Gauss-Lucas theorem and its dynamical consequences

Margaret Stawiska-Friedland

AMS/Mathematical Reviews, Ann Arbor, MI, USA

Midwest Workshop in Asymptotic Analysis Fort Wayne, IN, October 7–9, 2022

Complex dynamics

Consider a rational function f of degree d > 1, i.e.,

$$f(z) = rac{P(z)}{Q(z)}, \ P, Q \in \mathbb{C}[z], \ d := \max\{\deg P, \deg Q\} > 1.$$

ъ

Consider a rational function f of degree d > 1, i.e.,

$$f(z) = rac{P(z)}{Q(z)}, \ P, Q \in \mathbb{C}[z], \ d := \max\{\deg P, \deg Q\} > 1.$$

Such a function extends naturally as a holomorphic map to $\mathbb{C}_{\infty} = \mathbb{C} \cup \{\infty\}.$ We equip \mathbb{C}_{∞} with the chordal metric

$$\rho([X_1, Y_1], [X_2, Y_2]) = \frac{|X_1Y_2 - X_2Y_1|}{\sqrt{|X_1|^2 + |Y_1|^2}\sqrt{|X_2|^2 + |Y_2|^2}}.$$

э.

イロト 不得 トイヨト イヨト

Consider a rational function f of degree d > 1, i.e.,

$$f(z) = rac{P(z)}{Q(z)}, \ P, Q \in \mathbb{C}[z], \ d := \max\{\deg P, \deg Q\} > 1.$$

Such a function extends naturally as a holomorphic map to $\mathbb{C}_{\infty} = \mathbb{C} \cup \{\infty\}.$ We equip \mathbb{C}_{∞} with the chordal metric

$$\rho([X_1, Y_1], [X_2, Y_2]) = \frac{|X_1 Y_2 - X_2 Y_1|}{\sqrt{|X_1|^2 + |Y_1|^2} \sqrt{|X_2|^2 + |Y_2|^2}}.$$

Complex dynamics studies behavior of the sequence of iterates $f^{\circ(n+1)} = f \circ f^{\circ n}$, $(n \in \mathbb{N})$ in \mathbb{C}_{∞} .

イロト 不得 トイヨト イヨト 二日

We define the Fatou set F_f of f and the Julia set J_f of f as follows: F_f is the maximal open subset of \mathbb{C}_{∞} on which the sequence $\{f^{\circ n} : n \in \mathbb{N}\}$ is equicontinuous, and J_f is the complement of F_f in \mathbb{C}_{∞} .

3

We define the Fatou set F_f of f and the Julia set J_f of f as follows: F_f is the maximal open subset of \mathbb{C}_{∞} on which the sequence $\{f^{\circ n} : n \in \mathbb{N}\}$ is equicontinuous, and J_f is the complement of F_f in \mathbb{C}_{∞} . The Julia set is closed and nonempty, in fact infinite. Both Julia and Fatou sets are totally *f*-invariant, i.e.,

$$f^{-1}(J(f)) = J(f) = f(J(f)), \ f^{-1}(F(f)) = F(f) = f(F(f)).$$

For a polynomial p (of degree d > 1), the point $\infty = p(\infty) = p^{-1}(\infty)$ belongs to the Fatou set. Further, the Julia set $J_p \subset \mathbb{C}$ always has empty interior.

э.

- For a polynomial p (of degree d > 1), the point $\infty = p(\infty) = p^{-1}(\infty)$ belongs to the Fatou set. Further, the Julia set $J_p \subset \mathbb{C}$ always has empty interior.
- Some examples of Julia sets of quadratic polynomials $p_c(z) = z^2 + c$ can be seen in the next slide.

M. Stawiska (AMS/MR)

<ロ> <問> <問> < 同> < 同> 、

5/30

æ

Dynamics of polynomials, II

Since

$$\lim_{|z|\to\infty}\frac{|p(z)|}{|z|^d}>0,$$

there exists an R > 0 such that $p^{-1}(D_R) \subset D_R$, where

 $D_R := \{z : |z| \leq R\}$. Furthermore, for any such *R* and for each positive integer k_0 we have

$$\emptyset \neq K_p = \bigcap_{k \geqslant k_0} p^{-k}(D_R),$$

where $K_p := \{z \in \mathbb{C} : \{p^{\circ n}(z)\}\$ is bounded $\}$. We call K_p the **filled-in Julia set** of *p*. It is easy to show that $p^{-1}(K_p) = K_p = p(K_p)$ and that K_p is the union of $J_p = \partial K_p$ with bounded components of F_p .

M. Stawiska (AMS/MR)

Do they exist nontrivial closed sets $Z \subset \mathbb{C}$ (other than J_p , K_p or D_R) containing J_p such that $p^{-1}(Z) \subset Z$?

э

Do they exist nontrivial closed sets $Z \subset \mathbb{C}$ (other than J_p , K_p or D_R) containing J_p such that $p^{-1}(Z) \subset Z$? More specifically, for a complex polynomial p of degree $d \ge 2$, let $H_p = \text{conv}J_p$ be the convex hull of the Julia set of p. Do we always have $p^{-1}(H_p) \subset H_p$?

э

Do they exist nontrivial closed sets $Z \subset \mathbb{C}$ (other than J_p , K_p or D_R) containing J_p such that $p^{-1}(Z) \subset Z$?

More specifically, for a complex polynomial p of degree $d \ge 2$, let $H_p = \text{conv}J_p$ be the convex hull of the Julia set of p. Do we always have $p^{-1}(H_p) \subset H_p$?

This was conjectured by Per Alexandersson and answered positively by the present author.

A relation between convex sets and complex polynomials

Theorem

(Gauss-Lucas theorem) Every convex set in the complex plane containing all the zeros of a complex polynomial p also contains all critical points of p (solutions to p'(z) = 0).

A relation between convex sets and complex polynomials

Theorem

(Gauss-Lucas theorem) Every convex set in the complex plane containing all the zeros of a complex polynomial p also contains all critical points of p (solutions to p'(z) = 0).

The following result due to W. P. Thurston is equivalent to the Gauss-Lucas theorem:

Theorem

Let p be any polynomial of degree at least two. Denote by C the convex hull of the critical points of p. Then $p : E \to \mathbb{C}$ is surjective for any closed half-plane E intersecting C.

3

< 日 > < 同 > < 回 > < 回 > < □ > <

Lemma

(L. Hörmander) Let p be a complex polynomial and let B be a closed convex subset of \mathbb{C} containing all zeros of p'. Then the set C_B of all $w \in \mathbb{C}$ such that all the zeros of $p(\cdot) - w$ are contained in B is a convex set.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Lemma

(L. Hörmander) Let p be a complex polynomial and let B be a closed convex subset of \mathbb{C} containing all zeros of p'. Then the set C_B of all $w \in \mathbb{C}$ such that all the zeros of $p(\cdot) - w$ are contained in B is a convex set.

Proof.

Let $w_1, w_2 \in C_B$ and $n_1, n_2 \in \mathbb{N}$ and consider the polynomial (in one complex variable *z*) $P(z) := (p(z) - w_1)^{n_1} (p(z) - w_2)^{n_2}$. Then all zeros of *P* lie in *B* (by definition of C_B), so the convex hull of zeros of *P* is contained in *B*. By Gauss-Lucas, all zeros of *P'* are contained in *B*. The zeros of *P'* are respectively all the zeros of $p(z) - w_1$, all the zeros of $p(z) - w_2$ (if $n_1, n_2 > 1$), all the zeros of *p'* and all the zeros of $p(\cdot) - \left(\frac{n_2}{n_1+n_2}w_1 + \frac{n_1}{n_1+n_2}w_2\right)$. Hence $\frac{n_2}{n_1+n_2}w_1 + \frac{n_1}{n_1+n_2}w_2 \in C_B$ and finally $tw_1 + (1 - t)w_2 \in B$ for all $0 \le t \le 1$.

Theorem

(hyperplane separation theorem) Let X be a convex and closed subset of a finite-dimensional vector space V. If $x_0 \notin X$, then there is an affine half-space containing x_0 which does not intersect X; that is, there is an affine function $f : V \to \mathbb{R}$ with $f(x_0) < 0 \leq f(x), x \in X$.

We will prove Alexandersson's conjecture using the following :

Lemma

Let p be any polynomial of degree at least two. Then all zeros of p' belong to $H_p = \text{conv}J_p$.

Proof.

Suppose there is an $x_0 \notin H_p$ such that $p'(x_0) = 0$. By the hyperplane separation theorem (applied twice if necessary), there exists a closed half-plane *E* such that $x_0 \in E$ and $E \cap J_p = \emptyset$. By Thurston's theorem, $p : E \to \mathbb{C}$ is surjective. Take a $z_0 \in J_p$. Then on one hand $p^{-1}(z_0) \subset J_p$, while on the other hand $p^{-1}(z_0) \cap E \neq \emptyset$, a contradiction.

A B A B A B A
 A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A

Theorem

Let p be a complex polynomial of degree $d \ge 2$. Then $p^{-1}(H_p) \subset H_p$.

Proof.

By "dynamical Gauss-Lucas", $B = H_p$ satisfies the assumptions of Hörmander's Lemma. Hence the set $C_p = \{w \in \mathbb{C} : p^{-1}(w) \in H_p\}$ is convex. Furthermore, for $w \in J_p$ we have $p^{-1}(w) \in J_p \subset H_p$, so $J_p \subset C_p$. Hence $H_p \subset C_p$, which implies $p^{-1}(H_p) \subset H_p$.

Alexandersson's conjecture was motivated by the study of the quadratic family $p_c(z) = z^2 + c$, $c \in \mathbb{C}$ For this family is easy to check directly (without appealing to "dynamical Gauss-Lucas") that the critical point 0 is the center of symmetry of the Julia set J_c , so in particular it is a convex combination of two points in J_c .

We can further prove that the equality $p^{-1}(H_p) = H_p$ is achieved if and only if J_p is either a line segment or a circle; that is, if and only if p is Möbius conjugated to the classical Chebyshev polynomial T_d of degree d, to $-T_d$ or the monomial cz^d with |c| = 1.

We can further prove that the equality $p^{-1}(H_p) = H_p$ is achieved if and only if J_p is either a line segment or a circle; that is, if and only if p is Möbius conjugated to the classical Chebyshev polynomial T_d of degree d, to $-T_d$ or the monomial cz^d with |c| = 1. The distinction is according to whether $J_p = K_p$ or $J_p \subsetneq K_p$.

Let *p* be a polynomial of degree $d \ge 2$. Th (i) the real interval [-1, 1] is both forward and backward invariant under *p* if and only if *p* is T_d or $-T_d$, where T_d is the Chebyshev polynomial of degree *d*; (ii) the unit circle $\{|z| = 1\}$ is both forward and backward invariant under *p* if and only if $p(z) = \alpha z^d$, where $|\alpha| = 1$.

3

M. Stawiska (AMS/MR)

MWAA 2022

イロト イヨト イヨト イヨト

17/30

э.

Let *p* be a complex polynomial of degree $d \ge 2$ such that $H_p = p^{-1}(H_p) = J_p$. Then J_p is a line segment.

Proof.

Recall that for any polynomial *p* the Julia set J_p has empty interior. If $J_p = H_p$, then J_p is a closed convex set in \mathbb{C} with empty interior, and hence it is a subset of a line. Being connected and compact, it must be a (closed) segment.

Lemma

For every complex polynomial p of degree $d \ge 2$, $K_p \subset H_p$.

Lemma

Let p be a complex polynomial of degree $d \ge 2$. If $H_p = p^{-1}(H_p)$, then $H_p \subset K_p$.

3

Convex hull vs. holomorphically convex hull

Let Ω be an open set in \mathbb{C} . Let $A(\Omega)$ denote the class of holomorphic functions in Ω . Let Z be an arbitrary compact subset of Ω . Then the holomorphically convex hull \hat{Z} of Z in Ω is defined as

$$\widehat{Z} = \widehat{Z}_{\Omega} = \{ z \in \Omega : |f(z)| \leq \sup_{Z} |f| \ \forall f \in A(\Omega) \}.$$

Convex hull vs. holomorphically convex hull

Let Ω be an open set in \mathbb{C} . Let $A(\Omega)$ denote the class of holomorphic functions in Ω . Let Z be an arbitrary compact subset of Ω . Then the holomorphically convex hull \hat{Z} of Z in Ω is defined as

$$\widehat{Z} = \widehat{Z}_{\Omega} = \{ z \in \Omega : |f(z)| \leq \sup_{Z} |f| \ \forall f \in A(\Omega) \}.$$

The hull \widehat{Z}_{Ω} is the union of *Z* and the connected components of $\Omega \setminus Z$ which are relatively compact in Ω . Furthermore we have $\widehat{Z} \subset \text{conv}Z$.

Let *p* be a complex polynomial of degree $d \ge 2$ such that $H_p = p^{-1}(H_p) \supsetneq J_p$. Then J_p is a circle.

M. Stawiska (AMS/MR)

э

< 日 > < 同 > < 回 > < 回 > < □ > <

Recall that the boundary of a convex set X with nonempty interior in \mathbb{R}^2 is homeomorphic to the unit circle. Furthermore, it has (positive and) finite length, hence is of Hausdorff dimension 1.

Theorem

(D. Hamilton, 1995) Let $f : \mathbb{C}_{\infty} \to \mathbb{C}_{\infty}$ be a rational function. Suppose that the Julia set J_f is a Jordan curve. Then $\dim(J_f) > 1$ or J_f is a circle/line.

No complete answer is known yet, but let me present an example of a rational *f* with $f^{-1}(H_f) \subset H_f$ and two different examples with $f^{-1}(H_f) \not\subset H_f$. A simple-minded example: $f(z) = 1/z^2$. The Julia set J_f is $\{|z| = 1\}$, with $H_f = \{|z| \leq 1\}$. We have $f^{-1}(H_f) \not\subset H_f$. However, $f^{-2}(H_f) \subset H_f$.

MWAA 2022 23/30

Another example with $f^{-1}(H_f) \not\subset H_f$

Consider

$$f(z) = f_{\rho}(z) = \frac{-\rho^2 z^2}{z^3 - 1}$$

with $\rho > \rho_{\epsilon} = \sqrt{\frac{2-\epsilon(\epsilon^2 - 3\epsilon + 3)}{1-\epsilon}}$, where $\epsilon \in (0, 1)$ is fixed (after D. Look). Here $f^{-n}(H_f) \not\subset H_f$ for any $n \in \mathbb{N}$.

æ

In this example, 0 is a superattracting fixed point for *f* and $f^{-1}(0) = \{0, \infty\}$. The immediate attracting basin \mathcal{O} of 0 is simply connected and $\partial \mathcal{O}$ is a simple closed curve. There is a neighborhood *B* of ∞ such that $f(B) = \mathcal{O}$ and $f^{-1}(\mathcal{O}) = \mathcal{O} \cup B$. Note that $\mathcal{O} \subset \widehat{J}_f \subset H_f$. Therefore $f^{-1}(\mathcal{O}) \subset f^{-1}(H_f)$, hence $B \subset f^{-1}(H_f)$ and $f^{-1}(H_f) \not\subset H_f$. Similarly, $f^{-n}(H_f) \not\subset H_f$ for any $n \in \mathbb{N}$.

If $f^{-1}(H_f) \subset H_f$, is ∞ necessarily in an attracting basin?

NO. Consider $f(z) := g(w^2)$, where $g(w) := \frac{3w+1}{w+3}$ (after A. F. Beardon).

The map *f* has no (super)attracting cycles, of any period. To see this, note that $f^{\circ n} \to 1$ on $\{|z| < 1\}$ and on $\{|z| > 1\}$. In particular, the orbits of both critical points of *f* (0 and ∞) tend to 1. But the point 1 is in the Julia set $J_f = \{|z| = 1\}$. Here $f^{-1}(H_f) = H_f$.

THANK YOU FOR YOUR ATTENTION!

		/		
	10WICK0	_ / / / /	$n \leq n$	
IVI. 53	avvisna		/ / .	VII 1

2

イロン イ理 とく ヨン イヨン

Some references

P. Alexandersson, *Convex Julia sets*, Math Overflow question, April 2, 2020, https://mathoverflow.net/questions/356342/ convex-julia-sets

A. F. Beardon, *Iteration of rational functions. Complex analytic dynamical systems*, Graduate Texts in Mathematics. 132. New York etc.: Springer-Verlag 1991

A. Chéritat, Y. Gao, Y. Ou, L. Tan, *A refinement of the Gauss-Lucas theorem (after W. P. Thurston)*, C. R. Math. Acad. Sci. Paris 353 (2015), no. 8, 711-715.

L. Hörmander, *Notions of Convexity*, Springer Science & Business Media, 2007 (Modern Birkhäuser Classics)

D. Look, *Sierpiński carpets as Julia sets for imaginary 3-circle inversions*, J. Difference Equ. Appl. 16 (2010), No. 5-6, 705-713 M. Stawiska, *Convex hulls of polynomial Julia sets*, Proceedings of the AMS, Vol. 149, No. 1, January 2021, pp. 245-250

• □ ▶ • @ ▶ • ■ ▶ • ■ ▶ ·

If the convex hull of the roots of p does not contain the convex hull C of critical points of p, there would exist a closed half-plane E intersecting C but avoiding all roots of p. Hence $p|_E$ would not be surjective. For the converse, consider the convex hulls of roots of p - w for all complex constants w.