
European Journal of Operational Research 176 (2007) 1874–1895

www.elsevier.com/locate/ejor
O.R. Applications

CO2 emissions trading planning in combined heat and
power production via multi-period stochastic optimization

Aiying Rong *, Risto Lahdelma

University of Turku, Department of Information Technology, Lemminkäisenkatu 14 A, FIN-20520 Turku, Finland
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Abstract

The EU emissions trading scheme (ETS) taking effect in 2005 covers CO2 emissions from specific large-scale indus-
trial activities and combustion installations. A large number of existing and potential future combined heat and power
(CHP) installations are subject to ETS and targeted for emissions reduction. CHP production is an important technol-
ogy for efficient and clean provision of energy because of its superior carbon efficiency. The proper planning of emis-
sions trading can help its potential into full play, making it become a true ‘‘winning technology’’ under ETS. Fuel mix
or fuel switch will be the reasonable choices for fossil fuel based CHP producers to achieve their emissions targets at the
lowest possible cost. In this paper we formulate CO2 emissions trading planning of a CHP producer as a multi-period
stochastic optimization problem and propose a stochastic simulation and coordination approach for considering the
risk attitude of the producer, penalty for excessive emissions, and the confidence interval for emission estimates. In test
runs with a realistic CHP production model, the proposed solution approach demonstrates good trading efficiency in
terms of profit-to-turnover ratio. Considering the confidence interval for emission estimates can help the producer to
reduce the transaction costs in emissions trading. Comparisons between fuel switch and fuel mix strategies show that
fuel mix can provide good tradeoff between profit-making and emissions reduction.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Mitigation of the environmental impacts of energy production and use has become an integral part of
energy policy planning. Consequently, the requirement for environmentally sound energy production
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technologies has gained much ground in the energy business. Recently the discussion has centered on the
climate change. Combined heat and power (CHP) production is a leading technology to respond to the
market demand and environmental concerns because of its high energy efficiency. The EU commission
encourages the use of more efficient energy technologies, including CHP technology, producing fewer emis-
sions per unit of output. Thus, the EU commission announces to raise the share of electricity produced by
CHP technology from 9% to 18% during the years 1997–2010 (CEC Commission of the European Com-
munities, 1997). An EU-wide emissions trading scheme (ETS) is also starting in 2005 to fulfill the EU com-
mitment under the Climate Protection Protocol in Kyoto to cost-efficiently reduce the emissions of
greenhouse gases by 8% during the period 2008–2012 compared with the 1990 level (Commission of the
European Communities, 2000).

CHP production means the simultaneous production of useful heat and electric power. When steam or
hot water is produced for an industrial plant or a residential area, electricity can be generated as a by-prod-
uct. Vice versa, surplus heat from an electric power plant can be used for industrial purposes, or for heating
space and water. CHP plants make the maximum use of the fuel’s energy content by producing electricity
and heat together with minimum wastage. The CHP plants can achieve a total efficiency of over 90%, while
in conventional condensing power plants the efficiencies remain around 40%. Primary energy consumption
in CHP production as compared with corresponding generation in separate processes is typically lowered
by one third. The decrease in fuel consumption reduces the burden of energy production on the environ-
ment. That is, the CO2 emissions are reduced at the same rate as the use of fuels is reduced. Moreover,
a wide range of fuels can be used with modern CHP technology. Multi-fuel CHP plants can use, for exam-
ple, solid fuel (coal, peat, and wood residues), liquid fuel (oil), gaseous fuel (natural gas) and even fuels with
a low calorific value and high moisture content (waste, bio-fuel).

The ETS states that industrial activities that emit significant amounts of CO2 must have a permit to do
so. Such industries will be allocated allowances for specific amounts of greenhouse gas emissions for the
relevant obligation periods based on national allocation plans of individual member countries. The individ-
ual producers can meet their compliance targets by reducing their emissions or by trading allowances within
the EU. The producers must pay a penalty price for excessive emissions and have to make up the deficit by
buying the lacking allowances in the beginning of the subsequent obligation period. Ideally, ETS will cause
emissions to be reduced where it can be done most cost-efficiently.

The ETS provides both challenges and opportunities for the fossil fuel based energy sector, including
CHP installations. A large number of existing and potential future CHP installations will be subject to
ETS and targeted for emissions reduction. The high energy efficiency and low emissions make CHP pro-
duction technologies environmentally friendly solutions compared with many other production forms.
The flexibility in fuel choice facilitates fuel switch (change into fuels with lower specific CO2 emissions)
and fuel mix as reasonable alternatives for CHP producers to reduce their emissions. Evaluation of options
for complying economically with the emissions target is complicated by many uncertainties involved in
CHP production and emissions trading. In CHP, the heat and power production follows a joint character-
istic, which means that the production planning of both commodities must be done in coordination. Under
the deregulated electricity market, the power production should respond to the volatile spot price on the
market, while heat must still be produced to balance the demand. In addition, fuel price and allowance
price play an important role in fuel choice. Proper planning of emissions trading can help the potential
of CHP production into full play, making CHP technology become a true ‘‘winning technology’’ under
ETS.

Generally, emissions trading should be coordinated with other closely related operational decisions. Dif-
ferent emissions compliance options can also be employed in coordination. Under the US Clean Air Act
Amendments (CAAA) of 1990, Lee et al. (1994) considered the coordination of SO2 emissions trading with
energy and spinning reserve transactions and consumption of take-or-pay fuels. They distributed adaptively
the emissions target for the entire planning horizon into short-term operational targets, which were, in turn,
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enforced in the associated unit commitment and dynamic dispatch subproblems. Manetsch (1994) proposed
for long-term unit commitment and dispatch a method for integrating production planning with determi-
nation of SO2 compliance options, such as switching into low sulfur coal and installing scrubbers. These
papers emphasize the production planning of the power systems under the constraints of emissions control.
Until now, most published papers that deal with CO2 emissions trading in the energy sector are from the
viewpoint of policy planning (Kunsh et al., 2004; Hauch, 2003; Söderholm and Strömberg, 2003). They do
not address the trading problem itself.

In this paper, we study the CO2 emissions trading planning problem of an individual CHP producer at
the operational level. We formulate the CO2 emissions trading planning of a CHP producer as a multi-per-
iod stochastic optimization problem and propose a solution approach that optimizes CHP plant operation
and CO2 emissions trading in coordination. During each trading period, the future CHP production until
the end of the planning horizon is optimized based on scenarios for heat demand, power price and allow-
ance price. Based on the optimized production plans the CO2 emissions during the obligation period are
estimated to determine how much allowances should be traded (bought or sold). The trading strategies
are related to the risk attitude of the decision maker (DM). The proposed method can be used to evaluate
the relative efficiency of different emission compliance options such as fuel switch and fuel mix. This paper
extends the ideas presented in our early work (Rong et al., 2004) in five ways. Firstly, we explicitly consider
the risk attitude of the DM in the problem formulation. Instead of maximizing the expected profit, we max-
imize the expected utility of the profit. Secondly, an hourly CHP production planning model replaces the
previous aggregated model in production planning. Thirdly, we consider the transaction costs in the emis-
sions trading and propose a trading strategy that depends on how uncertain the emission estimates are.
Fourthly, we explicitly deal with the penalty for excessive emissions in the solution approach based on opti-
mality conditions. Finally, we estimate the emissions using a weighted average with allowance prices as
weights. Our early method did not apply weights in the estimation.

This paper is organized as follows. In Section 2, we describe the characteristics of CHP production and
the uncertainties involved in the CHP production and emissions trading planning problem under the dereg-
ulated energy market. In Section 3, we formulate the CO2 emissions trading planning problem for a CHP
producer as a multi-period stochastic optimization problem. In Section 4, we present the solution approach
for integrating CHP production planning and emissions trading and propose the corresponding trading
strategies. In Section 5, we report the results on numerical experiments and compare the relative efficiency
of the fuel switch and fuel mix strategies.
2. Characteristics of CHP production and uncertainties in emissions trading planning

2.1. Characteristics of CHP production

The primary concern of a CHP producer is to produce heat to satisfy variable demand. Normally heat
production must meet the demand on an hourly basis. In CHP technology, heat and power production is
linked together. The level of heat production determines the range in which the power generation can be
adjusted and also the marginal cost function for power generation. A CHP plant can be represented by
a joint characteristic that defines the dependency between production costs and heat and power generation
as shown in Fig. 1.

Because the production costs are principally determined by the fuel consumption, the characteristic can
alternatively specify the dependency between the fuel consumption and heat and power production. The
characteristic can be either convex or non-convex. For the convex CHP plant, the characteristic operating
region can be represented as a convex combination (see, e.g., Bazaraa and Shetty, 1993) of extreme points
(cj, pj, qj), which are the corner points of the triangular facets in Fig. 1. A non-convex characteristic can be



Fig. 1. Feasible operating region of a CHP plant.
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divided into multiple convex sub-regions, which are encoded as alternative model components. The same
modeling technique applies also to other energy acquisition components, such as separate heat and power
plants, purchase contracts, and demand-side-management components. The interested reader can refer to
Lahdelma and Hakonen (2003) for convex CHP plant modeling and to Makkonen and Lahdelma (2006)
for non-convex modeling. On the liberalized power market, the rational producer should adjust power gen-
eration so that the marginal production cost equals the market price. As a result, the producer should opti-
mize its heat and power production for each hour against the most recent forecasts for heat demand and
spot market price for power.

CHP production planning is further complicated by the need to control the CO2 emissions. The amount
and type of consumed fuels determines the caused CO2 emissions. Modern multi-fuel CHP plants are able
to use different fuels and switch between fuels rapidly. In the fuel mix mode, several fuels can be used simul-
taneously within certain limits. The dispatch of fuels is governed by some rules. Generally the cheapest fuel
is burned first unless there are other special requirements. The fuel prices and fuel mix affect the shape of
CHP plant characteristic. The producer can adjust the production level, choose between different fuels, and
trade emission allowances to balance its emissions with allowances. Thus, the CHP production planning
problem must be solved in coordination with the emissions trading planning.

2.2. Uncertainties in integrated CHP production and emissions trading planning

In the planning problem we consider three main sources of uncertainty: heat demand, power price and
allowance price. Fig. 2 illustrates the uncertainties and their dependencies in the planning problem.

The heat demand depends almost entirely on local conditions. Municipal power plants generate mainly
district heat. The uncertainty in district heating demand is almost entirely due to local weather conditions,



Fig. 2. Determination of heat demand, power price and emissions allowance price.
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i.e., temperature, wind, etc. Industrial power plants generate process heat. This demand depends on how
the industrial process is run.

The spot price for power is formed on the market as the equilibrium between power supply and demand.
On the Nordic power market (Nord Pool, 2004) the most significant factor affecting the spot market price is
the inflow to hydropower systems. Other important factors are seasonal variations, variations in fuel prices,
producer decisions, consumer behavior, and import & export. The heat demand and power price are some-
what correlated. Cold weather will increase the demand for both heat and power, and consequently also the
power price. However, this dependency is not very strong, because the heat demand is determined locally
and power price on the entire market area.

The price of emission allowances will be determined by their supply and demand and the spot decisions
of individual traders throughout EU. If all actors on the allowance market have the same information, the
allowance price should all times reflect their common understanding about the future price development.
This means that the spot price for allowances is the best possible estimate also for the future price. Factors
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that affect the EU-wide allowance market are energy consumption, utilization of the Joint Implementation
(JI) and Clean Development Mechanism (CDM), and political decisions about favoring and disfavoring
some energy forms. The allowance costs will increase the marginal costs of the fossil fuel based power pro-
duction, which makes allowance price and power price somewhat correlated.

3. Multi-period CHP production and emissions trading planning model

We assume that the DMs are risk averse and their preference structure in terms of the profit is repre-
sented by an increasing concave utility function U(Æ). The planning horizon is divided into periods
t = 1, . . . , s for CO2 emissions trading. The trading periods can be, e.g., weeks or months. During each trad-
ing period, the emissions level can be affected by adjusting the fuel mix and power production level and
balanced by emissions trading. Index s + 1 refers to the time after the planning horizon when the producers
can still try to sell their surplus allowances and must make up for any deficit. The CHP production at dif-
ferent plants must be planned at much finer granularity than the emissions trading. For this reason each
trading period is divided into hours h 2 Ht. At the beginning of the planning horizon, the multi-period pro-
duction and emissions trading planning model to maximize the expected utility of the profit can be stated as
max E U
Xs

t¼1

X
h2Ht

zpr xh; c
p
hð Þ þ

Xs

t¼1

ztr ft; cf
t

� �
þ ztr fsþ1; c

f
sþ1

� � !" #
ð1Þ

s.t. hx;Ei 2 XðQÞ; ð2Þ
hf;Ei 2 F. ð3Þ
Here the function zpr(Æ) is the net profit from hourly CHP production and ztr(Æ) is the net profit from emis-
sions trading during a trading period. x, f and E are variables in the model. The vector x determines the
CHP production in each hour, vector f determines allowance trade in each trading period and scalar E

is the cumulated emissions during the entire planning horizon. cp
h, cf

t and Q are stochastic parameters. cp
h

is the hourly power price, cf
t is the allowance price in period t and vector Q contains the heat demand

for each hour in the planning horizon. The set X(Q) represents the constraints of the CHP production pro-
cess that depend on the heat demand. The set F represents the constraints of the emissions trading process.
To define the details of the model, we introduce the following notations.

Index sets

B set of CHP plants and other supply or demand components modeled as CHP plants
H, Ht set of hours in the planning horizon and in each trading period t = 1, . . . , s, correspondingly
J, Jb set of extreme points of the characteristic operating region in all plants and in plant b 2 B

K set of fuels
Parameters

d ratio of allowance transaction costs to allowance price
gk specific CO2 emission of fuel k 2 K

Q, Qh vector of heat demand during the planning horizon and the demand for hour h 2 H

cF# penalty price for excessive emissions at the end of the planning horizon (period s + 1)
cF+ emissions allowance purchase price at the end of the planning horizon, cFþ ¼ cfþ

sþ1

cF� emissions allowance sales price at the end of planning horizon, cF� ¼ cf�
sþ1

cf
t emissions allowance price in period t = 1, . . . , s + 1

cfþ
t emissions allowance purchase price cfþ

t ¼ ð1þ dÞcf
t for periods t = 1, . . . , s, including penalty for

after last period cfþ
sþ1 ¼ ð1þ dÞcf

sþ1 þ cF #
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cf�
t emissions allowance sales price in period t = 1, . . . , s + 1, cf�

t ¼ ð1� dÞcf
t

cp
h power price in hour h 2 H

cq
h heat price in hour h 2 H

cr
k;h price of fuel k 2 K in hour h 2 H

pj,h characteristic power coordinate j 2 J in hour h 2 H
qj,h characteristic heat coordinate j 2 J in hour h 2 H

rk,j,h consumption of fuel k 2 K at extreme point j 2 J in hour h 2 H
Variables

f, ft vector of allowance trade during the planning horizon and trade in trading period t = 1, . . . , s + 1
fþt ; f

�
t emissions allowance purchase and sales in trading period t = 1, . . . , s + 1

x, xh vector of decision variables determining the production during the planning horizon and in hour,
h 2 H, xh = [x1,h, . . . , xjJj,h]

xj,h contribution of extreme point j 2 J to CHP production in hour h 2 H

xp
h power production in hour h 2 H

E cumulated emissions during the planning horizon
E+, E� cumulated emissions exceeding and falling below the final allowance level Fs

F0, Ft initial allocation and cumulated emissions allowance level at the end of trading period
t = 1, . . . , s

3.1. The production model

The production model X(Q) determines the hourly production of heat and power as a sum of the
production at different CHP plants and possible trade using various purchase and sales contracts. Each
plant model consists of a sequence of hourly submodels that may be linked together by dynamic con-
straints, such as start-up and shut-down constraints, ramp constraints and storage constraints. The pro-
duction model X(Q) can be subdivided into hourly models Xt(Qt), which can be solved separately using
suitable decomposition and coordination techniques. The applicable decomposition techniques depend
on what kind of dynamic constraints are present. In this application we assume that no dynamic con-
straints are present and that the hourly plant models are convex. This means that we can solve the pro-
duction model simply by solving the hourly models independently using a convex solver. The most
efficient solvers for hourly convex CHP production planning problems are Power Simplex (PS) (Lah-
delma and Hakonen, 2003), and the envelope-based algorithms ECON & ECOFF (Rong and Lahdelma,
in press). PS has been implemented as part of the EHTO NEXUS energy optimization system (Lah-
delma and Makkonen, 1996), which is in commercial use at several Finnish energy companies. Dynamic
constraints and non-convex CHP models would require more sophisticated solution techniques for the
production model, but would not affect the emissions trading model or the overall solution approach.
Non-convex production planning problems can be solved, e.g., by using the Branch and Bound (BB)
technique. Makkonen and Lahdelma (2006) solved non-convex planning problems by PS-based BB
(PBB) and Rong and Lahdelma (2005c) developed envelope-based BB (EBB) algorithm for non-convex
models. Rong and Lahdelma (2005b) analyzed the risks involved in CHP production expansion plan-
ning under the emissions trading scheme using the production model similar to that by Rong and Lah-
delma (in press). The model by Rong and Lahdelma (in press) addresses the CHP production under the
deregulated power market and the modeling technique is similar to that by Lahdelma and Hakonen
(2003). Here we adopt a model that is similar to that by Rong and Lahdelma (in press). The hourly
CHP production is modeled as a convex combination of characteristic extreme points for each hour
h 2 H:
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X
j2Jb

xj;h ¼ 1; b 2 B; ð4Þ
X
j2J

pj;hxj;h � xp
h ¼ 0; ð5Þ

X
j2J

qj;hxj;h ¼ Qh; ð6Þ

xj;h P 0; j 2 J . ð7Þ
In this formulation, the convex combination for each plant is encoded by a set of xj,h variables, indi-
cating the operating level of each plant in terms of extreme points of the operating region, whose
sum is one (4) and that are non-negative (7). The power balance (5) determines the net amount of power
xp

h that can be traded on the market at price cp
h. The heat balance (6) states that the demand Qh must be

satisfied. The emissions during the planning horizon are the sum of the hourly emissions from the con-
sumed fuels:
E ¼
X
h2H

X
j2J

X
k2K

gkrk;j;h

 !
xj;h. ð8Þ
The hourly profit from the CHP production is the power and heat sales revenue minus the production costs.
The production costs are computed as a convex combination of fuel costs at the extreme points.
zprðxh; c
p
hÞ ¼ cp

hxp
h þ cq

hQh �
X
j2J

X
k2K

cr
k;hrk;j;h

 !
xj;h. ð9Þ
3.2. The trading model

The trading model F determines the allowance trade in each trading period as follows:
F t ¼ F t�1 þ ft; t ¼ 1; . . . ; s; ð10Þ
E ¼ F s þ fsþ1; ð11Þ
f þt ¼ maxf0; ftg; t ¼ 1; . . . ; sþ 1; ð12Þ
f �t ¼ maxf0;�ftg; t ¼ 1; . . . ; sþ 1. ð13Þ
Eþ ¼ maxf0;E � F sg; ð14Þ
E� ¼ maxf0; F s � Eg. ð15Þ
Constraints (10) determine the cumulated allowances at the end of each trading period. Constraint (11) re-
quires that the emissions trading after the last period balances the emissions. Constraints (12) and (13)
determine the amount of allowances bought and sold during each trading period. The combination of con-
straints (12) and (13) disallows the activity of buying and selling allowance to be done simultaneously. Con-
straints (14) and (15) determine the emissions exceeding and falling below the allowance level at the end of
the planning horizon. The combination of constraints (14) and (15) implies that E+E� = 0 and the results
of allowance trading at the end of planning horizon take one of three results: exactly balance, fall below or
exceed the realized emissions.

The trading profit during a period is either the revenue from selling or the negated costs of buying allow-
ances. The purchase price after the end of the planning horizon (cF+) includes the penalty for excessive
emissions.
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ztrðft; cf
t Þ ¼ �cfþ

t f þt þ cf�
t f �t ; t ¼ 1; . . . ; s; ð16Þ

ztrðfsþ1; c
f
sþ1Þ ¼ �cfþ

sþ1f þsþ1 þ cf�
sþ1f �sþ1 ¼ �cFþEþ þ cF�E�. ð17Þ
4. Solution approach

We solve the production and trading problem using scenario analysis. Scenario analysis has proved to
be an effective approach to address planning problems under uncertainty (Maranas et al., 1997; Mulvey
and Shetty, 2004). We want to solve the production and trading planning model at each trading period
t* 2 {1, . . . , s} during the planning horizon. This means that for periods 1; . . . ; t� � 1 the decision
variables and stochastic parameters of the model (1)–(17) are fixed to their already realized values.
Thus, optimization considers variation in the variables and stochastic parameters only for periods
t*, . . . , s.

4.1. Scenario-based representation of the problem

The uncertainties of the operating environment were represented in the model (1)–(17) by stochastic
parameters with some joint probability distribution. When considering the production and trading plan-
ning problem in the beginning of a trading period t*, we approximate the future uncertainties by a set of
scenarios. Each scenario defines a set of values for the stochastic parameters at each period in the future.
The set of scenarios captures both the uncertainty of each stochastic parameter and the dependency
information between them. To facilitate the representation, we extend the scenarios also for the past
periods 1; . . . ; t� � 1 to coincide with the realized history. In the current application the stochastic
parameters are time series (vectors) for heat demand (Q), power price (cp), and allowance price (cf).
The heat demand and power price contain hourly values, but the allowance price contains weekly or
monthly values.

To represent the scenario-based model formed at period t*, we augment the previous notation by
inserting both a scenario index s and period index t* as the last two subscripts for the stochastic param-
eters and variables of the model. For example, Qh ! Qh;s;t� denotes the heat demand in hour h in sce-
nario s generated at the beginning of trading period t*. Let S denote the number of scenarios generated
at each period. In the scenario representation the objective function to maximize the expected utility
becomes
max
1

S

XS

s¼1

U
Xs

t¼1

X
h2Ht

cp
h;s;t�x

p
h;s;t� þ cq

hQh;s;t� �
X
j2J

X
k2K

cr
k;hrk;j;hxj;h;s;t�

 ! 

þ
Xs

t¼1

�cfþ
t;s;t�f

þ
t;s;t� þ cf�

t;s;t�f
�
t;s;t�

� �
� cFþ

s;t�E
þ
s;t� þ cF�

s;t�E
�
s;t�

!
. ð18Þ
The production and trading constraints for scenario s generated in period t* become
hxs;t� ;Es;t� i 2 XðQs;t� Þ; s ¼ 1; . . . ; S; ð19Þ
hfs;t� ;Es;t� i 2 F; s ¼ 1; . . . ; S. ð20Þ
However, solving (18)–(20) as a single problem is not meaningful, because it would allow the trading pro-
cess to foresee the future in each scenario and yield infinite profit by speculative operations. This is of
course not possible in practice. Instead, we must design an optimization scheme that can be implemented
also in real life.
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4.2. Decomposition and coordination approach

4.2.1. Decomposition of CHP production process and trading process

From formulas (18)–(20) we can see that the production and trading processes interact only through the
emission variable E. No matter how the trading process is run, the production process must satisfy the heat
demand and aim to maximize the production profit minus the emission costs. Recall that the spot price for
allowances is the best estimate also for the future price. Therefore, when optimizing the hourly production,
the spot price is the expected marginal cost for the caused emissions. Thus, the hourly CHP production
should be optimized by introducing the allowance spot price as a penalty for the caused emissions. We
add this penalty on the fuel prices based on their specific CO2 emissions. The penalized fuel cost for fuel
k in hour h for scenario s generated at the beginning of trading period t* is then
~cr
k;h;s;t� ¼ cr

k;h þ cf
t;s;t�gk; h 2 H t. ð21Þ
After this, the CHP production for a scenario s generated at t* can be optimized independently of the trad-
ing process:
max
Xs

t¼t�

X
h2Ht

cp
h;s;t�x

p
h;s;t� þ cq

hQh;s;t� �
X
j2J

X
k2K

~ck
k;h;s;t�rk;j;hxj;h;s;t�

 !
ð22Þ

s.t. xs;t� ;Es;t�h i 2 XðQs;t� Þ. ð23Þ
The solution of this problem combined with the realized history for periods 1; . . . ; t� � 1 determines directly
the cumulated emissions Es;t� and the production profit during the planning horizon in scenario s generated
at period t*.

4.2.2. Coordination between production and emissions trading processes

No matter how the production process is run, the trading process must balance the allowances with the
caused emissions after the end of the planning horizon, and try to do it in the most cost-efficient way. In
principle it is possible to trade allowances arbitrarily during the planning horizon. However, because the
DM is risk-averse, we can restrict the trading process significantly. A risk-averse DM prefers a certain out-
come to an uncertain outcome with the same expected value. Therefore the DM cannot expect to gain from
buying or selling an excess of allowances in a speculative manner, because the current (known) allowance
price is the best estimate also for the future (uncertain) price. If the future emissions are known accurately,
but there is great uncertainty about the future allowance price, the DM should trade allowances early to
meet the emissions and reduce the risk of having to pay a higher price. In contrast, if the future allowance
price is known accurately, but there is great uncertainty about the future emissions, the DM should delay
the trading in order to avoid the risk of aiming at the wrong target and having to re-balance the allowances
again in subsequent trading periods. The latter case is particularly important when transaction costs are
involved in the trading. In practice, we need a trading scheme that adapts simultaneously to different
degrees of uncertainty both in the future allowance price and amount of caused emissions. Such a scheme
will compromise between early and delayed trading to balance the allowances with the caused emissions.

The basic idea of the algorithm is to balance the allowances with the emissions that are estimated using
the scenario-based production model. Because the cost of the emissions rather than the amount is relevant,
we estimate the emissions weighted by the allowance price cf

t;s;t� in different periods and scenarios. This tech-
nique considers simultaneously the uncertainty both in the price and amount. To avoid selling and buying
large quantities of allowances in subsequent periods due to fluctuations in emission estimates, we trade
allowances to reach a confidence interval Elow

t� ;E
up
t�

� �
instead of meeting the (weighted) expected value

lðEt� Þ. The confidence interval can be determined either directly from the discrete set of scenarios, or based
on a suitable probability distribution (such as the normal distribution) whose parameters are estimated
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based on the scenarios. In Algorithm 1 below, we apply the latter technique. Here rðEt� Þ denotes the
weighted standard deviation of the cumulated emissions in scenarios during the planning horizon and
the confidence factor n is the number of standard deviations that correspond to some confidence level
(1 � a).

Algorithm 1. Heuristic for determining allowance trade in period t*.

Step 1. Calculate the confidence limits for emission costs.
Elow
t� ¼ lðEt� Þ � nrðEt� Þ;

Eup
t� ¼ lðEt� Þ þ nrðEt� Þ.
Step 2. Determine the target for the cumulated allowance level at the end of period t* .
F t� ¼ max Elow
t� ;min F t��1;E

up
t�f g

� 	
.

Step 3. Determine the allowance trade ft� in period t*.
ft� ¼ F t� � F t��1.
Considering the confidence interval for the emissions estimate is important when transaction costs are
involved. The confidence factor determines the tradeoff between the trading frequency and quick reaction
to variable allowance price. A small confidence factor will cause aggressive purchases and sales to follow
random variations in the emission estimates. This can incur excessive transaction costs. However, a confi-
dence factor that is too large will disable the trading activity. Generally, the confidence factor should be
related to the transaction costs: the higher the transaction costs, the larger the confidence factor should be.

4.2.3. Dealing with penalty for excessive emissions

Trading in the last period s is different from the previous periods, because this is the last opportunity to
decide how to balance the allowances with the overall emissions. Trading after the last period is forced and
depends on the stochastic outcome of the last period. Therefore, it will not be sufficient to aim at a confi-
dence interval for the emissions. Instead, the producer should try to meet the emissions target as accurately
as possible in different stochastic outcomes, taking into account the penalty for excessive emissions and the
concave shape of the utility function. In the scenario representation this means that the producer should
determine the trading level fs which maximizes the expected utility of the profit. By omitting the period
index t* = s from the notations, we can rewrite the objective function (18) at the last period as
max UðfsÞ ¼
1

S

XS

s¼1

UðzsðfsÞÞ; ð24Þ
where
zsðfsÞ ¼ Z0
s þ cf�

s;s f �s � cfþ
s;s f þs þ cF�

s E�s � cFþ
s Eþs ð25Þ
is the overall profit in scenario s. Here Z0
s is the part of the profit that does not depend on fs, i.e., the already

realized profit in the previous periods plus the production profit for the last period in scenario s. Let us
examine the shape of the profit function. Based on (10)–(15) we can write the profit function as
zsðfsÞ ¼ Z0
s þ cf�

s;s maxf0;�fsg � cfþ
s;s maxf0; fsg þ cF�

s maxf0; F s�1 þ fs � Esg
� cFþ

s maxf0;Es � F s�1 � fsg. ð26Þ
We can see that the profit in each scenario is a piecewise linear function with bending points at fs = 0 and
fs = Es � Fs�1. Furthermore, the profit function is concave, because the purchase price for allowances is



A. Rong, R. Lahdelma / European Journal of Operational Research 176 (2007) 1874–1895 1885
higher than the sales price, i.e., cf�
s;s < cfþ

s;s and cF�
s < cFþ

s . Because the utility function is an increasing con-
cave function, it means that also U(zs(fs)) is concave. Then also the expected utility (24) is a convex function
of fs, because it is computed as an average over the scenario utilities. Assuming that the utility function is
smooth (has a continuous derivative), then the expected utility function will be smooth except at the bend-
ing points (fs = 0 and fs = Es � Fs�1).

The optimality conditions (Taha, 1992) state that the maximum of a concave, piecewise smooth function
is either where the derivative becomes zero, or at a bending point where the derivative changes its sign. The
derivative is obtained simply as the average of the derivatives of each scenario:
k ¼ dUðfsÞ=df ¼ 1

S

Xs

s¼1

ks ¼ 0; ð27Þ
where
ks ¼ dUðzsðfsÞÞ=dfs. ð28Þ
The scenario-specific derivatives depend on the sign of the last period trade and whether the emissions ex-
ceed or fall below the allowances:
ks ¼ U 0ðzsðfsÞÞðcF�
s � cfþ

s;s Þ when f s > 0; E�s > 0; ð29Þ

ks ¼ �U 0ðzsðfsÞÞðcfþ
s;s � cFþ

s Þ when f s > 0; Eþs > 0; ð30Þ

ks ¼ �U 0ðzsðfsÞÞðcf�
s;s � cF�

s Þ when f s < 0; E�s > 0; ð31Þ

ks ¼ U 0ðzsðfsÞÞðcFþ
s � cf�

s;s Þ when f s < 0; Eþs > 0. ð32Þ
Here U 0(Æ) is the derivative of U(Æ) with respect to zs. Whether k(fs) has a zero depends on the price coeffi-
cients in different scenarios. Normally the penalty for excessive emissions is large, which means that
cFþ

s � cf�
s;s > 0 in (32). Because U 0(Æ) is positive, this means that k(fs) is positive for large negative values

of fs. If k(fs) obtains negative values for fs! 1 then there will be a zero in the range fs 2 (�1,1). In
the opposite case, the optimal solution is to buy an infinite amount of allowances in the last period at price
cfþ

s;s and sell them at cF�
s after the last period. This solution is not very likely to happen in reality, because it

would require better information about the future allowance price than the other actors on the market
have.

To guarantee a bounded solution and to avoid the speculative trading, we limit the value of fs between
fmin, which is the largest value making Eþs P 0 for all of generated scenarios, and fmax, which is the smallest
value ensuring E�s P 0 for all of generated scenarios. If k(fs) does not change sign in that range, then we use
the end point of the range as the solution. Otherwise we find the optimal solution to the last period trading
problem by a modified binary search (Brassard and Bratley, 1996) algorithm. The binary search must con-
sider discontinuities in k(fs). The termination condition of the binary search must be relaxed to stop with a
solution where a sufficiently narrow range for fs has been found. The algorithm for finding fs is presented
below.

Algorithm 2. Finding the optimal solution with the penalty costs for excessive emissions.

Step 1. Determine the initial interval [fmin, fmax] for the binary search.
fmax ¼ max
s
fEs � F s�1g;

fmin ¼ min
s
fEs � F s�1g.
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Step 2. Search the optimal allowance trade fs

if (k(fmax) P 0)

fs = fmax

else if (k(fmin) 6 0)
fs = fmin

else

fs is found by binary search to satisfy either k(fs) = 0 or the left and right values for the bin-
ary search is close enough.

Step 3. Determine allowance level Fs at the end of the planning horizon.
Fig. 3.
emissio
F s ¼ F s�1 þ fs.
4.3. Stochastic simulation and coordination algorithm

Now we summarize the solution approach for the integrated CHP production and emissions trading
planning problem.

Fig. 3 illustrates the coordination between the production and trading processes in the algorithm. As
time advances, the production process is run to satisfy variable heat demand and react to both variable
power price and allowance price, which in turn, updates the emission estimates. In the trading process,
allowance trade is determined to respond to the changed emission estimates and then the allowance level
is updated. The specific procedures for the algorithm are given below. The notations used in the algorithm
are the same as those in (1)–(20).

Algorithm 3. Stochastic simulation and coordination algorithm for the integrated CHP production and
trading planning problem.

Step 1. Initialization: F0 = hinitial allowance allocationi.
Step 2. Determine allowance trade ft� and cumulated allowance level F t� in each period t*.
C
n

for t*  1 to s

Step 2.1. Generate scenarios (time series) fhQh;s;t�c

p
h;s;t� ; c

f
t;s;t� i; s ¼ 1; . . . ; Sg spanning the planning

horizon for stochastic parameters such as heat demand, power price, and emissions
allowance price. (The values of parameters for 1; . . . ; t� � 1 in scenarios coincide with
realized history.)

Step 2.2. For each scenario, solve the CHP production model with penalized fuel price (21)–(23)
and obtain caused emissions.

Step 2.3. Determine allowance trade ft� and cumulated allowance level F t�
oord
estim
if (t* < s)
ination bet
ates, AL:
Determine ft� and F t� based on Algorithm 1.
production
processupdate 

HD
PP

update
EE

update
AL

Time 
advances

AT
update
AP

trading
process

ween production process and trading process. AP: allowance price, HD: heat demand, PP: power price, EE:
allowance level, AT: allowance trade.



else

Determine ft� and F t� based on Algorithm 2.
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end for
Step 3. Check the balance between the emission level and allowance level at the end of the planning
horizon.
Eþ ¼ maxf0;E � F sg;
E� ¼ maxf0; F s � Eg.
Step 4. Compute the value of the objective function based on (1), (9), (16) and (17).
5. Computational results

Next we test numerically the proposed algorithm with weighted emissions estimation (WEA). We want
to reach three goals with the test runs:

(1) We assess the computational speed of the WEA algorithm.
(2) We test the effectiveness of the WEA algorithm by comparing it against two simpler trading schemes.
(3) We apply the WEA algorithm to evaluate the relative efficiency of the fuel switch and fuel mix strat-

egies for fulfilling the emissions compliance.
5.1. Test problems

Since the major purpose of the numerical experiments is to test the performance of the proposed trad-
ing algorithm, we use a simple production model, as described in Section 3. We assume that the produc-
tion model is convex and no dynamic constraints are present in the system. The complexity of the
production model mainly affects the computational speed of the algorithms. We will discuss this a little
bit later.

We consider the planning problem of a CHP producer with power generation capacity around 100 MW.
The hourly CHP plant model is based on a real-life power plant model and the characteristic extreme points
of the CHP plant are generated based on different fuel choices as described in Lahdelma and Rong (2005).
The number of extreme points in the plant varies typically from 5 to 20. In our example, the number of
extreme points is 14 and 5, respectively, when the plant operates in the fuel mix and single-fuel modes.
We apply a one-year planning horizon and divide it into 52 weekly trading periods.

We have generated six test problems based on the historical heat demand of a Finnish energy company
in the past six years and historical power price in Nord Pool (The Nordic Power Exchange) (Nord Pool,
2004). We assume that the heat demand and power price vary around a time series forecast model accord-
ing to a multivariate normal distribution. The forecast models and the variation are estimated based on
history data. As no history information about allowance trade was available when this work was done,
we generated the allowance price based on Brownian motion, varying from 5 to 25€/ton CO2. This has
turned out to be quite realistic, although even higher allowance prices have occurred during the year
2005. To simulate yearly trading, we generated 20 instances of each of the six test problems by sampling
history scenarios from the assumed probability distributions. Within each history scenario and at each of
the 52 periods, we generate 20 future scenarios to represent the future uncertainties. Thus a total of 1040
future planning problems are solved over the entire planning horizon while solving each test problem
instance. The yearly trading simulation model is not only suitable for strategic analyses for the producer,
but it serves also as a benchmark for the computational speed and effectiveness of the trading algorithm.
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5.2. Computational speed

We have made the speed tests using the fuel mix model, which is a relatively complex model with a large
number of extreme points. The production model was solved by Power Simplex (PS) (Lahdelma and Hako-
nen, 2003). To reduce the effect of random variations in CPU time measurements, each test problem was
run 10 times and the average CPU time was computed. All test runs were performed in a 2.2 GHz Pentium
4 PC under the Windows XP operating system.

Table 1 gives the CPU time (seconds) for the yearly trading model by means of WEA as well as the time
for solving a single instance of the yearly production model without trading. When solving the production
planning model (22) and (23) at time t* for one future scenario, we must in effect solve the production model
for (53 � t*) weeks. During the solution of the yearly trading model (with 20 history scenarios and 20 future
scenarios) we therefore must solve 20 · 20 · (52 + 51 + � � � + 1) = 551,200 weekly models. The solution
time for the yearly trading model should therefore be about 551,200/52 = 10,600 times larger than for
the yearly production model. From Table 1 we can compute the average ratio of 8816, which is quite close
to the theoretically derived value. The slight advantage in the actual implementation is due to saved initial-
ization overhead when solving a large number of similar problems.

By comparing the theoretical ratio with the empirical results, we can conclude that the computational
speed of the proposed algorithm is principally determined by the time for solving the production model.
Time performance of algorithms in more complex settings can be estimated based on the time increase fac-

tor observed in the test runs with comparable models. The time increase factor is the ratio between the solu-
tion times for the complex model and for the simple setting. For example, in non-convex planning,
Makkonen and Lahdelma (2006) reported a time increase factor of 70, and for problems with dynamic
energy storage constraints Lahdelma and Makkonen (1996) reported a time increase factor of 13. In a com-
bined setting such time increase factors may be multiplied, resulting in solution times of 1 day for the non-
convex yearly trading model with energy storage constraints. This is barely reasonable in strategic analyses
using the PS algorithm. With the ECON/ECOFF (Rong and Lahdelma, in press) and EBB (Rong and
Lahdelma, 2005c) algorithms we can expect much shorter solution times.

In on-line trading with the presented method, it is only necessary to solve at each period t* the produc-
tion model for the remaining part of the year using the 20 (or more) scenarios and to determine the weekly
allowance trading according to Algorithm 1 or 2 (last period). In this setting the longest solution time will
be 20 times the solution time for the yearly production model. This means that we can expect solution times
of 0.2 seconds in the simplest setting and about 3 minutes in the combined complex setting.

5.3. Effectiveness of the algorithm

To test the effectiveness of the proposed WEA method, two comparisons are made. Firstly, we compare
it against the direct (non-weighted) estimation algorithm (DEA) in our early work (Rong et al., 2004). DEA
Table 1
CPU time (seconds) for yearly trading by WEA and for solving single-yearly model

Model Yearly trading Yearly production model

A_1 102.0 0.0116
A_2 98.4 0.0111
A_3 102.7 0.0116
A_4 98.3 0.0113
A_5 97.6 0.0109
A_6 97.4 0.0112
Average 99.4 0.0113
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uses caused emissions directly as an estimate for controlling the allowance level. Secondly, we compare
WEA against an artificially deterministic trading algorithm (DTA). In DTA, the trading costs are estimated
by �cf ð1� dÞðE � F 0Þ, where �cf is the average allowance price over the entire planning horizon, d is the ratio
of the transaction costs to the allowance price, E is the caused emissions, and F0 is the initial allowance
allocation as described in Section 3. This comparison is to test the trading efficiency of WEA.

The objective function of the integrated CHP production and trading planning problem is to maximize
the expected utility of the profit. The utility function plays an important role in characterizing the risk atti-
tude of the DM. However, the specific value of utility function is not very meaningful. The following quan-
tities are used to evaluate the performance of algorithm and the different emission compliance options (e.g.,
fuel switch and fuel mix).

(a) Turnover (TO) consists of the revenue from selling the produced heat and power plus the value of the
initial allowance allocation (�cf F 0).

(b) Certainty equivalence of profit (CEP) is the profit that corresponds to the expected utility that is
maximized.

(c) Profit-to-turnover ratio (PTTR) is 100 * CEP/TO %.

To evaluate the effectiveness of the algorithm, we compare the different algorithms in terms of different
fuel choices at different transaction cost levels of emissions trading. We have three fuel choices and three
transaction cost levels:

FH fuel with higher specific CO2 emissions (e.g., coal)
FL fuel with lower specific CO2 emissions (e.g., natural gas)
FM fuel mix in which there are constraints on the maximum amount of high-emissive and low-emissive

fuel

Three transaction cost levels are d = 0 (no transaction costs), 5% (moderate transaction costs) and 10%
(high transaction costs) respectively. T_L denotes the transaction cost level in the subsequent tables report-
ing the results.

For effectiveness comparisons, we use the case with the higher emissions fuel as a reference. That is, the
turnover of the fuel with higher emissions acts as the common denominator when the PTTR for different
fuel choices are calculated.

The performance of WEA depends on the settings of the confidence interval in emission estimation. The
confidence interval is determined by the confidence factor n, which is chosen heuristically. Generally, the
higher the transaction cost level, the higher the confidence factor should be. Based on experiments, fuel
choice also has some effect on n. Fuel with lower emissions (FL) reacts well to the higher confidence factor
regardless of the transaction cost level. This may be explained by the penalized fuel price (21). For FL, the
fuel price is higher and the specific CO2 emission is lower. That means the emission penalty costs (related to
allowance price) account for a relatively small portion in the penalized fuel price. Thus, FL is less sensitive
to the allowance price as compared with the fuel with higher emissions (FH). As a result, a higher confi-
dence factor is needed to guarantee a sufficient buffer even though when the transaction costs are lower.
Table 2 shows the confidence factor settings for different fuel choices at different transaction cost levels.

Table 3 shows the PTTR difference between WEA and DTA for different fuel choices at different trans-
action cost levels. We can see that the improvement of WEA over DEA is significant. Three factors con-
tribute to the improvement. Weighted emissions estimation combined with appropriate choice of
confidence factors in estimation can suggest a more favorable volume of allowance trading based on the
allowance price. Introduction of the optimization procedure in the last trading period can reduce the pen-
alty costs for excessive emissions at the end of the planning horizon. Fig. 4 illustrates the effect of the



Table 2
Confidence factor settings for different fuel choices at different transaction cost levels

T_L Fuel choices

FH FL FM

0% 0 3 0
5% 1 3 1
10% 1 3 2

Table 3
The PTTR difference between WEA and DEA for different fuel choices at different transaction cost levels (% points)

T_L Problem Fuel choice

FH FL FM

0% A_1 1.07 0.54 0.45
A_2 0.85 0.75 0.40
A_3 1.06 0.57 0.26
A_4 1.00 0.72 0.41
A_5 1.91 2.09 0.87
A_6 0.69 0.30 0.31
Average 1.10 0.83 0.45

5% A_1 2.59 1.17 2.24
A_2 3.40 1.82 2.68
A_3 2.71 1.60 2.05
A_4 1.56 1.08 1.88
A_5 2.79 2.56 2.71
A_6 1.25 0.67 1.45
Average 2.38 1.48 2.17

10% A_1 4.38 1.80 4.72
A_2 5.83 2.89 5.41
A_3 4.83 2.63 4.66
A_4 2.72 1.44 3.74
A_5 4.05 3.03 5.40
A_6 2.16 1.03 3.07
Average 4.00 2.14 4.5
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weighted estimation method and optimal procedures on the trading costs when there are no transaction
costs. Fig. 5 illustrates the impact of confidence factors on the trading costs when transactions costs are
involved. The relatively active trading activity for WEA in Fig. 4 implies that WEA can react better to
uncertainty of allowance price than DEA. We also see the lower trading costs for WEA at the end of
the planning horizon due to the adoption of optimal procedures. (The penalized trading costs of excessive
emissions for WEA and DEA are 0.058 and 0.45 million €, respectively.) The total trading costs for WEA
and DEA are 3.65 and 5.81 million €, respectively. Fig. 5 shows the profile of the trading process subject to
transaction costs. With transaction costs, overly active trading activity is not encouraged. If the confidence
factor is smaller (WEA0, n = 0), the trading frequency is too high, which implies higher transaction costs.
On the other hand, if the confidence factor is higher (WEA2, n = 2), this reduces the trading activity and
the process cannot react to allowance price variations well. In this example, WEA1 (n = 1) is an appropri-
ate choice and provides a good tradeoff between trading frequency and the reaction to the uncertainty of
allowance price. As a result, the total trading costs for WEA0, WEA1 and WEA2 are 6.04, 4.12 and 5.97
million €, respectively.
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Fig. 5. Example of the effect of confidence factors on the trading costs with transaction costs.
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As compared with DEA, WEA shows great increase in PTTR, especially when transaction costs for
emissions trading are involved. Without transaction costs, the average improvement is 1.1%, 0.83% and
0.45% points for the FH, FL and FM strategies, respectively. When the transaction costs are moderate (5%),
the average improvement is 2.38%, 1.48% and 2.17% points for FH, FL and FM. When the transaction
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costs are high (10%), the average improvement is 4%, 2.14% and 4.5% points for FH, FL and FM. The
introduction of the confidence interval for emission estimates makes a major contribution in performance
improvement for WEA when transaction costs are included, because the confidence interval can control the
volume and frequency involved in trading more effectively.

Table 4 compares the performance of the proposed trading algorithm (WEA) with the artificial deter-
ministic trading algorithm (DTA). We can see that WEA performs better than DTA, especially for fuel with
higher emissions. This implies that the energy producers can benefit from emissions trading if they apply
proper planning. For FH, the average improvement in PTTR is in range [4, 5.32] percentage points for dif-
ferent transaction costs. For FM, the average improvement is in range [1.32, 2.97] percentage points for dif-
ferent transaction costs. For FL, without transaction costs, the average improvement is 0.79% points. With
transaction costs, the performance of WEA is close to that of DTA. This can again be explained by the fact
that fuel with lower emissions is less sensitive to allowance price and emission estimation show less
uncertainties.

Based on Tables 3 and 4, the improvement of WEA is significant in terms of PTTR. Since the turnover of
the company involves a large monetary value, a small percentage point (e.g., 0.5) improvement in PTTR
means a great increase in financial return.

5.4. Relative efficiency of fuel switch and fuel mix

Fuel switch means switching from the fuel with higher emissions into the fuel with lower emissions. Fuel
mix means using a mixture of multiple fuels simultaneously. Here we consider the fuel mix with two fuels:
one is the fuel with higher emissions (FH) and the other is the fuel with lower emissions (FL). The FL price
is higher than FH price.
Table 4
The PTTR difference between WEA and DTA for different fuel choices at different transaction cost levels (% points)

T_L Problem Fuel choices

FH FL FM

0% A_1 5.95 0.46 2.52
A_2 5.30 1.18 2.91
A_3 7.89 0.75 2.94
A_4 3.17 0.48 2.37
A_5 6.07 1.60 3.83
A_6 3.54 0.26 1.92
Average 5.32 0.79 2.79

5% A_1 5.02 0.26 1.49
A_2 4.56 0.73 2.10
A_3 6.51 0.39 1.65
A_4 2.38 �0.23 1.32
A_5 5.40 0.84 2.63
A_6 3.10 �0.17 1.14
Average 4.50 0.30 1.77

10% A_1 4.35 0.05 1.09
A_2 3.67 0.28 1.72
A_3 5.58 0.03 1.15
A_4 2.21 �0.93 0.63
A_5 5.11 0.08 2.28
A_6 3.00 �0.60 0.84
Average 3.99 �0.18 1.32
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Based on the proposed algorithm WEA, we compare the relative efficiency of fuel switch and fuel mix for
emissions trading for two situations. The FL price is higher in one situation and lower in the other situa-
tion. The transaction cost level for emissions trading is 5%. The reference situation is the fuel with higher
emissions and FH price is fixed. Three criteria are considered: APTTR, REL and RTO.

APTTR absolute PTTR decrease (�) or increase (+) compared with the reference case
REL relative emissions level decrease (�) or increase (+) compared with the reference case
RTO relative turnover decrease (�) or increase (+) compared with the reference case

Tables 5 and 6 show the results for the lower and higher FL price respectively.
In terms of PTTR, fuel mix is the best for both lower and higher FL price based on Tables 5 and 6. This

can be explained as follows. When the CHP plant operates in fuel mix mode, the fuels are dispatched based
on the penalized fuel price (fuel price plus emission costs by the fuel) for different fuels. The fuel with the
lowest penalized fuel price is used first. This situation can make use of the difference between allowance
price and fuel price effectively to guarantee the economic dispatch. But if the plant operates in single-fuel
mode, there is no advantage in fuel dispatch.

In terms of the emissions level, fuel mix lies between FL and FH regardless of the FL price. But the
degree of emissions reduction varies with FL price. The emissions reduction is larger when FL price is lower
and smaller when FL is higher because the share of FL fuel increases as the FL price decreases.

In terms of turnover, fuel mix lies between FL and FH regardless of the FL price. The turnover decreases
as FL price increases because CHP should respond to market power price by adjusting the production level.
That is, the decrease in turnover attributes to the decrease in the production level of electricity.

However, much risk is involved in fuel switch. Although fuel switch can make great contribution to emis-
sions reduction, it may sacrifice both turnover and profit when FL price is higher. This situation makes fuel
Table 6
Performance of fuel switch and fuel mix for higher FL price

Problem Switch Mix

APTTR REL RTO APTTR REL RTO

A_1 �4.42 �58 �4.63 �0.22 �23 �2.83
A_2 �4.37 �61 �6.84 0.14 �26 �4.19
A_3 �4.90 �59 �5.26 �0.81 �27 �3.23
A_4 �3.79 �56 �1.83 1.36 �18 �0.82
A_5 �5.17 �54 �0.34 0.72 �21 �0.48
A_6 �3.71 �57 �3.28 0.87 �24 �1.65
Average �4.39 �57 �3.70 0.34 �23 �2.20

Table 5
Performance of fuel switch and fuel mix for lower FL price

Problem Switch Mix

APTTR REL RTO APTTR REL RTO

A_1 3.05 �52 2.43 3.61 �39 0.96
A_2 3.47 �53 2.09 4.14 �39 1.11
A_3 2.53 �52 2.82 3.15 �40 1.55
A_4 3.81 �53 0.91 4.70 �44 0.53
A_5 5.70 �53 1.10 6.11 �42 0.17
A_6 3.74 �54 0.13 4.67 �37 0.03
Average 3.72 �53 1.58 4.40 �40 0.72
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switch less attractive. When FL price is lower, fuel mix is comparable with fuel switch in terms of turnover
and PTTR. Fuel switch shows some benefit in terms of turnover while fuel mix shows the equivalent benefit
in terms of PTTR.

Overall, fuel mix can combat against variable fuel price and allowance price and reduce the risk. It can
make good tradeoff between emissions reduction and profit-making. Maintaining the flexibility in fuel
choice is the way to adapt to the emissions trading scheme.
6. Conclusions

The emissions trading scheme (ETS) poses both challenges and opportunities for the energy producers
because the energy sector accounts for 30% of the CO2 emissions in the EU. Important CO2 reduction strat-
egies rely on using fossil fuels more efficiently. Combined heat and power (CHP) production technology
offers one of the biggest potentials for cost-efficient CO2 reduction because of its superior carbon efficiency.
On one hand, the ETS favors the technology for clean provision of energy. On the other hand, CHP instal-
lations should also be targeted for emissions reduction. The medium-term CO2-abatement strategies will be
a combination of the investment in new capacity and utilization of the existing capacity.

In this paper, we developed for a CHP producer an operational model and algorithm for planning simul-
taneously the emissions trading and emissions control through production and trading optimization. The
algorithm is based on a stochastic simulation and coordination technique where the future uncertainties are
represented by sets of scenarios. Stochastic simulation is an effective tool to deal with problems that involve
many uncertainty factors. Successful applications include, e.g., risk analysis of energy trade (Makkonen
and Lahdelma, 1998) and multi-criteria decision support in the deregulated energy market (Makkonen
et al., 2003).

The algorithm proposed in this paper considers the risk attitude of the energy producer, the confidence
interval in emission estimates and the penalty for excessive emissions. In test runs with a realistic CHP pro-
duction model, real-life history data for heat demand and power price, and consensus estimates for the
future allowance price, the proposed algorithm shows good trading efficiency in terms of profit-to-turnover
ratio (PTTR) for different fuel choices at different transaction cost levels. It shows improvement over the
previous trading strategy (Rong et al., 2004), especially for high transaction costs. It also shows improve-
ment over an artificial deterministic trading strategy. This implies that the company can benefit from the
proper planning of emissions trading. To minimize the risk, the company should take advantage of the
opportunities that the emissions allowance market offers and take an active role in emissions trading
because various fundamental factors such as fuel price and power price can affect the allowance price.
The ongoing emissions trading has shown the volatility of emissions allowance prices (Climate Corpora-
tion, 2005). We also evaluated the relative efficiency of the fuel switch and fuel mix strategies based on
the proposed algorithm. Fuel mix offers a good tradeoff between emissions reduction and profit-making.
Changes of the energy market, increasing environmental awareness and novel energy production technol-
ogies create a need for new kinds of decision support tools for energy companies (Makkonen, 2005). The
proposed algorithm is applicable also to new forms of clean energy provision technology such as trigener-
ation (Rong and Lahdelma, 2005a) and more extensive energy system planning such as multi-site CHP
planning (Rong et al., 2006).
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