
Abstracts for MIGHTY XXXII at IPFW

Line completion number - recent progress

Jay Bagga*, Lowell Beineke, Badri Varma

The line completion number lc(G) of a graph G is the least r for which

the super line graph Lr(G) is complete. In this talk, some recent progress on

the line completion number of Km;n will be given.

Embedding extended Mendelsohn triple systems.

Vince Castellana*, Michael Raines.

An extended Mendelsohn triple is an ordered triple of the form fa; a; ag,

fa; a; bg, or fa; b; cg. An extended Mendelsohn triple system (EMTS) is a

pair (S; T ), where S is a set of points and T is a set of extended Mendelsohn

triples de�ned on S such that each ordered pair of (not necessarily distinct)

points of S appears in exactly one extended Mendelsohn triple of T . We say

that an EMTS (S; T ) is embedded in an EMTS (S 0; T 0) if S � S 0 and T � T 0.

In this talk, we consider necessary and su�cient conditions for embedding

extended Mendelsohn triple systems.

Counting labeled general cubic graphs.

Gaby Chae

We derive recurrence relations from partial di�erential equations whose

formal power series solutions are the exponential generating functions for

labeled, general cubic graphs with given connectedness. The relations are

used to compute number of these graphs with a speci�ed number of loops

and multiple edges. This work builds on the methods of Read (Some unusual

enumeration problems, 1970), Wormald (Enumeration of labelled graphs II

: Cubic graphs with a given connectivity, 1979) and E. M. Palmer, R. C.

Read, and R. W. Robinson (Counting claw-free cubic graphs, to appear).

On the Hamiltonian index and the diameter of a graph

Zhi-Hong Chen*, Hong-Jian Lai

Let G be a graph. The minimum integer m such that the iterated line

graph Lm(G) has a Hamiltonian cycle is called the Hamiltonian index of

G. The distance between two vertices u and v of a connected graph is the

minimum length of all paths joining u and v, and is denoted by d(u; v).

The diameter of G is de�ned by diam(G) = max
u;v2V (G)

d(u; v). A graph G is
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collapsible if for every even subset X � V (G), G has a spanning connected

subgraph whose set of odd-degree vertices is X. Taking X = �, it follows

that every collapsible graph has a spanning closed trail. The reduction of G,

denoted by G0, is the graph obtained from G by contracting all non-trivial

collapsible subgraphs of G.

In this paper, using the reduction method, we study the relationships

between the Hamiltonian index and the diameter of a graph. This improves

and extends several known results.

Antiweb-wheel inequalities and their separation problems over the

stable set polytopes.

Eddie Cheng*, Sven de Vries

A stable set in a graph G is a set of pairwise nonadjacent vertices. The

problem of �nding a maximum weight stable set is one of the most basic NP-

hard problems. An important approach to this problem is to formulate it as

the problem of optimizing a linear function over the convex hull STAB(G)

of incidence vectors of stable sets.

Since it is impossible (unless NP=coNP) to obtain a \concise" charac-

terization of STAB(G) as the solution set of a system of linear inequalities,

it is a more realistic goal to �nd large classes of valid inequalities with the

property that the corresponding separation problem (given a point x�, �nd,

if possible, an inequality in the class that x� violates) is e�ciently solvable.

Some known large classes of separable inequalities are the trivial, edge,

cycle, and wheel inequalities. In this paper, we give a polynomial time separa-

tion algorithm for the (t)-antiweb inequalities of Trotter. We then introduce

an even larger class (in fact, a sequence of classes) of valid inequalities, called

(t)-antiweb-wheel inequalities. This class can be seen as a common gener-

alization of the (t)-antiweb inequalities and the wheel inequalities. We also

give e�cient separation algorithms for them.

Rainbow Ramsey numbers

Linda Eroh

We de�ne the rainbow Ramsey number RR(G1; G2) to be the minimum

integer N such that if the complete graph on N vertices is edge-colored with

any number of colors, then the resulting graph contains either a subgraph

isomorphic to G1 with every edge the same color or a subgraph isomorphic

to G2 with every edge a di�erent color. This number exists if and only if G1

is a star or G2 is a forest. We consider a variety of upper and lower bounds
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for di�erent classes of graphs and de�ne several variations on this number.

Strong distance in strong digraphs

David Erwin*, Gary Chartrand, Michael Raines, Ping Zhang

For two vertices u and v in a strong oriented graph D of order n �

3, the strong distance sd(u; v) between u and v is the minimum size of a

strong subdigraph of D containing u and v. For a vertex v of D, the strong

eccentricity se(v) is the strong distance between v and a vertex furthest from

v. The minimum strong eccentricity among the vertices of D is the strong

radius srad(D) and the maximum strong eccentricity is its strong diameter

sdiam(D). Some properties of the strong radius and strong diameter are

presented and a sharp upper bound for the strong diameter established.

Convexity in oriented graphs

John Frederick Fink*, Gary Chartrand, Ping Zhang

For vertices u and v in an oriented graph D, the closed interval I[u; v]

consists of u and v together with all vertices lying in a u�v geodesic or v�u

geodesic in D. For S � V (D), I[S] is the union of all closed intervals I[u; v]

with u, v 2 S. A set S is convex if I[S] = S. The convexity number con(D)

is the maximum cardinality of a proper convex set of V (D). The nontrivial

connected oriented graphs of order n with convexity number n� 1 are char-

acterized. It is shown that there is no connected oriented graph of order at

least 4 with convexity number 2 and that every pair k, n of integers with

1 � k � n � 1 and k 6= 2 is realizable as the convexity number and order,

respectively, of some connected oriented graph. For a nontrivial connected

graph G, the lower orientable convexity number con�(G) is the minimum

convexity number among all orientations of G and the upper orientable con-

vexity number con+(G) is the maximum such convexity number. It is shown

that con+(G) = n�1 for every graph G of order n � 2. The lower orientable

convexity numbers of some well-known graphs are determined, with special

attention given to outerplanar graphs.

A transformation of graphs

Heather Gavlas

A transformation of graphs is described where a graph G1 is transformed

into a graph G2 by means of a given connected graph H. When H is P3, this

transformation results in the transfer of a single edge from G1 to G2. Edge

transfers, such as rotations and jumps, have been previously studied and
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some relationships between these transformations and the transformation

discussed above are presented.

Graph connectivity after path removal

Ron Gould

Let G be a graph and u; v be two distinct vertices of G. A u� v path P

is called nonseparating if G� V (P ) is connected. In this talk we study the

number of nonseparating u� v paths for two arbitrary vertices u and v of a

given graph. For a positive integer k, we show that there is a minimum integer

�(k) so that if G is an �(k)-connected graph and u and v are two arbitrary

vertices in G, then there exist k vertex disjoint paths P1[u; v], P2[u; v], : : : ,

Pk[u; v] such that G � V (Pi[u; v]) is connected for every i (i = 1; 2; : : : ; k).

In fact, we prove that �(k) � 22k+2. It is known that �(1) = 3. A result of

Tutte showed that �(2) = 3. We show that �(3) = 6. In addition, we prove

that if G is a 5-connected graph, then for every pair of vertices u and v there

exists a path P [u; v] such that G� V (P [u; v]) is 2-connected.

The best three (tree) and my favorite tree (three)

Peter Hamburger

A summary of selected results from Lowell Beineke's research in graph

theory, in anticipation of his 60th birthday.

Forcing concepts in graph theory

Frank Harary

There have already been several forcing ideas in graph theory. For exam-

ple, within the topic of degree sequences, it is known which sequences force

the associated graph to be either a tree, or connected, or 2-connected, among

other properties. The chromatic forcing number of a graph G was de�ned

independently at least twice as the smallest number of nodes which must

be colored so that, with the restriction that �(G) colors are used, every re-

maining node has its color determined uniquely. The same concept has been

studied in the context of combinatorial designs where the phrase \de�ning

set" is used. The concept of forcing can be applied to independent nodes and

edges and to perfect matchings, with applications to benzenoid compounds

in organic chemistry (J. Math. Chem. 1994). Many invariants arising from

the study of forcing in graph theory o�er abundant new subjects for new and

applicable research. Other forcing invariants for graphs include the smallest

number of nodes in a set S which uniquely determine the remaining nodes
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in a minimum dominating set for G, the smallest number of nodes or edges

which determine connectivity or edge connectivity, and in general any in-

variant involving sets. This is also meaningful for digraphs, for example, the

smallest number of edges of a graph which can be oriented so that to obtain

a strongly connected digraph, the orientations of all the remaining edges of

G are forced.

Trees in graphs with large girth

Tao Jiang

Dobson (1994) conjectured that every graph G with girth at least 2t+ 1

and minimum degree at least k=t contains every tree T with k edges, whose

maximum degree does not exceed the minimum degree of G. The conjecture

has been proven for t � 3. In particular, a slightly stronger version of

the conjecture for t = 2, proven by Brandt and Dobson, implies that the

famous Erd}os-S�os conjecture that every graph on n vertices with more than

(1=2)n(k� 1) edges contains every tree with k edges, is true for graphs with

girth at least 5. In this talk, we prove Dobson's conjecture.

Dense graphs that are not absorbing common subgraphs

Grzegorz Kubicki

A graph G is an absorbing common subgraph of two graphs if G is a

common subgraph of these two graphs and, moreover, it contains (absorbs)

every other common subgraph of them. This concept was introduced and

studied by G. Chartrand, P. Erd}os, and G. Kubicki in the paper \Absorbing

Common Subgraphs." One of the questions discussed there was to decide

whether a given graph G without isolated vertices is an absorbing common

subgraph of two suitably chosen larger graphs. In the case of positive answer

for this question, the graph G is called an absorbing common subgraph. It is

known that Kn is not an absorbing common subgraph but complete graphs

without one edge are absorbing common subgraphs.

Here we determine the size of a densest graph (excluding the complete

graph) that is not an absorbing common subgraph, answering the question

posed in the original paper. For every n, n � 3, the smallest cardinality

of a set of edges to be removed from Kn to obtain a graph that is not an

absorbing common subgraph is n� 1.
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Small cycle covers of 3-connected graphs

Xiangwen Li*, Hong-Jian Lai

Let G be a 2-connected graph of order n. Bondy conjectured that the

edges of G can be covered by at most d(2n � 1)=3e cycles. In this note we

shall investigate the special cases of this conjecture. We shall show that if G

is a 3-connected graph of order n on the projective plane and the torus, then

the edges of G can be also covered by at most d(n+ 1)=2e cycles.

A generalization of the Oberwolfach problem and Ct-factorization

of complete equipartite graphs

Jiuqiang Liu

We consider the following generalization of the Oberwolfach problem: \At

a gathering there are n delegations each having m people. Is it possible to

arrange a seating of mn people present at s round tables T1, T2, : : : , Ts
(where each table can accommodate ti > 2 people) for k di�erent meals so

that each person has every other person not in the same delegation for a

neighbor exactly once?" We will concentrate on the case when all tables

accommodate the same number t of people, give a complete solution for even

t and settle most cases for odd t.

Properties of directed polygon visibility graphs

J. Michael McGrew*, Jay Bagga, John Emert

Given a simple closed polygon in the plane, its polygon visibility graph

has the same vertices as those of the polygon, while the edges are those

on the polygon, together with the internal chords (that is, chords which do

not intersect with the exterior of the polygon). We have previously extended

this notion to directed polygon visibility graphs, and studied some properties

including bounds on the size of such digraphs. In this paper we consider a

more general situation. We obtain bounds on the size of those directed

polygon visibility graphs which can be formed from a polygon for which each

edge is individually and arbitrarily oriented. These bounds are functions of

the size of the polygon and the number of changes in orientation along the

polygon.

Chordal maximal planar bipartite graphs

Terry McKee

Within the well-studied class of maximal planar graphs, those that are

chordal graphs | meaning that every induced cycle is a triangle | form an
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unexpectedly natural subclass. This motivates looking at corresponding phe-

nomena (and the role of the radial graph operator) for the class of maximal

planar bipartite graphs.

The average connectivity of graphs and digraphs

Ortrud Oellermann

The average connectivity of a graph is de�ned as the average over all pairs

of vertices of the maximum number of internally disjoint paths connecting

these vertices. The average connectivity is de�ned similarly for digraphs. For

an ordered pair (u; v) of vertices in a digraph, the connectivity from u to v is

the maximum number of internally disjoint u� v paths in the digraph. The

average connectivity of a digraph is the average connectivity over all ordered

pairs of vertices in the digraph. We survey results on these parameters. For

graphs our focus is on bounds for these parameters relative to the average

degree. For digraphs we focus on the problem of orienting a graph to produce

a digraph with largest average connectivity.

Hamiltonian connected line graph

Yongbin Ou

We show that if G is 3 edge-connected and every degree 3 vertex is inci-

dent with 2 multiple edges or a triangle, then the line L(G) is Hamiltonian

connected.

Upper bounds of dynamic chromatic number

Hoifung Poon*, Hong-Jian Lai, Bruce Montgomery

A proper vertex k-coloring of a graph G is dynamic if for every vertex v

with degree at least 2, the neighbors of v receive at least two di�erent colors.

The smallest integer k such that G has a dynamic k-coloring is the dynamic

chromatic number �d(G). We prove in this paper the following best possible

upper bounds as an analogue to the Brook's Theorem, together with the

determination of chromatic numbers for complete k-partite graphs.

1. If � � 3, then �d(G) � 4, with the only exception that G = C5, in

which case �d(C5) = 5.

2. If � � 4, then �d(G) � �+ 1.

3. �d(K1;1) = 2, �d(K1;m) = 3, and �d(Km;n) = 4 for m, n � 2;

�d(Kn1;n2;::: ;nk
) = k for k � 3.
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The spectrum of triangle-free regular graphs containing a cut

vertex

Rolf S. Rees

We determine, for all n > 0, the set C(n) = fk : there exists a triangle-

free k-regular graph on n vertices containing a cut vertexg.

Application of graph theory in software engineering

Farrokh Saba

Software engineering is a collection of processes, software tooling, and

design activities for software development. Graph theory plays an important

role in software engineering. Several examples of these roles will be studied

and related applications will be presented.

Vertex-magic total labelings

W. D. Wallis

Suppose G is a graph with v vertices and e edges. A total labeling of

G is a map from the vertices and edges of G onto f1; 2; : : : ; v + eg. Such

a labeling is vertex-magic if, for every vertex, the sum of its label with all

labels of edges incident with it equals some constant. Some open problems

in vertex-magic total labelings will be discussed.

Classi�cation of minimum dominating sets of hypercubes

William D. Weakley*, Patric R. J. �Osterg�ard

We complete the classi�cation up to equivalence of all minimum domi-

nating sets in hypercubes of dimension at most eight.

All four symmetric 3-con�gurations of order twelve are toroidal.

Art White

All four symmetric 3-con�gurations of order twelve are toroidal.
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Transition restricted Gray codes: long trees, grids, and digraphs

of digirth 3.

Elizabeth L. Wilmer*, Michael Ernst

The digraph of a Gray code on n bits has vertex set f1; 2; : : : ; ng; the edge

(i; j) is included exactly when bit positions i and j change consecutively at

some point during the code. Generalizing the standard reected binary Gray

code by allowing shifts yields new Gray codes whose digraphs are (undirected)

trees. We construct Gray codes where this tree has large diameter and where

it is a spanning subtree of a grid. We also construct a family of cyclic

Gray codes whose digraphs contain no directed 2-cycles. In all, we answer

three questions posed by Bultena and Ruskey (The Electronic Journal of

Combinatorics 3(1996), #R11).

Distance properties of edge-deleted graphs

Steven J. Winters

The center, median and periphery have many applications in facility lo-

cation problems. But the best location for a facility may change if a road

is blocked due to road construction or an accident. So we consider graphs

with an edge removed at random and the following de�nitions. For a vertex

v in a 2-edge-connected graph G, the edge-deleted eccentricity of v is the

maximum eccentricity of v in G� e over all edges e of G. The edge-deleted

distance of v is the maximum distance of v in G � e over all edges e of G.

This talk will investigate the center, median and periphery of graphs that

have an edge removed at random.

Strati�cation and domination in graphs

Ping Zhang

A graph G is 2-strati�ed if its vertex set is partitioned into two classes,

the red vertices and the blue vertices. Let F be a 2-strati�ed graph rooted at

some blue vertex v. The F -domination number of a graph G is the minimum

number of red vertices of G in a red-blue coloring of the vertices of G such

that every blue vertex v of G belongs to a copy of F rooted at v. Some

examples of and results concerning F -domination are presented.
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