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Let G be a graph of order p. A numbering f of G is a labeling that assigns
distinct elements of the set {1, 2, . . . , p} to the vertices of G, where each edge uv
of G is labeled f (u) + f (v). The strength strf (G) of a numbering f : V (G) →
{1, 2, . . . , p} of G is defined by

strf (G) = max {f (u) + f (v) |uv ∈ E (G)} ,

that is, strf (G) is the maximum edge label of G, and the strength str(G) of a
graph G itself is

str (G) = min {strf (G) |f is a numbering of G} .

There are infinitely many graphs G for which δ (G) ≥ 1 and str (G) =
|V (G)|+ δ (G).

In this paper, we provide an improved lower bound for str (Qn), where n ≥ 4.
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Abstract

Let G = (V,E) be graph. A subset S of V is called a dominating set

of G if every vertex in V − S is adjacent to a vertex in S. The minimum

cardinality of a dominating set of G is called the domination number of

G and is denoted by γ(G). The domination subdivision number sdγ(G) is

the minimum number of edges that must be subdivided (each edge can be

subdivided at most once) in order to increase the domination number. In

this talk we present the current status of the conjectures on this parameter.

We also discuss the analogous parameter for secure domination number.
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A (k, r)-coloring of a graph G is a proper k-vertex coloring of G such
that the neighbors of each vertex of degree d will receive at least min{d, r}
different colors. The r-hued chromatic number, denoted by χr(G), is the
smallest integer k for which a graph G has a (k, r)-coloring. Let f(r) = r + 3
if 1 ≤ r ≤ 2, f(r) = r + 5 if 3 ≤ r ≤ 7 and f(r) = b3r/2c + 1 if r ≥ 8. In
[Discrete Math., 315-316 (2014) 47-52], it is conjectured that if G is planar, then
χr(G) ≤ f(r); and verified this conjecture for K4-minor free graphs. To further
this result, we define K4(h) as a collection of simple graphs obtained from K4

by subdividing h − 4 vertices to K4, for an integer h ≥ 4. In this talk, for
5 ≤ h ≤ 7, a decomposition of K4(h)-minor free graphs will be demonstrated
and its application will be discussed.
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A Platonic graph is a vertex-regular planar graph with all faces of the same
size. It is well known that there exist exactly five such graphs: tetrahedron,
octahedron, hexahedron, icosahedron, and dodecahedron.

Recently, William Keith asked whether there exist 1-nearly Platonic graphs
that would differ from Platonic in just one face. That is, vertex-regular planar
graphs with all faces except one having the same size. W. Keith, D. Kreher and
the speaker showed that there are no 2-connected 1-nearly Platonic graphs. We
extend the non-existence result to graphs with connectivity one.

On the other hand, there are well known classes of 2-nearly Platonic graphs
with exactly two exceptional faces, both of the same size. We will and ask
(and partially answer) some questions about 2- and 3-nearly Platonic graphs.
In other words, about vertex-regular planar graphs with exactly two or three
exceptional faces.
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We investigate the group irregularity strength, sg(G), of a graph, i.e. the
least integer k such that taking any Abelian group of order k, there exists a
function f : E(G)→ so that the sums of edge labels incident with every vertex
are distinct. So far the best upper bound on sg(G) for a general graph G was
exponential in n− c, where n is the order of G and c denotes the number of its
components. In this talk we show that sg(G) is linear in n, namely not greater
than 2n.

We consider also locally irregular labeling where we require only sums of
adjacent vertices to be distinct. For the corresponding graph invariant we prove
the general upper bound: ∆(G)+col(G)−1 (where col(G) is the coloring number
of G) in the case when we do not use the identity element as an edge label.
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A graph is chordal iff every cycle long enough to have a chord does have a
chord, and a graph is strongly chordal iff it is chordal and every even cycle long
enough to have an odd chord—meaning a chord whose endpoints are an odd
distance apart in the cycle—does have an odd chord. (Despite this somewhat
awkward characterization, strongly chordal can be defended in several ways as
the natural strengthening of chordal.)

Now define a graph to be oddly chordal iff it is chordal and every odd cycle
long enough to have an odd chord does have an odd chord. Strongly chordal
graphs turn out to be oddly chordal, with the oddly chordal graphs character-
ized by a twist on the classic forbidden subgraph characterization of strongly
chordal graphs. Moreover, both strongly chordal and oddly chordal graphs have
new, related characterizations in terms of uncrossed chords of appropriate-length
cycles.
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A best possible sufficient condition for Hamiltonicity, in term of the num-
ber of edges, in a k-partite graph will be presented. The implications of this
result, based on a very recent result of Chen, Gould, Gu and Saito, will also be
discussed.
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A cycle of length k is called a k-cycle. A non-induced cycle is called a
chorded cycle. Let n be an integer with n ≥ 4. A graph G of order n is chorded
pancyclic if G contains a chorded k-cycle for every integer k with 4 ≤ k ≤ n.
Cream, Gould and Hirohata have proved that a graph of order n satisfying
degG u + degG v ≥ n for every pair of nonadjacent vertices u, v in G is chorded
pancyclic, with some exceptional graphs. They have also conjectured that if G
is hamiltonian, we can replace the degree sum condition with the weaker density
condition |E(G)| ≥ 1

4n
2 and still guarantee the same conclusion. We prove this

conjecture by showing that if a graph G of order n with |E(G)| ≥ 1
4n

2 contains
a k-cycle,then G contains a chorded k-cycle, with some exceptional graphs. We
further relax the density condition for sufficient large k.
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The distance vertex irregular labeling on a graph G with vertex set V is
defined to be an assignment λ : V → {1, 2, · · · , k} such that the set of vertex
weights consists of distinct numbers, where the weight of a vertex v in G is
defined as the sum of the labels of all the vertices adjacent to v (distance 1 from
v). The distance irregularity strength of G, denoted by dis(G), is the minimum
value of the largest label k over all such irregular assignments. We present the
distance vertex irregular labeling and its other types for some particular classes
of graphs.
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In 1999, Kawarabayahsi showed that if G is a graph on exactly 4k vertices
with δ(G) ≥ d52ke, then G contains k vertex-disjoint theta graphs (i.e., G con-

tains a K−
4 -factor). In 2014, Chiba et al. showed that if G has a large number

of vertices (Ω(k3k)) and δ(G) ≥ 2k, then G also contains k vertex-disjoint theta
graphs. Interestingly, the minimum degree conditions in both results are best
possible for the number of vertices considered. This leads to a very natural
question as to when and how the minimum degree threshold changes from d 52ke
to 2k. In this talk, we extend the result of Kawarabayashi by showing that ev-
ery graph G on at least 4k vertices with δ(G) ≥ d 52ke contains k vertex-disjoint
theta graphs. This result turns out to be best possible for n-vertex graphs where
4k ≤ n < 5k, and using a tiling result of Shokoufandeh and Zhao, we discuss
when the minimum degree threshold potentially transitions from d 52ke to 2k.
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For a simple graph G, a vertex labeling f : V (G) → {1, 2, . . . , k} is called a
k-labeling. The weight of a vertex v, denoted by wtf (v) is the sum of all vertex
labels of vertices in the closed neighborhood of the vertex v. A vertex k-labeling
is defined to be an inclusive distance vertex irregular k-labeling of G if for every
two different vertices u and v there is wtf (u) 6= wtf (v). The minimum k for
which the graph G has an inclusive distance vertex irregular k-labeling is called
the inclusive distance vertex irregularity strength of G.

In the talk we will establish some bounds of the inclusive distance vertex
irregularity strength and determine the exact value of this parameter for several
families of graphs.
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Given a graph, one might ask if we can drawn that graph in the plane with-
out crossings. We can flip that question though and ask, what is the maximum
possible number of crossings a given graph G can have. For a graph G, the
maximum rectilinear crossing number is the maximum number of edge cross-
ings that can appear in a drawing of G in the plane when each edge is drawn
straight. Given that non-incident edges can not cross we can compute a trivial
upper bound called the thrackle bound. Building on the work of Woodall, who
showed that no tree that contains a subgraph isomorphic to K1,3 with each
edge subdivided once achieves the thrackle bound, we compute the maximum
rectinilear crossing number of more general subdivided stars.
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In this talk, we discuss minimal cuts (mincuts) in two-terminal directed
acyclic graphs (st-dags). A special st-dag characterized by a nested structure
generated by its mincuts is called nested. We prove that every nested graph is
series-parallel. We demonstrate that the minimum possible number of mincuts
in an n-vertex st-dag is n− 1. Moreover, if an st-dag is non-series-parallel, then
the number of its mincuts must be larger than n− 1. Our main observation is
that an st-dag of order n has exactly n−1 mincuts if and only if it is nested. It is
shown that a nested graph can be obtained by a parallel composition of a nested
graph and a single edge or by a series composition of nested graphs. Using the
recursive structure of nested graphs, it is possible to present an algorithm for
their recognition.



Independence Number of Maximal Planar Graphs
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We show that for a maximal planar graph G with order n ≥ 4, the independence number satis�es n
4 ≤ α (G) ≤

2
3n− 4

3 . We show the lower bound is sharp and characterize the extremal graphs for the upper bound.
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It was conjectured by Jaeger that the family of every 4p-edge-connected
graphs has modulo (2p+ 1)-orientation. Thomassen showed that the edge con-
nectivity 2(2p+1)2+2p+1 is enough to guarantee modulo (2p+1)-orientation,
and it was further improved by Lovász, Thomassen, Wu and Zhang. A graph G
is ⟨SZ2p+1⟩-reduced if G does not have any nontrivial strongly Z2p+1-connected
subgraph. In this paper, we show that if a family of graphs has bounded match-
ing number, then there are only finitely many (2p+2)-edge-connected ⟨SZ2p+1⟩-
reduced graphs without modulo (2p+ 1) orientation in this family.
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For an ordered set W = {w1, w2, . . . , wk} of k distinct vertices in a nontrivial
connected graph G, the representation of a vertex v of G with respect to W is
the k-vector r(v|W ) = (d(v, w1), d(v, w2), . . . , d(v, wk)), where d(v, wi) is the
distance between v and wi for 1 ≤ i ≤ k. A set W locally resolves of G if
r(u|W ) 6= r(v|W ) for every pair of adjacent vertices u, v of G. A local resolving
set of G of with minimum cardinality is a local metric basis of G, and its
cardinality is the local metric dimension, lmd(G), of G.

In this talk, we study the local metric dimension of the line graph L(G) of
a nontrivial connected graph G. In particular, we establish sharp bounds for
lmd(L(G)) in terms of well-known parameters of G.
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In 1983, Bouchet proposed a conjecture that every flow-admissible signed
graph has a nowhere-zero 6-flow.This conjecture remains open. Bouchet himself
proved that such signed graphs admit nowhere-zero 216-flows; Zýka further
proved that such signed graphs admit nowhere-zero 30-flows. Recently, DeVos
improved Zýka’s result to 12-flows. In this talk, we further improve DeVos’s
result and show that every flow-admissible signed graph admits a nowhere-zero
11-flow.
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The line graph L(G) is that graph whose vertices are the edges of G where
two vertices in L(G) are adjacent if the corresponding edges are adjacent in G.
For an integer k ≥ 2, the k-line graph of a graph G is the graph whose vertex set
is the set of all k-paths (paths of order k) of G where two vertices of the k-line
graph are adjacent if they are adjacent k-paths in G. Since the 2-line graph is
the line graph for every graph G, this is a generalization of line graphs. In this
talk, we focus on 3-line graphs, show that the 3-line graph of G is isomorphic
G if and only if G is an odd cycle with at least five vertices, and present several
sufficient conditions for the 3-line graph of a connected graph to be connected.
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Douglas West5.

1) University of Illinois at Urbana–Champaign, Urbana IL 61801
zirlin2@illinois.edu

2) University of Illinois at Urbana–Champaign, Urbana IL 61801, and Sobolev
Institute of Mathematics, Novosibirsk 630090, Russia

kostochk@math.uiuc.edu
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Previously, Hanson, Loten, and Toft proved that every (2r+1)-regular graph
with at most 2r cut-edges has a 2-factor. We generalize their result by proving
for k ≤ (2r + 1)/3 that every (2r + 1)-regular graph with at most 2r− 3(k− 1)
cut-edges has a 2k-factor. We show that the restriction on k and the restriction
on the number of cut-edges are sharp.
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On s-hamiltonian Z8-free line graphs

Abstract

A graph G is s-hamiltonian if the removal of at most s vertices from
G results in a hamiltonian graph. Let Z8 denote the graph derived from
identifying one end vertex of a path with 9 vertices with one vertex of
a triangle. In [J. of Graph Theory, 664 (2010), 1-11] it is shown that
every 3-connected Z8-free line graph is hamiltonian. We proved for any
integer s ≥ 1, a Z8-free line graph L(G) is s-hamiltonian if and only if
κ(L(G)) ≥ s+ 2.
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For graphs T,H, let ex(n, T,H) denote the maximum number of copies of T
in an n-vertex H-free graph. We prove some sharp results on this generalization
of Turán numbers, where our focus is for the graphs T,H satisfying χ(T ) <
χ(H). Erdős generalized the celebrated Turán’s theorem by showing that for
any r ≥ m, the Turán graph Tr(n) uniquely attains ex(n,Km,Kr+1). For
general graphs H with χ(H) = r + 1 > m, Alon and Shikhelman showed that
ex(n,Km, H) =

(
r
m

)
(n
r )m + o(nm). Here we determine this error term o(nm)

up to a constant factor. We prove that ex(n,Km, H) =
(
r
m

)
(n
r )m + biex(n,H) ·

Θ(nm−2), where biex(n,H) is the Turán number of the decomposition family of
H. As a special case, we extend Erdős’ result, by showing that Tr(n) uniquely
attains ex(n,Km, H) for any edge-critical graph H. We also consider T being
non-clique, where even the simplest case seems to be intricate. Following from
a more general result, we show that for all s ≤ t, T2(n) maximizes the number

of Ks,t in n-vertex triangle-free graphs if and only if t < s+ 1
2 +

√
2s+ 1

4 .
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Shariefuddin Pirzada

Department of Mathematics, University of Kashmir, Srinagar, Kashmir, India
E-mail: pirzadasd@kashmiruniversity.ac.in

ABSTRACT

For a simple graph G(V,E) with order n and size m having vertices set v1, v2, . . . , vn, the
adjacency matrix A = (aij) of G is a (0, 1)-square matrix of order n whose (i, j)-entry is
equal to 1 if vi is adjacent to vj and equal to 0, otherwise. If D(G) = diag(d1, d2, . . . , dn)
is the diagonal matrix associated to G, the matrix L(G) = D(G) − A(G) is the Laplacian
matrix and its spectrum is the Laplacian spectrum of G. With 0 = µn ≤ µn−1 ≤ · · · ≤ µ1

as the Laplacian spectrum of G, let Sk(G) =
k∑

i=1

µi, k = 1, 2, . . . , n be the sum of k largest

Laplacian eigenvalues of G. For a graph G, Andries Brouwer conjectured that Sk(G) =
k∑

i=1

µi ≤ m +
(
k+1
2

)
for any k, k = 1, 2, . . . , n. The Laplacian energy of a graph G as

put forward by Gutman and Zhou (2006) is defined as LE(G) =
n∑

i=1

|µi − 2m
n |. However,

Brouwer’s conjecture remains open at large and if the conjecture is true then it is expected
that progress can be made in many fundamental problems in spectral graph theory. In
particular, the problem of finding the graph with largest Laplacian energy can be solved. It
is noteworthy that any progress on the upper bounds of Sk(G) implies a possibility of the
verification of Brouwer’s conjecture for certain families of graphs and as a consequence gives
significant information about Laplacian energy of those families of graphs.

In this talk, we discuss the recent developments on the bounds for Sk(G), Brouwer’s
conjecture and the Laplacian energy of graphs.
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In this talk, we introduce the super slater number of a graph in order to
provide lower bounds on the domination of regular graphs. In particular, we
provide a family of δ-regular graphs on n vertices for which the super slater
number of the graph G provides a lower bound on the domination number of
G. that can be made arbitrarily larger than the bound dn/(δ + 1)e.
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MIGHTY Abstract
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A bounded diameter strengthening of Ryser’s
conjecture

Ryser conjectured for any graph G and any integer r ≥ 2, that in any r-coloring
of the edges of G, there exist at most (r − 1)α(G) monochromatic compo-
nents which cover the vertices of G. A stronger version of this conjecture asks
whether the vertices of each such graph can be covered by at most (r− 1)α(G)
monochromatic subgraphs of bounded diameter. This talk will present results
on Kn, Km,n, and graphs G with α(G) = 2.
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MacMahon showed that the number of plane partitions contained in a box
is given by a simple product formula. This formula also enumerates the lozenge
tilings of hexagons with opposite sides of equal integer length and interior an-
gles of 120 degrees, or equivalently, the number of perfect matchings of the
dual graph of such a region. In this talk, we show that in the case of sym-
metric hexagons, we always have a simple product formula for the number of
tilings when removing a shamrock at any position along the symmetry axis,
complementing results of Ciucu and Krattenthaler on arbitrary hexagons, and
extending work of Eisenkölbl.
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An additive coloring of a graph G is a labeling of the vertices of G from
{1, 2, . . . , k} such that two adjacent vertices have distinct sums of labels on their
neighbors. The least integer k for which a graph G has an additive coloring
is called the additive coloring number of G, denoted χΣ(G). In this paper,
we improve the current bounds on the additive coloring number for particular
classes of graphs by proving results for a list version of additive coloring. We
apply the discharging method and the Combinatorial Nullstellensatz to show
that every planar graph G with girth at least 5 has χΣ(G) ≤ 19, and for girth
at least 6, 7, and 26, χΣ(G) is at most 9, 8, and 3, respectively.
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