The central feature of the proposed method is the enumeration of funding scenarios using $v=0,1, \ldots, 2^{\mathrm{J}}$ 1 and their conversions to $0 / 1$ binary characters. The ease of equating v to binary forms that are indicative of all possible exclusions and inclusions of Category 2 features is countered with the possibly large row dimension $\left(=2^{J}\right)$ of the corresponding spreadsheet. When exhaustive enumeration is not practical or of interest, the investigation may proceed in the following manner. Consider a situation with $\mathrm{J}=20$ Category 2 features and $1,048,575\left(=2^{20}-1\right)$ funding possibilities. The investigation may begin with multiple exhaustive enumerations each with fewer than twenty Category 2 features and operationalized within its own worksheet. One may consist of features $j=1-10$ and the other with features $j=11-20$. Each would produce $1,023\left(=2^{10}-1\right)$ different funding scenarios. Suppose among the enumerations of $\mathrm{j}=11-20$ scenarios with $\mathrm{j}=14,16,17$ the focus of interest. The consequence of funding them with all combinations of the least costly features $j=1-5$ appears in cells F13-CA44 of the Evaluation sheet of Illustration4.xlsx. The spreadsheet operations that produced these results consisted of the following. To begin, $\mathrm{j}=14,16,17$ was converted to the scenario reference $\mathrm{v}=106,496$ using Calculator cell K3. That reference was entered in cell F13 of the Evaluation sheet of Illustration1.xlsx and using the Fill feature of Excel the $v$ up to and including $v=106,527$ were produced in cells F13-F44. Thereafter, copying the content of cells G12-CA12 to the rows filled with $v=106,496-106,527$ produced the Evaluation sheet of Illustration4.xlsx. The $v=106,496-106,527$ span the thirty-one $\left(=2^{5}-1\right)$ contiguous combinations of $\mathrm{j}=14,16,17$ with $\mathrm{j}=1-5$. Figure 4.1 is a partial image of the Evaluation sheet of Illustration4.xlsx. The enumeration of non-contiguous scenarios is illustrated with the following. Suppose the investigation continues with interest in the consequence of funding features $\mathrm{j}=14,16,17$ in combinations with features $j=2,4,5,7$. The scenarios may be enumerated beginning with the addition of feature $j=2$ to $j=14,16,17$ and adding $j=4,5,7$ one at a time to all previous scenarios so generated. The enumerations would produce fifteen ( $2^{4}-1$ ) scenarios with features $2,14,16,17 ; 4,14,16,17$; $2,4,14,16,17 ; 5,14,16,17 ; 2,5,14,16,17 ; 4,5,14,16,17 ; 2,4,5,14,16,17$; etc. using the mimicking procedure introduced in Section 3 of the manuscript. Each combination of features would be converted to a v reference using an Excel Data Table with cells K3 and K5 of the Calculator as input and output cell references. The v so identified would be assigned to cells in column F and the cell contents of columns G-CA of the corresponding rows would be populated in the manner discussed for contiguous v. See cells F45-CA60 of the Evaluation tab of worksheet Illustration4.xlsx for treatment of this non-contiguous cell reference case. In these ways, a universe with a large number of funding possibilities may be bifurcated and selected scenarios within or spanning the partitions may be enumerated and evaluated. Doing so repeatedly may lead to attractive (unattractive) scenarios to explore (avoid) and perhaps to a set of satisficing funding scenarios. Note too that the linear 'stingy' pursuit strategy of Section 3 of the manuscript generally provides a starting point for this situation.

See Figure 4.1 below.

## Figure 4.1

Partial image of scenarios including $\mathrm{j}=14,16,17$ from the evaluation sheet of illustration4.xlsx.

|  | F | BY | BZ | CA |  | F | BY | BZ | CA |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 11 | Scenario reference, V | Funded Category 2 features, $\mathrm{j}^{1}$ | r | Scenario $\operatorname{cost}^{2}$ | 11 | Scenario reference, v | Funded Category 2 features, $\mathrm{j}^{1}$ | r | Scenario $\operatorname{cost}^{2}$ |
| 13 | 106496 | 14, 16, 17 | 3 | 13.367 | 29 | 106512 | 5, 14, 16, 17 | 4 | 13.774 |
| 14 | 106497 | 1, 14, 16, 17 | 4 | 13.647 | 30 | 106513 | 1, 5, 14, 16, 17 | 5 | 14.054 |
| 15 | 106498 | 2, 14, 16, 17 | 4 | 13.719 | 31 | 106514 | 2, 5, 14, 16, 17 | 5 | 14.126 |


| 16 | 106499 | $1,2,14,16,17$ | 5 | 13.999 |
| :--- | :--- | :--- | :--- | :--- |
| 17 | 106500 | $3,14,16,17$ | 4 | 13.742 |
| 18 | 106501 | $1,3,14,16,17$ | 5 | 14.022 |
| 19 | 106502 | $2,3,14,16,17$ | 5 | 14.094 |
| 20 | 106503 | $1,2,3,14,16,17$ | 6 | 14.374 |
| 21 | 106504 | $4,14,16,17$ | 4 | 13.765 |
| 22 | 106505 | $1,4,14,16,17$ | 5 | 14.045 |
| 23 | 106506 | $2,4,14,16,17$ | 5 | 14.117 |
| 24 | 106507 | $1,2,4,14,16,17$ | 6 | 14.397 |
| 25 | 106508 | $3,4,14,16,17$ | 5 | 14.140 |
| 26 | 106509 | $1,3,4,14,16,17$ | 6 | 14.420 |
| 27 | 106510 | $2,3,4,14,16,17$ | 6 | 14.492 |
| 28 | 106511 | $1,2,3,4,14,16,17$ | 7 | 14.772 |


| 32 | 106515 | $1,2,5,14,16,17$ | 6 | 14.406 |
| :--- | :--- | :--- | :--- | :--- |
| 33 | 106516 | $3,5,14,16,17$ | 5 | 14.149 |
| 34 | 106517 | $1,3,5,14,16,17$ | 6 | 14.429 |
| 35 | 106518 | $2,3,5,14,16,17$ | 6 | 14.501 |
| 36 | 106519 | $1,2,3,5,14,16,17$ | 7 | 14.781 |
| 37 | 106520 | $4,5,14,16,17$ | 5 | 14.172 |
| 38 | 106521 | $1,4,5,14,16,17$ | 6 | 14.452 |
| 39 | 106522 | $2,4,5,14,16,17$ | 6 | 14.524 |
| 40 | 106523 | $1,2,4,5,14,16,17$ | 7 | 14.804 |
| 41 | 106524 | $3,4,5,14,16,17$ | 6 | 14.547 |
| 42 | 106525 | $1,3,4,5,14,16,17$ | 7 | 14.827 |
| 43 | 106526 | $2,3,4,5,14,16,17$ | 7 | 14.899 |
| 44 | 106527 | $1,2,3,4,5,14,16,17$ | 8 | 15.179 |

${ }^{1}$ The bolding denotes where $\mathrm{j}=1,2,3,4$, and 5 are first combined (introduced) with $\mathrm{j}=14,16,17 .{ }^{2} \$ \mathrm{M}$.

