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YIFEI PAN, MEI WANG AND YU YAN

We study ordinary differential equations of the type u(n)(t)= f (u(t)), with
initial conditions u(0)= u′(0)= · · · = u(m−1)(0)= 0 and u(m)(0) 6= 0, where
m ≥ n; no additional assumption is made on f . We establish some unique-
ness results and show that f is always Hölder continuous.

1. Introduction

The question of finding criteria for the uniqueness of solutions has been a constant
theme in the study of ordinary differential equations for a very long time, and
a wealth of results have been established. The one most quoted in textbooks
is perhaps the Lipschitz uniqueness theorem, which states that in the equation
y(n)(x)= f (x, y, y′, . . . , y(n−1)), if the function f (x, z1, z2, . . . , zn) is Lipschitz
continuous with respect to z1, z2, . . . , zn , then the initial value problem has a unique
local solution. Generally speaking, to ensure the uniqueness of solutions to an
ODE, we need to assume some condition on the function f besides continuity, the
Lipschitz condition being one example. Most of the research in this topic has been
devoted to finding the appropriate condition, and there are many nice results, such
as the classical theorems by Peano, Osgood, Montel and Tonelli, and Nagumo. An
extensive and systematic treatment of the available results is provided in [Agarwal
and Lakshmikantham 1993].

In this paper, we approach the uniqueness problem from a different perspective
and relate it to the unique continuation problem. We study autonomous ODEs of
the type u(n)(t)= f (u(t)), where u ∈ C∞([0, 1]) and no additional assumption is
made on the function f .

If we assume the initial conditions u(0) = u′(0) = · · · = u(n−1)(0) = 0, the
solution is not unique. The following is a trivial example.

Example 1. u(t)= t3 satisfies u′′(t)=6u1/3 and u(0)=u′(0)=0. Another solution
to this initial value problem is u ≡ 0.
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It is no surprise that uniqueness fails in this example, because the function
f (u) = 6u1/3 has fairly strong singularity at 0. From another perspective, this
example shows that if a solution and its derivatives up to order n − 1 all vanish
at 0, it is not guaranteed to be the zero function. On the other hand, even if all its
derivatives vanish at 0, the solution still may not be identically 0.

Example 2. The function

u(t)=
{

e−1/t 0< t ≤ 1,
0 t = 0

is in C∞ ([0, 1]), and

(1) u(k)(0)= 0 for all k ∈ N.

Let
f (s)=

{
s(ln s)2 s > 0,
0 s = 0.

Then u(t) satisfies the equation

u′ = f (u).

However, this equation has another solution, u ≡ 0, which also satisfies (1).

This function u(t) is also a classical example in the study of the unique con-
tinuation problem, which asks when we can conclude that a function is locally
identically zero if its derivatives all vanish at a point. Here is one result in this line:

Theorem 1.1 [Pan and Wang 2008]. Let g(x) ∈ C∞([a, b]), 0 ∈ [a, b], and

(2) |g(n)(x)| ≤ C
n−1∑
k=0

|g(k)(x)|
|x |n−k , x ∈ [a, b]

for some constant C and some n ≥ 1. Then

g(k)(0)= 0 for all k ≥ 0

implies
g ≡ 0 on [a, b].

The order of singularity of |x | at 0 in (2), that is, n− k, is sharp, as one example
in [Pan and Wang 2008] shows. This theorem is crucial to the proof of our main
theorem below.

The previous two examples suggest that to guarantee uniqueness near 0, the
solution needs to vanish to sufficiently high order, but not to the infinite order. So
we assume that it satisfies the initial conditions u(0)= u′(0)= · · · = u(m−1)(0)= 0
and u(m)(0)= a 6= 0, where m ≥ n. That is, the order of the lowest nonvanishing
derivative of u at 0 is no less than the order of the equation. From the equation
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it is not difficult to see that f is differentiable away from 0; however, it is not
differentiable at 0, as shown by Example 1 with m = 3.

Due to the lack of information about the regularity of f , the available uniqueness
theory no longer applies to this type of equation. We will show that because u has
sufficiently high vanishing order at 0, such solutions are unique near 0. Specifically,
we have the following result.

Theorem 1.2. Let u(t) ∈ C∞([0, 1)) be a solution of the differential equation

(3) u(n)(t)= f (u(t)),

where n ≥ 1 and f is a function. Assume that u satisfies

(4) u(0)= u′(0)= · · · = u(m−1)(0)= 0 and u(m)(0)= a 6= 0,

with m ≥ n. Then such a solution u(t) is unique for t near 0.

The proof of Theorem 1.2 is carried out in two steps. First, we show the following
result concerning the derivatives of u at 0.

Lemma 1.3. Let u(t) be a solution that satisfies Equations (3) and (4). The deriva-
tive of u at 0 of any order equal to or higher than m, that is, u(k)(0) for any k ≥ m,
depends only on m, n, and the behavior of the function f near 0.

In the second step, suppose there are two solutions u and v, both satisfying (3)
and (4); then by Lemma 1.3, the function u(t)− v(t) and all its derivatives vanish
at 0. Making use of Theorem 1.1, we can show that u− v ≡ 0.

Typically, for an n-th order ODE, we need only n initial conditions. Theorem 1.1
shows that in some sense, the lack of information about f can be compensated by
assuming additional derivative information at the initial point.

Interestingly, it turns out that the solution is unique as long as the vanishing
order is no less than the order of the equation, but the actual vanishing order and
the value of the lowest nonzero derivative are not essential.

Theorem 1.4. Suppose u1 and u2 are two solutions of (3) that satisfy

(5) u1(0)= u′1(0)= · · · = u(m−1)
1 (0)= 0, u(m)1 (0)= a 6= 0

and

(6) u2(0)= u′2(0)= · · · = u(l−1)
2 (0)= 0, u(l)2 (0)= b 6= 0,

where m, l ≥ n. Then m = l, a = b, and u1 ≡ u2 for small t .

The proof of Lemma 1.3 will be given in Section 2, and the proofs of Theorems
1.2 and 1.4 will be given in Section 3.

Naturally, we would like to ask if the result still holds if one of the solutions in
Theorem 1.4 has vanishing order lower than n, the order of the equation.
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Conjecture. Suppose (3) has a solution u(t) that satisfies (4) with m ≥ n. Then it
cannot possess another solution v(t) that satisfies initial conditions

v(0)= v′(0)= · · · = v(l−1)(0)= 0 and v(l)(0)= b 6= 0,

where l < n.

We can show that this conjecture is true if m = n+ 1 or l and m are relatively
prime. However, there are some difficulties in the general case and we have not
been able to prove the full conjecture.

Although in Theorems 1.2 and 1.4 we do not need to make any assumptions about
the function f , we can actually obtain interesting information about it. Suppose
there is a function u(t) that satisfies Condition (4); then as shown in Section 2,
locally t can be expressed as a function of u, and therefore we can express u(n)(t)
locally as a function f of u, so u(n)(t)= f (u). The next theorem shows that the
function f is Hölder continuous in an interval [0, δ] for small δ > 0.

Theorem 1.5. Suppose a function u(t) satisfies Condition (4); then Equation (3)
holds for some function f , where m ≥ n and there is a constant δ > 0 such that f is
uniformly Hölder continuous in the interval [0, δ].

This theorem is proved after Theorem 1.4 in Section 3.
A summary of Theorems 1.2 and 1.5 is that any smooth function of finite order

vanishing at 0 is a unique local solution of a differential equation in the form
of Equation (3), where f is differentiable in the interior and uniformly Hölder
continuous up to the boundary.

In Theorems 1.2 and 1.4, the high-order vanishing condition (4) allows us to
obtain uniqueness results without any extra assumption on f . This phenomenon is
only found in autonomous equations like (3). For general ODEs of the form

dnu
dtn = f

(
t, u,

du
dt
, . . . ,

dn−1u
dtn−1

)
,

such results cannot be expected because there is more than one expression for f .
For example:

Example 3. Let u(t)= t4. It satisfies the initial conditions

u(0)= u′(0)= u′′(0)= u(3)(0)= 0 and u(4)(0)= 24.

Its derivatives are
u′(t)= 4t3 and u′′(t)= 12t2.

We can express u′′ as a function f of u and u′ in different ways, such as

u′′(t)=
192u2

(u′)2
, u′′(t)=

3(u′)2

4u
, u′′(t)= 12

( 1
4 uu′

)2/7
,
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or
u′′(t)= 12u1/4(1

4 u′
)1/3

.

In the first two equations f is not continuous at the origin, while in the last two
equations f is Hölder continuous at the origin. This simple example shows that
the function f can be expressed in various ways and that in order to study the
uniqueness, we need to impose very specific assumptions on f .

Our work was motivated by that of Li and Nirenberg [2006], who studied a similar
second-order PDE: 1u = f (u), where u = u(t, x) ∈C∞(Rk+1) has a nonvanishing
partial derivative at 0 that can be expressed in the form u(t, x)= atm

+ O(tm+1),
a 6= 0, t ∈ R, and x ∈ Rk . They showed that if two solutions u and v satisfy u ≥ v,
then u ≡ v. Theorem 1.2 can be viewed as an improvement of their result in the
one-dimensional case to arbitrary order and without the comparison condition u≥ v.

2. The proof of Lemma 1.3

Without loss of generality, we can assume that a > 0.
First, we show that a, the m-th derivative of u at 0, only depends on m, n, and

the function f .
Define

(7) x̃ =
(u

a

)1/m
.

Then
x̃ = (tm

+ O(tm+1))1/m
= t (1+ O(t)).

This implies that

(8)
x̃
t
→ 1 as t→ 0.

We can also write u = ax̃m . Taking the derivative with respect to t , we get

du
dt
= amx̃m−1 dx̃

dt
,

amtm−1
+ O(tm)= amx̃m−1 dx̃

dt
,

tm−1

x̃m−1 + O
( tm

x̃m−1

)
=

dx̃
dt
.

In the second equation above and in the analysis that follows, we formally differen-
tiate the Taylor expansion with the big-O notation. A detailed discussion of this
differentiation is provided in the Appendix.
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In light of (8), it follows that

(9)
dx̃
dt
|t=0 = 1.

By the inverse function theorem, t can be expressed as a function of x̃ :

t = x̃ + O(x̃2).

Then
tm−n
= (x̃ + O(x̃2))m−n

= x̃m−n(1+ O(x̃)).

Similarly, tm−n+1
= x̃m−n+1(1+ O(x̃)). Thus

(10) f (u)= u(n)

= am(m−1) . . . (m−n+1)tm−n
+O(tm−n+1)

= am(m−1) . . . (m−n+1)x̃m−n
+O(x̃m−n+1)

= am(m−1) . . . (m−n+1)
(u

a

)(m−n)/m
+O(u(m−n+1)/m) by (7)

= an/mm(m−1) . . . (m−n+1)u(m−n)/m
+O(u(m−n+1)/m).

Therefore,

(11) an/m
= lim

u→0

f (u)
m(m− 1) . . . (m− n+ 1)u(m−n)/m .

This shows that a is completely determined by m, n, and the behavior of the function
f near 0.

Next, we show that the (m+1)-th derivative of u at 0 also only depends on m, n,
and f .

Write u as

(12) u(t)= atm
+ am+1tm+1

+ O(tm+2).

We will show that am+1 only depends on m, n, and the behavior of f at 0.
Express t as

(13) t = x̃ + b2 x̃2
+ O(x̃3).

We would like to obtain an expression for b2 in terms of the derivatives of u at 0.
To do this, we take the derivative with respect to t on both sides of

dx̃
dt
·

dt
d x̃
= 1.
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By the product rule and chain rule, we have

(14)
d
dt

(dx̃
dt

)
·

dt
d x̃
+

dx̃
dt
·

d
dt

( dt
d x̃

)
= 0,

d2 x̃
dt2 ·

dt
d x̃
+

dx̃
dt
·

( d2t
d x̃2 ·

dx̃
dt

)
= 0,

d2 x̃
dt2 ·

dt
d x̃
+

(dx̃
dt

)2
·

d2t
d x̃2 = 0.

We would like to evaluate (14) at t = 0.
From

x̃ =
(u

a

)1/m
=

(
tm
+

am+1

a
tm+1
+ O(tm+2)

)1/m

= t
(

1+
am+1

a
t + O(t2)

)1/m

= t
(

1+
1
m

(am+1

a
t + O(t2)

)
+

1
2
·

1
m

( 1
m
− 1

)(am+1

a
t + O(t2)

)2
+ O(t3)

)
= t +

am+1

ma
t2
+ O(t3),

we know that

(15)
d2 x̃
dt2 |t=0 =

2am+1

ma
.

From (13) we know that

dt
d x̃
|t=0 = 1 and

d2t
d x̃2 |t=0 = 2b2.

Thus if we evaluate (14) at t = 0, we get

2am+1

ma
· 1+ 1 · 2b2 = 0,

and therefore

(16) b2 =−
am+1

ma
.

Now, from (13) we have

tm−n
= (x̃ + b2 x̃2

+ O(x̃3))m−n

= x̃m−n
[1+ b2 x̃ + O(x̃2)]m−n

= x̃m−n[1+ (m− n)(b2 x̃ + O(x̃2))+ O(x̃2)
]

= x̃m−n
+ (m− n)b2 x̃m−n+1

+ O(x̃m−n+2).
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Similarly,

tm−n+1
= x̃m−n+1

+ (m− n+ 1)b2 x̃m−n+2
+ O(x̃m−n+3),

tm−n+2
= O(x̃m−n+2).

Then from (12) and the above expressions for the powers of t , we have

u(n) = am(m− 1) . . . (m− n+ 1)tm−n

+ am+1(m+ 1)m . . . (m− n+ 2)tm−n+1
+ O(tm−n+2)

= am(m− 1) . . . (m− n+ 1)
(
x̃m−n

+ (m− n)b2 x̃m−n+1
+ O(x̃m−n+2)

)
+ am+1(m+ 1)m . . . (m− n+ 2)

×
(
x̃m−n+1

+ (m− n+ 1)b2 x̃m−n+2
+ O(x̃m−n+3)

)
+ O(x̃m−n+2)

= am(m− 1) . . . (m− n+ 1)x̃m−n

+
(
am(m− 1) . . . (m− n)b2+ am+1(m+ 1)m . . . (m− n+ 2)

)
x̃m−n+1

+ O(x̃m−n+2).

Thus, in view of f (u)= u(n) and (7), we have

f (u)= am(m−1) . . . (m−n+1)x̃m−n

+
(
am(m−1) . . . (m−n)b2+am+1(m+1)m . . . (m−n+2)

)
x̃m−n+1

+O(x̃m−n+2)

= am(m−1) . . . (m−n+1)
(u

a

)m−n
m

+
(
am(m−1) . . . (m−n)b2+am+1(m+1)m . . . (m−n+2)

)(u
a

)m−n+1
m

+O
((u

a

)m−n+2
m

)
= a

n
m m(m−1) . . . (m−n+1)u

m−n
m

+
(
a

n−1
m m(m−1) . . . (m−n)b2+a

n−m−1
m am+1(m+1)m . . . (m−n+2)

)
×u

m−n+1
m

+O(u
m−n+2

m ).

This means that

a
n−1

m m(m− 1) . . . (m− n)b2+ a
n−m−1

m am+1(m+ 1)m . . . (m− n+ 2)

= lim
u→0

f (u)− an/mm(m− 1) . . . (m− n+ 1)u
m−n

m

u
m−n+1

m
.
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By (16), this can be written as

a
n−1

m m(m− 1) . . . (m− n)
(
−

am+1

ma

)
+ a

n−m−1
m am+1(m+ 1)m . . . (m− n+ 2)

= lim
u→0

f (u)− a
n
m m(m− 1) . . . (m− n+ 1)u

m−n
m

u
m−n+1

m
.

After collecting similar terms, we get

am+1a
n−m−1

m
(
(m+ 1)m . . . (m− n+ 2)− (m− 1)(m− 2) . . . (m− n)

)
= lim

u→0

f (u)− a
n
m m(m− 1) . . . (m− n+ 1)u

m−n
m

u
m−n+1

m
.

Consequently,

(17) am+1 =

a
m−n+1

m

(
limu→0

f (u)− a
n
m m(m− 1) . . . (m− n+ 1)u

m−n
m

u
m−n+1

m

)
(m+ 1)m . . . (m− n+ 2)− (m− 1)(m− 2) . . . (m− n)

.

Since we have proved that a only depends on m, n, and f , Equation (17) shows
that am+1 is also completely determined by m, n, and the behavior of f near 0. By
(16), this also shows that b2 depends only on m, n, and f .

Now we will use mathematical induction to show that all the derivatives of u at
0 of order higher than m are completely determined by m, n, and f .

Express u and t as

(18) u(t)= atm
+ am+1tm+1

+ · · ·+ am+k tm+k
+ am+k+1tm+k+1

+ O(tm+k+2)

and

(19) t = x̃ + b2 x̃2
+ · · ·+ bk+1 x̃k+1

+ bk+2 x̃k+2
+ O(x̃k+3).

Suppose that for k ≥ 1, a, am+1, . . . , am+k, b2, . . . , bk+1 are all determined only
by m, n, and f ; we will show that am+k+1 and bk+2 also are determined only by
m, n, and f .

We start by obtaining an expression for bk+2 in terms of am+1, . . . , am+k and
am+k+1.

Taking the derivative with respect to t on both sides of (14), we obtain

0=
d3 x̃
dt3 ·

dt
d x̃
+

d2 x̃
dt2 ·

( d2t
d x̃2 ·

dx̃
dt

)
+ 2 ·

dx̃
dt
·

d2 x̃
dt2 ·

d2t
d x̃2 +

(dx̃
dt

)2
·

( d3t
d x̃3 ·

dx̃
dt

)
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and

0=
d3 x̃
dt3 ·

dt
d x̃
+ 3 ·

dx̃
dt
·

d2 x̃
dt2 ·

d2t
d x̃2 +

(dx̃
dt

)3
·

d3t
d x̃3 .

Taking the derivative of both sides of these equations, we get

(20) 0=
(

d4 x̃
dt4 ·

dt
d x̃
+

d3 x̃
dt3 ·

d2t
d x̃2 ·

dx̃
dt

)
+ 3

(
d2 x̃
dt2 ·

d2 x̃
dt2 ·

d2t
d x̃2 +

dx̃
dt
·

d3 x̃
dt3 ·

d2t
d x̃2 +

dx̃
dt
·

d2 x̃
dt2 ·

d3t
d x̃3 ·

dx̃
dt

)
+

(
3
(dx̃

dt

)2
·

d2 x̃
dt2 ·

d3t
d x̃3 +

(dx̃
dt

)3
·

d4t
d x̃4 ·

dx̃
dt

)
,

0=
d4 x̃
dt4 ·

dt
d x̃
+ 4 ·

d3 x̃
dt3 ·

dx̃
dt
·

d2t
d x̃2 + 3 ·

d2 x̃
dt2 ·

d2 x̃
dt2 ·

d2t
d x̃2

+ 6
(dx̃

dt

)2
·

d2 x̃
dt2 ·

d3t
d x̃3 +

(dx̃
dt

)4
·

d4t
d x̃4 .

If we take the derivative k times with respect to t and collect the similar terms after
each differentiation as shown above, eventually we arrive at an expression of the
form

(21) 0=
dk+2 x̃
dtk+2 ·

dt
d x̃

+

(
terms involving

dk+1 x̃
dtk+1 ,

dk x̃
dtk , . . . ,

dx̃
dt
,

dt
d x̃
,

d2t
d x̃2 , . . . ,

dk+1t
d x̃k+1

)
+

(dx̃
dt

)k+2
·

dk+2t
d x̃k+2 .

From (19) we know that

(22)

dt
d x̃

∣∣
t=0 = 1,

d2t
d x̃2

∣∣
t=0 = 2b2,

...

dk+1t
d x̃k+1

∣∣
t=0 = (k+ 1)! bk+1,

dk+2t
d x̃k+2

∣∣
t=0 = (k+ 2)! bk+2.



UNIQUENESS THEOREM FOR ORDINARY DIFFERENTIAL EQUATIONS 463

Then we look at
dx̃
dt

∣∣
t=0, . . . ,

dk+1 x̃
dtk+1

∣∣
t=0, and

dk+2 x̃
dtk+2

∣∣
t=0. By (7) and (18),

x̃ =
(

atm
+ am+1tm+1

+ · · ·+ am+k tm+k
+ am+k+1tm+k+1

+ O(tm+k+2)

a

)1/m

= t
(

1+
am+1

a
t +

am+2

a
t2
+ · · ·+

am+k

a
tk
+

am+k+1

a
tk+1
+ O

(
tk+2))1/m

= t
{

1+
1
m

[
am+1

a
t +

am+2

a
t2
+ · · ·+

am+k

a
tk
+

am+k+1

a
tk+1
+ O(tk+2)

]
+

1
2 ·

1
m

( 1
m
− 1

)
[

am+1

a
t +

am+2

a
t2
+ · · ·+

am+k

a
tk
+

am+k+1

a
tk+1
+ O(tk+2)

]2

+ · · ·

+
1

(k+ 1)!
·

1
m
·

( 1
m
− 1

)
· · ·

( 1
m
− k

)
[

am+1

a
t +

am+2

a
t2
+ · · ·+

am+k

a
tk
+

am+k+1

a
tk+1
+ O(tk+2)

]k+1

+ O(tk+2)

}
After collecting similar terms, we can write

(23) x̃ = t + λ2t2
+ λ3t3

+ · · ·+ λk+1tk+1
+

(am+k+1

ma
+ λk+2

)
tk+2
+ O(tk+3),

where

• λ2 is a constant involving m, a, and am+1,

• λ3 is a constant involving m, a, am+1 and am+2,

...

• λk+1 is a constant involving m, a, am+1, . . . , am+k−1, am+k , and

• λk+2 is a constant involving m, a, am+1, . . . , am+k−1, am+k .

By the inductive hypothesis, λ2, λ3, . . . , λk+1, λk+2 are all constants that only
depend on m, n, and the function f .



464 YIFEI PAN, MEI WANG AND YU YAN

From (23), we obtain

(24)

dx̃
dt

∣∣
t=0 = 1,

d2 x̃
dt2

∣∣
t=0 = 2λ2,

...

dk+1 x̃
dtk+1

∣∣
t=0 = (k+ 1)! λk+1,

dk+2 x̃
dtk+2

∣∣
t=0 = (k+ 2)!

(am+k+1

ma
+ λk+2

)
.

Now we evaluate (21) at t = 0 and make use of (22) and (24):

0= (k+ 2)!
(am+k+1

ma
+ λk+2

)
· 1

+

(
terms involving b2, . . . , bk+1, λ2, . . . , λk+1

)
+ 1 · (k+ 2)! bk+2.

Thus we obtain

(25) bk+2 =−
am+k+1

ma
+ Q,

where Q is a constant depending on b2, . . . , bk+1, λ2, . . . , λk+1, λk+2, and hence
Q is completely determined by m, n, and f .

Next we will analyze am+k+1. From (19) we have

tm−n
= x̃m−n(1+ b2 x̃ + · · ·+ bk+1 x̃k

+ bk+2 x̃k+1
+ O(x̃k+2)

)m−n

= x̃m−n
{

1+ (m− n)
(
b2 x̃ + · · ·+ bk+1 x̃k

+ bk+2 x̃k+1
+ O(x̃k+2)

)
+
(m− n)(m− n− 1)

2

(
b2 x̃ + · · ·+ bk+1 x̃k

+ bk+2 x̃k+1
+ O(x̃k+2)

)2
+ · · ·

+
(m− n)(m− n− 1) . . . (m− n− k)

(k+ 1)!(
b2 x̃ + · · ·+ bk+1 x̃k

+ bk+2 x̃k+1
+ O(x̃k+2)

)k+1

+ O(x̃k+2)

}
.

After collecting similar terms, we can express tm−n as

tm−n
= x̃m−n{1+ c1,m−n x̃ + c2,m−n x̃2

+ · · ·+ ck,m−n x̃k

+ ((m− n)bk+2+ ck+1,m−n)x̃k+1
+ O(x̃k+2)

}
,
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where c1,m−n is a constant depending on m and b2; c2,m−n is a constant depending
on m, b2, and b3; . . . ; ck,m−n is a constant depending on m, b2, . . . , bk+1; ck+1,m−n

is a constant depending on m, b2, . . . , bk+1.
By the inductive hypothesis, c1,m−n, c2,m−n, . . . , ck,m−n and ck+1,m−n are all

determined only by m, n, and f . Thus we have

(26) tm−n
= x̃m−n

+ c1,m−n x̃m−n+1
+ c2,m−n x̃m−n+2

+ · · ·+ ck,m−n x̃m−n+k

+
(
(m− n)bk+2+ ck+1,m−n

)
x̃m−n+k+1

+ O(x̃m−n+k+2),

where c1,m−n, c2,m−n, . . . , ck,m−n and ck+1,m−n are constants depending on m, n,
and f .

By the same type of analysis we obtain similar expressions for the other powers
of t :

(27) tm−n+1
= x̃m−n+1

+ c1,m−n+1 x̃m−n+2
+ c2,m−n+1 x̃m−n+3

+ · · ·

+ ck,m−n+1 x̃m−n+k+1
+
(
(m− n+ 1)bk+2+ ck+1,m−n+1

)
x̃m−n+k+2

+ O(x̃m−n+k+3),

where c1,m−n+1, c2,m−n+1, . . . , ck,m−n+1, and ck+1,m−n+1 are constants depending
on m, n, and f .

(28) tm−n+2
= x̃m−n+2

+ c1,m−n+2 x̃m−n+3
+ c2,m−n+2 x̃m−n+4

+ · · ·

+ ck,m−n+2 x̃m−n+k+2
+
(
(m− n+ 2)bk+2+ ck+1,m−n+2

)
x̃m−n+k+3

+ O(x̃m−n+k+4),

where c1,m−n+2, c2,m−n+2, . . . , ck,m−n+2 and ck+1,m−n+2 are constants depending
on m, n, and f . Proceeding inductively,

(29) tm−n+k
= x̃m−n+k

+ c1,m−n+k x̃m−n+k+1
+ c2,m−n+k x̃m−n+k+2

+ · · ·

+ ck,m−n+k x̃m−n+2k
+
(
(m− n+ k)bk+2+ ck+1,m−n+k

)
x̃m−n+2k+1

+ O(x̃m−n+2k+2),

where c1,m−n+k, c2,m−n+k, . . . , ck,m−n+k and ck+1,m−n+k are constants depending
on m, n, and f .

(30) tm−n+k+1
= x̃m−n+k+1

+ c1,m−n+k+1 x̃m−n+k+2

+ c2,m−n+k+1 x̃m−n+k+3
+ · · ·+ ck,m−n+k+1 x̃m−n+2k+1

+
(
(m− n+ k+ 1)bk+2+ ck+1,m−n+k+1

)
x̃m−n+2k+2

+ O(x̃m−n+2k+3),

where c1,m−n+k+1, . . . , ck,m−n+k+1 and ck+1,m−n+k+1 are constants depending on
m, n, and f .

(31) tm−n+k+2
= O(x̃m−n+k+2).
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From (18) we obtain

u(n) = am(m− 1) . . . (m− n+ 1)tm−n
+ am+1(m+ 1)m . . . (m− n+ 2)tm−n+1

+ · · ·+ am+k(m+ k)(m+ k− 1) . . . (m− n+ k+ 1)tm−n+k

+ am+k+1(m+ k+ 1)(m+ k) . . . (m− n+ k+ 2)tm−n+k+1
+ O(tm−n+k+2).

Then by (26) to (31), we can write

u(n) = am(m− 1) . . . (m− n+ 1)
{

x̃m−n
+ c1,m−n x̃m−n+1

+ c2,m−n x̃m−n+2
+ · · ·

+ ck,m−n x̃m−n+k
+
(
(m− n)bk+2+ ck+1,m−n

)
x̃m−n+k+1

+ O(x̃m−n+k+2)
}

+ am+1(m+ 1)m . . . (m− n+ 2)
{

x̃m−n+1
+ c1,m−n+1 x̃m−n+2

+ c2,m−n+1 x̃m−n+3
+ · · ·+ ck,m−n+1 x̃m−n+k+1

+
(
(m− n+ 1)bk+2+ ck+1,m−n+1

)
x̃m−n+k+2

+ O(x̃m−n+k+3)
}
+ · · ·

+ am+k(m+ k)(m+ k− 1) . . . (m+ k− n+ 1)
{

x̃m−n+k

+ c1,m−n+k x̃m−n+k+1
+ c2,m−n+k x̃m−n+k+2

+ · · ·

+ ck,m−n+k x̃m−n+2k
+
(
(m− n+ k)bk+2+ ck+1,m−n+k

)
x̃m−n+2k+1

+ O(x̃m−n+2k+2)
}

+ am+k+1(m+ k+ 1)(m+ k) . . . (m+ k− n+ 2)
{

x̃m−n+k+1

+ c1,m−n+k+1 x̃m−n+k+2
+ c2,m−n+k+1 x̃m−n+k+3

+ · · ·

+ ck,m−n+k+1 x̃m−n+2k+1

+
(
(m− n+ k+ 1)bk+2+ ck+1,m−n+k+1

)
x̃m−n+2k+2

+ O(x̃m−n+2k+3)
}

+ O(x̃m−n+k+2)

= am(m− 1) · · · (m− n+ 1)x̃m−n
+C(m, a, am+1, c1,m−n)x̃m−n+1

+C
(
m, a, am+1, am+2, c1,m−n+1, c2,m−n

)
x̃m−n+2

+ · · ·

+C
(
m, a, am+1, . . . , am+k, ck,m−n, ck−1,m−n+1, . . . , c1,m−n+k−1

)
x̃m−n+k

+

(
am(m− 1) . . . (m− n)bk+2

+ am+k+1(m+ k+ 1)(m+ k) . . . (m+ k− n+ 2)

+C
(
m, a, am+1, . . . , am+k, ck+1,m−n, ck,m−n+1, . . . , c1,m−n+k

))
x̃m−n+k+1

+ O(x̃m−n+k+2).
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Here C(m, a, am+1, c1,m−n) is a constant depending on m, a, am+1, and c1,m−n; we
denote it as pm−n+1 to simplify notations. Since a, am+1, and c1,m−n only depend
on m, n, and f , we know that pm−n+1 only depends on m, n, and f .

Similarly, the other constants C
(
m, a, am+1, am+2, c1,m−n+1, c2,m−n

)
, . . . , and

C
(
m, a, am+1, . . . , am+k, ck+1,m−n, ck,m−n+1, . . . , c1,m−n+k

)
all depend on m, n,

and f only, and can be denoted simply as pm−n+2, . . . , pm−n+k , and pm−n+k+1.
Thus we can rewrite the above equation as

(32) u(n) = am(m− 1) . . . (m− n+ 1)x̃m−n
+ pm−n+1 x̃m−n+1

+ pm−n+2 x̃m−n+2
+ · · ·+ pm−n+k x̃m−n+k

+
(
am(m− 1) . . . (m− n)bk+2

+am+k+1(m+k+1)(m+k) . . . (m+k−n+2)+pm−n+k+1
)
x̃m−n+k+1

+ O(x̃m−n+k+2).

Now because of u(n) = f (u) and definition (7) , we have

f (u)= am(m− 1) . . . (m− n+ 1)
(u

a

)(m−n/m)
+ pm−n+1

(u
a

)(m−n+1/m)

+ pm−n+2

(u
a

)(m−n+2)/m
+ · · ·+ pm−n+k

(u
a

)(m−n+k)/m

+
(
am(m− 1) . . . (m− n)bk+2

+ am+k+1(m+k+1)(m+k) · · · (m+k−n+2)

+ pm−n+k+1
)(u

a

)(m−n+k+1)/m

+ O(u(m−n+k+2)/m).

Due to (25), we can rewrite this equation as

(33) f (u)= am(m− 1) . . . (m− n+ 1)
(u

a

)(m−n)/m
+ pm−n+1

(u
a

)(m−n+1)/m

+ pm−n+2

(u
a

)(m−n+2)/m
+ · · ·+ pm−n+k

(u
a

)(m−n+k)/m

+
{(
(m+k+1)(m+k) . . . (m+k−n+2)

− (m−1)(m−2) . . . (m−n)
)
am+k+1

+ am(m−1) . . . (m−n)Q+pm−n+k+1
}(u

a

)(m−n+k+1)/m

+ O(u(m−n+k+2)/m).
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From (33) we get(
(m+ k+ 1)(m+ k) . . . (m+ k− n+ 2)− (m− 1)(m− 2) . . . (m− n)

)
am+k+1

+ am(m− 1) . . . (m− n)Q+ pm−n+k+1

= lim
u→0

f (u)−am . . . (m−n+1)
(u

a

)m−n
m
−pm−n+1

(u
a

)m−n+1
m
−· · ·−pm−n+k

(u
a

)m−n+k
m

(u
a

)m−n+k+1
m

.

Note that (m+k+1)(m+k) . . . (m+k−n+2)− (m−1)(m−2) . . . (m−n) 6= 0;
then since the constants Q, a, pm−n+1, . . . , pm−n+k+1 all depend only on m, n,
and f , we know that am+k+1 only depends on m, n, and f . Consequently, bk+2

also only depends on m, n, and f because of (25).
Therefore, by mathematical induction, all derivatives of f at 0 are determined

completely by m, n, and f . This completes the proof of Lemma 1.3.

3. The proofs of Theorems 1.2, 1.4 and 1.5

Proof of Theorem 1.2. Suppose there are two solutions u(t) and v(t), both satisfying
Equations (3) and (4). By Lemma 1.3, at t = 0, u and v have the same derivative of
any order. Let w = u− v; then

w(k)(0)= 0 for any integer k ≥ 0.

In order to apply Theorem 1.1, we need to show that w satisfies Condition (2).

w(n)(t)= u(n)(t)− v(n)(t)= f (u(t))− f (v(t)).

Without loss of generality, we assume a > 0. By Equation (10), we can write

(34) f (u)=
[
an/mm(m− 1) . . . (m− n+ 1)u(m−n)/m

+α(u)
]

and
f (v)=

[
an/mm(m− 1) . . . (m− n+ 1)v(m−n)/m

+α(v)
]
,

where α is a function with the order

α(s)= O(s(m−n+1)/m).

So we can write

(35) w(n)(t)=an/mm(m−1) . . . (m−n+1)(u(m−n)/m
−v(m−n)/m)+(α(u)−α(v)).

If m = n, then

an/mm(m− 1) . . . (m− n+ 1)(u(m−n)/m
− v(m−n)/m)= 0.
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If m > n, by the mean value theorem,

(36) |u(m−n)/m
− v(m−n)/m

| ≤
m− n

m
ζ−n/m

|u− v|,

where ζ(t) is between u(t) and v(t). Since u(t) = atm
+ O(tm+1) and v(t) =

atm
+ O(tm+1), we know that ζ(t)= atm

+ O(tm+1), which implies

ζ n/m
= an/m tn(1+ O(t))≥ Ctn

for some constant C > 0 when t is sufficiently small. Thus

ζ−n/m
|u− v| ≤ C−1 |u− v|

tn ,

and by (36), we know that

(37) an/mm(m− 1) . . . (m− n+ 1)
∣∣u(m−n)/m

− v(m−n)/m
∣∣≤ C

|u− v|
tn

for another constant C > 0.
Next, we estimate |α(u)−α(v)|.
From (3), we know that f is differentiable with respect to t , since u(n)(t) is

differentiable with respect to t . Condition (4) shows that (du/dt)(t) 6= 0 when t > 0
is sufficiently small. Then by the inverse function theorem, t is differentiable with
respect to u. Thus, when u is small and positive, f is differentiable with respect to
u and

d f
du
=

d f
dt
·

dt
du
.

Then by (34), since f is differentiable on a small interval (0, δ), α is also differen-
tiable on a small interval (0, δ). By the mean value theorem,

α(u)−α(v)= α′(η)(u− v),

where η(t) is between u(t) and v(t). Because u(t) = atm
+ O(tm+1) and v(t) =

atm
+ O(tm+1), we know that η(t)= atm

+ O(tm+1)≥ Ctm when t is small, and
thus

η−(n−1)/m
= O(t−(n−1)).

From α(s)= O(s(m−n+1)/m) we get α′(s)= O(s−(n−1)/m). Therefore

α′(η)= O(η−(n−1)/m)= O(t−(n−1)).

Thus for some C > 0,

(38) |α(u)−α(v)| ≤ Ct−(n−1)
|u− v|

≤ Ct−n
|u− v| since 0< t < 1.
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Combining Equations (35), (37), and (38), we conclude

|w(n)(t)| ≤ C
|u(t)− v(t)|

tn = C
|w(t)|

tn .

Finally, extend the domain of w(t) to [−1, 1] by defining w(t)= w(−t) when
−1≤ t < 0. Then w ∈C∞([−1, 1]) and it satisfies Condition (2). By Theorem 1.1,
w ≡ 0, which means u ≡ v.

This completes the proof of Theorem 1.2. �

Proof of Theorem 1.4. Without loss of generality we assume a > 0. We apply the
same analysis as in the proof of Lemma 1.3 to u1 and u2, respectively. Similar to
(11), we have

an/m
= lim

u1→0

f (u1)

m(m− 1) . . . (m− n+ 1)u(m−n)/m
1

= lim
s→0

f (s)
m(m− 1) . . . (m− n+ 1)s(m−n)/m

and

bn/ l
= lim

u2→0

f (u2)

l(l − 1) . . . (l − n+ 1)u(l−n)/ l
2

= lim
s→0

f (s)
l(l − 1) . . . (l − n+ 1)s(l−n)/ l .

Suppose m 6= l; without loss of generality we assume m < l. Dividing the two
equations, we get

an/mb−n/ l
=

l(l − 1) . . . (l − n+ 1)
m(m− 1) . . . (m− n+ 1)

lim
s→0

s(l−n)/ l−(m−n)/m

=
l(l − 1) . . . (l − n+ 1)

m(m− 1) . . . (m− n+ 1)
lim
s→0

sn/m−n/ l .

Since m< l, lims→0 sn/m−n/ l
= 0. However, an/mb−n/ l

6= 0. This is a contradiction.
Therefore m = l, and consequently a = b. Then by Theorem 1.2, we know that

u1 ≡ u2 for small t . �

Proof of Theorem 1.5. The proof of Lemma 1.3 shows that near 0, t is a function
of u, and therefore u(n)(t) can be expressed as a function f of u. Thus (3) holds
when t > 0 is small. From Condition (4), we define f (0)= 0.

By the first two equations in (10) and the discussions in the Appendix, we know
that there is a function h that is C1 on the closed interval [0, ε] for some ε > 0,
such that

f (u)= am(m− 1) . . . (m− n+ 1)x̃m−n
+ h(x̃)x̃m−n.

By definition (7), we have

(39) f (u)= am(m− 1) . . . (m− n+ 1)
(u

a

)(m−n)/m
+ h

((u
a

)1/m)(u
a

)(m−n)/m
.
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Since 0 ≤ (m − n)/m < 1 and 0 < 1/m < 1, it is well known that u(m−n)/m and
u1/m are Hölder continuous on the closed interval [0, 1] with Hölder coefficients
(m− n)/m and 1/m, respectively. This implies that the first term in (39) is Hölder
continuous on [0, 1].

Since h is C1 on [0, ε], it is also Hölder continuous on [0, ε]. Then since the
composition of two Hölder continuous functions is Hölder continuous, we know
that h((u/a)1/m) is Hölder continuous with respect to u on a closed interval [0, δ]
with δ > 0. Next, because the product of two Hölder continuous functions is also
Hölder continuous, we know that h((u/a)1/m) · (u/a)(m−n)/m is Hölder continuous.
Thus the second term in (39) is Hölder continuous on [0, δ].

Therefore, f is Hölder continuous on [0, δ] and the theorem is proved. �

Appendix: Differentiation of the Taylor expansion

We will discuss the regularity of the remainder term in the Taylor expansion of
a function that is used in the proof of Theorem 1.5 and the differentiation of the
Taylor expansion that is frequently used in the proof of Lemma 1.3.

In general, consider a function g(x) ∈ Ck+1([a, b]); by the Taylor theorem, we
can write

(40) g(x)= g(a)+ g′(a)(x − a)

+
g′′(a)

2!
(x − a)2+ · · ·+

g(k)(a)
k!

(x − a)k + h(x)(x − a)k,

where lim
x→a

h(x)= 0. An explicit expression for h(x) is

(41) h(x)=
g(k+1)(ξ)

(k+ 1)!
(x − a),

where a < ξ < x .
From (40) we know that h(x) is C1 on (a, b]. Next we show that it is actually

C1 up to the boundary, on [a, b].
Taking the derivative on both sides of (40), we get

(42) g′(x)= g′(a)+ g′′(a)(x − a)+ · · ·

+
g(k)(a)
(k− 1)!

(x − a)k−1
+ h′(x)(x − a)k + kh(x)(x − a)k−1.

Define h(a)= 0, so h is continuous on [a, b]. Write

P(x)= g(a)+ g′(a)(x − a)+
g′′(a)

2!
(x − a)2+ · · ·+

g(k)(a)
k!

(x − a)k;

then h(x)=
g(x)− P(x)
(x − a)k

. By the definition of limits,
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(43) h′(a)= lim
x→a

h(x)− h(a)
x − a

= lim
x→a

g(x)− P(x)
(x − a)k+1

...

=
g(k+1)(a)− P (k+1)(a)

(k+ 1)!
applying l’Hospital’s rule k+ 1 times

=
g(k+1)(a)
(k+ 1)!

,

where we have used the fact that P (k+1)(a)= 0.
When x > a,

h′(x)=
d

dx

(g(x)− P(x)
(x − a)k

)
=
(g′(x)− P ′(x))(x − a)k − (g(x)− P(x))k(x − a)k−1

(x − a)2k

=
g′(x)− P ′(x)
(x − a)k

−
k (g(x)− P(x))
(x − a)k+1 .

By repeatedly applying l’Hospital’s rule, we know that

lim
x→a

g′(x)− P ′(x)
(x − a)k

=
g(k+1)(a)− P (k+1)(a)

k!
=

g(k+1)(a)
k!

and

lim
x→a

k(g(x)− P(x))
(x − a)k+1 =

k
(
g(k+1)(a)− P (k+1)(a)

)
(k+ 1)!

=
kg(k+1)(a)
(k+ 1)!

.

Therefore

(44) lim
x→a

h′(x)=
g(k+1)(a)

k!
−

kg(k+1)(a)
(k+ 1)!

=
g(k+1)(a)
(k+ 1)!

.

Equations (43) and (44) show that h(x) is C1 on the closed interval [a, b].
Furthermore, we know that for any x ∈ [a, b], |h′(x)| ≤ C for some constant C1,

and thus
|h′(x)(x − a)k | ≤ C1|x − a|k .

Since g(x) ∈ Ck+1([a, b]), from (41) we know that |h(x)| ≤ C2|x − a| for some
constant C2, and thus

|kh(x)(x − a)k−1
| ≤ kC2|x − a|k .

Therefore, (42) can be written as

(45) g′(x)= g′(a)+ g′′(a)(x − a)+ · · ·+
g(k)(a)
(k− 1)!

(x − a)k−1
+ O(x − a)k .
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Since the first, second, . . . , and (k−1)-th derivatives of g′(x) at a are g′′(a), g(3)(a),
. . . , and g(k)(a), respectively, Equation (45) is the Taylor expansion of g′(x) at a
to order k− 1.

Usually we write (40) as

(46) g(x)= g(a)+ g′(a)(x − a)

+
g′′(a)

2!
(x − a)2+ · · ·+

g(k)(a)
k!

(x − a)k + O((x − a)k+1).

This shows that we can formally differentiate (46) to get (45).
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