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Abstract

This methodological paper presents a planning and control methodology illustrated by a simplified case study on the
carbon-tax design in the residential sector. The first objective is to show how to simulate with system dynamics the con-
sumers’ behaviour and the continuous tax-control mechanism depending on few important feedbacks, often ignored in
static macroeconomic modelling. A second objective is to show how to aggregate external data driving this model and
stemming from different sources with various credibility levels. This is realised by means of fuzzy-reasoning techniques
incorporated into the system-dynamics model.
� 2006 Elsevier B.V. All rights reserved.

Keywords: System dynamics; Fuzzy reasoning; Environmental management; CO2-emission reduction; Carbon tax
1. Introduction—Objective of the paper

Carbon-tax schemes may be developed to change
the energy-consuming behaviour of residential con-
sumers. They consist in applying a unit tax to each
weight unit of fossil fuel to be burnt for producing
electricity or heat in homes. Two basic aspects need
to be addressed by the authorities when designing a
carbon-tax scheme:

• The achievable and economically sound objective
in percentage reduction of the use of fossil fuel.
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• The value of the dynamic unit tax added to the
price of fuel to approach the proposed reduction
objective, without undesirable negative impacts
on the economy.

There is a huge economic literature on optimal
carbon-tax schemes to achieve some given abate-
ment objectives and increase the macroeconomic
welfare. Surveys are given in Nordhaus (1991),
Boero et al. (1991), Cline (1992), Dean and Hoeller
(1992). More recent papers are Azar and Schneider
(2002), Weber et al. (2005) who developed a model
in a system-analytical way, taking endogenous
changes into account. As pointed out by Fiddaman
(2002), many of the integrated climate-economy
macromodels are equilibrium models which assume
.
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consumer and producer optimisation with full infor-
mation and perfect foresight. In addition they
assume instantaneous equilibration of factor inputs
to optimal levels; they often neglect feedback mech-
anisms in the economy like important learning effect
in technology development. The DICE model of
Nordhaus (1993a,b) has been thoroughly discussed
in Sterman (2002) from the point of view of mate-
rial-flow conservation and the lacking feedback
mechanisms. Relatively few integrated economy-cli-
mate models have been developed by means of sys-
tem dynamics (SD). This simulation technique
stresses feedback dynamics of stocks and flows
and the associated time delays in achieving objec-
tives and learning mechanisms. Some models are
discussed in Fiddaman (2002) who compares DICE
with a ‘feedback-rich’ climate-economy model
called FREE, available on this author website. It
results from this comparison that SD models focus
on ‘disequilibrium dynamics and feedback complex-
ity, with behavioural decision rules and explicit
stocks and flows of capital, labor and money’,
rather than on equilibrium and optimal factor allo-
cations, in which there are ‘‘instantaneous tradeoffs
between abatement costs and emissions’’ like mac-
romodels do. An interesting paper using SD to eval-
uate the levying of a carbon tax in the goods
transportation sector is Piattelli et al. (2002).

The objective of the model presented in this
paper is not to develop a new economy-environment
macromodel, but to take advantage of the proper-
ties of the SD technique to illustrate the develop-
ment of a behavioural model taking into account
data uncertainties.

We have chosen to model the behaviour of resi-
dential consumers submitted to the carbon tax, con-
sidering important feedback mechanisms, and
exogenous technical and economic data essential
for setting up the SD model. In this respect, an
important econometric literature is available:
Kaufmann (1994) (US), Smith et al. (1995) (eight
OECD countries), Ekins (1996) (OECD countries),
Vlachou et al. (1996) (electric industry in Greece);
Fouquet (1998) (UK), Nomura and Akai (2004)
(Japan), Brännlund and Nordström (2004) (regional
effects in Sweden), to quote just a few. A difficulty in
interpreting results from the econometric literature
resides in the variety of analysis techniques, assump-
tions, geographical environments, social contexts
and secondary benefits, as discussed in Howarth
(in press). In addition, because only past data are
used and get extrapolated into the future, the fore-
cast results have to be taken with some care: this
is especially true with still developing advanced pol-
lution-abatement technologies. It is why there will
be no lack of existing data sets for running the SD
model, but rather a difficulty in reconciling their
differences.

One basic variable is the marginal costs (MC) as
a function of the achieved fuel reduction using
advanced and partly untested technologies in the
requested performance ranges. Sources are here
technical as well as economic (Kunsch and Sprin-
gael, 2005). Williams (1996) and Hope and Maul
(1996) discuss some economic complex issues associ-
ated with MC; MC evaluations appear in the sus-
tainability plan of the Walloon region (2003) in
Belgium. Another question we will discuss in this
paper to mimic the consumers’ behaviour is the will-
ingness-to-invest in such new technologies which
may be influenced by feedbacks loops between
increasing energy prices and the interest rates for
loans. The willingness to pay for green electricity
in Japan is discussed in Nomura and Akai (2004);
demand for liberalised renewable electricity in UK
is addressed in Fouquet (1998) and Howarth
(2006) analyses social consumption effects of the
carbon tax.

As all available econometric or modelling previ-
sions on both aspects will generally not agree, there
is an important source of uncertainty which must be
taken into account when running the SD model. In
the paper we discuss how the technique of fuzzy rea-
soning can be applied to cope with uncertainties.

The presented methodology is part of the more
general framework coined ‘Adaptive Control Meth-
odology’ (ACM) previously developed in Brans
et al. (1998, 2002) and Kunsch et al. (2001). The
ACM is a decision-aiding technique combining Sys-
tem Dynamics with multicriteria decision aid to
assist policy-makers to make decisions in complex
socio-economic systems. In this paper, we do not
explicitly consider the multicriteria dimension of
the decision problem, but we develop by priority
the fuzzy-reasoning treatment of the time-depen-
dent uncertain data used in SD modelling. The
ACM also puts much stress on the need to periodi-
cally revise both data and model structure to take
into account their real-world evolution.

The paper is constructed as follows.
In Section 2 we give the main principles useful for

understanding tax schemes on fossil-fuel consump-
tion to achieve CO2-reductions. Section 3 describes
the expected effect of the tax on the fuel consump-
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tion in the residential sector. Section 4 develops a
simplified and deterministic system-dynamics (SD)
model elaborated on these premises. Section 5 first
discusses the nature of uncertainties on model
parameters, before presenting how fuzzy-reasoning
techniques can be used to handle these uncertainties
in the SD model.

Conclusions are given in Section 6.
2. Principles of the fuel tax

There are different instruments developed to con-
trol pollution, in particular CO2 emissions: the most
pre-eminent ones are the marketable emission per-
mits, and the carbon tax. A scheme of marketable
emission permits functions on the basis of a ‘cap
and trade’ principle: each year the regulating
authority caps the yearly emission level by issuing
the corresponding number of permits. Permits can
be traded on a specialised market between the
potential polluters. Kunsch and Springael (2005)
have shown how to model marketable emission per-
mits. Some results of this paper are used in the fol-
lowing to model the marginal-abatement cost
curves, which are also needed in the tax scheme.
We will not repeat these results here, and the reader
is referred to this reference for more details.

In a tax scheme, the tax per unit of emitted CO2,
or CO2-equivalent, is charged to the polluters. The
principle is shown in Fig. 1. It is assumed that a
curve (here represented by a straight line for sim-
plicity) is perfectly known representing the mar-
ginal-abatement cost (MC) per unit of emission, in
function of the total emission level of the specific
pollutant (M).

In the classical handbook representation like in
Hanley et al. (1997) and Perman et al. (2003), this
curve would be decreasing to the maximum emis-
MT

MC

T*

M’MT
M’

Fig. 1. Handbook representation of the marginal-abatement cost (MC)
for the lower line the optimal emission level for this value of the tax is
curve changes to the upper line, the optimal emission level is increased
sion level per time unit (M0), because of the law of
diminishing return. M0 corresponds to the situation
where no abatement measure is taken. Considering
the lower curve, a rational polluter would decrease
the emission level from M0 to MT in order to
achieve the economic optimum (see Perman et al.
(2003) for a formal proof). The polluter has to
pay the tax amount indicated by the rectangular
surface. At equilibrium the total emission will be
calculated as follows, given a tax level T*, and
inverting the function MC(M):

MT ¼ MC�1ðT �Þ: ð1Þ
Note that in the case of CO2 emission in the res-

idential sector, the practical way is to charge a so-
called energy tax on the fossil-fuel emitting CO2,
rather than on the emissions themselves. The effects
of the tax must thus be analysed on the basis of the
consumer behaviour in reducing his consumption of
fossil fuel. The presentation of the MC curve of
Fig. 1 must be adapted to this situation:

• The horizontal axis ‘r’ now represents the reduc-
tion in fossil fuel consumption. The origin at
r = 0 represents the initial conditions M0 in
Fig. 1 for which no reduction has yet taken place;

• For reasons of convenience, we assume a yearly
reduction in quantity of fossil fuel, expressed in
the units [wfuel/year] (where ‘w’ says for weight)
equivalent to a unit reduction in CO2 emissions,
expressed in [tCO2/year]. We thus have the fol-
lowing equivalence:
1 wfuel=year less consumed is equivalent to

1 tCO2=year less emitted: ð2Þ

An important drawback of taxes is the difficult
precise choice of the most efficient tax level for
achieving some predefined objective MT. Assume
M

M0
T M0
T

in function of the pollution level (M). T* represents the tax level;
given at MT. The zero-abatement level is given at M0. If the MC-
to M 0

T.
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in Fig. 1 that the MC curve is moved upward due to
uncertainties. The equilibrium emission level MT

will be translated to the right, giving a different pol-
icy result. It is why a sufficient degree of accuracy is
needed in determining the MC curve. But as men-
tioned, many different evaluations regarding its pre-
cise shape may exist, and therefore there are
important uncertainties.

3. Modelling a tax policy in the residential sector

In this section we assume that consumers are
rational investors following the rules of cost-benefit
analysis (CBA). Of course this assumption could be
criticised, but it allows us to introduce our dynamic
approach in a simple way. More refined assump-
tions are easily implemented in the simple invest-
ment model we now describe.

Call ‘i’ the interest rate prevailing in the economy
for borrowing money with the intention to invest
into less polluting equipment in households. Ele-
mentary CBA teaches us that the cost of initial
investment must be smaller or equal to the stream
of discounted future benefits (Mishan (1988)). Thus:

Cost of reducing one unit of fuel

¼ Benefits of reducing one unit of fuel: ð3Þ
(1) The cost of reducing one unit of (fossil) fuel is
equal by definition to the marginal cost of
reduction MC, expressed in currency units/year
[CU/year], so that:
Anticipated cost of fuel reduction ðtÞ ¼MCðtÞ:
ð4Þ
Note here that the policy-makers scrutinising the
abatement potential are not directly interested in
the many individuals’ MC curves. Rather, quite
few MC curves of interest can be identified. They
are common to similar techniques or technolo-
gies used by residential homeowners for reduc-
ing their fossil-fuel consumptions.

(2) The benefit of a unit reduction per year corre-
sponds to an infinite stream of cost reductions
attached to one reduced weight unit of fuel per
year, the value of which is given by the well-
known formula of perpetuity:
Anticipated stream of benefits of fuel unit

reduction per year ðtÞ ¼ P wðtÞ=iðtÞ; ð5Þ
where Pw(t) [CU/wfuel] is the unit price of fuel at
time t including the tax; and i(t) [%/year] is the
yearly interest rate in the economy used for borrow-
ing money.

By comparing Eqs. (4) and (5) we obtain the con-
dition for the consumers to be willing to invest in
fossil-fuel reduction or substitution measures in
their homes:

MCðtÞ 6 ðP w=o þ utÞðtÞ=iðtÞ; ð6Þ

where Pw/o [CU/wfuel] is the unit price of fuel on
the market at time t excluding the unit tax ut

[CU/wfuel]. It is an exogenous variable to the
model.

Eq. (6) is the basis of our model. MC curves
when plotted in function of the reduction of the
equivalent weight of fuel per year [wfuel/year] may
have complex shapes, but sooner or later they are
surging up to vertical. The economically achievable
fossil-fuel reduction will be located in the bow to
vertical. Fig. 2 shows the MC curve with these char-
acteristics to be used later from Kunsch and Sprin-
gael (2005).

Looking at this curve, it can be observed that a
reasonable limit R for the yearly fuel reduction
would be around R = 50 wfuel/year. This gives to
policy-makers the information necessary to design
a tax policy, assuming that they plan a time-horizon
of T years to realise this reduction objective. Com-
bining these two parameters thus provides a guide-
line G(t) in [wfuel/year] for the dynamic reduction
of fossil fuel r(t) over T years. Assuming a linear
evolution of the guideline with rate g(t) we obtain
a constant value:

gðtÞ ¼ dGðtÞ
dt
¼ R

T
½wfuel=year2�: ð7Þ

This guideline will not be exactly respected
because there are some delays in realising it, as will
be shown later. It can be approached by adjusting
the price at time t to its theoretical control value
to match G(t). This theoretical control price will
be given by the following equality according to
Eq. (6):

P th ¼ i �MC GðtÞ½ �: ð8Þ

The fossil-fuel price without tax Pw/o on the mar-
ket will in general be fluctuating around a medium-
term trend. The unit tax ut(t) can be adjusted using
proportional control, common in SD models, using
the adjustment time Tadj as follows:
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Fig. 2. MC curve from Kunsch and Springael (2005) representing the cost of reduction in [CU/(wfuel/year)] in function of the fossil-fuel
reduction ‘r’ in [wfuel/year].
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utðtÞ ¼ ðP w � P w=oÞðtÞ;
dP wðtÞ

dt
¼ ðP th � P wÞðtÞ

T adj

:
ð9Þ

Eq. (9) corresponds in SD to an exponential infor-
mation delay of the first order, as shown in chapter
11 of Sterman (2000). Combining Eqs. (6) and (8)
we can calculate the evolution of fossil-fuel usage.
For that purpose, we first introduce the variable
‘Willingness To Invest’ (WTI) which expresses that
the decision to invest passes the CBA test of Eq.
(6): WTI is equal to:

¼
0 if P w < i �MC � ð1� eÞ;
1 if P w P i �MC � ð1� eÞ;

�
ð10Þ

where e represents a tolerance for the CBA test, e.g.
0.5% is a reasonable value.

When WTI = 1, investment is economically
founded and it thus takes place according to our
rationality hypothesis.

In our model we are not able to invert the MC
curve (see Eq. (1)). To determine the reduction value
r(t) that will result from the use of a fuel price Pw(t),
we use a calculation trick:

The evolution of r(t) will be along the MC curve,
so that, when WTI = 1:

dMC rðtÞ½ �
dt

¼ dMC

dr
dr
dt
! dr

dt
¼ dMC=dt

dMC=dr
: ð11Þ

When WTI = 1, the evolution of dMC
dt is dictated

by the price, with the evolution given by Eq. (9).
A distinction must however be made between the
two possible cases: either Pw is equal to (within
the tolerance e), or larger than i Æ MC:
While WTI ¼ 1;

EITHER P w ¼ i �MC;

dr
dt
¼ dMC=dt

dMC=dr
¼ dP w=dt

i:dMC=dr
;

¼ P th � P w

T adj � i � dMC=dr
;

ð12Þ

OR P w > i �MC;

dr
dt
¼ g:

ð13Þ

Thus in case Pw is larger than i Æ MC, the fuel
reduction is dictated by the rate of change of the
guideline in Eq. (7): the MC will move up to the
value = (price/interest rate) at this rate of change.
Two complications appear in this model:

(1) The increase of the total price with tax may be
capped by the price-control regulator. Let us call
Pmax this maximum admissible value. This con-
straint is represented by adding to Eq. (9) a Ver-
hulst-type factor (see Sterman (2000, p. 296)):� �

dP w

dt
¼ ðP th � P wÞ

T adj

1� P w

P max

: ð14Þ
The value of Pmax is subject to a decision of the
authorities, which may require some form of
political consensus. A simple way of determin-
ing this price is to read from the MC curve on
Fig. 3 the MC value corresponding to the
reduction limit R in Eq. (7), and to multiply it
with the initial interest rate. In this particular
case we would obtain Pmax = 600 CU/(wfuel/
year), corresponding to the maximum econom-
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ically feasible reduction R = 50 wfuel/ year, and
i0 = 4%, assumed in our example.

(2) The increase of the fuel price to achieve the
reduction guideline may have macroeconomic
consequences on the willingness to invest,
though the carbon tax is designed as to be rev-
enue neutral as discussed in Mabey and Nixon
(1997). The more expensive the fuel, the less
economic growth is to be expected; the more
expensive it will be for private investors to bor-
row money. A direct link is to be expected
between the fuel price and the interest rate
applied to loans. This creates an important posi-
tive feedback loop driving up the price still fur-
ther. Without loss of generality we have
represented in our model the impact of the fuel
price on the interest rate as follows:

� �

DiP ¼ f I ¼ P w � P 0

P max � P 0

> 0

0 6 f ð�Þ 6 1; 0 6 I 6 1; ð15Þ

DiP is the change in the current interest rate
from its initial value, due the change in fuel
Willingness to invest (WTI)
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Fig. 3. The stock-flow diagram of the system-dynamics model of
price with tax Pw. P0 is the initial fuel price with
tax I, calculated, as shown in the argument of
the function f(Æ), called here the ‘impact factor’.
The ‘impact function’ f(Æ) is expected to be non-
linear and increasing with the impact factor I.
4. System-dynamics modelling of the consumers’

behaviour under the carbon tax

For simulation the SD code VENSIM DSS32�
(1988–2003) is user-friendly, it has an easy-to-use
graphical interface, and it works with vectors (sub-
scripts), which is useful for dealing with several
technologies and data sets. This code also has the
capability of performing sensitivity analyses using
Monte-Carlo analysis with given probability distri-
butions of model parameters. The equations of this
model are available from the authors on request.

Note that we do not use any real data for this sim-
ulation, the purpose of which is only explanatory.

First we start with the deterministic model:
The more ancient SD model of Kunsch et al.

(2001) on the carbon tax in the residential sector
Fuel growth
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on cum
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fuel consumption traffic
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percentage base
fuel

consumption for
heating
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for heating
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fuel price step
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the carbon tax showing the main feedback loops.
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interest rate DiP, with a maximum of 2.5%.
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was very simplified and deterministic. This first
model has been expanded in the present paper to
include the full tax model presented in Section 3.
Of course, this more advanced model has still no
claim of being complete. For example the
contribution of traffic to CO2 emissions appears
only as an exogenous variable. The model mainly
serves the purpose of being illustrative of our
methodology, regarding the dynamic treatment of
the problem and also the possibility of coping with
uncertainties on the reliability of data coming
from several sources, as we will discuss in Section
5.

The stock-flow diagram of the expanded SD model
is reproduced in Fig. 3 (see Sterman (2000) for details
on SD-modelling). It gives an overview of the tax
model. Important feedback loops, which are repre-
sented in heavy lines, drive the tax-dynamics
behaviour.

• The reduction objective, or rather the guideline,
introduced in Eq. (7), is calculated in the upper
part of the diagram. It functions as a feed for-
ward in the model, triggering the adjustment in
the fuel price by means of the tax. We have
adopted in this simple example a maximum
reduction R = 50 wfuel/year, as explained earlier
in the text;

• Several stocks and three negative control loops
are found in the central part of the diagram
model: the price adjustment to the theoretical
price described in Eqs. (8) and (9) (loop N1);
the ‘Willingness To Invest’ according to the
CBA test (10) (loop N2); finally the evolution
of the fossil-fuel reduction along the MC curve
according to Eqs. (11)–(13) (loop N3);

• The macroeconomic impact of the fuel-price
increases according to Eqs. (14) and (15) is visible
in the lower part of the diagram. It manifests
itself by the existence of a positive destabilising
loop (P1) on the interest rate (its initial value is
chosen to be 4%/year);

• The calculation of the CO2-emissions is in the
upper right part of the diagram;

• The fuel price is expected to grow from its initial
value at a rate of 1.25%/year (in real case studies
available time series and scenario forecasts will
be used).

In the SD model, three techniques are used in the
residential sector to reduce the fossil-fuel consump-
tion of private residents:
• RUE (rational use of energy), for example the
use of long-lived and less consuming lighting
bulbs, automatic light switches, etc.

• HED (high efficiency devices), for example dou-
ble-panel windows, efficient boilers or refrigera-
tors, etc.

• GE (Green electricity) use of renewable electric-
ity (biomass, wind energy) for heating and
lighting.

In the first deterministic calculation, we consider
the MC-curve shown in Fig. 2 and the impact func-
tion in Eq. (15), which is represented in Fig. 4.

Fig. 5 shows some computation results with this
SD-model and the described data. The upper left
time graph shows the fossil-fuel reduction path lag-
ging behind the linear guideline G(t) defined in Eq.
(7). This is due to the delays present in the system,
e.g. in Eq. (9) corresponding to a first-order delay.

The upper right time graph shows how the fuel-
price with included tax will have to increase, in
order to follow as closely as possible the guideline
according to Eq. (9). This price increase, expressed
in [CU/wfuel], favours the investment willingness
of homeowners, as shown in the bottom left figure
representing the investment rate in [CU/year]. It is
a rather erratic behaviour depending on the CBA
test on the ‘Willingness to Invest’ (WTI) variable
in Eq. (10). According to Eq. (15) another effect of
the price increase is to bring the interest rate from
its initial 4%/year value to higher values close to
6.5%/year, as shown in the bottom right graph.
The effect of the positive feedback loop P1 evi-
denced in Fig. 3 brings in turn the price further up.
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5. Handling of uncertainties in the SD model

5.1. Generalities on parameter uncertainties

In the system, two types of parameter uncertain-
ties are present in the SD model. They are not yet
included in the deterministic model.

5.1.1. Static-parameter uncertainties
An example in the expanded SD model could be

the total budgets available to achieve the reduction
policy contained in the guidelines, described in Eq.
(7). Simulation codes like VENSIM DSS32�
(1988–2003) are able to generate results in the form
of probability distributions of key variables in the
model, evidencing percentiles (see also Fig. 9 intro-
duced below). Assuming that some statistical distri-
butions for those parameters can be defined, there
would therefore be no difficulty in displaying such
sensitivity results.

Also fuzzy reasoning can be used in cases when
vague statements like: ‘the budget is large’ are avail-
able from the decision makers. This case will not be
further considered here, but their inclusion in SD
modelling is rather straightforward.
5.1.2. Dynamic-parameter uncertainties
Main examples of time-dependant parameters in

our model are: the MC-curve in Fig. 2 and the
impact function in Eq. (15). In general uncertainties
on such parameter will manifest themselves by the
existence of several results coming from different
evaluations, data analyses, econometric forecasts,
etc., all of which being more or less credible. A sta-
tistical treatment by scenario analysis of those dif-
ferent parameter assumptions is possible, but quite
often the needed subjective probabilities are not eas-
ily available. Other means must be designed to
aggregate the different results into one, to be used
as an input to the model. The difficulty is to avoid
loosing information in the process, while consider-
ing that some results or data are more reliable than
others. We propose using fuzzy-reasoning based on
rule systems to achieve this aggregation process.

Fuzzy reasoning was first developed in control
theory. It can assist decisions on the basis of rather
vague statements and logical rules (IF THEN)
between variables. It is close to the natural lan-
guage, this is why some people have labelled it ‘com-
puting with words’. It is very useful in many
technical and economic applications in which stake-



P. Kunsch, J. Springael / European Journal of Operational Research 185 (2008) 1285–1299 1293
holders in a decision process express imprecise and
relatively vague judgements. In the following we
assume that readers are familiar with the basics in
fuzzy reasoning. We only recall essential aspects.
Useful references are Cox (1995), Passino and Yur-
kovich (1998), or Fuzzy Logic (2001).

Control theory takes advantage of an important
property of fuzzy-rule systems: they provide uni-
versal approximations for any non-linear function
whatever complicated it may look. This property
is also used in Kunsch and Fortemps (2002) who
use fuzzy reasoning with rule systems in cost cal-
culations for nuclear-waste management. This
property of fuzzy-rule systems is also used in the
present paper. The intention is to aggregate data
sets of different origins and of varying credibility
to establish important dynamic parameters in the
CO2-model. The sources of data are the extrapola-
tion of technical and economic data, usually made
available by econometric models. Without loss of
generality we can refer to any source of such pre-
vision as ‘data sets’. It will be only in rare cases
that all data sets will fully agree on all their
results.

For a choice of a fuzzy-rule system for aggregat-
ing data sets of various reliability degrees we use the
conclusions of Kunsch and Fortemps (2004) in
which two fuzzy-rule systems are analysed for the
purpose of agent-based modelling: the well-known
Mamdani–Sugeno inference, generally used in con-
trol theory, and the less familiar Kleene–Dienes
inference. The conclusion is that the Mamdani–
Sugeno inference is rather well adapted to ‘smooth’
aggregation and fitting of several functions (in this
case preference functions, but other functions may
be considered), while Kleene–Dienes gives rather
‘brisk’ results, in which jumps appear between func-
tions to be aggregated. The latter system is thus bet-
ter adapted to agent-based modelling in which clear-
cut binary actions of the type GO/NO GO are
meaningful. The former system better suits prob-
lems in which smoother changes between functions
are needed, like in non-linear control theory. We
think that it is also the case in our example, as it
is needed to gently combine several data sets. We
therefore adopt the Mamdani–Sugeno inference sys-
tem in the following.

In a fuzzy-rule system, four steps come in
sequence:

The first step is ‘Fuzzification’. The basic ingredi-
ents of fuzzification are (1) ‘membership functions’
to represent a range of possible values of a vague
or imprecisely known variable (‘fuzzy variable’ as
opposed to ‘crisp variable’), and (2) ‘fuzzy rules’.
The latter relate fuzzy variables, in the antecedent

(or input) of the rule on its input side, to draw some
conclusions on the final results, in the consequent (or
output, or conclusion) of the rule.

The second step is ‘Inference’. An inference oper-

ator defines the m.f.’s of consequents, given some
value of the antecedent and applying the logical
fuzzy rules. The ‘min’ operator, corresponding to
a logical ‘AND’ is commonly used.

The third step in fuzzy reasoning is ‘Aggrega-
tion’. In aggregation, the consequents of all partial
rules are aggregated using an additional aggregation
operator, usually the ‘max’ operator corresponding
to a logical ‘OR’. This operation will result in a
composite membership function.

The fourth and final step is ‘Defuzzification’: it
consists in deriving a unique crisp output from the
fuzzy-rule system.
5.2. Fuzzy-rule system aggregating dynamic

parameters

We now elaborate the fuzzy-rule system able to
handle the uncertainties on dynamic parameters in
the SD model. First we present the procedure in
all generality; we then apply it for illustration to test
the influence of uncertainties on two important
dynamic parameters in the tax model.

Consider in the model some dynamic parameter
‘DP’ being the function of some other dynamic
input variable ‘DI’. Assume that an arbitrary num-
ber n > 1 of data sets of various origins are provid-
ing this function DP(DI). Their respective credibility

factors (Ci, i = 1, . . ., n) are given on a [0, 1] scale.
The provided functions in all sets need to be aggre-
gated to obtain only one function reflecting all
available information sources and their credibility
factors.

In the ‘Fuzzification’ step, let us assume that the
universe of discourse for representing the input DI
to the rules is in the [0, 1] interval (if it is not, rescale
to this interval). We define L levels for the input var-
iable DI, covering the [0,1] interval, each repre-
sented by a triangular membership function (m.f.)
ul, l = 1, . . . ,L. For reasons of convenience, we take
L = 5:

ðul; l ¼ 1; . . . ; 5; vanishing; small; medium;

large; absoluteÞ: ð16Þ
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Each data set corresponds to a mapping of these
DI levels to the levels of the dependent dynamic
parameter DP. Each mapping generates a set of
L = 5 membership functions, each representing an
output O, i.e., here the dynamic parameter DP. This
provides in all n * L(=5) possible outputs, as
follows:

Oði ¼ 1; n; l ¼ 1; . . . ; L; n data sets on the DPðlÞ
for l ¼ 1; . . . ; L DI� levelsÞ ¼ Oði; lÞ: ð17Þ

Outputs correspond to the set of n * L partial
rules:

IF DI is DIðlÞ: AND: Data Set Credibility is Ci

THEN DPðlÞ is Oði; lÞ: ð18Þ

Eqs. (16)–(18) complete ‘fuzzification’.
Let us now perform the second step: ‘Inference’

consists in calculating the m.f. of the conclusion of
each partial rule using the Mamdani–Sugeno infer-
ence RMS; this inference consists in obtaining the
conjunction between the inputs and the output of
the partial rule with the logical ‘AND’, represented
here by the ‘min’ operator,.

Calling lil the m.f. of the conclusion of the partial
rule (i, l) in Eq. (18), applicable to the lth level of the
antecedent to the rule, we thus write:

lil ¼ RMSðuil; milÞ ¼ minðuil; milÞ; ð19Þ

where uil represents the membership grade (m.g.) of
the antecedent to the rule (i, l) in Eq. (18); mil repre-
sents the membership function (m.f.) of the output
O(i, l) coming in the consequent of the rule in Eq.
(18). The antecedent to the rule (i, l) in Eq. (18) is itself
the conjunction of two inputs. The first one, we call it
ul, represents the m.g. of the lth DI-level (for example
for DI(l = 3), u3 = 0.4), the second one represents the
credibility Ci of the ith data set (for example
C2 = 0.7). Because this is a conjunction, the simple
min-operator applied to these two values can be used:
both values are by definition in the interval [0,1]. In
this case we obtain for uil defined in Eq. (19):

uil ¼ minðul;CiÞ: ð20Þ

(In this example u23 = min(0.4; 0.7) = 0.4, for DI-le-
vel l = 3 (‘medium’) and data set i = 2).

Note from (20) that to a data set with a vanishing
credibility will correspond a vanishing m.f. by appli-
cation of the inference in Eq. (19). This data set will
thus be ignored in the further data treatment. (If all
data sets have vanishing credibility, no conclusion
can be drawn at all from fuzzy reasoning).
For the m.f. mil, defined in Eq. (19), the Sugeno
inference, as a special case of the Mamdani–Sugeno
inference, adopts a single value (i.e., a singleton with
m.g. = 1). The Sugeno inference is able to represent
arbitrary functions, the shape of which can be
highly non-linear. The singleton receives the m.g.
mil = 1, so that Eq. (19) immediately simplifies to:

lil ¼ uil: ð21Þ
In the Sugeno inference the consequent of each

rule thus receives the same m.g. as the antecedent
of the rule.

The next step is ‘Aggregation’. The conclusions
of all partial rules (i, l) relative to all data sets and
all DP levels are combined in order to obtain a glo-
bal m.f. This is done by using the logical ‘OR’, rep-
resented here by the ‘max’ operator applied to the
consequents of all individual rules. In the Sugeno
inference this is particularly simple, because the con-
clusion of each rule is a singleton: the m.g. has just
been calculated in the previous inference step.

The global aggregated m.f. has thus n * L compo-
nents given by

m:g:ðIÞ ¼ fuil; i ¼ 1; . . . ; n; l ¼ 1; . . . ; Lg: ð22Þ
The final step in the fuzzy-reasoning schemes is

‘Defuzzification’ of the global m.f.’s of the DP. It
consists in calculating a unique ‘crisp’ value from
the global m.f. for the DP. In this particular case
the center of gravity (COG) is the most adapted
approach to obtain this value. This is expressed as
follows for each set of inputs (impact factor and
credibility factors):

COG DPðlÞ; l ¼ 1; . . . ; L; Ci; i ¼ 1; . . . ; n½ �

¼
P

i¼1;...;n;l¼1;...;LOði; lÞuilP
i¼1;...;n;l¼1;...;Luil

: ð23Þ

This is the final aggregation formula for the
dynamic parameter function DP(DI). Note that it
is also valid when n = 1, because of the property
of universal approximation of fuzzy-system rules.
It is then shown to extrapolate between the ‘anchor
values’ for all L values of the dynamic input vari-
able DI.
5.3. Use of the fuzzy-rule system to account for

uncertainties in the SD model

We now illustrate for n = 2, how to include the
uncertainties on two main dynamic parameters in
the SD model of Fig. 3.
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5.3.1. Aggregation of marginal-cost curves

Kunsch and Springael (2005) provide as an illus-
tration the aggregation of two MC-curves with
respective credibility C1 = 0.5 and C2 = 0.7. Each
dynamic curve is assumed to take learning effects
into account. A complication arises because of the
existence of the three technologies RUE, HED,
GE, and the need to collapse three MC curves into
one. We use this result in the present SD model with
uncertainties without further comments.
0
0 1

Fig. 6. n = 2; C1 = 0.5 and C2 = 0.7. A second interest-rate
impact function DiP(I) of the impact factor I in Eq. (15) is
provided, in addition to the function given in Fig. 4.
5.3.2. Aggregation of the impact function

The fuzzy-rule procedure is now applied in
details to the dynamic parameter DP = DiP(I), the
change in interest rate in function of the impact fac-
tor I, as given by Eq. (15).

Again n = 2 and C1 = 0.5 and C2 = 0.7. Thus in
addition to the impact function of Fig. 4 (1st data
set), a (very different) second function (2nd data
set) is provided in Fig. 6. The fuzzy-reasoning pro-
cess can be followed step by step in Fig. 7.

Because n = 2 and L = 5, there are 10 rules, each
represented in a separate window. The membership
grade of the combined inputs is calculated by means
of the conjunction operator ‘min’ on the left. The
membership functions of the conclusions on the
Fig. 7. The fuzzy-reasoning steps on the impact function defined in
‘fuzzification’ of three inputs (I, C1, C2); ‘Inference’ of the partial Sugeno
m.f. (right-bottom window), and ‘defuzzification’ of the global m.f.
(=0.67%) (Arbitrary scales and units). (Calculations are made with Fu
right reduce to singletons, which receive the same
membership grade as the combined inputs of the
applicable rule. These singletons are obtained for
each data set by considering the five ‘anchor values’
(I(l); l = 1, . . . , 5) of the impact functions of Fig. 4 or
6.

The lowest frame on the right of Fig. 7 represents
the set of values constituting the global m.f. The lat-
ter aggregates all partial rules. The calculation of
Eq. (15) for n = 2 (C1 = 0.5; C2 = 0.7) are from left to right:
-rules, ‘Aggregation’ of the partial conclusions of rules to a global
to a unique output through the center-of-gravity methodology
zzy Toolbox of MATLAB� (2001).)
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the COG is shown in the lowermost window on the
left of Fig. 7, giving a current value DiP = 0.67% for
the increase of the interest rate.

At each time step, a fuzzy-reasoning process
takes place in the way shown in Fig. 7, which is
static. For our purpose it is easily made dynamic
by combining it with the SD model presented in
Fig. 3: in each time value, the computed values
of the variables from the previous time step are
used for forward computing in the following time
step. For a more general model, the assumptions
on the number of Data Sets and technologies are
introduced as adaptable parameters in the models.
Also the assumption on constant credibility factors
can be easily relaxed as discussed later in Section
5.4.

Using the subscript technique and lookup tables
available in VENSIM DSS32� (1988–2003), a
fuzzy-reasoning module has been added to the SD
model in the case with n = 2 that we have presented
here. Of course the same technique can be used for
any value of n > 1.
Fig. 8 shows the final results with the two (n = 2)
data sets (C1 = 0.5; C2 = 0.7).

5.4. Sensitivity analysis on results

The comparison of Figs. 5 and 8 reveals impor-
tant result differences between the deterministic
(n = 1) carbon-tax model and the extended model
including the fuzzy-reasoning procedure considering
several data sets to be reconciled (here we used only
n = 2 for illustration).

Though the eventual reduction path comes out to
be nearly the same, the price policy, and thus the tax
evolution prove to be quite different. These results
stress the overwhelming importance, when design-
ing an efficient tax scheme, of having a sufficient
knowledge of exogenous parameters used in the
SD model, and to assess their sensitivities with
respect to multiple sometimes-contradictory exter-
nal evaluations.

Of course, in general credibility factors allocated
to the multiple data sets are not precisely known: in
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the given example, the chosen values for the
assumed base case would be highly debatable in a
real case study.

A multivariate sensitivity analysis has to be per-
formed, assuming that there is some agreement
among decision-makers on defining intervals in
[0,1] for the Ci’s values. Calculating individual tra-
jectories (traces) with possible values, using the SD
code, is straightforward.

As an example Fig. 9 shows several percentiles
(50%; 75%; 95%; 100%) of the distribution of the
interest rate (left) and of the unit tax on fuel (right)
when simulating 200 traces; it has been assumed in
this sensitivity analysis that nothing at all is known
about the credibility-factor values, so that the latter
are considered as being random variables uniformly
distributed in the interval [0,1]. The central trace in
each graph corresponds to the base case, i.e.,
C1 = 0.5; C2 = 0.7. Traces can be individually plot-
ted, so that a decision on the carbon tax can be
made within a defined confidence interval.
6. Conclusions

In order to design a coherent and efficient strate-
gic plan for a CO2 tax scheme over a medium-term
horizon, e.g. five years, decision-aiding instruments
must be developed. It is the purpose of our
approach to assist and formalise the preparation
of a strategic plan, considering the dynamic and
structural aspects, not addressed in static models.
These aspects have been handled with system
dynamics, which puts forward important feedback
loops describing the effects of the tax on the CO2-
reduction behaviour of consumers and vice-versa.

Another difficulty beyond the dynamic aspects is
that a deterministic CO2-control model is not suffi-
cient for strategic planning. In the model one cannot
ignore that there are uncertainties on time-depen-
dent key parameters or exogenous variables in the
SD model.

A first proposal is to develop scenario and sensi-
tivity analyses to address the uncertainty issues.
Classical scenario analysis is not entirely satisfac-
tory, however. It provides ranges of values, elaborat-
ing on optimistic, average, or pessimistic forecasts
related to the evolution of the output variables in
the model. But collapsing many scenarios into one
requires an additional knowledge of a priori occur-
rence probabilities, which is almost never available.

In the present paper, we propose to use instead
fuzzy reasoning based on rules with the idea to com-
bine several available, sometimes partly contradic-
tory, previsions on these dynamic data sets. In
technically complex frameworks, like CO2-emission
control in the residential sector, past data, especially
in the field of technology development or macroeco-
nomic behaviours, cannot easily be extrapolated
into the future, or at least there are large uncertain-
ties. The concept of ‘probability’, central to the
Bayesian approach of subjective probabilities is dif-
ficult to transpose to those cases. Instead imprecise
semantic statements like ‘small’, ‘large’, etc., typical
for fuzzy reasoning, often better capture the uncer-
tainties in the problem. The central value of fuzzy-
rule systems will be to keep all available information
and to merge available data sets according to their
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respective credibility factors. There will be in those
conditions no need for a-priori subjective probabil-
ities, like in the Bayesian approach. It will only be
assumed that a scoring on a [0, 1] scale is available
for representing the credibility of the available data
sets used for the uncertain parameter determination.
This scoring may be derived for example from the
measured accuracy of past technical or economic
forecasts on those matters. It is beyond the scope
of this paper to discuss how the scoring within the
fuzzy rules can be established. The readers are
referred to the existing literature. A valuable refer-
ence is Meyer and Booker (2001) for scoring expert
results. Note that it can be decided to use cut-off
rules to eliminate the less credible results, for exam-
ple deleting all data sets with a credibility factor less
than 0.25, etc. The same approach could of course
be used in principle by directly attaching credibility
scores to scenarios for available historical data, but
this seems to be a more perilous attempt, because
the Past is only a poor predictor of the Future.
One more added value of fuzzy aggregation formula
(23) comes from that it does not only interpolate
between anchor points. It provides in addition an
easy approach for aggregating all available data sets
to one global result. Regarding the use of credibility
scores, this approach is thus far less arbitrary than a
simple additive weighing technique. We also have
shown in Fig. 9 that uncertainties on the credibility
factors can be handled with Monte-Carlo analysis.

To account for uncertainties on any static param-
eters in the model, the same type of approach can be
used. To cope with uncertain futures, fuzzy reason-
ing alone will not suffice in the long term, however.
The mentioned ACM procedure from Brans et al.
(1998, 2002) recommends revisiting periodically,
for example every five years, not only the data,
but also the model and its structure. Comparing
the strategic previsions to the observed evolution,
and making the necessary adjustments is the pre-
ferred approach.
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