators P ′
i , Q

′
i, such that [IdV ⊗H ] : V ⊗ V → V ⊗ X respects the direct

sums and P ′
2 ◦ [IdV ⊗H ]◦Q2 : Λ

2V → Z2 is invertible. If G : X⊗U → Hom(V,W )
is partially symmetric with respect to H, then

q(G) = (q(G)) ◦ [(Q′
1 ◦ P ′

1)⊗ IdU ].

Proof. The following diagram is commutative by Lemma 1.50, where q1 is as
in Lemma 4.82.

Hom(X ⊗ U,Hom(V,W ))
q ��

Hom([H⊗IdU ],IdHom(V,W ))

��

Hom(V ⊗X ⊗ U,W )

Hom([IdV ⊗[H⊗IdU ]],IdW )

��
Hom(V ⊗ U,Hom(V,W ))

q1 �� Hom(V ⊗ V ⊗ U,W )

By the assumption about respecting the direct sum, P ′
I ◦ [IdV ⊗H ] ◦Qi is zero for

i �= I. Let P ′′
2 denote the projection 1

2 · (IdHom(V ⊗U,Hom(V,W )) −TV ;U,W ), so that if
G is partially symmetric with respect to H , then

0Hom(Λ2V⊗U,W ) = (q1(P
′′
2 (G ◦ [H ⊗ IdU ]))) ◦ [Q2 ⊗ IdU ]

= (
1

2
· q1(G ◦ [H ⊗ IdU ])) ◦ [Q2 ⊗ IdU ]

−(
1

2
· q1(G ◦ [H ⊗ IdU ])) ◦ [s⊗ IdU ] ◦ [Q2 ⊗ IdU ]

= (q1(G ◦ [H ⊗ IdU ])) ◦ [Q2 ⊗ IdU ] ◦ [P2 ⊗ IdU ] ◦ [Q2 ⊗ IdU ]

= (q(G)) ◦ [IdV ⊗ [H ⊗ IdU ]] ◦ [Q2 ⊗ IdU ]

= (q(G)) ◦ ([Q′
1 ⊗ IdU ] ◦ [P ′

1 ⊗ IdU ] + [Q′
2 ⊗ IdU ] ◦ [P ′

2 ⊗ IdU ])

◦[[IdV ⊗H ]⊗ IdU ] ◦ [Q2 ⊗ IdU ]

= (q(G)) ◦ [Q′
2⊗IdU ] ◦ [P ′

2⊗IdU ] ◦ [[IdV ⊗H ]⊗IdU ] ◦ [Q2⊗IdU ].
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Then, since [P ′
2 ⊗ IdU ] ◦ [[IdV ⊗H ]⊗ IdU ] ◦ [Q2 ⊗ IdU ] is invertible,

0Hom(Z2⊗U,W ) = (q(G)) ◦ [Q′
2 ⊗ IdU ],

and it follows that

q(G) = (q(G)) ◦ [(Q′
1 ◦ P ′

1 +Q′
2 ◦ P ′

2)⊗ IdU ] = (q(G)) ◦ [(Q′
1 ◦ P ′

1)⊗ IdU ].

It follows from the previous two Theorems that if M : Y → X ⊗ U and G is
partially symmetric with respect to H , then

q2(G ◦M) = (q(G)) ◦ [(Q′
1 ◦ P ′

1)⊗ IdU ] ◦ [IdV ⊗M ].

Remark 4.90. The mapH : V → X could be an inclusion of a vector subspace,
in which case the above Z1 corresponds to the space denoted by H.V in [EHM].

Big Exercise 4.91. Given a metric g on V , there exists a trace operator

Trg;U,W : Hom(V ⊗ U,Hom(V,W )) → Hom(U,W )

having nice properties which follow as corollaries of the results in Section 2.2.





CHAPTER 5

Complex Structures

At this point we abandon the general field K and work exclusively with real
number scalars and vector spaces over the field R. Some of the objects could be
considered vector spaces over the field of complex numbers, but in this Chapter,
complex numbers will not be used as scalars or for any other purpose. The objects
will instead be real vector spaces paired with some additional structure, and the
maps are all R-linear, although some of the R-linear maps will respect the additional
structure.

5.1. Complex Structure Operators

Definition 5.1. Given a real vector space V , an endomorphism J ∈ End(V )
is a complex structure operator means: J ◦ J = −IdV .

Notation 5.2. A complex structure operator is more briefly called a CSO.
Sometimes a pair (V, J) will be denoted by a matching boldface letter, V. Expres-
sions such as v ∈ V, A : U → V, etc., refer to the underlying real space, so that
v ∈ V , A : U → V , etc.

Example 5.3. Given V = (V, JV ) and another vector space U , [IdU ⊗ JV ] ∈
End(U⊗V ) is a canonical CSO on U⊗V , so we may denote U⊗V = (U⊗V, [IdU ⊗
JV ]). Similarly, denote V ⊗ U = (V ⊗ U, [JV ⊗ IdU ]).

Example 5.4. Given a vector space V with CSO JV and another vector space
U , Hom(IdU , JV ) : A �→ JV ◦ A is a canonical CSO on Hom(U, V ), so we may
denote Hom(U,V) = (Hom(U, V ),Hom(IdU , JV )). Similarly, denote Hom(V, U) =
(Hom(V, U),Hom(JV , IdU )).

Example 5.5. Given V , a CSO J induces a CSO J∗ = Hom(J, IdR) on V
∗ =

Hom(V,R).

Example 5.6. Given V , a CSO J ∈ End(V ), and any involution N that
commutes with J (i.e., N ∈ End(V ) such that N ◦N = IdV and N ◦ J = J ◦N),
N ◦ J is a CSO.

Example 5.7. Given V �= {0V }, any CSO J ∈ End(V ) is not unique, since −J
is a different CSO. This is the N = −IdV case from Example 5.6.

Example 5.8. Given V = V1⊕V2, suppose there is an invertible map A : V2 →
V1, as in (3) from Theorem 1.136. Then, V also admits a CSO,

(5.1) JV = Q2 ◦A−1 ◦ P1 −Q1 ◦A ◦ P2,

and its opposite, −JV .
Example 5.9. In the special case of Example 5.8 where V = U ⊕ U , A = IdU

(Case (1) from Theorem 1.136), the CSO (5.1) is JV = Q2 ◦ P1 −Q1 ◦ P2.
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Example 5.10. For V = V1 ⊕ V2 and A : V2 → V1 as in Example 5.8, the
implication (3) =⇒ (8) from Theorem 1.136 showed that there exist anticom-
muting involutions K1 and K2 on V . Conversely, for any pair of anticommuting
involutions K1 and K2, the composite K1◦K2 is a CSO on V (and so is its opposite
−K1 ◦K2 = K2 ◦K1). Using K1 to produce a direct sum V = V1 ⊕ V2 and using
K2 to define a map A = P1 ◦K2 ◦Q2 : V2 → V1 as in (1.20), the construction (5.1)
from Example 5.8 gives the same pair of CSOs: {±K1 ◦K2} = {±JV }.

Lemma 5.11. Given V with CSO J and v ∈ V , if v �= 0V , then the ordered list
(v, J(v)) is linearly independent.

Proof. Linear independence as in Definition 0.32 refers to the scalar field R

in this Chapter. If J(v) = α · v for some α ∈ R, then J(J(v)) = (−1) · v = α2 · v.
There are no solutions for v �= 0V and α ∈ R.

Exercise 5.12. Not every real vector space admits a CSO.

Lemma 5.13. Given V with CSO J and v1, . . . , v� ∈ V , if the ordered list

(v1, . . . , v�−1, v�, J(v1), . . . , J(v�−1))

is linearly independent, then so is the ordered list

(v1, . . . , v�−1, v�, J(v1), . . . , J(v�−1), J(v�)) .

Proof. The � = 1 case is Lemma 5.11. For � ≥ 2, suppose there are real
scalars α1, . . . , α�, β1, . . . , β� such that

(5.2) α1 · v1 + . . .+ α� · v� + β1 · J(v1) + . . .+ β� · J(v�) = 0V .

Then,

(5.3) α1 · J(v1) + . . .+ α� · J(v�)− β1 · v1 − . . .− β� · v� = 0V .

Subtracting α� times (5.2) minus β� times (5.3), the J(v�) terms cancel, and

(α1α� + β1β�) · v1 + . . .+ (α�−1α� + β�−1β�) · v�−1 + (α2
� + β2

� ) · v�
+(α�β1 − α1β�) · J(v1) + . . .+ (α�β�−1 − α�−1β�) · J(v�−1) = 0V .

By the linear independence of the ordered list with 2� − 1 elements, α2
� + β2

� =
0 =⇒ α� = β� = 0. Then (5.2) and the independence hypothesis again (or Lemma

5.11 if � = 2) imply α1 = . . . = α�−1 = β1 = . . . = β�−1 = 0.

Definition 5.14. Given V with CSO J , a subspace H of V is J-invariant
means: J(H) ⊆ H . Equivalently, because J is invertible, J(H) = H .

Lemma 5.15. Given V with CSO J , and a J-invariant subspace H of V , if
H �= {0V } and H is finite-dimensional, then H admits an ordered basis of the form

(v1, . . . , v�−1, v�, J(v1), . . . , J(v�−1), J(v�)) .

Proof. By hypothesis, there is some v1 ∈ H with v1 �= 0V , and by J-
invariance, J(v) ∈ H , so by Lemma 5.11, (v1, J(v1)) is a linearly independent
ordered list of vectors in H . Suppose inductively that

(v1, . . . , v�−1, v�, J(v1), . . . , J(v�−1), J(v�))

is a linearly independent ordered list of vectors in H . If the ordered list spans H ,
it is an ordered basis; otherwise, there is some v�+1 ∈ H not in its span, so

(v1, . . . , v�−1, v�, v�+1, J(v1), . . . , J(v�−1), J(v�))
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is a linearly independent ordered list. J(v�+1) ∈ H and Lemma 5.13 applies, so

(v1, . . . , v�−1, v�, v�+1, J(v1), . . . , J(v�−1), J(v�), J(v�+1))

is a linearly independent ordered list of elements in H . The construction eventually

terminates by Definition 0.28.

Definition 5.16. Given V with CSO J , a subspace H of V which is equal to
a span of a two-element set and is also J-invariant, H = J(H) ⊆ V , will be called
a J-complex line in V .

By Lemma 5.15, a J-complex line H must be of the form span{v, J(v)} for
some non-zero v ∈ H .

Lemma 5.17. Given V with CSO J , a J-complex line L, and a J-invariant
subspace H ⊆ V , if there is a non-zero element v ∈ L ∩ H, then L ⊆ H. In
particular, if H is a J-complex line, then L = H.

Proof. By J-invariance, {v, J(v)} ⊆ L ∩ H . By Lemma 5.11, (v, J(v)) is
a linearly independent ordered list, so it is an ordered basis of L and its span is
contained in H . Comment: the contrapositive can be stated: Given V with CSO J ,

v ∈ V , and a J-invariant subspace H , if v /∈ H , then H ∩span{v, J(v)} = {0V }.
Lemma 5.18. Given V with CSO J , if L1, L2 are distinct J-complex lines

in V , then span(L1 ∪ L2) has an ordered basis with 4 elements. In particular, a
subspace H ⊆ V that does not have 4 elements forming a linearly independent list
can contain at most one J-complex line.

Proof. Suppose L1 is a J-complex line in V , with L1 = span{v, J(v)}. If L2

is a J-complex line with L2 �= L1, then L2 �⊆ L1, so there is some u ∈ L2 \ L1, and
(v, J(v), u) is a linearly independent list. Because L2 is J-invariant, J(u) ∈ L2, so
by Lemma 5.13, (v, J(v), u, J(u)) is a linearly independent ordered list of elements

of L1 ∪ L2, and an ordered basis of span(L1 ∪ L2).

Lemma 5.19. Given V with CSO J , and a subspace H of V , if H = {0V } or
H has an ordered basis of the form (u1, J(u1), . . . , uν , J(uν)), then either H = V
or there exists a subspace U of V such that U is J-invariant, H ⊆ U , and U admits
an ordered basis with 2(ν + 1) elements.

Proof. This is trivial for H = {0V } or H = V ; otherwise, the ordered basis
for H can be extended by two more elements to an ordered basis of a J-invariant
subspace as in the Proof of Lemma 5.15. Note that this Lemma then applies to U

and can be repeated to get another subspace containing U .

Lemma 5.20. Given a vector space V1 with CSO J1 and an element v ∈ V1,
another vector space V2 with CSO J2, and a real linear map A : V1 → V2, the
following are equivalent.

(1) A(J1(v)) ∈ span{A(v), J2(A(v))}.
(2) A maps the subspace span{v, J1(v)} ⊆ V1 to the subspace

span{A(v), J2(A(v))} ⊆ V2.

Further, if A and v satisfy (1) and A(J1(v)) �= 0V2 , then A and J1(v) satisfy (1):

A(J1(J1(v))) ∈ span{A(J1(v)), J2(A(J1(v)))}.
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Proof. (2) ⇐⇒ (1) is straightforward. If A(J1(v)) = α1 ·A(v)+α2 ·J2(A(v))
for some (α1, α2) �= (0, 0), then there is this linear combination.

−α1

α2
1 + α2

2

· A(J1(v)) + α2

α2
1 + α2

2

· J2(A(J1(v)))

=
−α1

α2
1 + α2

2

· (α1 ·A(v) + α2 · J2(A(v)))

+
α2

α2
1 + α2

2

· J2(α1 ·A(v) + α2 · J2(A(v)))

= −A(v) = A(J1(J1(v))).

The above notion for a real linear map A is slightly stronger than the state-
ment that A maps the J1-complex line span{v, J1(v)} into some J2-complex line;
if A(v) = 0V2 , condition (2) implies A maps span{v, J1(v)} to the zero subspace.

Exercise 5.21. Given V with CSO J , if V �= {0V }, then the ordered list

(IdV , J) is linearly independent in End(V ).

Exercise 5.22. Given V with two CSOs J1 and J2, if J2 �= ±J1, then the
ordered list (IdV , J1, J2, J1 ◦ J2) is linearly independent in End(V ).

Hint. The hypothesis implies V �= {0V }, so Exercise 5.21 applies and (IdV , J1)
is a linearly independent list. The next step is to show that (IdV , J1, J2) is a linearly
independent list. If there are real scalars such that α1·IdV +α2·J1+α3·J2 = 0End(V ),
then:

(α1 · IdV + α2 · J1) ◦ (α1 · IdV + α2 · J1) = (−α3 · J2) ◦ (−α3 · J2)
(α2

1 − α2
2) · IdV + 2α1α2 · J1 = −α2

3 · IdV
=⇒ α1α2 = 0.

If α2 = 0 then by the linear independence of (IdV , J2) from Exercise 5.21, α1 =
α2 = α3 = 0. If α1 = 0 then (α2 · J1) ◦ (α2 · J1) = (−α3 · J2) ◦ (−α3 · J2) =⇒
−α2

2 = −α2
3 =⇒ α2 · (J1 ± J2) = 0End(V ), and the hypothesis J2 �= ±J1 implies

α1 = α2 = α3 = 0.
The claimed independence of the list (IdV , J1, J2, J1 ◦ J2) then follows from

applying Lemma 5.13 to the list (IdV , J1, J2) and the CSO Hom(J2, IdV ) on End(V )

from Example 5.4.

Remark 5.23. The results in this Section give some details omitted from [C1]
§2.

5.2. Complex linear and antilinear maps

Lemma 5.24. Given U with CSO JU , V with CSO JV , and a real linear map
A : U → V , the set

{u ∈ U : JV (A(u)) = A(JU (u))}
is a JU -invariant subspace of U , and its image

{A(u) : JV (A(u)) = A(JU (u))}
is a JV -invariant subspace of V .
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Proof. The first set is a real linear subspace of U because it is the kernel of
the real linear map JV ◦A−A ◦ JU . To verify Definition 5.14, check that if u is in

the set, then so is JU (u); the claim for the image set follows.

Example 5.25. Given V with two CSOs J1 and J2, the set

{v ∈ V : J1(v) = J2(v)}
is a J1-invariant subspace of V and also a J2-invariant subspace. This is the A =
IdV special case of Lemma 5.24.

Definition 5.26. For U = (U, JU ), V = (V, JV ), a real linear map A ∈
Hom(U, V ) is c-linear means: A ◦ JU = JV ◦A. A map A ∈ Hom(U, V ) is a-linear
means: A ◦ JU = −JV ◦A.

Because some vector spaces can admit several complex structures, it will some-
times be more clear to specifically refer to A : U → V as c-linear (or a-linear) with
respect to the pair (JU , JV ).

Lemma 5.27. If A : U → V is c-linear (or a-linear) and invertible, then A−1

is also c-linear (or a-linear). The composite of two c-linear maps (or two a-linear

maps) is c-linear.

Lemma 5.28. If A : U → V is c-linear (or a-linear) with respect to JU , JV ,
then the kernel ker(A) is a JU -invariant subspace of U and the image A(U) is a

JV -invariant subspace of V .

Lemma 5.29. Given V = (V, JV ) and V′ = (V ′, J ′
V ), any map A : U → U ′,

and a c-linear map B : V → V′, the maps [A ⊗ B] : U ⊗ V → U ′ ⊗ V′ and
[B ⊗ A] : V ⊗ U → V′ ⊗ U ′ are c-linear with respect to the induced CSOs from

Example 5.3.

Lemma 5.30. Given V = (V, JV ) and V′ = (V ′, J ′
V ), any map A : U ′ → U , and

a c-linear map B : V → V′, the maps Hom(A,B) : Hom(U,V) → Hom(U ′,V′) and
Hom(B,A) : Hom(V′, U ′) → Hom(V, U) are c-linear with respect to the induced

CSOs from Example 5.4.

Exercise 5.31. Given V = (V, JV ), the canonical maps l1 : R ⊗V → V and
l2 : V ⊗ R → V from Example 1.28 are c-linear.

Hint. The CSO on R ⊗ V is as in Example 5.3, and the claim for l1 follows

from Lemma 1.38. The claim for l2 : V ⊗ R → V is analogous.

Exercise 5.32. Given W = (W,J), the map m : W → Hom(K,W) from
Definition 1.20 is c-linear.

Hint. The CSO on Hom(K,W ) is as in Example 5.4, and the claim follows

from Lemma 1.21.

Exercise 5.33. Given U , V , W , with U = (U, J), the canonical map (Def-
inition 1.7) tWUV : Hom(U, V ) → Hom(Hom(V,W ),Hom(U,W )) is c-linear with

respect to the induced CSOs as in Example 5.4.

Exercise 5.34. Given U , V , W , with V = (V, J), tWUV : Hom(U,V) →
Hom(Hom(V,W ),Hom(U,W )) is c-linear with respect to the induced CSOs.
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Exercise 5.35. Given U , V , W , with W = (W,J), and any A ∈ Hom(U, V ),
the map

tWUV (A) ∈ Hom(Hom(V,W ),Hom(U,W ))

is c-linear Hom(V,W) → Hom(U,W).

Hint. This claim, Exercise 5.33, and Exercise 5.34 all follow from Lemma

1.8.

Exercise 5.36. Given V andW , with V = (V, JV ), the canonical map (Defini-
tion 1.13) dVW : V → Hom(Hom(V,W ),W ) is c-linear with respect to the induced

CSO as in Example 5.4.

Exercise 5.37. Given V and W , with W = (W,JW ), and any v ∈ V , the map
dVW (v) ∈ Hom(Hom(V,W ),W ) is c-linear Hom(V,W) → W.

Hint. This claim and Exercise 5.36 both follow from Lemma 1.14.

Exercise 5.38. Given U , V , W , with U = (U, J), the canonical map (Defini-
tion 1.56) eWUV : Hom(U, V ) → Hom(Hom(V,W ) ⊗U,W ) is c-linear with respect

to the induced CSOs.

Exercise 5.39. Given U , V , W , with V = (V, J), eWUV : Hom(U,V) →
Hom(Hom(V,W )⊗ U,W ) is c-linear with respect to the induced CSOs.

Exercise 5.40. Given U , V , W , with W = (W,J), and any A ∈ Hom(U, V ),
the map eWUV (A) ∈ Hom(Hom(V,W )⊗ U,W ) is c-linear Hom(V,W)⊗ U → W.

Hint. This claim, Exercise 5.38, and Exercise 5.39 all follow from Lemma

1.57.

Recall from Definition 2.71 that Hom(Hom(V,W ) ⊗ V,W ) contains a distin-
guished element EvVW : A⊗ v �→ A(v).

Exercise 5.41. Given V andW , with W = (W,JW ), the canonical evaluation
EvVW : Hom(V,W)⊗ V → W is c-linear.

Hint. This claim can be checked directly; it also follows from Lemma 2.73, or

the formula EvV W = eWV V (IdV ) from Equation (2.16) and Exercise 5.40.

Exercise 5.42. Given U and V , with V finite-dimensional and U = (U, JU ),
the map ηV U : U → V ⊗Hom(V,U) from Notation 4.44 is c-linear.

Hint. The claim follows from Lemma 4.47.

Exercise 5.43. Given U , V , W , with W = (W,JW ), the map

TU,V ;W : Hom(U,Hom(V,W)) → Hom(V,Hom(U,W))

from Definition 4.2 is c-linear.

Hint. The claim follows from Lemma 4.6.

Exercise 5.44. Given U , V , W , with U = (U, JU ), the map

TU,V ;W : Hom(U,Hom(V,W )) → Hom(V,Hom(U,W )),

and its inverse from Equation (4.2) in Lemma 4.4,

TV,U ;W : Hom(V,Hom(U,W )) → Hom(U,Hom(V,W )),

are c-linear.
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Hint. Both claims follow from Lemma 4.6. Alternatively, the c-linearity of the
composite formula from Definition 4.2,

TU,V ;W = Hom(dV W , IdHom(U,W )) ◦ tWU,Hom(V,W ),

and its inverse could be shown to follow from the c-linearity of the t and d maps,

as in Exercise 5.33, Exercise 5.34, and Exercise 5.36.

Exercise 5.45. Given V and A ∈ End(V ), if V is finite-dimensional and there

is some CSO J on V such that A is a-linear with respect to J , then TrV (A) = 0.

Lemma 5.46. Given V and a CSO J ∈ End(V ), for any invertible A : U → V ,
the composite A−1◦J◦A ∈ End(U) is a CSO. A is c-linear with respect to A−1◦J◦A
and J . If B : U → V is another invertible map and A−1 ◦ J ◦ A = B−1 ◦ J ◦ B,

then A ◦B−1 is a c-linear endomorphism of (V, J).

The CSO A−1 ◦ J ◦A is the pullback of J .

Lemma 5.47. Given V = V1 ⊕ V2 and a CSO J ∈ End(V ), the following are
equivalent.

(1) J respects the direct sum.
(2) Q1 ◦ P1 is c-linear.
(3) Q2 ◦ P2 is c-linear.
(4) P1 ◦ J ◦Q1 = 0Hom(V1,V2) and P2 ◦ J ◦Q2 = 0Hom(V2,V1).
(5) There exists a CSO J1 on V1 and a CSO J2 on V2 so that

(5.4) J = Q1 ◦ J1 ◦ P1 +Q2 ◦ J2 ◦ P2.

Proof. The equivalence of the five properties follows from Lemma 1.87 and
Definition 1.88. For (1) =⇒ (5), it is easily checked that each induced map
Ji = Pi ◦ J ◦ Qi is a CSO on Vi, and that J is recovered by re-combining the
induced maps as in (5.4):

Q1 ◦ (P1 ◦ J ◦Q1) ◦ P1 +Q2 ◦ (P2 ◦ J ◦Q2) ◦ P2 = J.

Conversely, given CSOs J1 on V1, J2 on V2, the map J constructed as in (5.4) is a
CSO on V , and each Ji agrees with the CSO induced by this J :

Pi ◦ (Q1 ◦ J1 ◦ P1 +Q2 ◦ J2 ◦ P2) ◦Qi = Ji.

Lemma 5.48. For V = V1⊕V2 and V ′ = V ′
1 ⊕V ′

2 and invertible maps A : V2 →
V1, A

′ : V ′
2 → V ′

1 , let J , J
′ be CSOs on V and V ′ constructed as in Example 5.8.

Then, for H : V → V ′, the following are equivalent.

(1) H is c-linear with respect to J and J ′.
(2) A′ ◦P ′

2 ◦H ◦Q2 = P ′
1 ◦H ◦Q1 ◦A and P ′

1 ◦H ◦Q2 = −A′ ◦P ′
2 ◦H ◦Q1 ◦A.

Hint. To show (2) =⇒ (1), expand

H ◦ J = (Q′
1 ◦ P ′

1 +Q′
2 ◦ P ′

2) ◦H ◦ (Q2 ◦A−1 ◦ P1 −Q1 ◦A ◦ P2)

and similarly J ′ ◦H .
For (1) =⇒ (2), apply Hom(Q1, P

′
2) to both sides of H ◦J = J ′ ◦H to get one

of the equations, and apply Hom(Q2, P
′
2) to get the other.

Remark 5.49. Lemma 5.48 displays an algebraic pattern analogous to the
Cauchy-Riemann equations.
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Example 5.50. For V = V1⊕V2, V ′ = V ′
1 ⊕V ′

2 , A, A
′, J , J ′ as in Lemma 5.48,

any map B : V1 → V ′
1 , and any real scalars α, β, the map H : V → V ′ defined by

(5.5) α·Q′
1◦B◦P1+β ·Q′

1◦B◦A◦P2−β ·Q′
2◦(A′)−1◦B◦P1+α·Q′

2◦(A′)−1◦B◦A◦P2

is c-linear with respect to J , J ′. In particular, in the case α = 1, β = 0, we denote
H = Bc:

(5.6) Bc = Q′
1 ◦B ◦ P1 +Q′

2 ◦ (A′)−1 ◦B ◦A ◦ P2

and consider Bc : V → V ′ a c-linear extension of B : V1 → V ′
1 because it satisfies

P ′
1 ◦Bc ◦Q1 = B.

Exercise 5.51. If (α, β) �= (0, 0) then for B as in Example 5.50 and H from
(5.5), the following are equivalent.

(1) B has a left inverse.
(2) H has a left inverse.

Similarly, the following are equivalent.

(3) B has a right inverse.
(4) H has a right inverse.

Similarly, the following are equivalent.

(5) B is invertible.
(6) H is invertible.

Hint. For (1) =⇒ (2), if G : V ′
1 → V1 is a left inverse of B then a left inverse

of H is:

1

α2 + β2
· (α ·Q1 ◦G ◦ P ′

1 − β ·Q1 ◦G ◦A′ ◦ P ′
2

+β ·Q2 ◦A−1 ◦G ◦ P ′
1 + α ·Q2 ◦A−1 ◦G ◦A′ ◦ P ′

2

)
.

The same formula works to show (3) =⇒ (4) (assuming instead that G is a right
inverse of B) and (5) =⇒ (6) (with G = B−1).

For (2) =⇒ (1), if F : V ′ → V is a left inverse of H then a left inverse of B is:

P1 ◦ F ◦ (α ·Q′
1 − β ·Q′

2 ◦ (A′)−1).

For (4) =⇒ (3) (and then (6) =⇒ (5) as in Exercise 0.54), if F ′ is a right inverse
of H then a right inverse of B is

(α · P1 + β ·A ◦ P2) ◦ F ′ ◦Q′
1.

Exercise 5.52. Given (V1, J1) and (V2, J2), a direct sum V = V1 ⊕ V2, and a
map A : V1 → V2, the following are equivalent.

(1) A is a-linear.
(2) J = Q1 ◦ J1 ◦ P1 +Q2 ◦A ◦ P1 +Q2 ◦ J2 ◦ P2 is a CSO on V .

For A and J as in the above statements (1) ⇐⇒ (2), the following are equivalent.

(3) A = 0Hom(V1,V2).
(4) J respects the direct sum V = V1 ⊕ V2.
(5) J is the CSO constructed in (5.4) from Lemma 5.47.



5.2. COMPLEX LINEAR AND ANTILINEAR MAPS 203

Exercise 5.53. For V , V1, V2, A as in Exercise 5.52, the CSO JA = Q1 ◦J1 ◦
P1 +Q2 ◦A ◦P1+Q2 ◦ J2 ◦P2 is similar to the direct sum CSO J0 = Q1 ◦ J1 ◦P1 +
Q2 ◦ J2 ◦ P2, in the sense that JA = G−1 ◦ J0 ◦G for some invertible G ∈ End(V ),
and G can be chosen so that P2 ◦G ◦Q2 = IdV2 .

Hint. Let G = IdV + 1
2 ·Q2 ◦A ◦ J1 ◦ P1, then check G ◦ JA = J0 ◦G, or use

G−1 = IdV − 1
2 ·Q2 ◦A ◦ J1 ◦ P1.

Exercise 5.54. Given V = V1 ⊕ V2, with CSOs J1 on V1, J2 on V2, and
J = Q1 ◦ J1 ◦ P1 +Q2 ◦ J2 ◦ P2 on V , let A : V1 → V2 be any map, let

Q′
1 = Q1 +Q2 ◦A : V1 → V,

and let

H = Q′
1(V1) ∩ J(Q′

1(V1)).

H is the largest J-invariant subspace of V contained in the image of Q′
1. For any

u ∈ V1, the following are equivalent:

(1) A(J1(u)) = J2(A(u)).
(2) Q′

1(u) ∈ H .

Hint. J is the CSO constructed in (5.4) from Lemma 5.47, and the same as
J0 from Exercise 5.53. The map Q′

1 is an inclusion in the construction of the graph
of A, from Exercise 1.107. The property (1) was considered in Lemma 5.24.

Assuming (1),

J(Q′
1(u)) = (Q1 ◦ J1 ◦ P1 +Q2 ◦ J2 ◦ P2)(Q1(u) +Q2(A(u)))

= Q1(J1(u)) +Q2(J2(A(u)))(5.7)

= Q1(J1(u)) +Q2(A(J1(u))) = Q′
1(J1(u)).

So Q′
1(u) = −J(Q′

1(J1(u))) ∈ J(Q′
1(V1)).

Assuming (2), if Q′
1(u) ∈ J(Q′

1(V1)), then J(Q
′
1(u)) = Q′

1(v) for some v ∈ V1.
From (5.7),

Q1(J1(u)) +Q2(J2(A(u))) = Q1(v) +Q2(A(v)),

and it follows that v = J1(u) and J2(A(u)) = A(v) = A(J1(u)), showing (1).

Proposition 5.55. Given V , consider three elements A, J1, J2 ∈ End(V ). The
following two statements are equivalent.

(1) (J1 + J2) ◦A = J1 − J2.
(2) J2 ◦ (IdV +A) = J1 ◦ (IdV −A).

The following two statements are also equivalent to each other.

(1′) A ◦ (J1 + J2) = J1 − J2.
(2′) (IdV +A) ◦ J2 = (IdV −A) ◦ J1.

If A, J1, J2 satisfy either condition (1) or (1′), then any two of the following imply
the remaining third.

(3) J1 is invertible.
(4) J1 + J2 is invertible.
(5) IdV +A is invertible.

If A, J1, J2 satisfy (1) or (1′), and also (5), then any two of the following imply the
remaining third.

(6) A ◦ J1 = −J1 ◦A.
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(7) J1 is a CSO.
(8) J2 is a CSO.

Proof. (1) ⇐⇒ (2) by an elementary algebraic manipulation. The (1′) ⇐⇒
(2′) and subsequent implications are analogous and left as an exercise. For (3), (4), (5),
use (1) or (2) to establish

(J1 + J2) ◦ (IdV +A) = 2 · J1,
and the claim follows.

For (6), (7), (8), use (2) to establish

(J1 + J2) ◦ (A ◦ J1 + J1 ◦A)(5.8)

= J1 ◦A ◦ J1 + J2 ◦A ◦ J1 + J1 ◦ J1 ◦A+ J2 ◦ J1 ◦A
= J1 ◦A ◦ J1 + J2 ◦ (IdV +A) ◦ J1 + J1 ◦ J1 ◦A− J2 ◦ J1 ◦ (IdV −A)

= J1 ◦A ◦ J1 + J1 ◦ (IdV −A) ◦ J1 + J1 ◦ J1 ◦A− J2 ◦ J2 ◦ (IdV +A)

= (J1 ◦ J1 − J2 ◦ J2) ◦ (IdV +A).

Given (6), (8), the equation (5.8) becomes 0End(V ) = (J1 ◦ J1 + IdV ) ◦ (IdV + A),
and (7) follows from (5). Similarly, given (6), (7), (5.8) becomes 0End(V ) = −(IdV +
J2 ◦ J2) ◦ (IdV +A), and (8) follows from (5). For (7), (8), note that (7) implies (3)
and then (5) implies (4), so by (7) and (8), (5.8) becomes LHS = 0End(V ), and (6)

follows from (4).

Given V with a CSO J1, Proposition 5.55 establishes a bijective correspondence
between the set of CSOs J2 on V with J1+J2 invertible and the set of A ∈ End(V )
with A a-linear (with respect to J1) and IdV +A invertible, as follows. Since J1 is a
CSO, (3) and (7) hold. For any a-linearA ∈ End(V ) with IdV +A invertible, (5) and
(6) hold. If we define J2 by the similarity relation J2 = (IdV +A)◦J1◦(IdV +A)−1,
then J2 = J1 ◦ (IdV − A) ◦ (IdV + A)−1, so (2) holds, (1), (4), and (8) follow as
consequences, and A satisfies A = (J1 +J2)

−1 ◦ (J1−J2). Conversely, for any CSO
J2 with J1 + J2 invertible, (4) and (8) hold. If we define

(5.9) A = (J1 + J2)
−1 ◦ (J1 − J2),

then (1) holds, (2), (5), and (6) follow as consequences, and J2 satisfies J2 =
J1 ◦ (IdV −A) ◦ (IdV +A)−1 = (IdV +A) ◦ J1 ◦ (IdV +A)−1.

Exercise 5.56. Given V and any two CSOs J1, J2, the map J1+J2 is c-linear
with respect to J1 and J2, and the maps ±(J1 − J2) are a-linear with respect to J1
and J2.

Big Exercise 5.57. Given V1, V2 with CSOs J1, J2, and a real linear map
A : V1 → V2, if the image subspace A(V1) admits a linearly independent list of 3 or
more elements of V2, then the following are equivalent.

(1) For each v ∈ V1, A(J1(v)) ∈ span{A(v), J2(A(v))}.
(2) For each v ∈ V1, Amaps the subspace span{v, J1(v)} ⊆ V1 to the subspace

span{A(v), J2(A(v))} ⊆ V2.
(3) For each v ∈ V1, either A(J1(v)) = J2(A(v)) or A(J1(v)) = −J2(A(v)).
(4) A ◦ J1 = J2 ◦A or A ◦ J1 = −J2 ◦A.

Hint. The idea is that A takes J1-complex lines to J2-complex lines, and that
this is equivalent to A being c-linear or a-linear. See also [C1] for other properties

of A equivalent to (4).
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5.3. Commuting Complex Structure Operators

5.3.1. Two Commuting Complex Structure Operators.

Lemma 5.58. Given V and two CSOs J1, J2, the following are equivalent.

(1) J1 and J2 commute (i.e., J1 ◦ J2 = J2 ◦ J1).
(2) The composite J1 ◦ J2 is an involution.
(3) The composite −J1 ◦ J2 is an involution.

Example 5.59. Given V with commuting CSOs J1, J2, Lemma 1.119 applies
to the involution −J1 ◦ J2 as in Lemma 5.58: there is a direct sum V = Vc ⊕ Va
produced by −J1 ◦ J2, where

Vc = {v ∈ V : (−J1 ◦ J2)(v) = v} = {v ∈ V : J2(v) = J1(v)}
Va = {v ∈ V : (−J1 ◦ J2)(v) = −v} = {v ∈ V : J2(v) = −J1(v)},

with projections

Pc =
1

2
· (IdV − J1 ◦ J2) : V � Vc, Pa =

1

2
· (IdV + J1 ◦ J2) : V � Va.

As remarked in the Proof of Lemma 1.119, the same formulas are also used for
Qc ◦ Pc, Qa ◦ Pa ∈ End(V ), where Qc and Qa are the corresponding subspace
inclusions.

Note that applying Lemma 1.119 to the involution J1 ◦J2 would give the direct
sum in the other order, V = Va ⊕ Vc. The subspace Vc from Example 5.59 is the
same as in Example 5.25, where J1 and J2 did not necessarily commute.

Lemma 5.60. For V , J1, J2 as in Lemma 5.58, and another space V ′ with
commuting CSOs J ′

1, J
′
2, a map H : V → V ′ respects the direct sums Vc ⊕ Va and

V ′
c ⊕ V ′

a if and only if H ◦ J1 ◦ J2 = J ′
1 ◦ J ′

2 ◦H.

Proof. This is an example of Lemma 1.126.

Example 5.61. Lemma 5.60 applies to V ′ = V , J ′
1 = J1, J

′
2 = J2, and either

H = J1 or H = J2, each of which induces a CSO on Vc and on Va by Lemma 5.47.
The subspace Vc has a canonical CSO, induced by either J1 or J2:

Pc ◦ J1 ◦Qc = Pc ◦ J2 ◦Qc ∈ End(Vc).

The maps Pc : V � Vc and Qc : Vc ↪→ V are c-linear with respect to either CSO
on V . The induced CSOs on the subspace Va are opposite, and generally distinct:

Pa ◦ J1 ◦Qa = −Pa ◦ J2 ◦Qa ∈ End(Va).

Lemma 5.62. For V , J1, J2 as in Lemma 5.58, U = (U, JU ), and a map
H : U → V , if H is c-linear with respect to both (JU , J1) and (JU , J2), then the
image of H is contained in Vc.

Proof. This can be checked by showing Pa ◦H = 0Hom(U,Va).

Lemma 5.63. For V , J1, J2 as in Lemma 5.58, U = (U, JU ), and a map
H : V → U , if H is c-linear with respect to either (J1, JU ) or (J2, JU ), then
H ◦Qc : Vc → U is c-linear.
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Proof. By the construction of the CSO on Vc from Example 5.61, the LHS
quantities in the following two equations are equal to each other:

(H ◦Qc) ◦ (Pc ◦ J1 ◦Qc) = H ◦ J1 ◦Qc,

(H ◦Qc) ◦ (Pc ◦ J2 ◦Qc) = H ◦ J2 ◦Qc.

The equalities hold because J1 and J2 commute with Qc ◦ Pc. On the RHS, either
H◦J1 orH◦J2 is equal to JU ◦H by hypothesis, so the claim (H◦Qc)◦(Pc◦J1◦Qc) =

JU ◦ (H ◦Qc) follows.

Lemma 5.64. For V with commuting CSOs J1, J2, and V ′ with commuting
CSOs J ′

1, J
′
2 as in Lemma 5.60, if H : V → V ′ is c-linear with respect to any of

the pairs (J1, J
′
1) or (J1, J

′
2) or (J2, J

′
1) or (J2, J

′
2), then P ′

c ◦H ◦Qc : Vc → V ′
c is

c-linear with respect to the canonical CSOs.

Proof. The CSOs on Vc and V ′
c are as in Example 5.61.

Lemma 5.65. Given V with commuting CSOs J1
V , J

2
V , and U with commuting

CSOs J1
U , J

2
U , if H : U → V satisfies both H ◦ J1

U = J1
V ◦ H and H ◦ J2

U =
J2
V ◦H, then H : Uc ⊕ Ua → Vc ⊕ Va respects the direct sums and the induced map
PV
c ◦H ◦QU

c : Uc → Vc is c-linear with respect to the induced CSOs. If, also, H is
invertible, then for i = c, a, the induced map PV

i ◦H ◦QU
i : Ui → Vi is invertible.

Proof. This follows from Lemma 5.60, Lemma 5.64, and Lemma 1.89.

We remark that the direct summands in Lemma 5.65 are all subspaces; if
u = QU

c (u) ∈ Uc ⊆ U , then H(u) = H(QU
c (u)) ∈ Vc ⊆ V , so H(u) is in the fixed

point set of the idempotent PV
c : V → V , as follows:

u ∈ Uc =⇒ H(u) = H(QU
c (u)) = H(QU

c (P
U
c (QU

c (u)))) = QV
c (P

V
c (H(QU

c (u))))

= (PV
c ◦H ◦QU

c )(u) = PV
c (H(u)) ∈ Vc ⊆ V.

The induced map PV
c ◦H ◦ QU

c : Uc → Vc is just the restriction of H : U → V to
the subspace Uc, with image contained in the subspace Vc of the target.

Lemma 5.66. Given V with commuting CSOs J1
V , J

2
V , and U with commuting

CSOs J1
U , J

2
U , if H : U → V satisfies both H ◦ J1

U = −J1
V ◦ H and H ◦ J2

U =
−J2

V ◦H, then H : Uc⊕Ua → Vc⊕Va respects the direct sums and the induced map
PV
c ◦H ◦QU

c : Uc → Vc is a-linear with respect to the induced CSOs.

Proof. This is straightforward to check directly, or follows from Lemma 5.65

with J1
V , J

2
V replaced by the opposite CSOs −J1

V , −J2
V .

The following Theorem weakens the hypotheses of Lemma 5.65.

Theorem 5.67. Given V with commuting CSOs J1
V , J

2
V , and U with commut-

ing CSOs J1
U , J

2
U , if H : U → V is c-linear with respect to (J2

U , J
2
V ), then the

kernel of the composite PV
c ◦ H ◦ QU

a : Ua → Vc is equal to the set {u ∈ Ua :
(H ◦ J1

U ◦QU
a )(u) = (J1

V ◦H ◦QU
a )(u)}.

Proof. Composing with QV
c does not change the kernel, so using the equalities

J1
U ◦QU

a = −J2
U ◦QU

a and J2
V ◦H = H ◦ J2

U ,

QV
c ◦ PV

c ◦H ◦QU
a =

1

2
· (IdV − J1

V ◦ J2
V ) ◦H ◦Qa

=
1

2
· (H − J1

V ◦H ◦ J2
U ) ◦QU

a =
1

2
· (H + J1

V ◦H ◦ J1
U ) ◦QU

a ,
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and the composite with the invertible map 2 · J1
V has the same kernel:

2 · J1
V ◦QV

c ◦ PV
c ◦H ◦QU

a = J1
V ◦H ◦QU

a −H ◦ J1
U ◦QU

a .

Example 5.68. For a vector space V with a CSO J and involution N that
commute as in Example 5.6, the CSON◦J commutes with J andN . The involution
N produces a direct sum V = V1 ⊕ V2 with projections (P1, P2) and inclusions
(Q1, Q2) as in Lemma 1.119, and because N = −(N ◦ J) ◦ J , V1 ⊕ V2 is the same
as the direct sum V = Vc ⊕ Va as in Example 5.59. Lemma 1.126 and Lemma 5.47
apply to both J and N ◦ J : they respect the direct sum V1 ⊕ V2, and the induced
maps P1 ◦ J ◦ Q1 and P1 ◦ N ◦ J ◦ Q1 are commuting CSOs on V1, and similarly
for V2. More specifically, the CSOs on V1 are equal: P1 ◦ J ◦Q1 = P1 ◦N ◦ J ◦Q1,
while the CSOs P2 ◦ J ◦Q2 and P2 ◦N ◦ J ◦Q2 on V2 are opposite.

Example 5.69. Given V = V1 ⊕ V2 and CSOs Ji ∈ End(Vi) for i = 1, 2, V
admits four CSOs: ±J and ±J ′, where:

J = Q1 ◦ J1 ◦ P1 +Q2 ◦ J2 ◦ P2,

J ′ = Q1 ◦ J1 ◦ P1 −Q2 ◦ J2 ◦ P2.

J is as in (5.4), and all four CSOs respect the direct sum as in Lemma 5.47. J and
J ′ commute with each other, with −J ◦ J ′ = Q1 ◦ P1 −Q2 ◦ P2, so the given direct
sum is equivalent to the direct sum produced by the involution, V = Vc ⊕ Va, as
in Example 1.122. This construction is a special case of Example 5.68, with the
involution N = Q1 ◦ P1 −Q2 ◦ P2 that commutes with J .

Example 5.70. Given U with commuting CSOs J1, J2, if H ∈ End(U) is an
involution such that H ◦ J1 ◦ J2 = J1 ◦ J2 ◦ H , then U admits two direct sums:
U = U1 ⊕ U2 produced by H as in Lemma 1.119, and U = Uc ⊕ Ua produced by
−J1 ◦ J2. The composite (−J1 ◦ J2) ◦ H is a third involution, which produces a
direct sum U = U5 ⊕ U6, as denoted in Theorem 1.130. Both H and −J1 ◦ J2 ◦H
respect the direct sum Uc ⊕ Ua as in Lemma 1.128 and Lemma 5.60; they both
induce involutions Uc → Uc and Ua → Ua, with the involutions being equal on Uc

as in (1.15), and opposite on Ua as in (1.16), producing a direct sum Uc = U ′
c⊕U ′′

c ,
and an unordered pair of subspaces of Ua:

U ′
c = {u ∈ U : u = −J1(J2(u)) = H(u)},(5.10)

U ′′
c = {u ∈ U : u = −J1(J2(u)) = −H(u)},
U ′
a = {u ∈ U : u = J1(J2(u)) = H(u)},

U ′′
a = {u ∈ U : u = J1(J2(u)) = −H(u)}.

Similarly, both −J1 ◦ J2 and −J1 ◦ J2 ◦ H respect the direct sum U1 ⊕ U2, and
induce involutions on U1 and U2 that distinguish the same four subspaces:

U ′
1 = {u ∈ U : u = H(u) = −J1(J2(u))},

U ′′
1 = {u ∈ U : u = H(u) = J1(J2(u))},
U ′
2 = {u ∈ U : u = −H(u) = −J1(J2(u))},

U ′′
2 = {u ∈ U : u = −H(u) = J1(J2(u))}.

This configuration of subspaces gives an example of the results of Theorem 1.130,
U ′
1 = U ′

c = U1 ∩ Uc = U1 ∩ Uc ∩ U5, U
′′
c = U ′

2 = U2 ∩ U6, U
′′
1 = U ′

a = Ua ∩ U6, etc.
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Lemma 5.71. Given U with commuting CSOs J1, J2, if H ∈ End(U) is an
involution such that H ◦ J1 = J1 ◦ H and H ◦ J2 = J2 ◦ H, then H respects the
direct sum Uc⊕Ua → Uc⊕Ua, and induces involutions on Uc and Ua. The induced
involution Pc ◦H ◦Qc on Uc is c-linear, and its fixed point set U ′

c has a canonical
CSO.

Proof. It follows from the c-linearity of H that H ◦ J1 ◦ J2 = J1 ◦ J2 ◦H . So,
this is a special case of both Lemma 5.65 and Example 5.70: the induced involution
on Uc is c-linear with respect to the CSO on Uc from Example 5.61, and produces
a direct sum Uc = U ′

c ⊕ U ′′
c as in (5.10). The subspace U ′

c = {u ∈ U : u =

−J1(J2(u)) = H(u)} has a canonical CSO, from Example 5.68.

Lemma 5.72. Given U with commuting CSOs J1, J2, if H ∈ End(U) is an
involution such that H ◦ J1 = J2 ◦ H, then H respects the direct sum Uc ⊕ Ua →
Uc⊕Ua, and induces involutions on Uc and Ua. The induced involution Pc ◦H ◦Qc

on Uc is c-linear, and its fixed point set U ′
c has a canonical CSO.

Proof. It follows from the involution property that H ◦ J1 = J2 ◦ H =⇒
J1 ◦ H = H ◦ J2 =⇒ H ◦ J1 ◦ J2 = J1 ◦ J2 ◦ H . So, this is similar to Lemma
5.71, and also a special case of both Lemma 5.65 and Example 5.70: the induced
involution on Uc is c-linear and produces a direct sum Uc = U ′

c⊕U ′′
c . The subspace

U ′
c = {u ∈ U : u = −J1(J2(u)) = H(u)} has a canonical CSO, from Example

5.68.

Example 5.73. Given U and V , suppose there are commuting CSOs J1, J2 on
V . Then the CSOs [J1 ⊗ IdU ] and [J2 ⊗ IdU ] on V ⊗ U , from Example 5.3, also
commute. As in Example 5.59, this gives a direct sum V ⊗U = (V ⊗U)c⊕(V ⊗U)a
with projections

1

2
· (IdV ⊗U ± [J1 ⊗ IdU ] ◦ [J2 ⊗ IdU ]).

V ⊗ U also admits a direct sum (Vc ⊗ U) ⊕ (Va ⊗ U) as in Example 1.81, with
projections

[(
1

2
· (IdV ± J1 ◦ J2))⊗ IdU ] = [Pi ⊗ IdU ],

for Pi : V � Vi, i = c, a, as in Example 5.59. This is a special case of Example
1.141; the pairs of projections are identical (using the linearity of j and Lemma
1.36), so the direct sums are the same and we have the equalities of subspaces
(V ⊗ U)c = Vc ⊗ U and (V ⊗ U)a = Va ⊗ U , with inclusions [Qi ⊗ IdU ]. Similarly,
(U ⊗ V )c = U ⊗ Vc and (U ⊗ V )a = U ⊗ Va.

Example 5.74. Given U = (U, JU ) and V = (V, JV ), the two CSOs [IdU⊗JV ],
[JU ⊗ IdV ] ∈ End(U ⊗ V ) commute, so this is a special case of Example 5.59. The
direct sum so produced is denoted

U ⊗ V = (U ⊗c V )⊕ (U ⊗a V ).

As in Example 5.61, the subspace

U ⊗c V = {w ∈ U ⊗ V : [IdU ⊗ JV ](w) = [JU ⊗ IdV ](w)}
has a canonical CSO, induced by either of the CSOs, so we may denote the space
U⊗c V. The CSOs on U ⊗ V induce opposite CSOs on the subspace

U ⊗a V = {w ∈ U ⊗ V : [IdU ⊗ JV ](w) = −[JU ⊗ IdV ](w)}.
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Example 5.75. For c-linear maps A : U → U′ and B : V → V′, the map

[A⊗B] : U ⊗ V → U ′ ⊗ V ′

satisfies the hypotheses of Lemma 5.65, and respects the direct sums from Example
5.74. The induced map

P ′
c ◦ [A⊗B] ◦Qc : U⊗c V → U′ ⊗c V

′

is c-linear.

Notation 5.76. For c-linear maps A : U → U′ and B : V → V′ as in
Example 5.75, the bracket notation from Notation 1.35 is adapted in the following
abbreviation:

[A⊗c B] = P ′
c ◦ [A⊗B] ◦Qc : U⊗c V → U′ ⊗c V

′.

As remarked after Lemma 5.65, this is exactly the restriction of the map [A⊗B] to
the U⊗cV subspace of the domain, with image contained in the U′⊗cV

′ subspace
of the target. The role of the j map in this construction is considered in more detail
by Example 5.136.

Exercise 5.77. For a-linear maps A : U → U′ and B : V → V′, the map

[A⊗B] : U ⊗ V → U ′ ⊗ V ′

respects the direct sums. The induced map

P ′
c ◦ [A⊗B] ◦Qc : U⊗c V → U′ ⊗c V

′

is a-linear.

Example 5.78. Given U = (U, JU ) and V = (V, JV ), the CSO Hom(IdU , JV )
commutes with Hom(JU , IdV ) ∈ End(Hom(U, V )), so this is a special case of Ex-
ample 5.59. The direct sum so produced is denoted

(5.11) Hom(U, V ) = Homc(U, V )⊕Homa(U, V ).

The projection Pc : Hom(U, V )� Homc(U, V ) is defined by

1

2
·(IdHom(U,V )−Hom(IdU , JV )◦Hom(JU , IdV )) =

1

2
·(IdHom(U,V )−Hom(JU , JV )).

As in Example 5.61, the subspace

Homc(U, V ) = {A ∈ Hom(U, V ) : Hom(IdU , JV )(A) = Hom(JU , IdV )(A)}
= {A ∈ Hom(U, V ) : JV ◦A = A ◦ JU}

has a canonical CSO, induced by either one of the CSOs, so we may denote the
space Homc(U,V). This is exactly the set of c-linear maps U → V as in Section
5.2. The CSOs on Hom(U, V ) induce opposite CSOs on the subspace of a-linear
maps,

Homa(U, V ) = {A ∈ Hom(U, V ) : Hom(IdU , JV )(A) = −Hom(JU , IdV )(A)}
= {A ∈ Hom(U, V ) : JV ◦A = −A ◦ JU}.

Example 5.79. Given V = (V, JV ), there is a direct sum

End(V ) = Endc(V )⊕ Enda(V )

as in Example 5.78, where Endc(V) admits a canonical CSO. The identity element
IdV ∈ Endc(V) ⊆ End(V ) is c-linear, and so is JV .
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Lemma 5.80. For c-linear maps A : U′ → U and B : V → V′, the map

Hom(A,B) : Hom(U, V ) → Hom(U ′, V ′)

respects the direct sums from Example 5.78. The induced map

P ′
c ◦Hom(A,B) ◦Qc : Homc(U,V) → Homc(U

′,V′) : F �→ B ◦ F ◦A,
is c-linear.

Proof. P ′
c is the projection Hom(U ′, V ′) � Homc(U

′,V′). Lemma 5.65 ap-

plies.

Notation 5.81. The induced map from Lemma 5.80 is denoted

Homc(A,B) = P ′
c ◦Hom(A,B) ◦Qc : Homc(U,V) → Homc(U

′,V′).

As in Notation 5.76, this is a restriction of the map Hom(A,B) to subspaces of its
domain and target.

Exercise 5.82. For a-linear maps A : U′ → U and B : V → V′, the map

Hom(A,B) : Hom(U, V ) → Hom(U ′, V ′)

respects the direct sums. The induced map

P ′
c ◦Hom(A,B) ◦Qc : Homc(U,V) → Homc(U

′,V′) : F �→ B ◦ F ◦A
is a-linear.

Example 5.83. Given U and V , suppose there are commuting CSOs J1, J2 on
V . Then the CSOs Hom(IdU , J1) and Hom(IdU , J2) on Hom(U, V ) also commute.
As in Example 5.59, this gives a direct sum temporarily denoted

(5.12) Hom(U, V ) = (Hom(U, V ))c ⊕ (Hom(U, V ))a

with projections

1

2
· (IdHom(U,V ) ±Hom(IdU , J1) ◦Hom(IdU , J2)).

Hom(U, V ) also admits a direct sum Hom(U, Vc)⊕Hom(U, Va) as in Example 1.82,
with projections

(5.13) Hom(IdU ,
1

2
· (IdV ± J1 ◦ J2)).

The pairs of projections are identical: this is a special case of Example 1.143. We
can identify Hom(U, Vc) = (Hom(U, V ))c, and also identify Hom(IdU , Qc) with the
inclusion of the subspace (Hom(U, V ))c in Hom(U, V ); similarly, (Hom(U, V ))a =
Hom(U, Va). More specifically, the set (Hom(U, V ))c is defined as {A ∈ Hom(U, V ) :
J1 ◦A = J2 ◦A}, while elements of Hom(U, Vc) are maps A such that for any u ∈ U ,
A(u) ∈ Vc ⊆ V , meaning J1(A(u)) = J2(A(u)).

Example 5.84. Given U and V , suppose there are commuting CSOs J1, J2
on V . Then the CSOs Hom(J1, IdU ) and Hom(J2, IdU ) on Hom(V, U) also com-
mute. As in Example 5.59, this gives a direct sum Hom(V, U) = (Hom(V, U))c ⊕
(Hom(V, U))a (the same notation as (5.12) but not the same subspaces) with pro-
jections

1

2
· (IdHom(V,U) ±Hom(J1, IdU ) ◦Hom(J2, IdU )).
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Hom(V, U) also admits a direct sum Hom(Vc, U)⊕Hom(Va, U) as in Example 1.83,
with projections Hom(Qc, IdU ), Hom(Qa, IdU ). Unlike Examples 5.73 and 5.83,
these pairs of projections are not obviously identical, and in fact this is a special case
of Example 1.144. The set (Hom(V, U))c is defined as {A ∈ Hom(V, U) : A ◦ J1 =
A ◦ J2}, while elements of Hom(Vc, U) are maps A defined only on the subspace of
v ∈ V such that J1(v) = J2(v). The two direct sums are different but equivalent, as
discussed in Example 1.144. Specifically, if, for i = c, a, P ′′

i , Q
′′
i denote the projec-

tions and inclusions for the direct sum Hom(V, U) = (Hom(V, U))c⊕(Hom(V, U))a,
then

Q′′
i ◦ P ′′

i = Hom(Pi, IdU ) ◦Hom(Qi, IdU ) : Hom(V, U) → Hom(V, U),

and as in Lemma 1.99,

P ′′
i ◦Hom(Pi, IdU ) : Hom(Vi, U) → (Hom(V, U))i

is invertible with inverse Hom(Qi, IdU ) ◦Q′′
i , and for i = c, c-linear.

Lemma 5.85. Given U and V , with commuting CSOs J1, J2 ∈ End(V ), let W
be a space admitting a direct sum W1 ⊕W2. If H : W → Hom(V, U) respects one
of the two direct sums from Example 5.84, then H also respects the other direct
sum. If, further, H is invertible, then both induced maps W1 → (Hom(V, U))c
and W1 → Hom(Vc, U) are also invertible. If the direct sum on W is given by
commuting CSOs JW , J ′

W , and H satisfies both Hom(J1, IdU ) ◦H = H ◦ JW and
Hom(J2, IdU )◦H = H ◦J ′

W , then H respects the direct sums and the induced maps
are c-linear.

Proof. The claims follow from Lemmas 1.89, 1.98, and 5.65. If the projections
and inclusions induced on W =Wc ⊕Wa by JW , J ′

W are P ′
i , Q

′
i, then the induced

maps Hom(Qc, IdU ) ◦ H ◦ Q′
c : Wc → Hom(Vc, U) and P ′′

c ◦ H ◦ Q′
c : Wc →

(Hom(V, U))c are related by composition with the c-linear invertible map from the
above Example:

Hom(Qc, IdU ) ◦H ◦Q′
c = (Hom(Qc, IdU ) ◦Q′′

c ) ◦ (P ′′
c ◦H ◦Q′

c).

Exercise 5.86. The results of the previous Lemma have analogues for a map

Hom(V, U) →W .

Example 5.87. For U and commuting CSOs J1, J2 on V as in Example 5.83,
suppose there are also commuting CSOs J ′

1, J
′
2 on V ′. If B : V → V ′ respects the

direct sums Vc⊕Va → V ′
c ⊕V ′

a (equivalently, B◦J1◦J2 = J ′
1◦J ′

2◦B by Lemma 1.126
and Lemma 5.60), then for i = c, a, there are induced maps P ′

i ◦B ◦Qi : Vi → V ′
i .

By Lemma 1.92, for any map A : W → U , the map Hom(A,B) : Hom(U, V ) →
Hom(W,V ′) respects the direct sums

Hom(U, Vc)⊕Hom(U, Va) → Hom(W,V ′
c )⊕Hom(W,V ′

a)

from Example 5.83, and for i = c, a, the induced map

Hom(IdW , P ′
i ) ◦Hom(A,B) ◦Hom(IdU , Qi)

is equal to Hom(A,P ′
i ◦B ◦Qi).
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Example 5.88. For U , V , V ′, A as in Example 5.87, if B : V → V ′ is c-
linear with respect to both pairs J1, J

′
1 and J2, J

′
2, then B satisfies the hypothesis

from Example 5.87, and by Lemma 5.30, Hom(A,B) is also c-linear with respect to
the pairs Hom(IdU , J1), Hom(IdW , J ′

1) and Hom(IdU , J2), Hom(IdW , J ′
2). Lemma

5.65 applies, so the induced maps from Example 5.87, P ′
c ◦ B ◦ Qc : Vc → V ′

c , and
also Hom(A,P ′

c ◦B ◦Qc), are both c-linear.

Exercise 5.89. Given U , V , W , with U = (U, JU ) and V = (V, JV ), the map
tWUV : Hom(U, V ) → Hom(Hom(V,W ),Hom(U,W )) respects the direct sums and
the induced map

Homc(U,V) → Homc(Hom(V,W ),Hom(U,W ))

is c-linear.

Hint. Exercise 5.33, Exercise 5.34, and then Lemma 5.65 apply.

Example 5.90. ForW = R in the previous Exercise, tRUV = tUV : Hom(U, V ) →
Hom(V ∗, U∗). V ∗ has a CSO J∗

V as in Example 5.5, and similarly J∗
U is a CSO for

U∗. tUV respects the direct sums

Homc(U,V) ⊕Homa(U, V ) → Homc(V
∗, U∗)⊕Homa(V

∗, U∗)

and the induced map Homc(U,V) → Homc(V
∗, U∗), A �→ tUV (A) = Hom(A, IdR) =

A∗, is c-linear.

Exercise 5.91. Given U , V , W , with U = (U, JU ) and V = (V, JV ), the map
eWUV : Hom(U,V) → Hom(Hom(V,W ) ⊗U,W ) respects the direct sums and the
induced map

Homc(U,V) → Hom(Hom(V,W )⊗c U,W )

is c-linear.

Hint. Exercise 5.38, Exercise 5.39, and then Lemma 5.85, apply.

Exercise 5.92. Given U and V , with V finite-dimensional and V = (V, JV ),
the image of ηV U : U → V ⊗ Hom(V, U) from Notation 4.44 is contained in the
subspace of the target where the two induced CSOs agree: for any u ∈ U ,

ηV U (u) ∈ V ⊗c Hom(V, U).

Hint. The claim follows from Lemma 4.47.

Exercise 5.93. Given U , V , W , with U = (U, JU ) and W = (W,JW ), the
map TU,V ;W : Hom(U,Hom(V,W)) → Hom(V,Hom(U,W)) respects the direct
sums and the induced map

Homc(U,Hom(V,W)) → Hom(V,Homc(U,W))

is c-linear and invertible, where the inverse is induced by TV,U ;W .

Hint. The direct sum for the domain is as in Example 5.78, and for the target

is as in Example 5.83. Exercise 5.43, Exercise 5.44, and then Lemma 5.65 apply.

Exercise 5.94. Given U , V , W , with U = (U, JU ) and V = (V, JV ), the map
TU,V ;W : Hom(U,Hom(V,W )) → Hom(V,Hom(U,W )) respects the direct sums
and the induced map

Homc(U,Hom(V,W )) → Homc(V,Hom(U,W ))

is c-linear and invertible, where the inverse is induced by TV,U ;W .
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Hint. The direct sums are as in Example 5.78. Exercise 5.44 and Lemma 5.65

apply.

Exercise 5.95. GivenW and V = (V, JV ), the involution TV ;W from Notation
4.3 is c-linear with respect to both induced CSOs as follows:

Hom(V,Hom(V,W )) → Hom(V,Hom(V,W ))

Hom(V,Hom(V,W )) → Hom(V,Hom(V,W )).

The induced map

Homc(V,Hom(V,W )) → Homc(V,Hom(V,W ))

is a c-linear involution, and its fixed point subspace has a canonical CSO.

Hint. The c-linearity claims are the U = V special case of Exercise 5.44, and
the induced map is the special case from Exercise 5.94. Lemma 5.72 applies to the

involution TV ;W and the commuting CSOs on Hom(V,Hom(V,W )).

Example 5.96. For W , V = (V, JV ), and Hom(V,Hom(V,W )) as in Exercise
5.95, Example 5.70 applies to the commuting involutions TV ;W and

−Hom(JV , IdHom(V,W ))◦Hom(IdV ,Hom(JV , IdW )) = −Hom(JV ,Hom(JV , IdW )).

Recalling the direct sums from (4.6) and (5.11),

Hom(V,Hom(V,W )) = Sym(V ;W )⊕Alt(V ;W ),

Hom(V,Hom(V,W )) = Homc(V,Hom(V,W )) ⊕Homa(V,Hom(V,W )),

the four distinguished subspaces from Example 5.70 can be described in terms of
properties of their elements, W -valued bilinear forms h, and are denoted as follows:

Symc(V,W ) = Sym(V ;W ) ∩ Homc(V,Hom(V,W ))

= {h : (h(v1))(v2) = (h(v2))(v1) = −(h(JV (v1)))(JV (v2))},
Syma(V,W ) = Sym(V ;W ) ∩ Homa(V,Hom(V,W ))

= {h : (h(v1))(v2) = (h(v2))(v1) = (h(JV (v1)))(JV (v2))},
Altc(V,W ) = Alt(V ;W ) ∩Homc(V,Hom(V,W ))

= {h : (h(v1))(v2) = −(h(v2))(v1) = −(h(JV (v1)))(JV (v2))},
Alta(V,W ) = Alt(V ;W ) ∩Homa(V,Hom(V,W ))

= {h : (h(v1))(v2) = −(h(v2))(v1) = (h(JV (v1)))(JV (v2))}.
The c-linear involution on Homc(V,Hom(V,W )) induced by TV ;W from Exercise
5.95 produces the direct sum

Homc(V,Hom(V,W )) = Symc(V,W )⊕Altc(V,W ),

and there is a canonical CSO on Symc(V,W ).

Exercise 5.97. Given V with CSOs J1, J2, if J1 and J2 commute and J2 �=
±J1, then the span of {IdV , J1, J2, J1 ◦ J2} is a 4-dimensional subspace of End(V ).
This subspace is closed under composition, so it is a subrng of End(V ).

Hint. The first claim follows from Exercise 5.22. Such a subspace is a com-
mutative ring, and isomorphic to the associative algebra of bicomplex numbers of

C. Segre.
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Exercise 5.98. Given U , V = (V, JV ), W = (W,JW ), let Pc denote the
projection V ⊗W � V⊗c W as in Example 5.74. For a map B : U → V , the map
[B⊗IdW ] : U ⊗W → V ⊗W is c-linear with respect to [IdU ⊗JW ] and [IdV ⊗JW ],
and Pc is c-linear as in Example 5.61, so the composite Pc ◦ [B ⊗ IdW ] : U ⊗W →
V ⊗c W is c-linear. If the image subspace B(U) contains a JV -complex line in V,
spanned by B(u1) and JV (B(u1)) = B(u2) �= 0V , then for any non-zero w ∈W ,

v = u1 ⊗ w + u2 ⊗ (JW (w))

and

[IdU ⊗ JW ](v) = u1 ⊗ (JW (w)) − u2 ⊗ w

span a [IdU ⊗ JW ]-complex line in ker(Pc ◦ [B ⊗ IdW ]) ⊆ U ⊗W.

Hint. The property that v �= 0U⊗W follows from Lemma 5.11 and Claim

6.36.

Exercise 5.99. Given V = V1 ⊕ V2, suppose there is an invertible map A :
V2 → V1 and there is a CSO J1 on V1. The composite A−1 ◦ J1 ◦A is a CSO on V2
as in Lemma 5.46, and V admits six CSOs: ±JV , ±J , ±J ′,

JV = Q2 ◦A−1 ◦ P1 −Q1 ◦A ◦ P2,(5.14)

J = Q1 ◦ J1 ◦ P1 +Q2 ◦A−1 ◦ J1 ◦A ◦ P2,(5.15)

J ′ = Q1 ◦ J1 ◦ P1 −Q2 ◦A−1 ◦ J1 ◦A ◦ P2.

JV is as in Example 5.8 and does not depend on J1. J and J ′ are as in Example
5.69. The CSO J commutes with both JV and J ′; the direct sum produced by the
involution −J ◦ J ′ is equivalent to the given direct sum V = V1 ⊕V2 as in Example
5.69, but in general is not equivalent to the direct sum produced by −J ◦JV , which
is denoted here by V = Vc ⊕ Va, with projections (Pc, Pa) as in Example 5.59.
The CSOs JV and J ′ anticommute, so the involutions −J ◦ J ′ and −J ◦ JV also
anticommute. Theorem 1.137 applies: for any β �= 0, the map

(5.16) β · Pc ◦Q1 : V1 → Vc

is invertible, with inverse 2
β ·P1 ◦Qc : Vc → V1. The map (5.16) is also c-linear with

respect to J1 and the induced CSO on Vc, Pc ◦ J ◦Qc = Pc ◦ JV ◦Qc. Similarly by
Theorem 1.137, β ·Pa ◦Q1 : V1 → Va is invertible, and it is c-linear with respect to
J1 and the CSO

Pa ◦ J ◦Qa = −Pa ◦ JV ◦Qa

from Example 5.61 (so it is a-linear with respect to Pa ◦ JV ◦Qa).

Exercise 5.100. For V = V1 ⊕ V2, A : V2 → V1, and CSOs J1, JV , J as in
Exercise 5.99, let U = U1⊕U2 be another direct sum with projections and inclusions
(P ′

1, P
′
2), (Q

′
1, Q

′
2), an invertible map A′ : U2 → U1, and a CSO

(5.17) JU = Q′
2 ◦ (A′)−1 ◦ P ′

1 −Q′
1 ◦A′ ◦ P ′

2

as in Example 5.8 and (5.14). Note that unlike V1, no complex structure on U1 is
assumed, so the situation with JU and JV is as in Lemma 5.48. Let B : U1 → V1
be any map, and recall from Example 5.50 that there is a c-linear extension Bc :
(U, JU ) → (V, JV ),

(5.18) Bc = Q1 ◦B ◦ P ′
1 +Q2 ◦A−1 ◦B ◦A′ ◦ P ′

2.
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Suppose, as in Exercise 5.98, that the image subspace B(U1) contains a J1-complex
line in V1, spanned by B(u1) and J1(B(u1)) = B(u2) �= 0V1 . Let

v = Q′
1(u1) +Q′

2((A
′)−1(u2)) ∈ U,

and

JU (v) = Q′
2((A

′)−1(u1))−Q′
1(u2) ∈ U.

These two elements span a JU -complex line in ker(Pc ◦ Bc) ⊆ U . Conversely, if v
is a non-zero element of ker(Pc ◦ Bc), then u1 = P ′

1(v) and u2 = A′(P ′
2(v)) are not

both zero, and are related by J1(B(u1)) = B(u2).

Hint. The vector v is non-zero (P ′
1(v) = u1 �= 0U1).

Bc(v) = (Q1 ◦B ◦ P ′
1 +Q2 ◦A−1 ◦B ◦A′ ◦ P ′

2)(Q
′
1(u1) +Q′

2((A
′)−1(u2)))

= Q1(B(u1)) +Q2(A
−1(B(u2))) = ((Q1 +Q2 ◦A−1 ◦ J1) ◦B)(u1),

Pc(Bc(v)) = (Pc ◦Qc ◦ Pc)(Bc(v))

= (Pc ◦ (1
2
· (IdV − JV ◦ J)) ◦ (Q1 +Q2 ◦A−1 ◦ J1) ◦B)(u1)).

Using J ◦Q1 = Q1 ◦ J1 and J ◦Q2 = Q2 ◦A−1 ◦ J1 ◦A,
(IdV − JV ◦ J) ◦ (Q1 +Q2 ◦A−1 ◦ J1)

= Q1 +Q2 ◦A−1 ◦ J1 − JV ◦Q1 ◦ J1 + JV ◦Q2 ◦A−1

= Q1 +Q2 ◦A−1 ◦ J1 − (Q2 ◦A−1 ◦ P1 −Q1 ◦A ◦ P2) ◦ (Q1 ◦ J1 −Q2 ◦A−1)

= 0Hom(V1,V ).

The other vector, JU (v), is also in the kernel, by the c-linearity of Bc : U → V and
Pc : V → Vc.

For the converse, if v = (Q′
1 ◦ P ′

1 +Q′
2 ◦ P ′

2)(v) �= 0U then P ′
1(v) and P

′
2(v) are

not both zero, and Pc(Bc(v)) = 0Vc is equivalent to JV (Bc(v)) = −J(Bc(v)). We
want to show that J1(B(P ′

1(v))) = B(A′(P ′
2(v))). Expanding using (5.14), (5.15),

and (5.18) gives:

JV (Bc(v)) = Q2(A
−1(B(P ′

1(v)))) −Q1(B(A′(P ′
2(v)))),(5.19)

J(Bc(v)) = Q1(J1(B(P ′
1(v)))) +Q2(A

−1(J1(B(A′(P ′
2(v)))))),

and then using the equality JV (Bc(v)) = −J(Bc(v)), the claim follows from apply-

ing P1 to both sides.

Exercise 5.101. For V = V1 ⊕ V2, U = U1 ⊕ U2, A, A
′, J1, JU , B, and Bc

as in Exercise 5.100, suppose (u1, . . . , u2�) is a list of elements of U1 such that for
each ι = 1, . . . , �, J1(B(u2ι−1)) = B(u2ι). For each ι, denote an element vι ∈ U by:

vι = Q′
1(u2ι−1) +Q′

2((A
′)−1(u2ι)).

If B is one-to-one then the following are equivalent.

(1) (v1, JU (v1), . . . , v�, JU (v�)) is an independent list in U .
(2) (u1, . . . , u2�) is an independent list in U1.

Hint. For (1) =⇒ (2), by Exercise 5.51, Bc is also one-to-one, so by Exercise
0.49,

(Bc(v1), Bc(JU (v1)), . . . , Bc(v�), Bc(JU (v�)))
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is an independent list in V . For each ι,

Bc(vι) = Q1(B(u2ι−1)) +Q2(A
−1(B(u2ι)))

= ((Q1 +Q2 ◦A−1 ◦ J1) ◦B)(u2ι−1),

Bc(JU (vι)) = Q2(A
−1(B(u2ι−1)))−Q1(B(u2ι))

= ((Q1 +Q2 ◦A−1 ◦ J1) ◦B)(−u2ι),
so (Q1+Q2 ◦A−1 ◦J1)◦B transforms (u1,−u2, . . . , u2�−1,−u2�) to an independent
list, which implies (2). Conversely, P1 is a left inverse of Q1 + Q2 ◦ A−1 ◦ J1,
so (Q1 + Q2 ◦ A−1 ◦ J1) ◦ B is one-to-one and transforms the independent list
(u1,−u2, . . . , u2�−1,−u2�) to an independent list. So (v1, JU (v1), . . . , v�, JU (v�)) is

transformed by Bc into an independent list, which implies (1).

Remark 5.102. The constructions of Exercise 5.98 and Exercise 5.99 are two
different generalizations of the notion of “complexification” of a complex vector
space. In particular, the Vc⊕Va direct sum and complex linear isomorphism V1 → Vc
from line (5.16) are analogous to the well-known construction often denoted by
V 1,0 ⊕ V 0,1 in complex geometry. The idea from Exercise 5.98 and Exercise 5.100
that a real linear map B into a complex vector space can be “complexified” to a
c-linear map Bc, and then composed with a c-linear projection, so that the kernel
detects whether the image of B contains a complex line (or a J-invariant subspace,
as in Exercise 5.101), has been used in geometry, for example, [W].

Exercise 5.103. For V = V1⊕V2, U = U1⊕U2, A, A
′, J1, JU , B, and Bc as in

Exercise 5.100, suppose that additionally there is a CSO J̃1 on U1, and in analogy
with (5.15), there is the CSO on U ,

(5.20) J̃ = Q′
1 ◦ J̃1 ◦ P ′

1 +Q′
2 ◦ (A′)−1 ◦ J̃1 ◦A′ ◦ P ′

2.

If there is an element u1 ∈ U1 so that

(5.21) B(J̃1(u1)) = J1(B(u1)) ∈ V1,

then B maps the J̃1-invariant subspace spanned by {u1, J̃1(u1)} in U1 to a J1-
invariant subspace in V1, spanned by {B(u1), J1(B(u1))}, as in Lemma 5.24. If

B(u1) �= 0V1 , then the result of Exercise 5.100 applies, with u2 = J̃1(u1): these two
elements of U :

v = Q′
1(u1) +Q′

2((A
′)−1(J̃1(u1))),

JU (v) = Q′
2((A

′)−1(u1))−Q′
1(J̃1(u1))

span a JU -complex line in ker(Pc ◦Bc) ⊆ U . The direct sum produced by −J̃ ◦ JU
is Uc ⊕ Ua, with projections (P ′

c, P
′
a), and Q′

a ◦ P ′
a = 1

2 · (IdU + J̃ ◦ JU ) as in
Example 5.59. A straightforward computation shows that v = 2 · (Q′

a ◦P ′
a)(Q

′
1(u1))

and JU (v) = −2 · (Q′
a ◦ P ′

a)(Q
′
1(J̃1(u1))). So, the JU -complex line spanned by

{v, JU (v)} is contained in ker(Pc ◦ Bc ◦ Q′
a) ⊆ Ua, and it is the image under the

invertible map P ′
a ◦Q′

1 of the J̃1-complex line spanned by {u1, J̃1(u1)} in U1.
The composite Pc ◦Bc ◦Q′

a : Ua → Vc is c-linear with respect to the canonically

induced CSO on Vc, and the CSO P ′
a ◦JU ◦Q′

a = −P ′
a ◦ J̃ ◦Q′

a on Ua as in Example

5.61. As in Exercise 5.99, P ′
a ◦ Q′

1 : U1 → Ua is c-linear with respect to J̃1 and

P ′
a ◦ J̃ ◦Q′

a = −P ′
a ◦ JU ◦Q′

a.
Conversely, if v ∈ Ua is a non-zero element of ker(Pc ◦ Bc ◦ Q′

a), then u1 =
P ′
1(Q

′
a(v)) ∈ U1 is non-zero and satisfies (5.21).
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Hint. To sketch a proof of the last claim, P ′
1◦Q′

a is invertible by Theorem 1.137.

We want to show B(J̃1(P
′
1(Q

′
a(v)))) = J1(B(P ′

1(Q
′
a(v)))). By the construction of

U = Uc ⊕ Ua, Q
′
a(v) satisfies JU (Q

′
a(v)) = −J̃(Q′

a(v)). Expanding the formulas
from (5.17) and (5.20) gives:

JU (Q
′
a(v)) = Q′

2((A
′)−1(P ′

1(Q
′
a(v)))) −Q′

1(A
′(P ′

2(Q
′
a(v)))),

J̃(Q′
a(v)) = Q′

1(J̃1(P
′
1(Q

′
a(v)))) +Q′

2((A
′)−1(J̃1(A

′(P ′
2(Q

′
a(v)))))),

Setting these to be opposite and then applying P ′
1 to both sides gives the equation

(5.22) A′(P ′
2(Q

′
a(v))) = J̃1(P

′
1(Q

′
a(v))).

The hypothesis (Pc ◦Bc ◦Q′
a)(v) = 0Vc is equivalent to

JV (Bc(Q
′
a(v))) = −J(Bc(Q

′
a(v))).

Expanding as in (5.19),

JV (Bc(Q
′
a(v))) = Q2(A

−1(B(P ′
1(Q

′
a(v))))) −Q1(B(A′(P ′

2(Q
′
a(v))))),

J(Bc(Q
′
a(v))) = Q1(J1(B(P ′

1(Q
′
a(v))))) +Q2(A

−1(J1(B(A′(P ′
2(Q

′
a(v))))))),

setting these to be opposite and then applying P1 to both sides gives

J1(B(P ′
1(Q

′
a(v)))) = B(A′(P ′

2(Q
′
a(v)))),

so the claim follows from using (5.22).

Exercise 5.104. For V = V1 ⊕ V2 and A as in Exercise 5.99, if J1 and J̃1 are
two (not necessarily commuting) CSOs on the same vector space V1, then Exercise

5.103 applies in the special case B = IdV1 , Bc = IdV . J1 and J̃1 define different
complexifications, V = Vc ⊕ Va produced by −J ◦ JV as in Exercise 5.99, and
V = Uc⊕Ua produced by −J̃ ◦JV as in Exercise 5.103, respectively. If u1 is a non-
zero element of V1 where J1(u1) = J̃1(u1) (as in Example 5.25), then the J1-complex

line spanned by {u1, J1(u1) = J̃1(u1)} is mapped by P ′
a ◦Q1 to a JV -complex line

in the kernel of the map Pc ◦Q′
a : Ua → Vc.

Remark 5.105. As in Remark 5.102, describing the subspace of vectors where a
real linear map happens to respect the CSOs, in terms of the kernel of the composite
of a complexified map and a projection, has been used in geometry. The special
case from Example 5.25 and Exercise 5.104, describing a set on which two CSOs
coincide, is considered by [HL]. The connection between the property in Exercise
5.100 (the image ofB contains a J1-invariant subspace) and the property in Exercise
5.103 (B is c-linear on a subspace) is considered in Exercise 5.54.

5.3.2. Three Commuting Complex Structure Operators.

Example 5.106. Given V and three commuting CSOs J1, J2, J3, consider an
ordered triple (i1, i2, i3) which is a permutation (no repeats) of the indices 1, 2,
3. For the first two indices, the two CSOs Ji1 , Ji2 produce a direct sum V =
Vc(i1i2) ⊕ Va(i1i2) with projection Pc(i1i2) = 1

2 · (IdV − Ji1 ◦ Ji2) as in Example
5.59. The ordering of the pair is irrelevant: Vc(i1i2) = Vc(i2i1). The remaining
CSO Ji3 respects this direct sum by Lemma 5.60, and by Lemma 5.47 induces
a CSO Pc(i1i2) ◦ Ji3 ◦ Qc(i1i2) on Vc(i1i2), which commutes with the CSO induced
by Ji1 and Ji2 . So, again as in Example 5.59, there is a direct sum Vc(i1i2) =
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(Vc(i1i2))c⊕(Vc(i1i2))a with projection Pc((i1i2)i3) : Vc(i1i2) � (Vc(i1i2))c. Simplifying
the composition of projections gives the formula

Pc((i1i2)i3) ◦ Pc(i1i2) =
1

4
· (IdV − J1 ◦ J2 − J2 ◦ J3 − J1 ◦ J3).

Considering (Vc(i1i2))c as a subspace of V , the above formula shows that neither
the composite map nor its image depends on the ordering of the three indices, and
so (Vc(i1i2))c is equal to the subspace where all three CSOs coincide and it can
be denoted Vc(123). The composite of inclusions Qc(i1i2) ◦Qc((i1i2)i3) also does not
depend on the ordering. The canonical CSO on Vc(123) is:

(5.23) Pc((i1i2)i3) ◦ Pc(i1i2) ◦ Ji ◦Qc(i1i2) ◦Qc((i1i2)i3),

for any i = 1, 2, or 3.

Example 5.106 is also a special case of both Theorem 1.130 and Example 5.70:
given three commuting CSOs, there are commuting involutions on V ,

(5.24) K1 = −J2 ◦ J3, K2 = −J1 ◦ J3, K1 ◦K2 = −J1 ◦ J2.
The direct sums from Theorem 1.130 produced by these involutions are exactly
V = Vc(i1i2)⊕Va(i1i2), and each Vc(i1i2) admits a canonically induced involution and
direct sum. The conclusions of Theorem 1.130 are Vc(12) ∩ Vc(23) ∩ Vc(13) = Vc(123)
and (Vc(i1i2))a = Va(i1i3) ∩ Va(i2i3). From (1.18), each projection Pc(i1i2)i3 is equal
to a map induced by Pc(i1i3) and also to a map induced by Pc(i2i3).

Lemma 5.107. For V with three commuting CSOs J1, J2, J3, U = (U, JU ), and
a map H : V → U , if H is c-linear with respect to (J1, JU ), then H◦Qc(12) : Vc(12) →
U is c-linear with respect to (Pc(12) ◦ J1 ◦ Qc(12), JU ) and H ◦ Qc(13) : Vc(13) → U
is c-linear with respect to (Pc(13) ◦ J1 ◦ Qc(13), JU ). For any ordering (i1, i2, i3),
H ◦Qc(i1i2) ◦Qc((i1i2)i3) : Vc(123) → U is c-linear.

Proof. The first claim follows from Lemma 5.63, for the induced CSO Pc(12) ◦
J1 ◦ Qc(12) = Pc(12) ◦ J2 ◦ Qc(12) on Vc(12). The second claim similarly follows
from Lemma 5.63, and there are analogous claims if H is instead assumed to be
c-linear with respect to either (J2, JU ) or (J3, JU ). Lemma 5.63 then applies to
H ◦Qc(12), and the two CSOs on Vc(12) from Example 5.106, Pc(12) ◦J1 ◦Qc(12) and
Pc(12) ◦ J3 ◦Qc(12), so (H ◦Qc(12)) ◦Qc((12)3) is c-linear with respect to (Pc((12)3) ◦
(Pc(12) ◦J1 ◦Qc(12)) ◦Qc((12)3), JU ). The last claim follows from the composites not

depending on the ordering.

Lemma 5.108. Given V with commuting CSOs J1
V , J

2
V , J

3
V , and U with com-

muting CSOs J1
U , J

2
U , J

3
U , if H : U → V satisfies H ◦ J1

U = J1
V ◦H and H ◦ J2

U =
J2
V ◦H and H ◦ J3

U = J3
V ◦H, then H respects the corresponding direct sums from

Example 5.106, and each induced map PV
c(i1i2)

◦H ◦QU
c(i1i2)

is c-linear with respect

to the CSOs induced by J i1
U , J i1

V and also c-linear with respect to the CSOs induced

by J i3
U , J i3

V . The induced map

PV
c((i1i2)i3)

◦ PV
c(i1i2)

◦H ◦QU
c(i1i2)

◦QU
c((i1i2)i3)

: Uc(123) → Vc(123)

is c-linear and does not depend on the ordering (i1, i2, i3). If, also, H is invertible,
then the induced maps are invertible.
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Proof. Theorem 1.131 applies, with commuting involutions on both V and U
as in Example 5.106. In particular, H respects the direct sums

Uc(i1i2) ⊕ Ua(i1i2) → Vc(i1i2) ⊕ Va(i1i2).

The induced map PV
c(i1i2)

◦H ◦QU
c(i1i2)

respects the direct sum

Uc((i1i2)i3) ⊕ (Uc(i1i2))a → Vc((i1i2)i3) ⊕ (Vc(i1i2))a,

where Uc((i1i2)i3) = Uc(123) and (Uc(i1i2))a = Ua(i1i3) ∩Ua(i2i3) as in Example 5.106.
The first claim of c-linearity follows from Lemma 5.65. The second c-linearity
requires checking

PV
c(i1i2)

◦H◦QU
c(i1i2)

◦PU
c(i1i2)

◦J i3
U ◦QU

c(i1i2)
= PV

c(i1i2)
◦J i3

V ◦QV
c(i1i2)

◦PV
c(i1i2)

◦H◦QU
c(i1i2)

,

and then the last claims follow from Lemma 5.65 applied again to the commuting

CSOs induced on Uc(i1i2), Vc(i1i2).

Example 5.109. Given U with commuting CSOs J1, J2, J3, suppose H is an
involution on U such that H ◦J1 = J2 ◦H and H ◦J3 = J3 ◦H . By Lemma 5.72, H
respects the direct sum Uc(12) ⊕ Ua(12) → Uc(12) ⊕ Ua(12), and induces involutions
on Uc(12) and Ua(12). Lemma 5.108 applies to the triple (J1, J2, J3) on the domain
of H and (J2, J1, J3) on the target. So, H respects the direct sums:

Uc(13) ⊕ Ua(13) → Uc(23) ⊕ Ua(23)(5.25)

Uc(23) ⊕ Ua(23) → Uc(13) ⊕ Ua(13),

and the induced maps Uc(13) → Uc(23) → Uc(13) are c-linear and mutually inverses.
The induced maps Ua(13) → Ua(23) → Ua(13) are also mutually inverses. The
subspace Uc(12) admits commuting CSOs Pc(12)◦J1◦Qc(12) = Pc(12)◦J2◦Qc(12) and
Pc(12)◦J3◦Qc(12) as in Example 5.106, producing the direct sum Uc(123)⊕(Uc(12))a.
The induced involution Pc(12) ◦H ◦Qc(12) on Uc(12) commutes with both of these
CSOs, respects this direct sum, and induces a c-linear involution on Uc(123) by
Lemma 5.71. The involutions on U from (5.24) satisfy

(5.26) (−J2 ◦ J3) ◦H = H ◦ (−J1 ◦ J3),
so we have a special case of Example 1.132. Adapting the notation from Example
1.132, the involutions H and H ◦ (−J1 ◦ J2) produce direct sums U = U7 ⊕U8 and
U9⊕U10. The involution Pc(12) ◦H ◦Qc(12) on Uc(12) commutes with Pc(12) ◦ (−J1 ◦
J3)◦Qc(12) = Pc(12)◦(−J2◦J3)◦Qc(12), and their product Pc(12)◦(−J1◦J3◦H)◦Qc(12)

is an involution with fixed point subspace U11. The following commutative diagram
is adapted from Example 1.132.

U

""""








....���
���

���
���

���� �� ����
���

���
���

���
���

 ����
�����

�����
�����

�����
�����

��

Uc(23)

11 11**
**

**
**

*
Uc(13)

����

Uc(12)

....���
���

���
�

���� �� ����
���

���
���

��
U7

����

U9

....���
���

���
���

Uc(123)

## ##��
���

���
��

U11

����

Uc(12) ∩ U7 ∩ U9

�������
���

���
���

Uc(123) ∩ U7
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The subspace Uc(123) ∩ U7 has a canonical CSO.

Exercise 5.110. For J1, J2, J3, and H as in Example 5.109, the sixteen oper-
ators

{±IdU ,±H,±J1 ◦ J2,±J1 ◦ J3,±J2 ◦ J3,±H ◦ J1 ◦ J2,±H ◦ J1 ◦ J3,±H ◦ J2 ◦ J3}

form a group which is the image of a representation of D4 × Z2. Unlike the group

from Exercise 1.139, there is no pair of anticommuting elements.

Example 5.111. For U = (U, JU ), V = (V, JV ), and W = (W,JW ), the space
U ⊗ V ⊗ W admits three commuting CSOs [JU ⊗ IdV⊗W ], . . . , [IdU⊗V ⊗ JW ].
The subspaces (U⊗c V)⊗c W and U⊗c (V ⊗c W) are equal, as a special case of
Example 5.106.

Example 5.112. ForU = (U, JU ) and commuting CSOs J1, J2 on V , U⊗V has
three commuting CSOs: [JU ⊗ IdV ], [IdU ⊗ J1], [IdU ⊗ J2]. This is another special
case of Example 5.106. The projection Pc(23) : U ⊗ V � (U ⊗ V )c(23) = U ⊗ Vc is
as in Example 5.73, so Pc(23) = [IdU ⊗ Pc], where Pc : V � Vc is as in Example
5.59. The subspace where all three CSOs agree is (U ⊗ V )c(123) = U⊗c Vc.

Example 5.113. Given U and V , suppose V = (V, JV ) and there are com-
muting CSOs JU , J

′
U on U . Then J1 = Hom(JU , IdV ), J2 = Hom(J ′

U , IdV ),
J3 = Hom(IdU , JV ) are three commuting CSOs on Hom(U, V ), and this is a special
case of Example 5.106. There are three direct sums:

Hom(U, V ) = (Hom(U, V ))c(13) ⊕ (Hom(U, V ))a(13),

where (Hom(U, V ))c(13) = Homc((U, JU ),V) as in Example 5.78,

Hom(U, V ) = (Hom(U, V ))c(23) ⊕ (Hom(U, V ))a(23),

where (Hom(U, V ))c(23) = Homc((U, J
′
U ),V), and

Hom(U, V ) = (Hom(U, V ))c(12) ⊕ (Hom(U, V ))a(12),

as in Example 5.84. Each (Hom(U, V ))c(i1i2) admits a direct sum with projection
onto

((Hom(U, V ))c(i1i2))c = (Hom(U, V ))c(123) = {A :U→V : A◦JU = A◦J ′
U = JV ◦A}.

The invertible map

P ′′
c ◦Hom(Pc, IdU ) : Hom(Uc, V ) → (Hom(U, V ))c(12)

from Example 5.84 (where in this case, P ′′
c = Pc(12)) is c-linear with respect to

Hom(IdUc , JV ) and Pc(12) ◦J3 ◦Qc(12), and is also c-linear with respect to Hom(Pc ◦
JU ◦ Qc, IdV ) and Pc(12) ◦ J1 ◦ Qc(12), so by Lemma 5.65, it respects the direct
sums and induces an invertible, c-linear map Homc(Uc,V) → (Hom(U, V ))c(123),
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as indicated in the following diagram.

Hom(U, V )

Hom(Qc,IdV )

""













Pc(12)

�������
���

���
���

���
���

���

Pc(13)

����

Pc(23)

88 886
66

66
66

66
66

66
66

66

Hom(Uc, V )

Hom(Pc,IdV )

�� ��

����

(Hom(U, V ))c(12)

�� �����
����

����
����

�� (Hom(U, V ))c(13)

����

(Hom(U, V ))c(23)

�������
���

���
��

Homc(Uc,V) �� (Hom(U,V ))c(123)��

Lemma 5.114. Given V = (V, JV ) and U with commuting CSOs J1
U , J

2
U , let

W be a space with three commuting CSOs J1
W , J2

W , J3
W . If H : W → Hom(U, V )

satisfies Hom(J1
U , IdV ) ◦ H = H ◦ J1

W and Hom(J2
U , IdV ) ◦ H = H ◦ J2

W and
Hom(IdU , JV ) ◦H = H ◦ J3

W , then H respects the corresponding direct sums from
Example 5.113 and the induced maps are c-linear. If also H is invertible, then the
induced maps are invertible.

Proof. That H respects the direct sums produced by the three corresponding
pairs of CSOs, and that the induced maps

Pc(i1i2) ◦H ◦Q′
c(i1i2)

:Wc(i1i2) → (Hom(U, V ))c(i1i2)

(for example, the arrow labeled a3 in the diagram below) are c-linear, follow from
Lemma 5.108, which also showed the induced map ã3 :Wc(123) → (Hom(U, V ))c(123)
is c-linear, and invertible if H is. In the diagram, a1 and ã1 are the canonical
invertible maps which appeared as horizontal arrows in the diagram from Example
5.113; the adjacent projection arrows are also copied from that diagram. Lemma
5.85 showed that H also respects the direct sum Wc(12) ⊕Wa(12) → Hom(Uc, V )⊕
Hom(Ua, V ) and that the induced map Hom(Qc, IdV )◦H ◦Q′

c(12), denoted a2 in the

diagram below, is c-linear with respect to the CSO induced by J1
W and the CSO

induced by Hom(J1
U , IdV ). In fact, a2 is also c-linear with respect to the other

pair of CSOs, induced by J3
W and Hom(IdU , JV ). By Lemma 5.65, a2 respects

the direct sums produced by the commuting CSOs and induces a c-linear map
ã2 :Wc(123) → Homc(Uc,V); it satisfies the identity ã2 = ã1 ◦ ã3.

Hom(U, V )

Pc(12)

    ��
��
��
��
��
��
��
��
��
��
�

Hom(Qc,IdV )

��

W

P ′
c(12)

����

H��

Wc(12)

�����
�����

��

a3



�����
�����

��� a2

..���
���

���
�

P ′
c((12)3)

����
(Hom(U, V ))c(12) a1

��

Pc((12)3)

����

Hom(Uc, V )

����

Wc(123)

�����
�����

�

ã3



�����
�����

���
ã2..���

���
���

�

(Hom(U, V ))c(123) ã1

�� Homc(Uc, V )
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Example 5.115. Given U and V , suppose there are three commuting CSOs JU ,
J ′
U , J

′′
U on U . Then J1 = Hom(JU , IdV ), J2 = Hom(J ′

U , IdV ), J3 = Hom(J ′′
U , IdV )

are three commuting CSOs on Hom(U, V ), and this is a special case of Example
5.106. There are three direct sums: Hom(U, V ) = (Hom(U, V ))c(i1i2)⊕(Hom(U, V ))a(i2i2),
each of which is equivalent to a direct sum Hom(Uc(i1i2), V )⊕Hom(Ua(i1i2), V ) as in
Example 5.84, with projection Hom(Qc(i2,i2), IdV ) : Hom(U, V ) → Hom(Uc(i1i2), V )
and inclusion Hom(Pc(i2,i2), IdV ). Each (Hom(U, V ))c(i1i2) admits a direct sum with
projection P ′

c((i1i2)i3)
onto

((Hom(U, V ))c(i1i2))c= (Hom(U, V ))c(123)= {A : U → V : A◦JU = A◦J ′
U = A◦J ′′

U}.
Each subspace Hom(Uc(i2i2), V ) has two commuting CSOs, and Example 5.84 ap-
plies again; there are equivalent direct sums:

Hom(Uc(i1i2), V ) = (Hom(Uc(i1i2), V ))c ⊕ (Hom(Uc(i1i2), V ))a,

Hom(Uc(i1i2), V ) = Hom(Uc(123), V )⊕Hom((Uc(i1i2))a, V ).

The following diagram shows the (i1i2) = (12) case, the other two cases being
similar.

Hom(U, V )
Hom(Qc(12),IdV )

������
����

���
���

P ′
c(12)

����
Hom(Uc(12), V )

$$�������������� a1 ��

P ′′
c

����

Hom(Qc((12)3) ,IdV )

������
����

����
��

(Hom(U, V ))c(12)

P ′
c((12)3)

����
Hom(Uc(123), V )

a2 ��

$$��������������
(Hom(Uc(12), V ))c

a3 �� (Hom(U, V ))c(123)

The horizontal arrows are

a1 = P ′
c(12) ◦Hom(Pc(12), IdV )

a2 = P ′′
c ◦Hom(Pc((12)3), IdV )

a3 = P ′
c((12)3) ◦ a1 ◦Q′′

c .

Both a1 and a2 are c-linear and invertible, canonically induced from the equivalent
direct sums as in Example 5.84. The a1 map is also c-linear with respect to the
CSOs induced by J ′′

U , so the induced map a3 is c-linear and invertible by Lemma
5.65. The c-linear invertible composite

a3 ◦ a2 = P ′
c((12)3) ◦ P ′

c(12) ◦Hom(Pc((12)3) ◦ Pc(12), IdV )

is canonical, not depending on the choice of (i1i2), as in Example 5.106.

Example 5.116. Given U and V , suppose U = (U, JU ) and there are com-
muting CSOs JV , J

′
V on V . Then J1 = Hom(JU , IdV ), J2 = Hom(IdU , JV ),

J3 = Hom(IdU , J
′
V ) are three commuting CSOs on Hom(U, V ), and this is a special

case of Example 5.106. There are three direct sums:

Hom(U, V ) = (Hom(U, V ))c(12) ⊕ (Hom(U, V ))a(12),

where (Hom(U, V ))c(12) = Homc(U, (V, JV )) as in Example 5.78,

Hom(U, V ) = (Hom(U, V ))c(13) ⊕ (Hom(U, V ))a(13),
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where (Hom(U, V ))c(13) = Homc(U, (V, J
′
V )), and

Hom(U, V ) = (Hom(U, V ))c(23) ⊕ (Hom(U, V ))a(23),

where (Hom(U, V ))c(23) = Hom(U, Vc) as in Example 5.83. Each (Hom(U, V ))c(i1i2)
admits a direct sum with projection onto

((Hom(U, V ))c(i1i2))c = (Hom(U, V ))c(123) = Homc(U, Vc),

as follows:
There are two ways to construct the projection

P 1 : (Hom(U, V ))c(23) = Hom(U, Vc)� (Hom(U, V ))c(123) = Homc(U, Vc),

which will turn out to give the same map. Denote the projection P ′
c : V � Vc as

in Example 5.59 with corresponding inclusion Q′
c; then Pc(23) = Hom(IdU , P

′
c) :

Hom(U, V ) � Hom(U, Vc) is the projection from (5.13) in Example 5.83, with
corresponding inclusion Qc(23) = Hom(IdU , Q

′
c).

The first construction of P 1 is to consider Hom(U, Vc) as a space with commut-
ing CSOs Hom(JU , IdVc), Hom(IdU , JVc) and directly apply Example 5.78 to get a
projection

P 1 =
1

2
· (IdHom(U,Vc) −Hom(JU , IdVc) ◦Hom(IdU , JVc))

=
1

2
· (IdHom(U,Vc) −Hom(JU , P

′
c ◦ JV ◦Q′

c)).(5.27)

Second, consider the subspace (Hom(U, V ))c(23), with two induced CSOs that com-
mute, as in Example 5.106:

(Pc(23) ◦Hom(JU , IdV ) ◦Qc(23)), (Pc(23) ◦Hom(IdU , JV ) ◦Qc(23)).

Then, using Pc(23) = Hom(IdU , P
′
c) and Qc(23) = Hom(IdU , Q

′
c), the projection

Pc((23)1) defined by these two CSOs as in Example 5.106 is the same as (5.27).
The projection Pc((12)3) : (Hom(U, V ))c(12) � (Hom(U, V ))c(123) can also be

defined by two methods with the same result (and similarly for Pc((13)2)). The
commuting induced CSOs:

(5.28) (Pc(12) ◦Hom(JU , IdV ) ◦Qc(12)), (Pc(12) ◦Hom(IdU , J
′
V ) ◦Qc(12))

define Pc((12)3) as in Example 5.106. The other way to define the projection is
to consider the map Hom(IdU , P

′
c) : Hom(U, V ) � Hom(U, Vc), which is c-linear

in two different ways: with respect to the pair Hom(JU , IdV ), Hom(JU , IdVc) and
also the pair Hom(IdU , JV ), Hom(IdU , JVc), as in Lemma 5.80. The induced map
P 2 = P 1 ◦ Hom(IdU , P

′
c) ◦ Qc(12) : (Hom(U, V ))c(12) → Homc(U, Vc) is c-linear; it

can be denoted Homc(IdU , P
′
c) as in Notation 5.81. By the equality of the composite

projections from Example 5.106,

P 2 = P 1 ◦Hom(IdU , P
′
c) ◦Qc(12)(5.29)

= Pc((23)1) ◦ Pc(23) ◦Qc(12)(5.30)

= Pc((12)3) ◦ Pc(12) ◦Qc(12) = Pc((12)3).

The expression (5.30) is an example of the construction (1.18) from Theorem 1.130.
Similarly, since the composite inclusions are equal:

(5.31) Qc(12) ◦Qc((12)3) = Hom(IdU , Q
′
c) ◦Qc((23)1),
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the inclusion Qc((12)3) is equal the induced map:

Qc((12)3) = Pc(12) ◦Hom(IdU , Q
′
c) ◦Qc((23)1) = Homc(IdU , Q

′
c).

Exercise 5.117. Given V = (V, JV ) and W = (W,JW ), Hom(Hom(V,W ),W )
admits three commuting CSOs,

J1 = Hom(Hom(JV , IdW ), IdW ),

J2 = Hom(Hom(IdV , JW ), IdW ),

J3 = Hom(IdHom(V,W ), JW ).

As in Example 5.113, there are three direct sums; (Hom(Hom(V,W ),W ))c(23) was
considered in Exercise 5.37. The composite

Pc((23)1) ◦ Pc(23) ◦ dV W : V → (Hom(Hom(V,W ),W ))c(123)

is c-linear with respect to the canonical CSO. Let Qc : Homc(V,W) ↪→ Hom(V,W )
denote the inclusion from Example 5.78. Then the image of

Hom(Qc, IdW ) ◦ dV W : V → Hom(Homc(V,W),W )

is contained in Homc(Homc(V,W),W), i.e., for any v ∈ V ,

dVW (v) ◦Qc : Homc(V,W) → W : H �→ (Qc(H))(v) = H(v)

is a c-linear map. From the commutativity of the diagram from Example 5.113,
considering Hom(Qc, IdW ) ◦ dV W as a map V → Homc(Homc(V,W),W), it is
identical to the composite of the above map Pc((23)1)◦Pc(23)◦dVW with the canonical

map (Hom(Hom(V,W ),W ))c(123) → Homc(Homc(V,W),W), so it is c-linear.

Recall from Definition 1.40 and Notation 1.41 the canonical map

n : V ⊗Hom(U,W ) → Hom(U, V ⊗W ) : (n′(v ⊗ E)) : u �→ v ⊗ (E(u)).

Theorem 5.118. If U = (U, JU ) and V = (V, JV ) and W = (W,JW ), then
n : V ⊗ Hom(U,W ) → Hom(U, V ⊗W ) is c-linear with respect to corresponding
pairs of the three commuting CSOs induced on each space, so it respects the direct
sums and induces c-linear maps

n1 : V ⊗Homc(U,W) → Homc(U, V ⊗W)

n2 : V ⊗c Hom(U,W ) → Homc(U,V ⊗W )

n3 : V ⊗c Hom(U,W) → Hom(U,V ⊗c W)

n : V⊗c Homc(U,W) → Homc(U,V ⊗c W),

which are invertible if n is.

Proof. The c-linearity claims for n follow from Lemma 1.42 (adjusted for
variations in ordering; they are also straightforward to check directly), and then
Lemma 5.108 applies. The direct sums for the domain V ⊗ Hom(U,W ) are as
in Example 5.112. The projection onto the subspace V ⊗ Homc(U,W) is equal
to [IdV ⊗ PH ] as in Example 5.73, where PH is the projection Hom(U,W ) �
Homc(U,W). The direct sums for the target space Hom(U, V ⊗ W ) are as in
Example 5.116. The following diagram shows some of the canonical projections,
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including P 2 as in (5.29).

V ⊗Hom(U,W )
n ��

[IdV ⊗PH ]
����

Hom(U, V ⊗W )

����
V ⊗Homc(U,W)

����

n1
�� Homc(U, V ⊗W)

P 2=Homc(IdU ,P ′
c)����

V ⊗c Homc(U,W)
n �� Homc(U,V ⊗c W)

The invertibility also follows from Lemma 5.108; in particular, if U or V is finite-

dimensional then these maps are invertible.

Example 5.119. Given U = (U, JU ), V = (V, JV ), W = (W,JW ), the canoni-
cal invertible map

q : Hom(V,Hom(U,W )) → Hom(V ⊗ U,W )

from Definition 1.46 is c-linear with respect to the three corresponding pairs of
induced CSOs, by Lemma 1.50. Lemma 5.114 applies, so that the following induced
maps are c-linear and invertible:

Homc(V,Hom(U,W )) → Hom(V ⊗c U,W )

Hom(V,Homc(U,W)) → Homc(V ⊗U,W)

Homc(V,Hom(U,W)) → Homc(V ⊗ U,W)

Homc(V,Homc(U,W)) → Homc(V ⊗c U,W).

The direct sums for the domain Hom(V,Hom(U,W )) are as in Example 5.116. The
direct sums for the target space Hom(V ⊗ U,W ) are as in Example 5.113.

Example 5.120. Given V = (V, JV ) and W = (W,JW ), Hom(V,Hom(V,W ))
admits three commuting CSOs, and the involution TV ;W is c-linear with respect
to three corresponding pairs of commuting CSOs as in Exercise 5.43 and Exercise
5.44. Hom(V,Hom(V,W )) also admits the three involutions from (5.24), and the
involution TV ;W satisfies

(−Hom(IdV ,Hom(JV , JW ))) ◦ TV ;W = TV ;W ◦ (−Hom(JV ,Hom(IdV , JW ))),

as in (5.26), so this is a special case of Example 5.109. As in (5.25), TV ;W induces
c-linear invertible maps:

Homc(V,Hom(V,W)) → Hom(V,Homc(V,W))

Hom(V,Homc(V,W)) → Homc(V,Hom(V,W)).

The subspace Homc(V,Hom(V,W )) admits commuting CSOs as in (5.28), and
projects onto the subspace Homc(V,Homc(V,W)) as in Example 5.116. The in-
volution on Homc(V,Hom(V,W )) induced by TV ;W from Exercise 5.95 induces
a c-linear involution on Homc(V,Homc(V,W)), producing a direct sum denoted
Symc(V;W)⊕Altc(V;W). Combining the notation from Example 1.132, Exam-
ple 5.96, and Example 5.109, the following commutative diagram shows some of
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the projections from Example 5.109.

Hom(V,Hom(V,W ))

""""







���� �� �����
����

����
���

Homc(V,Hom(V,W))

����

Homc(V,Hom(V,W ))

P 2""""







���� �� �����
����

����
���

Sym(V ;W )

����
Homc(V,Homc(V,W))

�� �����
����

����
����

��
U11

����

Symc(V;W )

��������
����

����
��

Symc(V;W)

The projection P 2 = Pc((12)3) labeled in the diagram, and the vertical arrow
Pc((13)2) on the left, are as in (5.29) from Example 5.116. The subspace U11 is
this fixed point subspace:

{h : (h(v1))(v2) = −(h(JV (v1)))(JV (v2)) = −JW ((h(JV (v2)))(v1))}.
The conclusions from Example 5.109 are that

Symc(V;W) = Homc(V,Homc(V,W)) ∩ Sym(V ;W ),

and that Symc(V;W) has a canonical CSO.

Exercise 5.121. Given U = (U, JU ) and W = (W,JW ), Hom(Hom(V,W ) ⊗
U,W ) admits three commuting CSOs, as in Example 5.113, so there are three
direct sums; (Hom(Hom(V,W )⊗ U,W ))c(23) was considered in Exercise 5.40. The
composite

Pc((23)1) ◦ Pc(23) ◦ eWUV : Hom(U, V ) → (Hom(Hom(V,W)⊗U,W))c(123)

is c-linear with respect to the canonical CSO. Let

Qc : Hom(V,W)⊗c U ↪→ Hom(V,W )⊗ U

denote the inclusion from Example 5.74. Then the image of

Hom(Qc, IdW ) ◦ eWUV : Hom(U, V ) → Hom(Hom(V,W)⊗c U,W )

is contained in Homc(Hom(V,W)⊗c U,W), i.e., for any A ∈ Hom(U, V ),

eWUV (A) ◦Qc : Hom(V,W)⊗c U → W : B ⊗ u �→ (eWUV (A))(Qc(B ⊗ u)) = B(A(u))

is a c-linear map. From the commutativity of the diagram from Example 5.113,
considering Hom(Qc, IdW ) ◦ eWUV as a map Hom(U, V ) → Homc(Hom(V,W) ⊗c

U,W), it is identical to the composite of the above map Pc((23)1) ◦Pc(23) ◦eWUV with
the canonical map (Hom(Hom(V,W )⊗U,W ))c(123) → Homc(Hom(V,W)⊗cU,W),

so it is c-linear.

Exercise 5.122. Given V = (V, JV ) and W = (W,JW ), Hom(Hom(V,W ) ⊗
U,W ) admits three commuting CSOs, as in Example 5.113, so there are three direct
sums; (Hom(Hom(V,W )⊗U,W ))c(23) was considered in Exercises 5.40, 5.121. The
composite

Pc((23)1) ◦ Pc(23) ◦ eWUV : Hom(U,V) → (Hom(Hom(V,W)⊗ U,W))c(123)
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is c-linear with respect to the canonical CSO. Let Qc : Homc(V,W) ⊗ U →
Hom(V,W ) ⊗ U denote the inclusion from Examples 5.73 and 5.78. Then the
image of

Hom(Qc, IdW ) ◦ eWUV : Hom(U,V) → Hom(Homc(V,W) ⊗ U,W )

is contained in Homc(Homc(V,W)⊗ U,W), i.e., for any A ∈ Hom(U, V ),

eWUV (A) ◦Qc : Homc(V,W)⊗U → W : B⊗ u �→ (eWUV (A))(Qc(B ⊗ u)) = B(A(u))

is a c-linear map. From the commutativity of the diagram from Example 5.113,
considering Hom(Qc, IdW ) ◦ eWUV as a map Hom(U,V) → Homc(Homc(V,W) ⊗
U,W), it is identical to the composite of the above map Pc((23)1) ◦Pc(23) ◦eWUV with
the canonical map (Hom(Hom(V,W )⊗U,W ))c(123) → Homc(Homc(V,W)⊗U,W),

so it is c-linear.

Exercise 5.123. Given U , V , W , with U = (U, JU ), V = (V, JV ), and
W = (W,JW ), we consider the three commuting CSOs on Hom(V,W ) ⊗ U , so
Example 5.115 applies to Hom(Hom(V,W ) ⊗ U,W ). The lower square in the fol-
lowing commutative diagram is a specific case of a square from the diagram in
Example 5.115, with the same labeling of arrows, and (12) referring to the CSOs
induced by JU and JV . The e1, e2 arrows are the maps induced by eWUV on the two
equivalent direct sums from Exercise 5.91.

Homc(U,V)

e1



�����
�����

�����
�����

��
e2

��
Hom(Hom(V,W )⊗c U,W )

Hom(Qc((12)3) ,IdW )

��

a1 �� (Hom(Hom(V,W )⊗ U,W ))c(12)

P ′
c((12)3)

����
Hom(Homc(V,W)⊗c U,W )

a3◦a2 �� (Hom(Hom(V,W )⊗ U,W ))c(123)

The composite P ′
c((12)3) ◦ e2 is c-linear, so the composite Hom(Qc((12)3), IdW )◦ e1 is

also c-linear. As in Exercises 5.40, 5.121, 5.122, the image of Hom(Qc((12)3), IdW )◦
e1 is contained in Homc(Homc(V,W) ⊗ U,W), i.e., if Q′

c denotes the inclusion
of Homc(U,V) ↪→ Hom(U, V ) and Qc(12) ◦ Qc((12)3) is the composite inclusion of
Homc(V,W) ⊗c U ↪→ Hom(V,W )⊗ U , then for any A ∈ Homc(U,V), the map

(5.32) eWUV (Q
′
c(A)) ◦Qc(12) ◦Qc((12)3) : Homc(V,W) ⊗c U → W

is c-linear.

Example 5.124. For V = (V, JV ) and W = (W,JW ), the space Hom(V,W )⊗
V admits three commuting CSOs as in Example 5.112. The composite of the
inclusions, Qc(12) ◦Qc((12)3),

Homc(V,W) ⊗c V
� �

Qc((12)3)

�� Homc(V,W) ⊗ V � �

Qc(12)

�� Hom(V,W )⊗ V

does not depend on the ordering of the indices, but in the case of the above diagram,
Qc(12) = [Qc ⊗ IdV ] for Qc : Homc(V,W) ↪→ Hom(V,W ), as in Example 5.73.

Define a c-linear evaluation map

(5.33) EvcVW = EvVW ◦Qc(12) ◦Qc((12)3) : Homc(V,W)⊗c V → W.
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This is the restriction of the canonical evaluation from Definition 2.71; it is c-linear
by Exercise 5.41 and Lemma 5.107. Considering the formula EvV W = eWV V (IdV )
from Equation (2.16), this construction is also a special case of (5.32) from Ex-
ercise 5.123. The domain Homc(V,W) ⊗c V is spanned by elements of the form
Pc((12)3)(A⊗ v) for c-linear maps A : V →W , on which EvcVW acts as follows:

EvcVW(Pc((12)3)(A⊗ v))

= (EvV W ◦Qc(12) ◦Qc((12)3) ◦ Pc((12)3))(A ⊗ v)

= (EvV W ◦ [Qc ⊗ IdV ] ◦ 1

2
(IdHomc(V,W)⊗V − [JHomc(V,W) ⊗ JV ]))(A ⊗ v)

= EvV W (
1

2
((Qc(A)) ⊗ v − (Qc(A ◦ JV ))⊗ (JV (v))))

=
1

2
(Qc(A))(v) − 1

2
(Qc(A ◦ JV ))(JV (v))

= A(v) = EvV W (A⊗ v),(5.34)

where in line (5.34), we just forget that A = Qc(A) and A ◦ JV = Qc(A ◦ JV ) are
c-linear.

Lemma 5.125. For any U, V, W, and c-linear map B : U → W, the following
diagram is commutative.

U
B �� W

Homc(V,U) ⊗c V

Evc
VU

��

[Homc(IdV ,B)⊗cIdV ]
�� Homc(V,W) ⊗c V

Evc
VW

��

Proof. This is a c-linear version of Lemma 2.73 (the case G = IdV ), which
states the commutativity of the upper block of this diagram (for any B, not neces-
sarily c-linear).

U
B �� W

Hom(V, U)⊗ V

EvV U

��

[Hom(IdV ,B)⊗IdV ]
�� Hom(V,W )⊗ V

EvV W

��

Homc(V,U) ⊗ V
��

[Q′
c⊗IdV ]

��

[Homc(IdV ,B)⊗IdV ]
�� Homc(V,W) ⊗ V

��

[Qc⊗IdV ]

��

Homc(V,U) ⊗c V
��

Q′
c((12)3)

��

[Homc(IdV ,B)⊗cIdV ]
�� Homc(V,W) ⊗c V

��

Qc((12)3)

��

The middle block is commutative by definition of Homc(IdV , B) for the c-linear
maps IdV and B as in Notation 5.81, together with Lemma 1.36. The lower block
is commutative by the construction from Notation 5.76. The upward composites in

the left and right columns are EvcVU and EvcVW as in Example 5.124.
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5.3.3. Four Commuting Complex Structure Operators.

Example 5.126. Given V and four commuting CSOs J1, J2, J3, J4, the con-
struction of Example 5.106 shows that for any ordered pair (i1, i2) selected with-
out repeats from the indices 1, 2, 3, 4, there is a direct sum with projection
Pc(i1i2) : V � Vc(i1i2), and for a third distinct index, another direct sum with
projection Pc((i1i2)i3) : Vc(i1i2) � Vc(i1i2i3). Repeating the process for the remain-
ing, fourth index, the fourth commuting CSO produces a direct sum Vc(i1i2i3) =
(Vc(i1i2i3))c⊕ (Vc(i1i2i3))a, with projection Pc((i1i2i3)i4) : Vc(i1i2i3) � (Vc(i1i2i3))c. As
in Example 5.106, the composite Pc((i1i2i3)i4) ◦ Pc((i1i2)i3) ◦ Pc(i1i2) equals

1

8
· (IdV − J1 ◦ J2 − J2 ◦ J3 − J1 ◦ J3 − J1 ◦ J4 − J2 ◦ J4 − J3 ◦ J4 + J1 ◦ J2 ◦ J3 ◦ J4),

which shows the image of the last projection does not depend on the ordering of the
four indices, so the subspace where all four CSOs coincide can be denoted Vc(1234).

Example 5.127. Given V and four commuting CSOs J1, J2, J3, J4, the space
Vc(i1i2) from Example 5.126 admits three commuting CSOs: Pc(i1i2) ◦ Ji1 ◦Qc(i1i2),
Pc(i1i2) ◦ Ji3 ◦Qc(i1i2), Pc(i1i2) ◦ Ji4 ◦Qc(i1i2). Example 5.126 considered pairing the
first one with one of the other two to get two direct sums, but as in Example 5.106,
there are three possible direct sums on Vc(i1i2), the third coming from Pc(i1i2) ◦Ji3 ◦
Qc(i1i2), Pc(i1i2) ◦ Ji4 ◦Qc(i1i2) to get a subspace denoted Vc(i1i2)(i3i4), where Ji1 =
Ji2 and Ji3 = Ji4 , equal to the subspace Vc(i3i4)(i1i2). The composite projection
V � Vc(i1i2)(i3i4) is given by the formula

1

4
· (IdV − J1 ◦ J2 − J3 ◦ J4 + J1 ◦ J2 ◦ J3 ◦ J4).

The subspace Vc(i1i2)(i3i4) admits two commuting CSOs, the one induced by Ji1
and Ji2 , and the other by Ji3 and Ji4 , so there is a direct sum, and a projection
onto the subspace Vc(1234) from Example 5.126.
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Theorem 5.128. Given V and four commuting CSOs J1, J2, J3, J4, the fol-
lowing diagram is commutative, where the arrows are all the projections from direct
sums produced by commuting CSOs described in Examples 5.126 and 5.127.

V

999977
77
77
77
77
77
77
77
77
77

::::��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�

;;;;88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
8

<< <<9
99

99
99

99
99

99
99

99
99

9

(( ((:
::

::
::

::
::

::
::

::
::

::
::

::
::

::
::

::

== ==;
;;

;;
;;

;;
;;

;;
;;

;;
;;

;;
;;

;;
;;

;;
;;

;;
;;

;;
;;

;;
;;

;;
;

Vc(14)

���� >> >><
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<

<< <<9
99

99
99

99
99

99
99

99
99

99
99

99
99

99
99

99
99

99
99

99
9

Vc(23)

����






































































????==
==
==
==
==
==
==
==
==
==
==
==
==
==
==
==
==
==
=

== ==;
;;

;;
;;

;;
;;

;;
;;

;;
;;

;;
;;

;;
;;

;;

Vc(13)

6666--
--
--
--
--
--
--
--

88 886
66

66
66

66
66

66
66

66
66

66
66

66
66

66
66

66
66

66
66

66
66

�� ����
���

���
���

���
���

���
���

���
���

���
���

���
���

���
��

Vc(24)

))))>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>

����

22 22?
??

??
??

??
??

??
??

?

Vc(12)

����

55 551
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11
11

11
11

11
11

1
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@@
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@@
@@

@@
@@

@@
@@
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Vc(34)
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�����
�����
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���

@@@@AA
AA
AA
AA
AA
AA
AA
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����
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Vc(234)

@@@@AA
AA
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A

Vc(12)(34)

(( ((:
::

::
::

::
::

::
::

::
::

::
::

::
::

::
::

:
Vc(13)(24)

::::��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

Vc(124)

<< <<9
99

99
99

99
99

99
99

99
99

9
Vc(14)(23)

����

Vc(134)

999977
77
77
77
77
77
77
77
77
77

Vc(1234)

Proof. Some sub-diagrams were already considered in Examples 5.106, 5.126,
5.127. Some remain to be checked, for example, the equality of the composite
projections Vc(12) � Vc(123) � Vc(1234) and Vc(12) � Vc(12)(34) � Vc(1234) follows
from considering the three CSOs on Vc(12) as in Example 5.106. The corresponding

composites of inclusions are also equal.

Lemma 5.129. Given V with commuting CSOs J1
V , J

2
V , J

3
V , J

4
V , and U with

commuting CSOs J1
U , J

2
U , J

3
U , J

4
U , if H : U → V satisfies H ◦ J1

U = J1
V ◦ H and

H ◦ J2
U = J2

V ◦ H and H ◦ J3
U = J3

V ◦ H and H ◦ J4
U = J4

V ◦ H, then H respects
the corresponding direct sums from Examples 5.126 and 5.127, and induces maps
Uc(i1i2) → Vc(i1i2), Uc(i1i2i3) → Vc(i1i2i3), and Uc(i1i2)(i3i4) → Vc(i1i2)(i3i4), which are

c-linear with respect to all pairs of CSOs induced by J i
U , J

i
V , and invertible if H is.

The induced map Uc(1234) → Vc(1234) is c-linear, and invertible if H is.
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Proof. All the claims follow from Lemma 5.65 and Lemma 5.108. As in
Lemma 5.108, the map Uc(1234) → Vc(1234) is canonically induced, not depending

on the ordering of the indices.

Example 5.130. For V with commuting CSOs JV , J
′
V , and U with commuting

CSOs JU , J
′
U , the space U ⊗ V has four commuting CSOs:

J1 = [JU ⊗ IdV ], J2 = [IdU ⊗ JV ], J3 = [J ′
U ⊗ IdV ], J4 = [IdU ⊗ J ′

V ].

Theorem 5.128 applies, to give a collection of subspaces of U ⊗ V . From Example
5.73, (U ⊗ V )c(13) = Uc ⊗ V and (U ⊗ V )c(24) = U ⊗ Vc. From Example 5.74,
(U ⊗ V )c(12) = U ⊗c V , and we (temporarily) denote a similar construction (U ⊗
V )c(34) = U ⊗′ V . The subspaces (U ⊗ V )c(14) and (U ⊗ V )c(23) did not appear
in previous Examples, and are omitted from the following commutative diagram,
where the positions of the objects match the corresponding positions in the diagram
from Theorem 5.128.

U ⊗ V

&&&&""
""
""
""
""
""
""
""
""
""
""
""
""
""
""
"

;;;;BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
B
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#

Uc ⊗ V
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C
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DD

DD
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DD

DD
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���
���
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���
���

���
���

���
��

U ⊗ Vc
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>

����

55 55E
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E

U ⊗c V

����

55 55E
EE

EE
EE

EE
EE

EE
EE

E

'' ''F
FF

FF
FF
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FF

FF
FF

FF
FF

FF
FF

FF
FF

FF
F U ⊗′ V
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�����

����

;;;;88
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Uc ⊗c V

== ==@
@@
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@@
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@@
@ U ⊗′ Vc

@@@@88
88
88
88
88
88
88
88
88
88
88
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88
88
88
88
88
88
88

U ⊗′
c V

(( ((:
::

::
::

::
::

::
::

::
::

::
::

::
::

::
::

::
Uc ⊗ Vc

::::��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�

U ⊗c Vc

<< <<G
GG
GG

GG
GG

GG
GG

GG
GG
GG

G Uc ⊗′ V

9999HH
HH
HH
HH
HH
HH
HH
HH
HH
HH

Uc ⊗c Vc

The subspaces Uc⊗cV , U ⊗cVc, Uc⊗′ V , and U ⊗′Vc are as in Example 5.112. The
set U⊗′

cV corresponds to (U⊗V )c(12)(34), where J1 = J2 and J3 = J4; this notation



232 5. COMPLEX STRUCTURES

resembles (5.10) from Example 5.70, with the commuting involutions −J1 ◦ J2 and
−J3 ◦ J4.

Example 5.131. For V with commuting CSOs JV , J
′
V , and U with commuting

CSOs JU , J
′
U , the space Hom(U, V ) has four commuting CSOs:

J1 = Hom(JU , IdV ), J2 = Hom(J ′
U , IdV ),

J3 = Hom(IdU , JV ), J4 = Hom(IdU , J
′
V ).

Theorem 5.128 applies, to give a collection of subspaces of Hom(U, V ). The sub-
space (Hom(U, V ))c(12) was considered in Example 5.113. As in Example 5.78, de-
note (Hom(U, V ))c(13) = Homc(U, V ), and (temporarily) denote a similar construc-

tion (Hom(U, V ))c(24) = Hom′(U, V ). From Example 5.83, denote (Hom(U, V ))c(34) =
Hom(U, Vc). The subspaces (Hom(U, V ))c(14) and (Hom(U, V ))c(23) are omitted
from the following commutative diagram, but otherwise the positions of the ob-
jects match the corresponding positions in the diagram from Theorem 5.128 and
Example 5.130.

Hom(U, V )

&&&&��
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;;

;;
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;;
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;;
;;
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Hom(U, Vc)
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c(U, V )
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(Hom(U, V ))c(1234)
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Adapting the notation from (5.10) in Example 5.70, Hom′
c(U, V ) denotes the sub-

space

(Hom(U, V ))c(13)(24) = {A : U → V : A ◦ JU = JV ◦A and A ◦ J ′
U = J ′

V ◦A}.

If we ignore J ′
U , then the two projections onto Homc(U, Vc) in the above diagram are

as in Example 5.116. Similarly ignoring JU , the two projections onto Hom′(U, Vc)
are also as in Example 5.116.

Example 5.132. The space (Hom(U, V ))c(12) from Example 5.131 is related to
Hom(Uc, V ) as in Example 5.113, by an invertible map Pc(12) ◦Hom(Pc, IdV ). Both
(Hom(U, V ))c(12) and Hom(Uc, V ) admit three induced CSOs, and Hom(Uc, V ) ad-
mits three direct sums as in Example 5.116. The map Pc(12) ◦ Hom(Pc, IdV ) is
c-linear with respect to the three corresponding pairs of CSOs, so by Lemma 5.108,
it respects the direct sums and induces c-linear invertible maps as indicated by
the unlabeled horizontal arrows in the following diagram. The left part is copied
from the diagram in Example 5.131, and the top triangle and top square appeared
already in the diagram for Example 5.113.
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The projections P 1, P 2 are labeled to match (5.27), (5.29) from Example 5.116,
and the lower right vertical arrow is also from (5.29).
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Theorem 5.133. For V with commuting CSOs JV , J
′
V , and U with commuting

CSOs JU , J
′
U , let W be a space with four commuting CSOs J1

W , J2
W , J3

W J4
W . If

H : W → Hom(U, V ) satisfies Hom(JU , IdV )◦H = H◦J1
W and Hom(J ′

U , IdV )◦H =
H ◦ J2

W and Hom(IdU , JV ) ◦ H = H ◦ J3
W and Hom(IdU , J

′
V ) ◦ H = H ◦ J4

W ,
then H respects the corresponding direct sums from Examples 5.131 and 5.132, and
the induced maps are c-linear. If also H is invertible, then the induced maps are
invertible.

Proof. The claims for the induced maps

Wc(i1i2) → (Hom(U, V ))c(i1i2)

Wc(i1i2i3) → (Hom(U, V ))c(i1i2i3)

Wc(i1i2)(i3i4) → (Hom(U, V ))c(i1i2)(i3i4)

ã3 : Wc(1234) → (Hom(U, V ))c(1234)

follow from Lemma 5.129. The target spaces are as in the diagram from Example
5.131, for example, H induces a map Wc(13)(24) → Hom′

c(U, V ), labeled a3 in the
diagram below, and a3 induces ã3. The claims for the induced maps

a2 = Hom(Qc, IdV ) ◦H ◦Q′
c(12) :Wc(12) → Hom(Uc, V ),

and Wc(123) → Homc(Uc, (V, JV )) (= Homc(Uc, V ) in the diagram from Exam-

ple 5.132), and Wc(124) → Homc(Uc, (V, J
′
V )) = Hom′(Uc, V ) follow from Lemma

5.114. The map a2 is c-linear with respect to the pair of CSOs induced by J3
W

and Hom(IdU , JV ), as mentioned in the Proof of Lemma 5.114, and is also c-linear
with respect to the pair of CSOs induced by J4

W and Hom(IdU , J
′
V ), so it satisfies

the hypotheses of Lemma 5.108, and respects the corresponding direct sums in the
diagram from Example 5.132. The maps induced by a2 are c-linear:

Wc(12)(34) → Hom(Uc, Vc)

ã2 :Wc(1234) → Homc(Uc, Vc).

In the following diagram, the left half is copied from the diagram from Example
5.132, where a1 = Hom(Qc, IdV ) ◦ Qc(12) induces ã1, and they are both c-linear

and invertible. The space Hom′
c(U, V ) and projections Pc(13)(24), P3 are copied

from Example 5.131, and the right half of the diagram is part of the diagram from
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Theorem 5.128.
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������
���� ã2�����

���
���

��

(Hom(U, V ))c(1234) ã1

�� Homc(Uc, Vc)

Finally, we remark that ã2 = ã1 ◦ ã3; an analogous property was observed in the
Proof of Lemma 5.114. The identity can be checked directly, using the c-linearity
of H . The map ã2 acts on w ∈ Wc(1234) as: ã2 : w �→ P ′

c ◦H(w) ◦Qc, where P
′
c is

the projection V � Vc.

Exercise 5.134. Given U , V , W , with U = (U, JU ), V = (V, JV ), and W =
(W,J), for any A ∈ Homc(U,V), the map tWUV (A) : Hom(V,W ) → Hom(U,W )
(or, more precisely, tWUV (Q

′
c(A)), where Q′

c is the inclusion of Homc(U,V) in
Hom(U, V )) is c-linear with respect to both pairs Hom(IdV , JW ), Hom(IdU , JW )
and Hom(JU , IdW ), Hom(JV , IdW ), so tWUV (A) respects the direct sums and induces
a c-linear map Homc(V,W) → Homc(U,W). The resulting map, denoted

tWUV : Homc(U,V) → Homc(Homc(V,W),Homc(U,W)),

is c-linear.

Hint. Lemma 5.65, Exercise 5.89, and Exercise 5.35 apply. The last claim can
be checked directly. However, by following the diagrams from Examples 5.131 and
5.132, a little more can be obtained. Let Qi and Pi denote the data for the direct
sum Hom(V,W ) = Homc(V,W) ⊕Homa(V,W ), so that

Hom(Qc, IdHom(U,W )) :

Hom(Hom(V,W ),Hom(U,W )) → Hom(Homc(V,W),Hom(U,W ))

is as in Example 5.132. Then

Hom(Qc, IdHom(U,W )) ◦ tWUV : Hom(U, V ) → Hom(Homc(V,W),Hom(U,W ))

is c-linear with respect to Hom(JU , IdV ) and the CSO induced by

J3 = Hom(IdHom(V,W ),Hom(JU , IdW )),

and is also c-linear with respect to Hom(IdU , JV ) and the CSO induced by

J1 = Hom(Hom(JV , IdW ), IdHom(U,W )).

So by Lemma 5.65, it induces a c-linear map

Homc(U,V) → Homc(Homc(V,W),Hom(U,W )).
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As claimed above, the image of this induced map is contained in the subspace
Homc(Homc(V,W),Homc(U,W)). For A ∈ Homc(U,V) and K ∈ Homc(V,W),

(tWUV (Q
′
c(A))) ◦Qc : K �→ (Qc(K)) ◦ (Q′

c(A)) = K ◦A ∈ Homc(U,W).

Example 5.135. Given U1, U2, V1, V2, and U1 = (U1, JU1), the canonical map
(Definition 1.33)

j : Hom(U1, V1)⊗Hom(U2, V2) → Hom(U1 ⊗ U2, V1 ⊗ V2)

is c-linear with respect to the induced CSOs, by Lemma 1.37. A similar statement
holds if any one of the four spaces has a CSO.

If every one of the above four spaces has a CSO, U1 = (U1, JU1), U2 =
(U2, JU2), V1 = (V1, JV1), V2 = (V2, JV2), then Hom(U1, V1) ⊗ Hom(U2, V2) ad-
mits four commuting CSOs:

J ′
1 = [Hom(JU1 , IdV1)⊗ IdHom(U2,V2)]

J ′
2 = [IdHom(U1,V1) ⊗Hom(JU2 , IdV2)]

J ′
3 = [Hom(IdU1 , JV1)⊗ IdHom(U2,V2)]

J ′
4 = [IdHom(U1,V1) ⊗Hom(IdU2 , JV2)],

and Hom(U1 ⊗ U2, V1 ⊗ V2) also admits four commuting CSOs:

J1 = Hom([JU1 ⊗ IdU2 ], IdV1⊗V2)

J2 = Hom([IdU1 ⊗ JU2 ], IdV1⊗V2)

J3 = Hom(IdU1⊗U2 , [JV1 ⊗ IdV2 ])

J4 = Hom(IdU1⊗U2 , [IdV1 ⊗ JV2 ]).

Since j is c-linear with respect to each pair J ′
i , Ji, Theorem 5.133 applies, with

H = j and W = Hom(U1, V1)⊗ Hom(U2, V2), so j induces maps on corresponding
subspaces, which are c-linear with respect to (possibly several pairs of) correspond-
ing CSOs, and which are invertible if j is. From the diagrams in Theorem 5.128
and Examples 5.130, 5.131, some induced maps from Lemma 5.129 are evident:

Hom(U1, V1)⊗c Hom(U2,V2) → Homc(U1 ⊗ U2, V1 ⊗V2)

Hom(U1,V1)⊗c Hom(U2, V2) → Homc(U1 ⊗U2,V1 ⊗ V2)

Homc(U1,V1)⊗ Hom(U2, V2) → Homc(U1 ⊗ U2,V1 ⊗ V2)

Hom(U1, V1)⊗Homc(U2,V2) → Homc(U1 ⊗U2, V1 ⊗V2)

Hom(U1,V1)⊗c Hom(U2,V2) → Hom(U1 ⊗ U2,V1 ⊗c V2)

Hom(U1,V1)⊗c Homc(U2,V2) → Homc(U1 ⊗U2,V1 ⊗c V2)

a3 : Homc(U1,V1)⊗Homc(U2,V2) → Hom′
c(U1 ⊗ U2, V1 ⊗ V2)(5.35)

Homc(U1,V1)⊗c Hom(U2,V2) → Homc(U1 ⊗ U2,V1 ⊗c V2)

ã3 : Homc(U1,V1)⊗c Homc(U2,V2) → (Hom(U1 ⊗ U2, V1 ⊗ V2))c(1234).

For example, the seventh map, labeled a3 as in the diagram from Theorem 5.133, is
c-linear with respect to both corresponding pairs of induced CSOs, and for c-linear
maps A and B, takes A ⊗ B to the map j(A ⊗ B) : U1 ⊗ U2 → V1 ⊗ V2, which is
c-linear with respect to the pair [JU1 ⊗ IdU2 ], [JV1 ⊗ IdV2 ], and also c-linear with
respect to the pair [IdU1 ⊗ JU2 ], [IdV1 ⊗ JV2 ].
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Also, if some but not all of the four spaces have CSOs, then there may still be
some induced maps, for example, the first one in the above list makes sense if only
U1 and V2 have CSOs.

Let Q′
c(12), P

′
c(12), and Qc(12), Pc(12) denote the inclusions and projections for

the direct sums produced by J ′
1, J

′
2, and J1, J2, respectively, as appearing in the

diagram from the Proof of Theorem 5.133. By Lemma 5.85, the map j also respects
the direct sum

Hom(U1 ⊗c U2, V1 ⊗ V2)⊕Hom(U1 ⊗a U2, V1 ⊗ V2),

and induces a c-linear map, labeled

a2 = Hom(Qc, IdV1⊗V2) ◦ j ◦Q′
c(12),

as in the following diagram, a copy of two blocks of the diagram from Theorem
5.133.

Hom(U1 ⊗ U2, V1 ⊗ V2)

Hom(Qc,IdV1⊗V2 )

��

Hom(U1, V1)⊗Hom(U2, V2)
j��

P ′
c(12)

����
Hom(U1 ⊗c U2, V1 ⊗ V2)

P2
����

Hom(U1, V1)⊗c Hom(U2, V2)
a2��

P ′
1����

Homc(U1 ⊗c U2,V1 ⊗c V2) Homc(U1,V1)⊗c Homc(U2,V2)
ã2��

The map a2 is equal to the composite of the induced map

Pc(12) ◦ j ◦Q′
c(12) : Hom(U1, V1)⊗c Hom(U2, V2) → (Hom(U1 ⊗ U2, V1 ⊗ V2))c(12)

with the invertible c-linear map from Example 5.132, labeled a1 in Theorem 5.133,

Hom(Qc, IdV1⊗V2)◦Qc(12) : (Hom(U1⊗U2, V1⊗V2))c(12) → Hom(U1⊗cU2, V1⊗V2).
Also, a2 is c-linear with respect to all three corresponding pairs of induced CSOs,
so as in Example 5.131 and Theorem 5.133, it respects the corresponding direct
sums, to induce c-linear maps:

Homc(U1,V1)⊗c Hom(U2, V2) → Homc(U1 ⊗c U2,V1 ⊗ V2)

Hom(U1, V1)⊗′
c Hom(U2, V2) → Hom(U1 ⊗c U2,V1 ⊗c V2)

Hom(U1, V1)⊗c Homc(U2,V2) → Homc(U1 ⊗c U2, V1 ⊗V2)

ã2 : Homc(U1,V1)⊗c Homc(U2,V2) → Homc(U1 ⊗c U2,V1 ⊗c V2).

As remarked in the Proof of Theorem 5.133, let ã1 denote the invertible map induced
by a1,

(Hom(U1 ⊗ U2, V1 ⊗ V2))c(1234) → Homc(U1 ⊗c U2,V1 ⊗c V2),

so that then ã2 = ã1 ◦ ã3. The map ã2 is invertible if j is; it acts on w ∈
Homc(U1,V1) ⊗c Homc(U2,V2) ⊆ Hom(U1, V1) ⊗ Hom(U2, V2) as: ã2 : w �→
P ′
c ◦ j(w) ◦Qc, where P

′
c is the projection V1 ⊗ V2 � V1 ⊗c V2.

Example 5.136. For U1, U2, V1, V2 as in Example 5.135, suppose A : U1 →
V1 and B : U2 → V2 are c-linear. Then

A⊗B ∈ Homc(U1,V1)⊗Homc(U2,V2) ⊆ Hom(U1, V1)⊗Hom(U2, V2),
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so A ⊗B is in the domain of a3 = j|Homc(U1,V1)⊗Homc(U2,V2) as in (5.35) and the
following diagram, a copy of two blocks of the diagram from Theorem 5.133.

Hom′
c(U1 ⊗ U2, V1 ⊗ V2)

P3

����

Homc(U1,V1)⊗Homc(U2,V2)
a3��

P ′
2����

Homc(U1,V1)⊗c Homc(U2,V2)

ã2

��

ã3

��%%%%%%
%%%%%%

%%%%%%
%%%%%%

%

(Hom(U1 ⊗ U2, V1 ⊗ V2))c(1234) ã1

�� Homc(U1 ⊗c U2,V1 ⊗c V2)

Starting with A⊗B, these outputs are equal by the commutativity of the diagram
from Theorem 5.133:

(ã2 ◦ P ′
2)(A⊗B) = ã2(

1

2
(A⊗B − (JV1 ◦A)⊗ (B ◦ JU2)))

= P ′
c ◦ (

1

2
([A⊗B]− [(JV1 ◦A)⊗ (B ◦ JU2)])) ◦Qc,(5.36)

(ã1 ◦ P3 ◦ a3)(A⊗B) = ã1(P3([A⊗B]))

= P ′
c ◦ (

1

2
([A⊗B]− [JV1 ⊗ IdV2 ] ◦ [A⊗B] ◦ [IdU1 ⊗ JU2 ])) ◦Qc.

As in Lemma 5.80, this is the restriction of the map 1
2 ([A ⊗ B] − [(JV1 ◦ A) ⊗

(B ◦ JU2)]) ∈ Hom(U1 ⊗ U2, V1 ⊗ V2) to the subspace U1 ⊗c U2 in the domain and
V1 ⊗c V2 in the target.

For u1 ∈ U1, u2 ∈ U2, these elements of V1 ⊗ V2 are equal:

([A⊗B] ◦Qc)(Pc(u1 ⊗ u2))

= [A⊗B](
1

2
(u1 ⊗ u2 − (JU1(u1))⊗ (JU2(u2))))

=
1

2
((A(u1))⊗ (B(u2))− (A(JU1 (u1)))⊗ (B(JU2 (u2)))),

(−[(JV1 ◦A)⊗ (B ◦ JU2)] ◦Qc)(Pc(u1 ⊗ u2))

= −[(JV1 ◦A)⊗ (B ◦ JU2)](
1

2
(u1 ⊗ u2 − (JU1(u1))⊗ (JU2(u2))))

=
1

2
(−(JV1(A(u1))) ⊗ (B(JU2(u2))) + (JV1 (A(JU1(u1)))) ⊗ (B(JU2(JU2(u2))))).

Because U1 ⊗c U2 is spanned by elements of the form Pc(u1 ⊗ u2), these maps
U1 ⊗c U2 → V1 ⊗c V2 are equal:

P ′
c ◦ (

1

2
([A⊗B]− [(JV1 ◦A)⊗ (B ◦ JU2)])) ◦Qc = P ′

c ◦ [A⊗B] ◦Qc.

The above LHS is as in (5.36), and the RHS is from Notation 5.76, giving the
equality:

(ã2 ◦P ′
2)(A⊗B) = [A⊗cB] = (Hom(Qc, P

′
c) ◦ j|Homc(U1,V1)⊗Homc(U2,V2))(A⊗B).

There would be no ambiguity in denoting j = ã2.
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Lemma 5.137. For any U, V, W, the following diagram is commutative.

Uc ⊗c Homc(V,W)⊗c V

[n⊗cIdV ]

��

[IdU⊗cEvc
VW] �� U⊗c W

Homc(V,U ⊗c W)⊗c V

Evc
V,U⊗cW

!!�����������������������

Proof. This is a c-linear version of Lemma 2.78, so all these objects are sub-
spaces of spaces from Lemma 2.78; the following argument keeps track of all of the
inclusions. The spaces U ⊗ Hom(V,W ) ⊗ V and Hom(V, U ⊗W ) ⊗ V each admit
four commuting CSOs, and the map [n⊗ IdV ] is c-linear with respect to four corre-
sponding pairs as in Lemma 5.129, by Lemma 5.29 and Theorem 5.118. Some of the
projections and induced maps from Lemma 5.129 are as in the following diagram.

U ⊗Hom(V,W )⊗ V
[n⊗IdV ] ��

Pc(23)

����

Hom(V, U ⊗W )⊗ V

P ′
c(23)

����
U ⊗Homc(V,W)⊗ V

Pc((23)1)

����

[n1⊗IdV ] �� Homc(V, U ⊗W)⊗ V

P ′
c((23)1)

����
U⊗c Homc(V,W) ⊗ V

[n⊗IdV ] ��

Pc((231)4)

����

Homc(V,U ⊗c W)⊗ V

P ′
c((231)4)

����
U⊗c Homc(V,W) ⊗c V

[n⊗cIdV ] �� Homc(V,U⊗c W)⊗c V

In the upper block, [n1 ⊗ IdV ] is induced by [n ⊗ IdV ] as in Lemma 1.91 and
Theorem 5.118, where n induces n1. The middle block is similarly related to the
lower block from Theorem 5.118. In the lowest block, [n ⊗c IdV ] is induced as in
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Example 5.75, and [n⊗c IdV ] also appears in the following diagram.

U ⊗Hom(V,W )⊗ V

[IdU⊗EvV W ]

�����
����

����
����

����
����

����
����

����
����

�

U ⊗Homc(V,W) ⊗ V
��

Qc(23)

��

U ⊗Homc(V,W)⊗c V
��

Qc((23)4)

��

[IdU⊗Evc
VW] �� U ⊗W

P ′
c

�������
��
���

��

U⊗c Homc(V,W)⊗c V

[n⊗cIdV ]

��

[IdU⊗cEvc
VW] ����

Qc((234)1)

��

U⊗c W

Homc(V,U ⊗c W)⊗c V

Evc
V,U⊗cW

!!�����������������������
� �

Q′
c((132)4)

��
Homc(V,U ⊗c W)⊗ V� �

Q′
c((13)2)

��
Hom(V,U⊗c W)⊗ V

EvV,U⊗cW

CCMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM

Hom(V, U ⊗W )⊗ V

P ′
c(13)

����

EvV,U⊗W

DD>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

In the upper block, Qc(23) is the inclusion corresponding to the projection Pc(23)

from the previous diagram, and as in Example 5.73, Qc(23) = [IdU ⊗ [Qc⊗ IdV ]] for
Qc : Hom(V,W) ↪→ Hom(V,W ). The inclusion Qc((23)4) does not correspond to
any projection from the previous diagram, but again as in Example 5.73, it is equal
to [IdU ⊗ Q̃], for the inclusion Q̃ : Homc(V,W) ⊗c V ↪→ Homc(V,W) ⊗ V . The
upper block is then commutative by Lemma 1.36 and adapting formula (5.33) from

Example 5.124, EvcVW = EvVW ◦ [Qc⊗ IdV ]◦ Q̃. The second block is commutative
by Notation 5.76 for the induced map [IdU ⊗c Ev

c
VW]. The commutativity of the

center block is the claim of the Lemma. The fourth block is commutative, it is an
adaptation of formula (5.33) defining EvcV,U⊗cW

. The inclusion Q′
c((132)4) is equal

to the inclusion with the first three indices re-ordered, Q′
c((231)4), corresponding to

the projection in the first diagram. In the lowest block, P ′
c(13) does not appear

in the first diagram; it is equal to [Hom(IdV , P
′
c) ⊗ IdV ] as in Example 5.73 and

Example 5.83. So, the lowest block is commutative by Lemma 2.73. The claim
follows, using Lemma 2.78 and equalities of composite inclusions from Theorem
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5.128.

EvcV,U⊗cW ◦ [n⊗c IdV ]

= EvV,U⊗cW ◦Q′
c((13)2) ◦Q′

c((132)4) ◦ [n⊗c IdV ]

= EvV,U⊗cW ◦ P ′
c(13) ◦Q′

c(13) ◦Q′
c((13)2) ◦Q′

c((132)4) ◦ [n⊗c IdV ]

= P ′
c ◦ EvV,U⊗W ◦Q′

c(23) ◦Q′
c((23)1) ◦Q′

c((231)4) ◦ [n⊗c IdV ]

= P ′
c ◦ EvV,U⊗W ◦ [n⊗ IdV ] ◦Qc(23) ◦Qc((23)1) ◦Qc((231)4)

= P ′
c ◦ [IdU ⊗ EvV W ] ◦Qc(23) ◦Qc((23)4) ◦Qc((234)1)

= [IdU ⊗c Ev
c
VW].

Theorem 5.138. For any V = (V, JV ), U, W, and c-linear F : V ⊗c U →
V ⊗c W, if V is finite-dimensional then the n maps in the following diagram are
invertible:

V ⊗c U
F �� V ⊗c W

V ⊗c Homc(V,U)⊗c V

[n2⊗cIdV ]

��

[IdV ⊗cEvc
VU]

��

V ⊗c Hom(V,W)⊗c V

[n′
2⊗cIdV ]

��

[IdV ⊗cEvc
VW]

��

Hom(V,V ⊗c U) ⊗c V
[Homc(IdV ,F )⊗cIdV ]

�� Hom(V,V ⊗c W)⊗c V

and the diagram is commutative, in the sense that

F ◦ [IdV ⊗c Ev
c
VU] ◦ [n2 ⊗c IdV ]

−1

= [IdV ⊗c Ev
c
VW] ◦ [n′

2 ⊗c IdV ]
−1 ◦ [Homc(IdV , F )⊗c IdV ].

Proof. This is a c-linear version of Theorem 2.79, and the Proof is analogous.
The maps n2 and n′

2 are special cases of the n map from Lemma 5.137; they are
invertible by Lemma 1.44 and Theorem 5.118, with [n2 ⊗c IdV ]

−1 = [n−1
2 ⊗c IdV ].

By Lemma 5.137, the upward composite on the left is equal to EvcV,V⊗cU
, and

similarly the upward composite on the right is equal to EvcV,V⊗cW
. The claim then

follows from Lemma 5.125.

Remark 5.139. The results in this Section on the c-linear evaluation map from
Example 5.124: Lemma 5.125, Lemma 5.137, and Theorem 5.138, give some details
omitted from [C2] §4.

5.4. Real trace with complex vector values

In this Section we develop the notion of vector valued trace of R-linear maps,
where the value spaces have complex structure operators. The approach will be to
refer to Chapter 2, while avoiding scalar multiplication.

Theorem 5.118 on the c-linearity of n maps generalizes in a straightforward
way to the various orderings of n maps from Notation 1.41, as in the following
Corollary. Recall from Theorem 2.74 the special case

n′ : Hom(V,W )⊗ V → Hom(V, V ⊗W ) : A⊗ v �→ (u �→ v ⊗ (A(u))),
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and that if V is finite-dimensional then n′ is invertible.

Corollary 5.140. If V = (V, JV ) and W = (W,JW ), then n′ : Hom(V,W )⊗
V → Hom(V, V ⊗W ) is c-linear with respect to corresponding pairs of the three
commuting CSOs induced on each space, so it respects the direct sums and induces
maps

n′
1 : Homc(V,W) ⊗ V → Homc(V, V ⊗W)

n′
2 : Hom(V,W )⊗c V → Homc(V,V ⊗W )

n′
3 : Hom(V,W)⊗c V → Hom(V,V ⊗c W)

n′ : Homc(V,W)⊗c V → Homc(V,V ⊗c W).

If n′ is invertible then so are these maps.

Theorem 5.141. If V is finite-dimensional and W = (W,JW ), then the map

TrV ;W = EvVW ◦ (n′)−1 : Hom(V, V ⊗W) → W

is c-linear.

Proof. The map n′ is from Corollary 5.140: it is c-linear with respect to
[Hom(IdV , JW )⊗ IdV ] and Hom(IdV , [IdV ⊗ JW ]) (without assuming any CSO on
V ). The canonical evaluation EvV W : A⊗v �→ A(v) from Definition 2.71 is c-linear
Hom(V,W) ⊗ V → W as in Exercise 5.41, and the equality TrV ;W ◦ n′ = EvV W

is from Theorem 2.74. The result could also be proved by applying Corollary 2.59

(or Corollary 2.75) with B = JW .

Theorem 5.142. If V is finite-dimensional and W admits commuting CSOs
J1, J2, then the map TrV ;W respects the direct sums

Hom(V, V ⊗Wc)⊕Hom(V, V ⊗Wa) →Wc ⊕Wa,

and the induced c-linear map Hom(V, V ⊗Wc) →Wc is equal to TrV ;Wc .

Proof. Lemma 2.61 applies. The direct sums on V ⊗W and Hom(V, V ⊗W )
are as in Example 5.73 and Example 5.83, with canonical projections as indicated
in the diagram. TrV ;W is c-linear with respect to both corresponding pairs of CSOs
by Theorem 5.141, and the c-linearity of the induced map follows from Lemma 5.65.

Hom(V, V ⊗W )
TrV ;W ��

Hom(IdV ,[IdV ⊗Pc])
����

W

Pc

����
Hom(V, V ⊗Wc)

TrV ;Wc �� Wc

Theorem 5.143. For finite-dimensional V , and U , W with CSOs JU , JW , the
generalized trace

TrV ;U,W : Hom(V ⊗ U, V ⊗W ) → Hom(U,W )

is c-linear with respect to both pairs of corresponding commuting CSOs, and respects
the direct sums, inducing a c-linear map, denoted

TrV ;U,W : Homc(V ⊗U, V ⊗W) → Homc(U,W).
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Proof. The c-linearity claims follow from Theorem 2.30, and then Lemma
5.65 applies. That is enough for the Proof, but as in Theorem 2.52 and Theorem
2.53, the generalized trace is related to some different vector valued traces.

First, following the construction of Theorem 2.52, consider this diagram,

Hom(V ⊗ U, V ⊗W )

TrV ;U,W

EE+++++++
+++++++

++++++++
+++++++

++++++++
+

����

q−1

����
���

���
���

��

M11

q

FF������������� Hom(IdV ,n−1) ��

����

M12
Hom(IdV ,n)
��

TrV ;Hom(U,W )

��

����

Hom(U,W )

PH

����
Homc(V ⊗U, V ⊗W) �� M21

��
q1

�� M22��
TrV ;Homc(U,W)

�� Homc(U,W)

where

M11 = Hom(V,Hom(U, V ⊗W ))

M12 = Hom(V, V ⊗Hom(U,W ))

M21 = Hom(V,Homc(U, V ⊗W))

M22 = Hom(V, V ⊗Homc(U,W)).

All the vertical arrows are the canonical projections of the direct sums produced
by the commuting CSOs induced by JU and JW . The right square is commuta-
tive by Lemma 2.61; this is an example of Theorem 5.142, where the projection
M12 � M22 is equal to Hom(IdV , [IdV ⊗ PH ]). The map n : V ⊗ Hom(U,W ) →
Hom(U, V ⊗ W ) from Theorem 5.118 is invertible and c-linear with respect to
the commuting corresponding pairs of CSOs induced by JU and JW . Example
5.88 applies to Hom(IdV , n) and the middle square in the diagram: the induced
map (lower middle arrow) is invertible, c-linear, and equal to Hom(IdV , n

1), where
n1 is the induced map from Theorem 5.118. The map q is as in Theorem 2.52,
which asserts the commutativity of the diagram’s top triangle. By Example 5.119,
the map q similarly induces an invertible c-linear map, q1. We can conclude, for
K : V → V ⊗Homc(U,W),

TrV ;Homc(U,W)(K) = TrV ;U,W(q1(n
1 ◦K)).

The next diagram has the same left and right columns as the previous one.
The upper triangle is commutative by Theorem 2.53, where the map from (2.10) is
temporarily relabeled q̃.

Hom(V ⊗U, V ⊗W )

TrV ;U,W

EE+++++++
++++++++

++++++++
++++++++

++++++++
+++

����

q̃−1

�����
����

����
����

��

Hom(U,Hom(V, V ⊗W ))

q̃

�������������������

Hom(IdU ,TrV ;W)
��

����

Hom(U,W )

PH
����

Homc(V ⊗U, V ⊗W) �� Homc(U,Hom(V, V ⊗W))
Homc(IdU ,TrV,W)��

q2
�� Homc(U,W)

The map q̃ is c-linear with respect to the pairs of induced CSOs and by Example
5.119 again, induces an invertible c-linear map, q2, as indicated in the diagram. In
the right square, TrV ;W is c-linear as in Theorem 5.141, and Hom(IdU , T rV ;W ) is



244 5. COMPLEX STRUCTURES

c-linear with respect to the pairs of CSOs as in Lemma 5.80, inducing a c-linear map
Homc(IdU , T rV ;W ) as in Notation 5.81. The conclusion is an analogue of Equation
(2.11) from Theorem 2.53,

TrV ;U,W = Homc(IdU , T rV ;W ) ◦ q−1
2 ,

so that for a c-linear map F : V ⊗U → V ⊗W,

TrV ;U,W(F ) = TrV ;W ◦ (q−1
2 (F ))

= EvV W ◦ (n′)−1 ◦ (q−1
2 (F )).(5.37)

Line (5.37) gives an analogue of Corollary 2.76, using the c-linear maps from the

Proof of Theorem 5.141.



CHAPTER 6

Appendices

6.1. Appendix: Functions and Binary Operations

Definition 6.1. Given sets S and T , the product set S×T is the set of ordered
pairs {(σ, τ) : σ ∈ S, τ ∈ T }.

Definition 6.2. Given sets S and T , suppose there is a subset G ⊆ S × T
with the following properties.

• If (s1, t1) ∈ G and (s2, t2) ∈ G and s1 = s2 then t1 = t2.
• For each s ∈ S, there is an element (s, t) ∈ G.

Then for each s ∈ S, there is exactly one element α(s) ∈ T so that (s, α(s)) ∈ G.
This defines a function α, with domain S, target T , and graph G, which is denoted
(as in Notation 0.41) by the arrow notation α : S � T .

Definition 6.3. Given a set S, a binary operation on S is any function from
S × S to S. The notation (S, ∗) denotes a set S, together with ∗, a binary oper-
ation on S. For x, y ∈ S, and a binary operation ∗, the element ∗((x, y)) will be
abbreviated x ∗ y.

Definition 6.4. A binary operation ∗ on S is associative means: for all x, y, z ∈
S, (x ∗ y) ∗ z = x ∗ (y ∗ z). The binary operation ∗ is commutative means: for all
x, y ∈ S, x ∗ y = y ∗ x.

Definition 6.5. Given (S, ∗), any element e ∈ S such that e ∗ x = x ∗ e = x
for all x ∈ S is called an identity element.

Exercise 6.6. Given (S, ∗), suppose there is an identity element e ∈ S. Then,

the identity element is unique.

Exercise 6.7. Given (S, ∗), with an identity element e, if for all x, y, z ∈ S,

x ∗ (y ∗ z) = (x ∗ z) ∗ y, then ∗ is commutative and associative.

Exercise 6.8. Give an example of a set and an operation ∗ where x ∗ (y ∗ z) =
(x ∗ z) ∗ y holds but ∗ is not associative.

Definition 6.9. Given (S, ∗), and an identity element e ∈ S, and x, y ∈ S,
y is a ∗-inverse for x means that x ∗ y = y ∗ x = e.

Note that ∗-inverse cannot be defined without an identity element, so in any
statement asserting the existence of a ∗-inverse, it is assumed that there exists an
identity element for the operation ∗.

Exercise 6.10. Given (S, ∗), let e be an identity element. Then e has a ∗-
inverse, and this inverse is unique.

245
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Exercise 6.11. Given (S, ∗), and x ∈ S, if ∗ is associative, and there exist
y ∈ S, z ∈ S such that y ∗ x = e and x ∗ z = e, then y = z and y is a ∗-inverse for

x. In particular, any ∗-inverse for x is unique.

Notation 6.12. Usually it is more convenient to call a ∗-inverse just an “in-
verse,” and if an element x has a unique inverse, then it can be denoted x−1. There
may be some other abbreviations for certain operations; customarily a +-inverse of
x is denoted −x.

Exercise 6.13. Given (S, ∗), and x, y ∈ S, if ∗ is associative, and x and y both

have ∗-inverses, then x ∗ y has a unique ∗-inverse, y−1 ∗ x−1.

Exercise 6.14. Given (S, ∗), and x ∈ S, if ∗ is associative, and there exists a

∗-inverse for x, and x ∗ x = x, then x = e.

Example 6.15. Given a set S, let F denote the set of functions {α : S � S}.
Composition of functions is an example of a binary operation on F , denoted ◦, so
that the function α ◦ β is defined by the formula depending on x ∈ S:

(6.1) (α ◦ β)(x) = α(β(x)).

The operation ◦ is associative and has an identity element denoted IdS ∈ F , which
is the function with graph G = {(x, x) : x ∈ S}, so that IdS(x) = x for all x ∈ S.

Notation 6.16. The same symbol ◦ is used for composites of functions be-
tween other sets, although this is no longer an example of a binary operation as in
Definition 6.3. For any sets S, T , U , and any functions β : S � T and α : T � U ,
there is a composite function α ◦ β : S � U , defined as in (6.1). An associative
property holds: for γ : R� S, (α ◦ β) ◦ γ = α ◦ (β ◦ γ).

Exercise 6.17. Given S �= Ø, and a function α : S � T , the following are
equivalent.

(1) For all s1, s2 ∈ S, if s1 �= s2, then α(s1) �= α(s2) (α has the one-to-one
property).

(2) For any set C and any functions γ : C � S, δ : C � S, if α◦γ : C � T and
α◦δ : C � T are the same function, then γ = δ (α has the left cancellable
property).

(3) There is a function β : T � S so that β◦α : S � S is equal to the identity
function IdS : S � S (α has a left inverse).

Exercise 6.18. Given a function α : S � T , the following are equivalent.

(1) For all t ∈ T , there is some s ∈ S so that α(s) = t (α has the onto
property).

(2) For any set C and any functions γ : T � C, δ : T � C, if γ◦α : S � C and
δ◦α : S � C are the same function, then γ = δ (α has the right cancellable
property).

(3) There is a function β : T � S so that α ◦ β : T � T is equal to the
identity function IdT : T � T (α has a right inverse).

Hint. The (1) =⇒ (3) step requires the Axiom of Choice.
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Exercise 6.19. If β : T � S is a left inverse of α and γ : T � S is a right
inverse of α then β = γ.

Hint. This is analogous to Exercise 6.11.

Exercise 6.20. Given S �= Ø and a function α : S � T , the following are
equivalent.

(1) α is both one-to-one and onto.
(2) α has a left inverse γ : T � S and a right inverse β : T � S.
(3) There exists a function δ : T � S so that α ◦ δ = IdT and δ ◦ α = IdS .

Hint. The equivalence (1) ⇐⇒ (2) uses Exercise 6.17 and Exercise 6.18,
although with the one-to-one assumption in (1), the Axiom of Choice is no longer
required to construct the right inverse in (2). (3) =⇒ (2) is trivial, and the

converse uses Exercise 6.19 to get δ = β = γ.

Definition 6.21. A function α : S � T is invertible means that α satisfies
any of the equivalent properties (1), (2), or (3) from Exercise 6.20.

Notation 6.22. A function (such as δ = β = γ as in Exercise 6.19), that is
both a left inverse and a right inverse of the function α : S � T is an inverse of
α. If an inverse of α exists, then it is unique by Exercise 6.19, it can be denoted
α−1 : T � U , and α−1 is also invertible, with inverse α.
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6.2. Appendix: Quotient spaces

Definition 6.23. Given any vector space (V,+V , ·V ) and a subspace W , for
any element v ∈ V the following subset of V is called a coset of W :

v +W = {v +V w : w ∈W}.

Definition 6.24. Given a subspace W of V as in Definition 6.23, the set of
cosets of W is a vector space with the following operations:

(v1 +W ) + (v2 +W ) = (v1 +V v2) +W,

ρ · (v +W ) = (ρ ·V v) +W,

and zero element 0V +W = W . This vector space is the quotient space, denoted

V/W .

Exercise 6.25. The function π : V → V/W : v �→ v +W is linear and right
cancellable. If S is a subset of V such that V = span(S), then V/W = span(π(S)).

Exercise 6.26. Given a subspaceW of V as in Definition 6.23, and any set S,
if B : V � S is constant on each coset v +W then there exists a unique function
b : V/W � S such that b ◦ π = B.

Hint. For v +W ∈ V/W , choose any element x = v + w ∈ v +W . Define
b(v + W ) = B(x); this does not depend on the choice of x by hypothesis, and
v ∈ v +W (because 0V ∈ W ) so b(v +W ) = B(x) = B(v). Then for any v ∈ V ,
(b ◦ π)(v) = b(π(v)) = b(v +W ) = B(x) = B(v) as claimed. For uniqueness, use

the right cancellable property of π.

Exercise 6.27. Given a subspace W of V as in Definition 6.23, and another
vector space U , if B : V → U is linear and satisfies B(w) = 0U for all w ∈W , then
there exists a unique function b : V/W → U such that b ◦ π = B, and b is linear.

Hint. For any v ∈ V , if x ∈ v +W then x = v + w for some w ∈ W and
B(x) = B(v + w) = B(v) + B(w) = B(v) + 0U = B(v). So, B is constant on the
coset v +W , and the previous Exercise applies to show there is a unique b with

b ◦ π = B. The linearity of b easily follows from the linearity of B.
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6.3. Appendix: Construction of the tensor product

As mentioned in Section 1.2, we elaborate on the existence of a tensor product
of two vector spaces. The notation and methods in this Appendix are specific to
this construction and not widely used in the Chapters. We start with a set of
functions F(S,W ) only because it comes with a convenient vector space structure.

Example 6.28. For any set S �=Ø and any vector spaceW , the set of functions

F(S,W ) = {f : S �W}
is a vector space, with the usual operations of pointwise addition of functions and
scalar multiplication of functions, and zero element given by the constant function
f(x) ≡ 0W .

Notation 6.29. For a set S �=Ø and any field K, for each x ∈ S there is an
element δ(x) ∈ F(S,K) defined by:

δ(x) : y �→ 1 for y = x,(6.2)

δ(x) : y �→ 0 for y �= x.

The span of the set of such functions is denoted

F0(S,K) = span ({δ(x) : x ∈ S}) ,
so F0(S,K) is a subspace of F(S,K). The notation (6.2) defines a function

δ : S � F0(S,K) : x �→ δ(x).

Exercise 6.30. For S as above and any function f : S � K, the following are
equivalent.

(1) f ∈ F0(S,K).
(2) The function f is uniquely expressible as a finite sum of functions with

coefficients αν ∈ K and xν ∈ S: f =

N∑
ν=1

αν · δ(xν).
(3) f(x) = 0 for all but finitely many x ∈ S.

Exercise 6.31. Given S, K, and δ as in Notation 6.29, and any vector spaceW ,
If g : S �W is any function, then there exists a unique linear map ḡ : F0(S,K) →
W such that ḡ ◦ δ = g : S �W .

Hint. As in Exercise 6.30, the general element f of F0(S,K) has a unique

expression of the form f =

N∑
ν=1

αν · δ(xν); define ḡ on such an expression by using

the same coefficients αν and elements xν :

ḡ(f) =

N∑
ν=1

αν · g(xν).

Then for each x ∈ S, the composite function satisfies the claim:

(ḡ ◦ δ)(x) = ḡ(1 · δ(x)) = 1 · g(x) = g(x).

The uniqueness and K-linearity of ḡ are easily checked.



250 6. APPENDICES

Definition 6.32. Given vector spaces U and V , define the following subsets
of F0(U × V,K):

R1 = {δ((u1 + u2, v))− δ((u1, v))− δ((u2, v)) : u1, u2 ∈ U, v ∈ V }
R2 = {δ((u, v1 + v2))− δ((u, v1))− δ((u, v2)) : u ∈ U, v1, v2 ∈ V }
R3 = {δ((ρ · u, v))− ρ · δ((u, v)) : ρ ∈ K, u ∈ U, v ∈ V }
R4 = {δ((u, ρ · v)) − ρ · δ((u, v)) : ρ ∈ K, u ∈ U, v ∈ V }
R = span (R1 ∪R2 ∪R3 ∪R4) .

The tensor product space of U and V is defined to be the quotient space:

U ⊗ V = F0(U × V,K)/R.

Let π : F0(U × V,K) → U ⊗ V denote the quotient map as in Exercise 6.25.

Definition 6.33. Define a function τ : U × V � U ⊗ V by:

τ = π ◦ δ : (u, v) �→ π(δ((u, v))) = δ((u, v)) +R.

The output τ ((u, v)) is abbreviated u⊗ v ∈ U ⊗ V .

Exercise 6.34. τ : U × V � U ⊗ V is a bilinear function.

Hint. Definition 1.23 is easily checked.

Theorem 6.35. For any bilinear function A : U × V � W , there exists a
unique linear map a : U ⊗ V →W such that A = a ◦ τ .

Proof. By Exercise 6.31, there exists a unique linear map Ā : F0(U×V,K) →
W such that Ā ◦ δ = A. The linear map Ā has value 0W on every element of the
subspace R; it is enough to check that Ā(r) = 0W for r in each of the four subsets
R1, . . . , R4 from Definition 6.32, for example, for r ∈ R1,

Ā(r) = Ā(δ((u1 + u2, v)) − δ((u1, v)) − δ((u2, v)))

= A((u1 + u2, v))−A((u1, v)) −A((u2, v))

= 0W .

The other Ā(r) values follow similarly from the bilinear property of A. Exercise
6.27 applies to Ā, to give a unique linear map

a : F0(U × V,K)/R →W : f +R �→ Ā(f)

such that a ◦ π = Ā. The conclusion is that

a ◦ τ = a ◦ (π ◦ δ) = (a ◦ π) ◦ δ = Ā ◦ δ = A =⇒ a(u⊗ v) = A(u, v).

For the uniqueness, suppose there is some a′ with a◦π ◦δ = A = a′ ◦π ◦δ. The set
{δ((u, v)) : u ∈ U, v ∈ V } spans F0(U × V,K) as in Notation 6.29, and the image
under π of this set, {u ⊗ v : u ∈ U, v ∈ V }, spans U ⊗ V = F0(U × V,K)/R by

Exercise 6.25. So a and a′ agree on a spanning set of U ⊗V and must be equal.

Claim 6.36. If (u1, u2) and (v1, v2) are linearly independent lists of elements
in U and V , then (u1 ⊗ v1, u2 ⊗ v1, u1 ⊗ v2, u2 ⊗ v2) is a linearly independent list

of elements of U ⊗ V .
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6.4. Appendix: Comments on [C2]

6.4.1. Errata. The following typo appears in the published paper, [C2].

On page 535, line 3, the symbol should be �xq′ �→ instead of �xq′ =.

6.4.2. Updates. The topic of defining a “trace without duals” (as in [C2] §3)
is briefly considered by [S] §1.7.

Some details omitted from [C2] are presented here in Chapter 2 (see Remark
2.111) and Section 5.3 (see Remark 5.139).
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