Electrostatic models for orthogonal and multiple orthogonal polynomials.

Ramón Orive

Universidad de La Laguna.
The Canary Islands. Spain
e-mail: rorive@ull.es

Joint work with A. Martínez-Finkelshtein (Baylor Univ.,
TX, USA, and Univ. Almería, Spain) and Joaquín Sánchez Lara (Univ. Granada, Spain).

Zeros of Jacobi polynomials: Electrostatic approach

Thomas Jan Stieltjes (1856-1894)

Electrostatic interpretation of zeros of Jacobi Polynomials

Carl Gustav Jacobi (1804-1851)

Zeros of Jacobi polynomials: Electrostatic approach

Jacobi polynomials

$$
\begin{gathered}
\omega^{(\alpha, \beta)}(x)=(1-x)^{\alpha}(1+x)^{\beta}, \alpha, \beta>-1 \\
\int_{-1}^{1} x^{k} P_{n}^{(\alpha, \beta)}(x) \omega^{(\alpha, \beta)}(x) d x=0, k=0, \ldots, n-1
\end{gathered}
$$

$$
\begin{gathered}
P_{n}^{(\alpha, \beta)}(z)=2^{-n} \sum_{k=0}^{n}\binom{n+\alpha}{n-k}\binom{n+\beta}{k}(z-1)^{k}(z+1)^{n-k}, \\
P_{n}^{(\alpha, \beta)}(z)=\frac{1}{2^{n} n!}(z-1)^{-\alpha}(z+1)^{-\beta}\left(\frac{d}{d z}\right)^{n}\left[(z-1)^{n+\alpha}(z+1)^{n+\beta}\right],
\end{gathered}
$$ for $(\alpha, \beta) \in \mathbb{C}$.

Zeros of Jacobi polynomials: Electrostatic approach

n free unit charges in $(-1,+1)$
Two positive charges at the endpoints: a in +1 and b in -1
Charges interact according to the logarithmic potential
Equilibrium problem: To find the positions x_{1}, \ldots, x_{n} for the free charges in order to minimize the (logarithmic) energy of the system

$$
E\left(x_{1}, \ldots, x_{n}\right)=-\sum_{i<j} \ln \left|x_{i}-x_{j}\right|-a \sum_{i=1}^{n} \ln \left|1-x_{i}\right|-b \sum_{i=1}^{n} \ln \left|1+x_{i}\right|
$$

Zeros of Jacobi polynomials: Electrostatic approach

$E\left(x_{1}, \ldots, x_{n}\right)$ attains a global minimum on the simplex
$-1 \leq x_{1} \leq \ldots \leq x_{n} \leq 1$. This minimum is attained in an "inner" point: $-1<x_{1}^{*}<x_{2}^{*}<\ldots<x_{n}^{*}<+1$

$$
\begin{gathered}
\frac{\partial E}{\partial x_{k}}\left(x_{1}^{*}, \ldots, x_{n}^{*}\right)=0, k=1, \ldots, n \\
\sum_{j \neq k} \frac{1}{x_{k}^{*}-x_{j}^{*}}+\frac{a}{x_{k}^{*}-1}+\frac{b}{x_{k}^{*}+1}=0, k=1, \ldots, n \\
Q_{n}(x)=\prod_{k=1}^{n}\left(x-x_{k}^{*}\right) \\
\frac{1}{2} \frac{Q_{n}^{\prime \prime}\left(x_{k}^{*}\right)}{Q_{n}^{\prime}\left(x_{k}^{*}\right)}+\frac{a}{x_{k}^{*}-1}+\frac{b}{x_{k}^{*}+1}=0, k=1, \ldots, n
\end{gathered}
$$

Zeros of Jacobi polynomials: Electrostatic approach

Polynomial $\left(x^{2}-1\right) Q_{n}^{\prime \prime}(x)+2(a(x+1)+b(x-1)) Q_{n}^{\prime}(x)$, of degree $\leq n$, has the same zeros as Q_{n}, that is:

$$
\left(x^{2}-1\right) Q_{n}^{\prime \prime}(x)+2(a(x+1)+b(x-1)) Q_{n}^{\prime}(x)=\lambda_{n} Q_{n}(x)
$$

Jacobi differential equation:
$\left(x^{2}-1\right) y^{\prime \prime}(x)+[-\beta+\alpha+(\alpha+\beta+2) x] y^{\prime}(x)=n(n+\alpha+\beta+1) y(x)$
\Rightarrow The minimum energy takes place when free charges are located
on zeros of the Jacobi polynomial $Q_{n}=P_{n}^{(\alpha, \beta)}$,
with $\alpha=2 a-1$ and $\beta=2 b-1 \Longrightarrow$

$$
a=\frac{\alpha+1}{2}, b=\frac{\beta+1}{2}
$$

Extension: Unbounded intervals

Laguerre polynomials: $L_{n}^{(\alpha)}(x)$

$$
\omega^{(\alpha)}(x)=x^{\alpha} e^{-x}, x \in(0, \infty), \alpha>-1
$$

n positive unit charges in $[0,+\infty)$,
a positive charge p at the origin.
Additional restriction:

$$
\sum_{k=1}^{n} x_{k} \leq K n \rightarrow \sum_{k=1}^{n} x_{k}=K n \rightarrow \text { Lagrange multipliers... }
$$

Modern viewpoint (Ismail, 2000 ...): Action of the external field

$$
\varphi(x)=x, x \in[0, \infty)
$$

Extension: Unbounded intervals

Hermite polynomials: $H_{n}(x)$

$$
\omega(x)=e^{-x^{2}}, x \in(-\infty, \infty)
$$

n positive unit charges in \mathbb{R}.
Additional restriction:

$$
\sum_{k=1}^{n} x_{k}^{2} \leq K n \rightarrow \sum_{k=1}^{n} x_{k}^{2}=K n \rightarrow \text { Lagrange multipliers... }
$$

Modern viewpoint (Ismail, 2000 ...): Action of the external field

$$
\varphi(x)=\frac{x^{2}}{2}, x \in \mathbb{R}
$$

Open problem: Hermite-Padé Polynomials (MOP). An electrostatic model?

Simple example: Jacobi-Angelesco Polynomials.
V. Kaliaguine (1979); V. Kaliaguine, A. Ronveaux (1996). Polynomials $P_{n, n} \in \mathbb{P}_{2 n}$ satisfying the following system of orthogonality conditions:

$$
\begin{aligned}
& \qquad \int_{0}^{1} x^{k} P_{n, n}(x)(1-x)^{\alpha}(1+x)^{\beta} x^{\gamma} d x=0, k=0, \ldots, n-1 \\
& \quad \int_{-1}^{0} x^{k} P_{n, n}(x)(1-x)^{\alpha}(1+x)^{\beta}|x|^{\gamma} d x=0, k=0, \ldots, n-1, \\
& \text { where } \alpha, \beta, \gamma>-1
\end{aligned}
$$

Open problem: Hermite-Padé Polynomials (MOP). An electrostatic model?

Since intervals $[-1,0]$ and $[0,1]$ have disjoint interiors $\Longrightarrow P_{n, n}$ has exactly n simple zeros in each interval.

$$
P_{n, n}(x)=p_{n}(x) q_{n}(x),
$$

where $p_{n}(x)=\prod_{k=1}^{n}\left(x-x_{k}\right)$ and $q_{n}(x)=\prod_{k=1}^{n}\left(x-y_{k}\right)$, with $\left\{x_{k}\right\}_{k=1}^{n} \subset(0,1)$ and $\left\{y_{k}\right\}_{k=1}^{n} \subset(-1,0)$.

- Rodrigues Formula
- O.D.E. (3rd order!)

Open problem: Hermite-Padé Polynomials (MOP). An electrostatic model?

$$
\begin{aligned}
& M \cdot 0 . P \cdot \\
& P_{n, n}(x)=P_{n}(x) \cdot q_{n}(x)
\end{aligned}
$$

Open problem: Hermite-Padé Polynomials (MOP). An

 electrostatic model?Jacobi case:
$P_{n}^{(\alpha, \beta)}$ minimizes $\int_{-1}^{1} \Pi(x)^{2}(1-x)^{\alpha}(1+x)^{\beta} d x$

$$
a=\frac{\alpha+1}{2}, b=\frac{\beta+1}{2}
$$

Jacobi-Angelesco case:
$P_{n n}(x)=p_{n}(x) q_{n}(x)$, where
p_{n} minimzes $\int_{0}^{1} \Pi(x)^{2} q_{n}(x)(1-x)^{\alpha}(1+x)^{\beta} x^{\gamma} d x$
q_{n} minimzes $\int_{-1}^{0} \Pi(x)^{2} p_{n}(x)(1-x)^{\alpha}(1+x)^{\beta}|x|^{\gamma} d x$
\Longrightarrow It suggest to try an electrostatic setting where the mutual repulsion between charges of the same interval is twice the corresponding repulsion between charges of different intervals!

Open problem: Hermite-Padé Polynomials (MOP). An

 electrostatic model?$$
\begin{aligned}
& E\left(x_{1}, \ldots, x_{n} ; y_{1}, \ldots, y_{n}\right)= \\
& 2 \sum_{1 \leq i<j \leq n} \log \left(\frac{1}{\mid x_{i}-x_{j}}\right)+2 \sum_{1 \leq i<j \leq n} \log \left(\frac{1}{\left|y_{i}-y_{j}\right|}\right) \\
& +\sum_{i, j=1}^{n} \log \left(\frac{1}{\left|x_{i}-y_{j}\right|}\right)+a\left(\sum_{i=1}^{n} \log \left(\frac{1}{\left|x_{i}-1\right|}\right)+\sum_{i=1}^{n} \log \left(\frac{1}{\left|y_{i}-1\right|}\right)\right) \\
& +b\left(\sum_{i=1}^{n} \log \left(\frac{1}{\left|x_{i}+1\right|}\right)+\sum_{i=1}^{n} \log \left(\frac{1}{\left|y_{i}+1\right|}\right)\right) \\
& +c\left(\sum_{i=1}^{n} \log \left(\frac{1}{\left|x_{i}\right|}\right)+\sum_{i=1}^{n} \log \left(\frac{1}{\left|y_{i}\right|}\right)\right)
\end{aligned}
$$

Do the zeros of $P_{n, n}$ minimize (or define a critical configuration, at least) of such energy functional? NOT!!!

Open problem: Hermite-Padé Polynomials (MOP). An

 electrostatic model?
ACTUAL SOLUTION:

A. Martínez Finkelshtein, R.O., J. Sánchez Lara (2021).

Open problem: Hermite-Padé Polynomials (MOP). An electrostatic model?

We associate to $P_{n, n}$ two electrostatic "partners" $S_{n, 1}, S_{n, 2}$, such that:

- $S_{n, 1}, S_{n, 2}$ have degree $n+1$
- At least $n-1$ zeros of $S_{n, 1}$ (resp. $S_{n, 2}$) lie on $(-1,0)$ (resp. $(0,1))$ and interlace with those of q_{n} (resp. p_{n})
If we assign a charge of value $-1 / 2$ ("attractive") to each zero of $S_{n, 1}$ (resp. $S_{n, 2}$), then the zeros of $P_{n, n}$ define a critical configuration for each of the following electrostatic problems:

Open problem: Hermite-Padé Polynomials (MOP). An electrostatic model?

Equilibrium problem

- A charge of value +1 placed at each zero of $P_{n, n}$
- Positive charges of values $\frac{\alpha+1}{2}, \frac{\gamma+1}{2}, \frac{\beta+1}{2}$, placed, respect., at $x=1, x=0, x=-1$.
- Negative charges of values $-1 / 2$ placed at the zeros of $S_{n, 1}$ (resp., $S_{n, 2}$), $n-1$ of which interlace with those of q_{n} (resp., p_{n}).

Open problem: Hermite-Padé Polynomials (MOP). An electrostatic model?

Figure: zeros of $p_{\mathbf{n}}$ (empty circles, all on $[-1,1]$) and of $S_{\mathbf{n}, 1}$ (filled circles, all on $[0,1])$ for $\mathbf{n}=(15,15)$.

Open problem: Hermite-Padé Polynomials (MOP). An electrostatic model?

Figure: Graph of $p_{\mathbf{n}}$ (dashed line) and $S_{\mathbf{n}, 2}$ (thick line) on $[0,1]$ for $\mathbf{n}=(4,4)$ in the Appell's case: $\alpha=\beta=\gamma=0$.

Multiple orthogonal polynomials of type II

- $\Delta_{1}, \Delta_{2} \subset \mathbb{R}, w_{i}$ positive weights on $\Delta_{i}, i=1,2$, $\mathbf{n}=\left(n_{1}, n_{2}\right)$.
- $p_{\mathbf{n}}$, of degree $N=n_{1}+n_{2}$, provided it exists, satisfying

$$
\int_{\Delta_{i}} x^{j} p_{\mathbf{n}}(x) w_{i}(x) d x\left\{\begin{array}{ll}
=0, & j \leq n_{i}-1, \\
\neq 0, & j=n_{i},
\end{array} \quad i=1,2 .\right.
$$

- We assume that both weights are semiclassical:

$$
\begin{aligned}
& \frac{w_{i}^{\prime}(x)}{w_{i}(x)}=\frac{B_{i}}{A_{i}}, i=1,2 \\
& \sigma_{i}:=\max \left\{\operatorname{deg}\left(A_{i}\right)-2, \operatorname{deg}\left(B_{i}\right)-1\right\}, \quad i=1,2
\end{aligned}
$$

Multiple orthogonal polynomials of type II

Now, $p_{\mathbf{n}}$ has two electrostatic partners: $S_{\mathbf{n}, 1}, S_{\mathbf{n}, 2}$, of respective degrees $n_{2}+\sigma_{1}, n_{1}+\sigma_{2}$.

Pair of ODEs

$p_{\mathbf{n}}$, of degree $N=n_{1}+n_{2}$, assuming it exists, satisfies the pair of ODEs:

$$
A_{i} S_{\mathbf{n}, i} y^{\prime \prime}+\left(A_{i}^{\prime} S_{\mathbf{n}, i}-A_{i} S_{\mathbf{n}, i}^{\prime}+B_{i} S_{\mathbf{n}, i}\right) y^{\prime}+C_{\mathbf{n}, i} y=0
$$

Denoting by $x_{\mathbf{n}, k}, k=1, \ldots, N$, the zeros of $p_{\mathbf{n}}$,

$$
y^{\prime \prime}\left(x_{\mathbf{n}, k}\right)+\left(\frac{A_{i}^{\prime}}{A_{i}}+\frac{B_{i}}{A_{i}}-\frac{S_{\mathbf{n}, i}^{\prime}}{S_{\mathbf{n}, i}}\right)\left(x_{\mathbf{n}, k}\right) y^{\prime}\left(x_{\mathbf{n}, k}\right)=0
$$

Multiple orthogonal polynomials of type II

Equilibrium problem

- A charge of value +1 placed at each zero of $p_{\mathbf{n}}$. These charges repel each other.
- Positive charges at the endpoints of the supporting intervals of the weights $w_{i}, i=1,2$. They are also repellent.
- Negative charges of values $-1 / 2$ placed at the zeros of $S_{n, 1}$ (resp., $S_{n, 2}$).

Multiple orthogonal polynomials of type II

This general electrostatic model is still formal: in general, the fact that the degree of $p_{\mathbf{n}}$ is maximal, as well as the simplicity and location of its zeros are not guaranteed ("normality") \Longrightarrow
We need to impose additional restrictions

Particular cases studied in the literature

- Angelesco setting: Intervals with disjoint interiors.
- Nikishin setting: Matching intervals, different weights related by a condition.
- Rakhmanov and others' setting: Overlapping intervals and weights related by a Nikishin-type condition.

Angelesco setting

- $\Delta_{1}, \Delta_{2} \subset \mathbb{R}, \dot{\Delta}_{1} \cap \dot{\Delta}_{2}=\emptyset$
- w_{1}, w_{2} semiclassical weights. Polynomial $p_{\mathbf{n}}$ satisfies n_{1} orthogonality conditions on Δ_{1}, and n_{2} on Δ_{2}, with $\mathbf{n}=\left(n_{1}, n_{2}\right)$ and $N=n_{1}+n_{2}$.
Under these assumptions, $p_{\mathbf{n}}$ is normal (of degree N) and has exactly n_{i} simple zeros in $\dot{\Delta}_{i}, i=1,2$.

electrostatic partners

Polynomial $S_{\mathbf{n}, 1}$ (respect. $S_{\mathbf{n}, 2}$) has $n_{2}-1$ (respect. $n_{1}-1$) zeros, out of a total of $n_{2}+\sigma_{1}$ (resp. $n_{1}+\sigma_{2}$) interlacing with those of p_{n} on Δ_{2} (respect. Δ_{1}).

Angelesco setting

Electrostatic model

The $N=n_{1}+n_{2}$ zeros of $p_{\mathbf{n}}$, equipped with unit positive charges, are in equilibrium in the external field created by the orthogonality weights w_{1}, w_{2} and

- charges of value $-1 / 2$ ("attractors") placed at the zeros of $S_{\mathbf{n}, 1}$; or
- charges of value $-1 / 2$ ("attractors") placed at the zeros of $S_{\mathbf{n}, 2}$.

Angelesco setting

Example. APPELL's polynomials:
$w_{1}(x)=w_{2}(x) \equiv 1 ; \Delta_{1}=[-1,0], \Delta_{2}=[0,1]$.

Figure: zeros of $p_{\mathbf{n}}$ (empty circles, all on $[-1,1]$) and of $S_{\mathbf{n}, 1}$ (filled circles, all on $[0,1])$ for $\mathbf{n}=(15,15)$.

Nikishin setting

Nikishin (1980) proposed an elegant AT-system w_{1}, w_{2}. We present a slightly generalized version of it:

- $\Delta_{1}=\Delta_{2}=[a, b]$
- $\frac{w_{2}(x)}{w_{1}(x)}=|\Pi(x)| u(x), u(x)=\int_{c}^{d} \frac{v(t) d t}{x-t},(a, b) \cap(c, d)=\emptyset$
and Π an arbitrary polynomial of degree m without zeros in $(a, b) \cup(c, d)$.
But we also have to impose an important restriction:
- w_{1} and u must be semiclassical.

Example: $w_{1}(x)=|x-a|^{\alpha}|x-b|^{\beta}$,
$w_{2}(x)=|x-a|^{\alpha}|x-b|^{\beta}|x-c|^{\gamma}|x-d|^{\delta}, x \in(a, b)$, with
$(a, b) \cap(c, d)=\emptyset$ and $\alpha, \beta, \gamma, \delta>-1$. and $\gamma, \delta \notin \mathbb{Z}, \gamma+\delta \in \mathbb{Z}$.

Nikishin setting

Electrostatic model

- $\ell=\min \left(n_{2}-1, n_{1}-m\right), \quad m=\operatorname{deg}(\Pi)$
- $p_{\mathbf{n}}$ has at least $n_{1}+\ell+1$ sign changes on (a, b)
- $S_{\mathbf{n}, 1}$ has at least ℓ sign changes in (c, d).

If $n_{2} \leq n_{1}-m+1$, so that $\ell=n_{2}-1 \Longrightarrow$
$p_{\mathbf{n}}$ has exactly $N=n_{1}+n_{2}$ simple zeros in (a, b), while $S_{\mathbf{n}, 1}$ has $\geq n_{2}-1$ zeros in (c, d), exactly as in the classical Nikishin setting ($m=0$).
Nikishin
zeres of P_{n}

$$
\frac{\omega_{2}(x)}{\omega_{1}(x)}=|\pi(x)| k(x), \quad u(x)=\int_{c}^{d} \frac{d \sigma(t)}{x-t}
$$

Rakhmanov's setting

Overlapping intervals: Aptekarev (2008), Aptekarev and Lysov (2011) ...

A particular Rakhmanov's case: Rakhmanov (2011)

- Diagonal setting: $n_{1}=n_{2}=n, \mathbf{n}=(n, n), N=2 n$
- $\Delta_{1} \subseteq \Delta_{2}$
- Nikishin type condition: $\frac{w_{2}(x)}{w_{1}(x)}=u(x)$,

$$
u(x)=\int_{\Delta_{3}} \frac{v(t) d t}{x-t}, \dot{\Delta}_{2} \cap \dot{\Delta}_{3}=\emptyset
$$

Rakhmanov proved that at least $N-5=2 n-5$ zeros of $p_{\mathbf{n}}$ lie on Δ_{2}.

Rakhmanov's setting

But ... what about its electrostatic partners $S_{\mathbf{n}, i}, i=1,2$???

Observe that, by orthogonality, $p_{\mathbf{n}}$ has $n+r$ zeros in Δ_{1}, with $0 \leq r \leq n$, and s zeros in $\Delta_{2} \backslash \Delta_{1}$, with $0 \leq s \leq n$ and $r+s \leq n$. Then, we proved that:

Zeros of $S_{\mathbf{n}, 1}$

$S_{\mathbf{n}, 1}$ has at least $s-2$ zeros in $\Delta_{2} \backslash \Delta_{1}$, which interlace with those of $p_{\mathbf{n}}$ placed there, and at least $r-3$ in Δ_{3}.

Rakhmanov's setting

OVERIAPPING INTERVAIS (rakhmanou's case)

- Zeros of P_{n}
- zeros of $S_{n, 1}$

BUT...WHO THE HECK ARE THESE GUYS???

$S_{\mathrm{n}, i}, i=1,2$???

Electrostatic partners

$$
\begin{gathered}
S_{\mathbf{n}, i}:=D_{w_{i}}\left[p_{\mathbf{n}}\right]=\operatorname{det}\left(\begin{array}{cc}
p_{\mathbf{n}} \\
A_{i} p_{\mathbf{n}}^{\prime} & A_{i}\left(\widehat{p}_{\mathbf{n}, i}\right)^{\prime}-B_{i} \widehat{\mathbf{p}} \mathbf{n}, i^{l}
\end{array}\right) \\
\frac{w_{i}^{\prime}}{w_{i}}=\frac{B_{i}}{A_{i}}, \widehat{p}_{\mathbf{n}, i}(x)=\int_{\Delta_{i}} \frac{p_{\mathbf{n}}(t) w_{i}(t)}{t-x} d t
\end{gathered}
$$

Electrostatic partners

We have applied this electrostatic approach to several examples studied in the literature:

- Jacobi polynomials with non-standard values of parameters.
- Multiple Hermite polynomials.
- Multiple Laguerre polynomials of first and second kind.
- Jacobi-Piñeiro polynomials.
- Angelesco-Jacobi polynomials.
- Multiple orthogonal polynomials for the cubic weight.

GREETINGS FROM TENERIFE

THANK YOU SO MUCH!!!

MUCHAS GRACIAS!!!

Teide: Volcano in Tenerife (January 2022)

