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ABSTRACT 

This paper presents O-l Mixed Integer Pro- 
gramming model for the nonlinear multiprod- 
uct Cost- Volume-Profit analysis, which re- 
laxes the assumptions of linear revenue-cost 
functions and constant~xed cost. In this model, 
nonlinear revenue and cost functions are ap- 
proximated by piecewise linear functions, and 
the joint fixed cost function is represented by a 

step-increment function. With these features, the 
required capacity level and the optimal product 
mix could be determined simultaneously. A hy- 
pathetical example, illustrating the model, is 
presented together with the profit-maximiza- 
tion solution, the breakeven solution, and the 
target-profit solutions. 

1. INTRODUCTION 

Cost-Volume-Profit (CVP) analysis is a 
technique used to analyze the impact on prof- 
its of various decisions that affect revenues and 
costs. One of the limiting assumptions of tra- 
ditional CVP analysis is that there is only one 
product or a constant mix of products. In 196 1, 
Jaedicke [ 1 ] applied Linear Programming 
(LP) techniques to construct a CVP model, 
called a “Product Mix” model in many man- 
agement accounting or LP texts, which could 
aid management to determine the optimal 
product mix, maximizing total profit under 
some limits (constraints} to production or 
sales in the case of multiproduct firrn8. By sen- 
sitivity analysis techniques of LP, manage- 
ment could evaluate the impact on profits or 

product mixes of changing product prices, unit 
variable costs, resource restrictions, or combi- 
nations of these factors [ 21. This model could 
be slightly modified into a linear goal pro- 
gramming model, which could determine the 
product mix under the breakeven condition or 
specific profit levels [ 3 1. 

LP applications have extensively appeared in 
the accounting literature; for instance, Hartley 
[ 4 ] applies LP techniques to the joint product 
decision problem, which is another kind of 
multiproduct CVP analysis problem. How- 
ever, the LP approach of CVP analysis still re- 
tains the following two simplifying assump- 
tions: ( 1) unit prices and unit variable costs 
are constant, i.e., the contribution functions are 
linear within the relevant range, and (2) the 
fixed cost, which is not divided into specific 
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fixed cost and joint fixed cost, is constant 
within the relevant range. 

To relax these two assumptions, Sheshai et 
al. [ 5 ] utilize Integer Goal Programming 
(which is O-l Mixed Integer Programming 
strictly speaking) to construct a nonlinear CVP 
model which expresses each product’s contri- 
bution as a piecewise linear function and spe- 
cific fixed cost as a step-increment function. 
Nevertheless, the model Sheshai et al. present 
needs the special observance of the association 
between the contribution function and the 
varying levels of fixed costs. This special ob- 
servance becomes unwieldy when there are 
many kinds of products in the model. 

The purpose of this paper is to present a sim- 
pler nonlinear CVP model with 0- 1 Mixed In- 
teger Programming (0- 1 MIP ) , which relaxes 
the assumptions mentioned above and consid- 
ers the discrete capacity extensions. In Section 
2, the general form of the nonlinear CVP model 
is explained in detail; in Section 3, some solu- 
tion techniques in the literature are discussed; 
in Section 4, an illustrative example is pre- 
sented together with the profit-maximization 
solution, the breakeven solution, and the tar- 
get-profit solutions. 

2. NONLINEAR CVP MODEL 

2.1 Assumptions 

The nonlinear CVP model presented in this 
paper is subject to the following assumptions: 

( 1) In a multiproduct manufacturing firm, 
total cost is divided into total joint fixed cost, 
total direct material cost, total direct labor cost, 
and total other cost. 

( 2 ) Joint fixed cost can be measured by ma- 
chine hours, and is assumed to be a step-incre- 
ment function, i.e., the acquisition of machine 
hours comes in indivisible chunks. 

(3) The cost functions of total direct mate- 
rial and total direct labor are piecewise linear 
functions, which approximate the nonlinear 

cost behaviors, due to quantity discount and 
higher overtime wage rate. 

(4) For each product, “other cost” is the sum 
of the cost of production and the expenses of 
administration and marketing except direct 
material and direct labor costs, and its behav- 
ior is a mixed cost pattern. 

(5) For each product, its revenue is as- 
sumed to be a piecewise linear function which 
approximates the nonlinear revenue behavior 
due to the law of diminishing return. 

2.2 Presentation of a piecewise linear 
function 

In real life the revenue and cost functions are 
nonlinear functions, which are approximated 
by piecewise linear functions in this model. 
Figure 1 shows an illustration of the piecewise 
linear function. In Fig. 1, the piecewise linear 
curve is composed of k successive segments, 
each with a different slope, indicating differ- 
ent marginal revenue or marginal cost over a 
different range of volume. Points labeled as 
P ,,...,Pk are called “bend points” in this paper, 
whose coordinates are ( vl,Y, ) ,..., ( I& Yk), 
respectively. Let si be the slope of the ith seg- 
ment; then the formula for calculating Yi is 

where YO= 0 and I’,= 0. Besides, note that V, 
is the upper limit of volume. The function 
value and the associated constraints for this il- 
lustration are as follows: 
Function value: 

YE* 2 y,aj (1.1) 
j=l 

Constraints: 

&J--s, co 

,I,-6,-S,+, <O j=I,...,k-1 

&-&GO 

c:=J, = 1 

c:,lSj= 1 

(1.2) 

( 1:.3 1 

(1.4) 

(1.5) 

(1.6) 



Fig. I. A piecewise Iinear function. 

v-~;~lv,a,=o 

aj=o,l j= l,..., k; LjaO j=O,...,k 

(1.7) 

The term ( 1.1) will be positive for revenue 
and negative for cost. (6,,&,...,&) is an SOS1 
set of O-l variables within which exactly one 
variable must be nonzero; (&,121,...,&) is an 
SOS2 set of nonnegative variables within which 
at most two adjacent variables, in the ordering 
given to the set, can be nonzero [ 6,7 1. By eqn. 
( 1.5 ) , we know that at most two adjacent non- 
zero /zj”s sum up to 1. Thus, the values of Y and 
V will be the linear combinations of two adja- 
cent Yj’s and two adjacent Vj’s, respectively, by 
eqns. (1.1) and (1.7). For example, if (r3= 1, 
then /12 and a 3 sum up to 1, other n;s are zero, 
Y is equal to Y2A2 + Yd3, and V is equal to 
v,n,+ v,n,. 

2.3 Description of the model 

The complete model this paper presents is as 
follows: 

(2.1) 

Constraints: 

for i= l,...,y1 

cfa-ei, ~0 

ajj-9,-e,,+, ~0 j=l,_.., k,-1 

ffiktr - @rki, 6 0 

C$&jj = 1 

c;:,e,j= i 

x~-~$,uijaij=o 

Xi - uik,,& Q 0 

f3q =O,l i= l,..., ?Z;j= I,...) k,+ 
<i =O,l i=l,...,n 
%j =Opl s= m,h; j= l,...,k, 
f!Lj =O,l j=O,...,g 
other variables are nonnegative. 
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(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

Equation (2.1) represents the total profit 
function 2, and eqns. (2.2)-(2.16) are the 
constr~nts associated with revenue functions 
and various cost functions. The discussion 
which follows explains the elements in the 
model. 

23.1 Total revenue 

Assume that there are n products and that 
the revenue function of each product is a pie- 
cewise linear function due to price reduction 
for additional sales. For product i, let the num- 
ber of units of product i be Xi and let the coor- 
dinates of the kir bend points of its revenue 
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function be (U,, Rij, j= l,..., ki,. Thus, the UP- 
per limit of the volume of product i is Uik,,. 

To express the associated constraints of the 
piecewise linear revenue function, we intro- 
duce some nonnegative variables aii and some 
O-l variables 8,, j= I ,..., ,r, k * these constraints 
are represented by eqns. (2.2)-(2.7). Just like 
the description in Section 2.2, (aiO, 
ai, ,..., (Yiki,) is an SOS2 set, (&,Biz ,..., &,,) is 
an SOS1 set, the revenue of product i is 
27; IR,o, and the number of units of product 
i is Xf:, U+Q. Because we have y1 products, 
there are y1 sets of eqns. (2.2)-(2.7), and the 
total revenue is C:= 1 1:: IRuaij as shown in the 
first term of eqn. (2.1). 

2.3.2 Total direct material cost 

This model assumes that all products utilize 
the same direct material, whose cost function 
is a piecewise linear function due to quantity 
discount. Let the requirement of direct mate- 
rial for one unit of product i be a,i units and 
the coordinates of the km bend points of the 
total direct material cost function be 
( W’mj,Cmj) J= 1 ,..., k,. Thus u/nzk, is the avail- 
able volume of direct material. 

To express the associated constraints of the 
piecewise linear function of total direct mate- 
rial cost, we introduce some nonnegative vari- 
ables /3mj and some O-l variables tlt,ij= 1 ,...,k,; 
these constraints are represented by eqns. 
(2.9)-(2,14), where the subscript s is re- 
placed by m. Just like the description in Sec- 
tion 2.2., (/?m,,fimZ ,..., /Imk,) is an SOS2 set, 
(%nlJlm2,*.*9 &&,, ) is an SOS 1 set, the total di- 
rect material cost is Cik_“lC,,$mj, shown in the 
second term of eqn. (2.1) and the total re- 
quirement of direct material is Z$:, Wmjfimj, as 
in eqn. (2.14). 

2.3.3 Total direct labor cost 

This model assumes that the total direct la- 
bor cost function is also a piecewise linear 
function due to overtime premium. Let the re- 

quirement of direct labor for one unit of prod- 
uct i be ahi hours. The representation of the to- 
tal direct labor cost function, shown in the third 
term of eqn. (2.1) and eqns. (2.7)-(2.14), is 
the same as that of the total direct material cost 
function, except the subscript s is replaced by 
h. Thus, total direct labor cost isC:L, C/gjphj and 
total requirement of direct labor is 1;; ~‘u/;ljfi~~ 

2.3.4 Total other cost 

For each product, other cost is assumed to 
be the sum of the cost of production and the 
expenses of administration and marketing, ex- 
cluding direct material cost and direct labor 
cost. Other cost includes the specitic fixed cost 
for each product, so it can be divided into vari- 
able and fixed components. This model as- 
sumes its behavior is a mixed cost pattern and 
can be estimated by statistical regression anal- 
ysis. The representation of total other cost is 
shown in eqn. (2.8 ) and the forth term of eqn. 
(2.1), where Foi stands for the specific fixed 
cost for product i and Coi is the increment of 
other cost for producing one more unit of 
product i, The specific fixed cost Foi can be 
avoided if we decide not to produce product i. 
Here, O-l variables &,i= l,...,n, are introduced 
to express this cost phenomenon. When & = 0, 
it means that Xi=0 by eqn. (2.8) and that Foi 
and Coi vanish from the objective function. 

2.3.5 Total joint fixed cost 

Joint fixed cost is the capacity cost incurred 
for the common benefit of all products. It usu- 
ally cannot be specifically identified with a 
particular product. However, this model as- 
sumes that this kind of capacity cost can be 
measured by the machine hours in a machine- 
intensive manufactu~ng company and that its 
cost function is a ste~increment fun~ion as 
shown in Fig. 2. This cost behavior pattern 
means the capacity extensions in finite jumps, 
e.g., buying in whole new machines when pro- 
duction is expanded beyond a certain level. 
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The joint fixed cost is F,, under the current 
capacity bO. If the capacity is successively ex- 
panded to b b 1, 2 ,..., bg, then the joint fixed cost 
increases to F 1, F 2 ,..., Fg, respectively. Thus, the 
joint fixed cost function can be expressed by 
eqns. (2.15), (2.16) and the last term of eqn. 
(2.1)) where U,i is the requirement of machine 
hours for producing one unit of product i and 
(~,~r,...,~ug) is an SOS1 set of O-l variables. 
When pj= 1, we know that the capacity needs 
to be expanded to thejth level, i.e., bj machine 
hours. 

2.4 Remarks 

For the model we present, there are some re- 
marks which should be mentioned here. First 
of all, the piecewise linear function can ap- 
proximate nonlinear revenue or cost behavior 

Ez! I 
Fg t----- ; 

Fig. 2. Total joint fixed cost function. 

$zk E 

- Real function 

--- - - piecewise tinear 
appmximat’bn 

lblume 
Fig. 3. An illustration of a piecewise linear approximation. 

in real world which is estimated either by en- 
gineering analysis or by curve-fitting tech- 
nique. For example, the solid curve in Fig. 3 
can be approximated by the dotted lines com- 
posed of four segments. If the nonlinear curve 
is approximated by more segments, this will 
improve the accuracy of the approximation. It, 
nevertheless, will increase the numbers of vari- 
ables and constraints. 

Second, one can divide total cost into more 
items than this model does. Our model has 
demonstrated the mathematical expressions of 
various patterns of cost behavior, so the addi- 
tional cost items can be represented in terms 
of a linear or nonlinear function according to 
their behaviors. 

Third, product mix solutions are not always 
in integer units. If an integer solution is re- 
quired, then we should let X, be integer and 
solve the problem by another kind of 0- 1 MIP. 

Finally, note that the model should be 
slightly modi fed in order to acquire the break- 
even solution or target-profit solutions. The 
model described in Section 2.3 is the profit- 
maximization model, where the objective 
function .is to maximize total profit whose 
function is shown in eqn. (2.1) . To acquire the 
product mix solution under specific profit level 
Z,, the following constraint should be added: 

Z-e++e-=Z 

where Z is the total profit function, and e+ and 
e- are, respectively, positive and negative de- 
viations from Z,. Thus the objective function 
is to minimize e+ +e-. In addition, let Z, be 
zero, then the breakeven solution could be 
acquired. 

3. SOLUTION TECHNIQUES 

The nonlinear CVP model presented in this 
paper is a 0- 1 MIP model, which involves 0- 1 
variables and nonnegative variables. There are 
three 0- 1 implicit enumeration algorithms for 
solving the O-l MIP model: the penalty algo- 
rithm [ 8 1, the partitioning algorithm [ 9 1, and 
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the modified partitioning algorithm [ 10 J. A 
fourth method is the Branch-and-Bound 
{B&B) algorithm [ 111, In fact, the O-l im- 
plicit enumeration algorithm can be classified 
as a B&B method. The B&B method has thus 
far proven to be the most reliable among the 
various methods for solving the O-l MIP 
model, and all commercial integer program- 
ming codes use this method. 

The nonlinear CVP model employs special 
order sets of variables, SOS 1 and SOS2 sets, to 
approximate nonlinear functions by piecewise 
linear functions. The way in which the B&B al- 
gorithm can be modified to deal with SOS 1 and 
SOS2 sets is described in [ 6, 12 1. This kind of 
approximation will increase the size of the 
model as well as the computational difficulty. 
However, Martin and Schrage [ 13 ] have de- 
veloped a subset coefficient reduction method 
for generating cuts to tighten the O-l MIP 
model prior to implementing an LP based B&B 
algorithm, in order to reduce the size of the 
coefficients of the 0- 1 variables. 

Although the various methods mentioned 
above can be used to solve the nonlinear CVP 
model, it will take a long time for practicians 
to convert the algorithms into computer codes. 
Fortunately, several ready-made computer 
codes f 14, 15 1, e.g., the software LINDO [ 16, 
17 1, are available to solve the nonlinear CVP 
model. Hence, the practicians could focus their 
attentions on model building rather than 
programming. 

4. ILLUSTRATION 

As an illustration, assume that a manufac- 
turing company has three products, designated 
as product 1, product 2, and product 3, and that 
these products utilize the same direct material, 
the same group of workmen, and the same ma- 
chines. Next, assume that resource require- 
ment data for one unit of product can be esti- 
mated by an engineering analysis method, as 
shown in Table 1. 

We assume, in addition, that revenue and 

TABLE 1 

Resource requirement data for one unit of product 

Product i Resource requirement 

material labor 
am, ahr 

machine 

ali 

1 3.7 4 8 
2 3.6 2 6 
3 4.0 3 6 

cost data can be estimated by the personnel of 
marketing and accounting, summarized in Ta- 
ble 2. The model coefficients transformed from 
the estimated data are also included in Table 
2. Among these data, the functions of each 
product’s revenue, direct material cost, and di- 
rect labor cost are piecewise linear functions 
similar to the function shown in Fig. 1; the joint 
fixed cost function is a step-increment func- 
tion similar to the function shown in Fig. 2; the 
other cost function of each product is a mixed 
cost pattern. 

In this section, we will explain how to for- 
mulate the model for this illustrative case by 
O-l MIP and present its profit-maximization 
solution and target-profit solutions. 

4.1 Model formulation 

4.1 .l Total revenue 

From Table 2(a), (b) and (c) we know that 
the revenue functions of all three products are 
piecewise linear functions with two segments 
(i.e., kl,= kzr= k,,=2). For product 1, the rev- 
enue and the associated constraints are: 
Revenue: 

21 6OOff,,+34400~,* 

Constraints: 
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TABLE 2 
a,*Sal, +a,,l=1 

e,, f&2= 1 

~~-60o~,~-loooff,~=o. 

Next, the analogous expressions for product 2 
are: 
Revenue: 

Constraints: 

Revenue and cost data of illustrative case 

(a f Revenue data of product 1 (i = 1) 

j volume marginal model coeff. 
revenue ($ ) 

fJtj Rtj ($) 

1 l- 600 36 600 21 600 
2 601-1000 32 1000 34 400 

( b ) R~vmzre data o~~~~~~t Z fi = .?,I 

j v&me marginal model coeff. 
revenue ($ ) 

u2j hj ($) 

1 l-600 28 600 16 800 
2 601-900 25 900 24 300 

( c ) ~~v~~ue data u_f product 3 {i = 3) 

i volume marginal model coeff. 
revenue ($ ) 

hi R3j ($) 

1 I-500 30 
2 501-800 26 

(d ) D~FCTC~ ~~t~~ia~ cmt data 

.i volume marginal 
cost ($) 

500 15 000 
800 23 400 

model coeff. 

w,i c, ($) 

1 l- 5000 1.0 
2 5001- 8000 0.8 
3 8001-10000 0.7 

(e ) Direct Labor cosi data 

i volume marginal 
cost ($) 

5 000 5000 
8 000 7400 

10000 8800 

model coeff, 

bv,, chj ($1 

1 l-4000 2 
2 4~0~-6~00 3 

( f ) U&r ~osb data 
Product i components 

4of.H 8 000 
6000 14 000 

fixed variable 
F,, (S) coi ($1 

1 1800 6 
2 2100 5 
3 2200 4 

(g) Joint fixed cost data 

i increment increment model coeff. 
of machine of joint 
hOtES fixed cost ($1 bj Fi ($1 

0 8000 8000 8000 8 000 
1 2000 2000 10 000 10 000 
2 4000 4000 12 000 12 000 

a20-021 60 

a21 - u 7.1 -022go 

Q 22-@22<0 

cr,,+-cl!21 +a22=1 

$2, +t?22=1 

x2 - 600 CqYj - 900 A!*2 =a 

Finally, the analogous expressions for product 
3 are: 
Revenue: 

15 000 cY3, f 23 400 (Y32 

am-&, 60 

4.12 Total direct material cost 

From Table 2 (d ), we know that the direct 
material cost function is a piecewise linear 
function with three segments (i.e., k,= 3). It 
is because of quantity discount; the marginal 
cost of material is $1 under 5000 units, $0.8 
between 5001 and 8000 units, and $0.7 be- 
tween 8001 and 10 000 units. Furthermore, the 
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material requirements to produce one unit of 
product 1, product 2 and product 3 are 3.7, 3.6 
and 4 units, respectively. Therefore, total di- 
rect material cost and the associated con- 
straints are: 
Total direct material cost: 

Pho+Phl +Ph2= 1 

vhl+nz2=1 

4X, •k 2X, +3X, - 4000 j?,,, - 6000 /?,,I = 0. 

4.1.4 Total other cost 

5ooop,,+74oop,,+88oop,~ 

Constraints: 

Lo-)l???, GO 

am, -)lml -%&GO 

Pm2-)Im2-%?3~O 

Pd--G13<0 

Pmo+Pml +Dm2+Pm3=1 

%nl+%72+%n3=1 

3.7X, +3.6X2 +4X, - 5000 /3,,,, 

Other cost data of the three products are 
shown in Table 2 ( f ). Total other cost and the 
associated constraints are: 
Total other cost: 

1800~,+6X,+2100~,+5X,+2200~~+4X, 

Constraints: 

x,-1000~,<0 

x,-!?oo<~,<o 

xx-800&<0. 

4.1.5 Joint fixed cost 

From Table 2 (g), we know that the current 
capacity is 8000 machine hours and that it can 
be expanded to 10 000 or 12 000 machine 
hours with the additional cost of $2000 or 
$4000. Besides, the machine hours require- 
ments to produce one unit of product 1, prod- 
uct 2 and product 3 are 8, 6 and 6 hours, re- 
spectively. Thus, total joint fixed cost and the 
associated constraints are: 
Total joint fixed cost: 

8000~+10000,u,+12000p2 

Constraints: 

4.1.3 Total direct labor cost 

From Table 2 (e), we know that the direct 
labor cost function is a piecewise linear func- 
tion with two segments (i.e., kh=2). Here, we 
assume that this company executes the time- 
work wage system; the available normal labor 
hours are 4000 hours with the hourly rate of 
$2, and the available overtime labor hours are 
2000 hours with the hourly rate of $3. More- 
over, the labor requirements to produce one 
unit of product 1, product 2 and product 3 are 
4, 3 and 3 hours, respectively. Thus, total di- 
rect labor cost and the associated constraints 
are: 
Total direct labor cost: 

4.2 Solution 
8000/$, , + 14 000 phz 

Constraints: 

ph2-&2<0 

4.2.1 Profit-maximization solution 

If the goal of management is to achieve the 
maximum profit, then the objective function 
is to maximize the following function: 

Z= (total revenue) - (total direct material cost) 



- (total direct labor cost) 

- (total other cost) - (total joint fixed cost) 

=(21 600~,,+34400~~,~+16800a~, 

$24 300 CY** + 15 000 LYE, +23 400 czj2) 

- (SOOOP,, +7400/I,,,* +8800/I,,) 

- (8000/3h, + 14 OOO&) 

-(1800~,+6X,+2100~,+5X,+2200~,+4X,) 

-(8000p0+10000p~+12000,uL2) 

We solve this O-l MIP problem by software 
LINDO and obtain the following optimal 
solution: 

x, =450, &=I, &,=l, k=O, 

X,=600, 52= 1, 021 =O, &2= 1, 

X, = 800, &=l, e,,=o, k= 1, 

cu10=0.25, (~,,=0.75, CY,~=O, k=O, 

ff20 = 0, a,,=]. ~22=0, A=& 

a30=0, ~3,=0, a32= 1, P2= 1, 

~,,,o=0,&,=0.325,~m2=0.675,~,,,~=0,~m~=0,~m2=1, 

?m3=O,Pho=O,Ph,=0.3,Ph2=0.7, %,l=o, qh2=l. 

Accordingly, the optimal product mix is 
(X1,X,$,= (450,600,800), which requires 
7025 x (450.3.7+600-3.6+800-4) units of 
material, 6000x (450.4+600*3+800*3) la- 
bor hours, and 12 000x (450.8+600*6 
+ 800.6) machine hours. Total revenue, total 
direct material cost, total direct labor cost, to- 
tal other cost, and total joint fixed cost are 
$56 400, $6620, $12 200, $15 000, and 
$12 000 respectively, calculated by the expres- 
sions mentioned above. Thus, total profit is 
$10 580. 

4.2.2 Target-profit solutions 

As mentioned previously, the following con- 
straint should be added in order to acquire the 
product mix solution under specific profit level 
zc: 

Z-e++e-=Z,, 

and the objective function is changed into 
minimizing e + + e-. The product mix solu- 
tions under various target profit levels for the 
illustrative case are shown in Table 3. The 
breakeven product mix (when Z,=O) is 
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TABLE 3 

Target-profit solutions 

Target Product mix (in units) deviations 
profit 

ZC ($) XI x2 x3 e+ e- 

0 535.5192 0 0 0 0 
1 000 262.2951 0 800 0 0 
2 000 316.9399 0 800 0 0 
3 000 371.5847 0 800 0 0 
4 000 582.5137 600 0 0 0 
5 000 545.4546 0 745.4545 0 0 
6 000 156.2842 600 500 0 0 
7 000 0 600 785.6757 0 0 
8 000 0 660.0610 800 0 0 
9 000 0 736.2805 800 0 0 

10 000 787.3187 900 0 0 0 
10 580 450 600 800 0 0 
11000 450 600 800 0 420 
12 000 450 600 800 0 1420 

(X,,X,,X,) = (535.5192,0,0); it means that 
only product 1 is produced. From Table 5, we 
see that the achievable maximum profit is 
$10 580, above which the negative deviation 
variable e-, indicating the amount of not 
achieving the target profit, will be positive. 

5. DISCUSSION 

In order to approximate the nonlinear reve- 
nue and cost functions by the piecewise linear 
functions, the nonlinear CVP model involves 
a rather larger number of variables and con- 
straints as shown in Table 4. For the illustra- 
tive example in Section 4, y1= 3, k,,= kzr= k3r 
= 2, km= 3, kh= 2, and g= 2; therefore, there 
are 36 constraints, 19 nonnegative variables, 
and 17 0- 1 variables. 

Accordingly, the nonlinear CVP model will 
become larger, when used to describe the real 
world problems. Suppose that all the nonlinear 
revenue and cost functions can be approxi- 
mated by a 5-segment piecewise linear func- 
tion (i.e., k,=k,=kh=5) and that g=5. Un- 
der this condition, if there are 10 products 
( n = 10 ) , then the model will contain 120 con- 
straints, 82 nonnegative variables, and 76 O-l 



90 

TABLE 4 

Size of the nonlinear CVP model 

ifk,,=k,=k,=k 

Constraints (n+2)k+Sn+ 10 

Nonnegative variables i k,,+km+kh+2n+2 
r=l 

(n+2)k+2n+Z 

O-1 variables ik,,+k,,,+k,,+n+g+i 
,=I 

(n+2)k+n+g+ 1 

Nonzero coeff. & 
RHS 

7(iki,+k,+kh)+12n+3g+12 
iPl 

7(n+2)k+ 12n+3g+ 12 

Note: k,, = number of segments of the piecewise linear function for the ith product’s revenue, 

k, = number of segments of the piecewise linear function for the total direct material cost, 

k+, = number of segments of the piecewise linear function for total direct labor cost, 

g = number of ranges of the step-increment function for total joint fixed cost, 
n = number of products. 

TABLE 5 

Maximum size of input matrix on LINDO* 

Input Super LINDO 
LINDO/PC for IBM 
for IBM PC mainframe 

Row (obj. fn. plus constraints) 250 4 999 
Columns (variables)** 500 14 999 
0- 1 variables 490 14 900 
Nonzeros 8000 60 000 

*These data are obtained by the HELP function of the soft- 
ware LINDO. 
**The variables include nonnegative variables and O-1 
variables. 

variables; if there are 100 products (y1= loo), 
then the model will contain 1020 constraints, 
712 nonnegative variables, and 616 O-l 
variables. 

What we have to be concerned with is the 
number of O-I variables of the model, which 
is one of the primary determinants of compu- 
tational difficulty for solving a O-l MIP model. 
The nonlinear CVP model contains so many 
0- 1 variables that it seems that we can not ap- 
ply the model to the real world situations. 
However, the rapid developments of computer 
hardware and mathematical programming 
software have made the application possible. 
For example, the software LINDO, whose 

maximum size of input matrix is shown in Ta- 
ble 5, can handle at most 22 products on the 
IBM PC-version and 497 products on the IBM 
mainframe-version for our model under the 
condition ki,= k, = kh =g= 5. 

6. CONCLUSION 

Two of primary assumptions for traditional 
CVP analysis are the absence of step costs and 
the requirement of linear revenue and cost 
functions, which are based on the relevant 
range concept. Under the relevant range con- 
cept, the average product-mix model assumes 
that the relevant range, within which the firm 
plans to operate, is known in advance and then 
the optimal product mix is determined by Lin- 
ear Programming. With the features of the 
model we present, including piecewise linear 
revenue and cost functions and step-increment 
joint fixed cost function, we can determine the 
required capacity level and the optimal prod- 
uct mix simultaneously. Thus, we need not to 
restrict decisions to the specific relevant range 
if we formulate the revenue and cost functions 
with the possible range of activities. Although 
the nonlinear CVP model presented in this pa- 
per contains a rather large number of variables 



and constraints, the rapid developments of 
computer hardware and mathematical pro- 
gramming software have overcome this. In 
conclusion, it seems possible that the nonlin- 
ear CVP analysis will be adopted as exten- 
sively as the traditional CVP analysis was. 
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