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Abstract In this paper, we give the Hörmander’s L2 theorem for Dirac operator over
open subset Ω ∈ Rn+1 with Clifford algebra. Some sufficient conditions on the existence
of weak solutions for Dirac operators have been found in the sense of Clifford analysis.
In particular, if Ω is bounded, then we prove that for any f in L2 space with value in
Clifford algebra, we can find a weak solution of Dirac operator such that

Du = f

with the solution u in the L2 space as well. The method is based on Hörmander’s L2

existence theorem in complex analysis and the L2 weighted space is utilised.
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1 Introduction

The development of function theories over Clifford algebras has proved a useful set-
ting for generalizing many aspects of one variable complex function theory to high-
er dimensions. The study of these function theories is referred to as Clifford analysis
[Brackx et al(1982),Huang et al(2006),Gong et al(2009),Ryan(2000)]. This analysis is
closely related to a number of studies made in mathematical physics, and many appli-
cations have been found in this area in recent years. In [Ryan(1995)], Ryan considered
solutions of the polynomial Dirac operator, which affords an integral representation.
Furthermore, the author gave a Pompeiu representation for C1-functions in a Lipschitz
bounded domain. In [Ryan(1990)], the author presented a classification of linear, confor-
mally invariant, Clifford-algebra-valued differential operators over Cn, which comprise
the Dirac operator and its iterates. In [Qian and Ryan(1996)], Qian and Ryan used
Vahlen matrices to study the conformal covariance of various types of Hardy spaces
over hypersurfaces in Rn. In [De Ridder et al(2012)], the discrete Fueter polynomial-
s was introduced, which formed a basis of the space of discrete spherical monogenics.
Moreover, the explicit construction for this discrete Fueter basis, in arbitrary dimension
m and for arbitrary homogeneity degree k was presented as well.
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In [Hörmander(1965)], the famous Hörmander’s L2 existence and approximation
theorems was given for the ∂̄ operator in pseudo-convex domains in Cn. When n = 1,
the existence theorem of complex variable can be deduced. The aim of this paper is
to establish a Hörmander’s L2 theorem in Rn+1 with Clifford analysis, and provide
sufficient conditions on the existence of the weak solutions for Dirac operator in the
sense of Clifford algebra.

Let A be an real Clifford algebra over an (n+1)-dimensional real vector space Rn+1

and the corresponding norm on A is given by |λ|0 =
√
(λ, λ)0 (see subsection 2.1). Let

Ω be an open subset of Rn+1, L2(Ω,A, φ) be a right Hilbert A-module for a given
function φ ∈ C2(Ω,R) with the norm given by Definition 29. (see subsection 2.3). D

denotes the Dirac differential operator and the operator D
∗
φ is given by (9). Then we

can present the main results of the paper as follows.

Theorem 11 Given f ∈ L2(Ω,A, φ), there exists u ∈ L2(Ω,A, φ) such that

Du = f (1)

with

∥u∥2 =

∫
Ω

|u|20e−φdx ≤ 2nc (2)

if

|(f, α)φ|20 ≤ c∥D∗
φα∥2 = c

∫
Ω

|D∗
φα|20e−φ, ∀α ∈ C∞

0 (Ω,A). (3)

Conversely, if there exists u ∈ L2(Ω,A, φ) such that (1) is satisfied with

∥u∥2 ≤ c

Then we can get (3).

The factor 2n in (2) comes from the definition of the norm in Clifford analysis. If n = 1,
then the factor would disappear which gives the necessary and sufficient condition in
the theorem. From the above theorem, we give the following sufficient conditions on the
existence of weak solutions for Dirac operator.

Theorem 12 Given φ ∈ C2(Ω,R) with Ω being an open subset of Rn+1 and n > 1;

∆φ ≥ 0, and ∂2φ
∂xj∂xi

= 0, i ̸= j, 1 ≤ i, j ≤ n and ∂2φ
∂x2

i
≤ 0, 1 ≤ i ≤ n. Then for all

f ∈ L2(Ω,A, φ) with
∫
Ω

|f |20
∆φ e−φdx = c < ∞, there exists a u ∈ L2(Ω,A, φ) such that

Du = f

with

∥u∥2 =

∫
Ω

|u|20e−φdx ≤ 2n
∫
Ω

|f |20
∆φ

e−φdx.

Remark 13 Assuming x = (x0, x1, ..., xn) ∈ Rn+1, it is easy to see that φ(x) = x2
0

satisfies the conditions in Theorem 12. Another simple example would be

φ(x) = (n+ 1)x2
0 −

n∑
i=1

x2
i .

It is obvious that ∆φ(x) = 2, ∂2φ
∂x2

i
= −2, and ∂2φ

∂xj∂xi
= 0, i ̸= j, 1 ≤ i, j ≤ n.

Corollary 14 Given φ ∈ C2(Ω,R), and φ(x) = φ(x0) with φ′′(x0) ≥ 0. Then for all

f ∈ L2(Ω,A, φ) with
∫
Ω

|f |20
φ′′ e

−φdx = c < ∞, there exists a u ∈ L2(Ω,A, φ) such that

Du = f

with

∥u∥2 =

∫
Ω

|u|20e−φdx ≤ 2n
∫
Ω

|f |20
φ′′ e

−φdx.
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Furthermore, there is nothing to do with the boundary conditions of Ω in the above
results. This phenomenon is totally different with the famous Hörmander’s L2 existence
theorems of several complex variables in [Hörmander(1965)]. Then we can also have the
following corollary on global solutions.

Theorem 15 Given φ ∈ C2(Rn+1,R) with all derivative conditions in Theorem 11

satisfied. Then for all f ∈ L2(Rn+1,A, φ) with
∫
Rn+1

|f |20
∆φ e−φdx = c < ∞, there exists a

u ∈ L2(Rn+1,A, φ) satisfying
Du = f

with

∥u∥2 =

∫
Rn+1

|u|20e−φdx ≤ 2n
∫
Rn+1

|f |20
∆φ

e−φdx.

On the other hand, if the boundary of Ω is concerned, we consider a special kind
of Ω0 = {x ∈ Rn+1 : a ≤ x0 ≤ b} for any a, b ∈ R with a < b, then we can get the
following theorem within L2 space instead of L2 weighted space.

Theorem 16 Let f ∈ L2(Ω0,A). Then there exists a u ∈ L2(Ω0,A) such that

Du = f

with ∫
Ω0

|u|20dx ≤ 2nc(a, b)

∫
Ω0

|f |20dx

and c(a, b) is a factor depending on a, b.

Proof Let φ(x) = x2
0. It can be obtained that L2(Ω0,A) = L2(Ω0,A, φ) for the bound-

ary of x0. Then the theorem is proved with Theorem 12.

Remark 17 In particular, any bounded domain Ω in Rn+1 can be regarded as one type
of Ω0. Therefore, it comes from Theorem 16 that for any f ∈ L2(Ω,A), we can find a
weak solution of Dirac operator Du = f with u ∈ L2(Ω,A).

2 Preliminaries

To make the paper self-contained, some basic notations and results used in this paper
are included.

2.1 The Clifford algebra A

Let A be an real Clifford algebra over an (n+1)-dimensional real vector space Rn+1

with orthogonal basis e := {e0, e1, ..., en}, where e0 = 1 is a unit element in Rn+1.
Furthermore, {

eiej + ejei = 0, i ̸= j

e2i = −1, i = 1, ..., n.
(4)

Then A has its basis

{eA = eh1···hr = eh1 · · · ehr : 1 ≤ h1 < ... < hr ≤ n, 1 ≤ r ≤ n}.

If i ∈ {h1, ..., hr}, we denote i ∈ A and if i ̸∈ {h1, ..., hr}, we denote i ̸∈ A. A − i
means {h1, ..., hr} \ {i} and A + i means {h1, ..., hr} ∪ {i}. So real Clifford algebra is
composed of elements having the type a =

∑
A

xAeA, in which xA ∈ R are real numbers.

For a ∈ A, we give the inversion in the Clifford algebra as follows: a∗ =
∑
A

xAe
∗
A where

e∗A = (−1)|A|eA and |A| = n(A) is the r ∈ Z+ as eA = eh1···hr . When A = ∅, |A| = 0.

Next, we define the reversion in the Clifford algebra, which is given by a† =
∑
A

xAe
†
A
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where e†A = (−1)(|A|−1)|A|/2eA. Now we present the involution which is a combination
of the inversion and the reversion introduced above.

ā =
∑
A

xAēA

where ēA = e∗†A = (−1)(|A|+1)|A|/2eA. From the definition, one can easily deduce that
eAēA = ēAeA = 1. Furthermore, we have

λµ = µ̄λ̄, ∀λ, µ ∈ A.

Let a =
∑
A

xAeA be a Clifford number. The coefficient xA of the eA-component will

also be denoted by [a]A. In particular the coefficient x0 of the e0-component will be
denoted by [a]0, which is called the scalar part of the Clifford number a. An inner
product on A is defined by putting for any λ, µ ∈ A, (λ, µ)0 := 2n[λµ̄]0 = 2n

∑
A

λAµA.

The corresponding norm on A reads |λ|0 =
√
(λ, λ)0.

We define a real functional on A that τeA : A → R

⟨τeA , µ⟩ = 2n(−1)(|A|+1)|A|/2µA.

In the special case where A = ∅ we have

⟨τe0 , µ⟩ = 2nµ0.

Let Ω be an open subset of Rn+1. Then functions f defined in Ω and with values
in A are considered. They are of the form

f(x) =
∑
A

fA(x)eA

where fA(x) are functions with real value. Let D denotes the Dirac differential operator

D =

n∑
i=0

ei∂xi ,

its action on functions from the left and from the right being governed by the rules

Df =
∑
i,A

eieA∂xifA and fD =
∑
i,A

eAei∂xifA.

f is called left-monogenic if Df = 0 and it is called right-monogenic if fD = 0. The
conjugate operator is given by

D =

n∑
i=0

ēi∂xi .

It can be found that

DD = DD = ∆

where ∆ denotes the classical Laplacian in Rn+1. When n = 1, one can think of x0 as
the real part and of x1 as the imaginary part of the variable and to identify e1 with i.
the operator D then take the form D = ∂x0 + i∂x1 , which is similar the operator ∂̄ in
complex analysis.
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2.2 Modules over Clifford algebras

This subsection is to give some general information concerning a class of topological
modules over Clifford algebras. In the sequel definitions and properties will be stated
for left A-module and their duals, the passage to the case of right A-module being
straight-forward.

Definition 21 (unitary left A-module) Let X be a unitary left A-module, i.e. X is
abelian group and a law (λ, f) → λf : A×X → X is defined such that ∀λ, µ ∈ A, and
f, g ∈ X

(i) (λ+ µ)f = λf + µf ,
(ii) λµf = λ(µf),
(iii) λ(f + g) = λf + λg,
(iv) e0f = f .

Moreover, when speaking of a submodule E of the unitary left A-module X, we mean
that E is a non empty subset of X which becomes a unitary left A-module too when
restricting the module operations of X to E.

Definition 22 (left A-linear operator) If X,Y are unitary left A-modules, then
T : X → Y is said to be a left A-linear operator, if ∀ f, g ∈ X and λ ∈ A

T (λf + g) = λT (f) + T (g).

The set of all “T” is denoted by L(X,Y ). If Y = A, L(X,A) is called the algebraic
dual of X and denoted by X∗alg. Its elements are called left A-linear functionals on X
and for any T ∈ X∗alg and f ∈ X, we denote by ⟨T, f⟩ the value of T at f .

Definition 23 (bounded functional) An element T ∈ X∗alg is called bounded, if
there exist a semi-norm p on X and c > 0 such that for all f ∈ X

|⟨T, f⟩|0 ≤ c · p(f).

Theorem 24 [Brackx et al(1982)](Hahn-Banach type theorem) Let X be a uni-
tary left A-module with semi-norm p, Y be a submodule of X, and T be a left A-linear
functional on Y such that for some c > 0,

|⟨T, g⟩|0 ≤ c · p(g), ∀g ∈ Y

Then there exists a left A-linear functional T̃ on X such that

(i) T̃ |Y = T ,

(ii) for some c∗ > 0, |⟨T̃ , f⟩|0 ≤ c∗ · p(f), ∀f ∈ X.

Definition 25 (inner product on a unitary right A-module) Let H be a unitary
right A-module, then a function ( , ) : H ×H → A is said to be a inner product on H
if for all f, g, h ∈ H and λ ∈ A,

(i) (f, g + h) = (f, g) + (f, h),
(ii) (f, gλ) = (f, g)λ,
(iii) (f, g) = (g, f),
(iv) ⟨τe0 , (f, f)⟩ ≥ 0 and ⟨τe0 , (f, f)⟩ = 0 if and only if f = 0,
(v) ⟨τe0 , (fλ, fλ)⟩ ≤ |λ|20⟨τe0 , (f, f)⟩.

From the definition on inner product, putting for each f ∈ H

∥f∥2 = ⟨τe0 , (f, f)⟩,

then it can be obtained that for any f, g ∈ H,

|⟨τe0 , (f, g)⟩| ≤ ∥f∥∥g∥, ∥f + g∥ ≤ ∥f∥+ ∥g∥. (5)

Hence, ∥ · ∥ is a proper norm on H turning it into a normed right A-module. Moreover,
we have the following Cauchy-Schwarz inequality.
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Proposition 26 [Brackx et al(1982)] For all f, g ∈ H, |(f, g)|0 ≤ ∥f∥∥g∥.

Definition 27 (right Hilbert A-module) Let H be a unitary right A-module pro-
vided with an inner product ( , ). Then is it called a right Hilbert A-module if it is
complete for the norm topology derived from the inner product.

Theorem 28 [Brackx et al(1982)](Riesz representation theorem) Let H be a right
Hilbert A-modules and T ∈ H∗alg. Then T is bounded if and only if there exists a
(unique) element g ∈ H such that for all f ∈ H,

T (f) := ⟨T, f⟩ = (g, f).

2.3 Hilbert space of square integrable functions

Now we extend the standard Hilbert space of square integrable functions to Clifford
algebra. First, we denote L1(Ω,µ) and L2(Ω,µ) be the sets of all integrable or square
integrable functions defined on the domain Ω ∈ Rn+1 with respect to the measure
µ. Then L1(Ω,A, µ) and L2(Ω,A, µ) are defined as the sets of functions f : Ω → A
which are integrable or square integrable with respect to µ, i.e., if f =

∑
A

fAeA, then

for each A, fA ∈ L1(Ω,µ), respectively f2
A ∈ L1(Ω,µ). Then one may easily check

that L1(Ω,A, µ) and L2(Ω,A, µ) are unitary bi-A-module, i.e., unitary left-A-
module and unitary right-A-module. Furthermore, for any f, g ∈ L2(Ω,A, µ), f̄ ∈
L2(Ω,A, µ) while f̄g ∈ L1(Ω,A, µ), where f̄(x) = f(x) and (f̄g)(x) = f̄(x)g(x), x ∈ Ω.
Consider as a right A-module, define for f, g ∈ L2(Ω,A, µ) that

(f, g) =

∫
Ω

f̄(x)g(x)dµ.

Furthermore for any real linear functional T on A

⟨T, (f, g)⟩ = ⟨T,
∫
Ω

f̄(x)g(x)dµ⟩ =
∫
Ω

⟨T, f̄(x)g(x)⟩dµ.

Consequently, taking T = τe0 we find that

⟨τe0 , (f, f)⟩ = ⟨τe0 ,
∫
Ω

f̄(x)f(x)dµ⟩ =
∫
Ω

⟨τe0 , f̄(x)f(x)⟩dµ

=

∫
Ω

|f(x)|20dµ.
(6)

Hence, for all f ∈ L2(Ω,A, µ), ⟨τe0 , (f, f)⟩ ≥ 0 and ⟨τe0 , (f, f)⟩ = 0 if and only if
f = 0 a.e. in Ω. Then it is easy to see that under the inner product defined, all
conditions for L2(Ω,A, µ) to be a unitary right inner product A-module are satisfied.
Since L2(Ω,A, µ) =

∏
A L2(Ω,µ), we have that L2(Ω,A, µ) is complete; in other words

L2(Ω,A, µ) is a right Hilbert A-module, with the norm

∥f∥2 = ⟨τe0 , (f, f)⟩ =
∫
Ω

|f(x)|20dµ

for f ∈ L2(Ω,A, µ).

Definition 29 (weighted L2 space) Similar with L2(Ω,A, µ), we can define the
weighted L2(H,A, φ) for a given function φ ∈ C2(Ω,R). First, let

L2(Ω,φ) =
{
f |f : Ω → R,

∫
Ω

|f(x)|2e−φ dx < +∞
}
.

Then we denote

L2(H,A, φ) = {f |f : Ω → A, f =
∑
A

fAeA, fA ∈ L2(Ω,φ)}.
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Moreover, for all f, g ∈ L2(H,A, φ), we define

(f, g)φ =

∫
Ω

f̄(x)g(x)e−φdx.

Then it is also easy to see L2(Ω,A, φ) is a right Hilbert A-module, with the norm

∥f∥2 = ⟨τe0 , (f, f)φ⟩ =
∫
Ω

|f(x)|20e−φdx (7)

for f ∈ L2(Ω,A, φ).

2.4 Cauchy’s integral formula

Let M be an (n+1)-dimensional differentiable and oriented manifold contained in some
open subset Σ of Rn+1. By means of the n-forms

dx̂i = dx0 ∧ · · · ∧ dxi−1 ∧ dxxi+1 ∧ · · · ∧ dxn, i = 0, 1, ..., n,

an A-valued n-form is introduced by putting

dσ =

n∑
i=0

(−1)ieidx̂i,

similarly, denote

dσ̄ =
n∑

i=0

(−1)iēidx̂i.

Furthermore the volume-element

dx = dx0 ∧ · · · ∧ dxn

is used.

Proposition 210 [Brackx et al(1982)](Stokes-Green Theorem) If f, g ∈ C1(Σ,A)
then for any (n+1)-chain Ω on M ⊂ Σ,∫

∂Ω

fdσg =

∫
Ω

(fD)gdx+

∫
Ω

f(Dg)dx,∫
∂Ω

fdσ̄g =

∫
Ω

(fD)gdx+

∫
Ω

f(Dg)dx.

Remark 211 Denote C∞
0 (Ω,R) as the set of all smooth real-valued functions with

compact support in Ω and C∞
0 (Ω,A) := {f |f : Ω → A, f =

∑
A

fAeA, fA ∈ C∞
0 (Ω,R)}.

If f or g ∈ C∞
0 (Ω,A), then we have from the Stokes-Green theorem that∫

Ω

(fD)gdx = −
∫
Ω

f(Dg)dx,∫
Ω

(fD)gdx = −
∫
Ω

f(Dg)dx.

Lemma 212 If u(x) ∈ C1(Ω,A), then Du = ūD.

Proof Let u(x) =
∑

A eAuA. Then

Du =
∑
i,A

eieA∂xiuA =
∑
i,A

ēAēi∂xiuA = ūD. (8)

Lemma 213 [Huang et al(2006)] If u(x) =
∑

A eAuA, v(x) =
∑n

i=0 eivi, then

D(uv) = (Du)v + u(Dv) +
n∑

j=1

(eju− uej)∂xjv.
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2.5 Weak solutions

Definition 214 (D solution in weak sense) If f ∈ L1
loc(Ω,A), u : Ω → A is a weak

solution of
Du = f (or Du = f)

if for any α ∈ C∞
0 (Ω,A),∫
Ω

αfdx = −
∫
Ω

(αD)udx (or

∫
Ω

αfdx = −
∫
Ω

(αD)udx).

It should be noticed that if u is a weak solution of Du = 0, in addition, if u is smooth
in Ω, then it is left-monogenic. Now it is natural to give the definition of ∆ solution in
weak sense.

Definition 215 (∆ solution in weak sense) If f ∈ L1
loc(Ω,A), u : Ω → A is a weak

solution of
∆u = f

if for any α ∈ C∞
0 (Ω,A), ∫

Ω

αfdx =

∫
Ω

(∆α)udx.

Theorem 216 If f ∈ L1
loc(Ω,A), and Df = 0 in weak sense, then f is left-monogenic

at any point of Ω.

Proof : Since Df = 0 in weak sense, then ∆f = 0 in weak sense. By Weyl’s lemma, f
is smooth in Ω and has ∆f = 0 in classical sense, then of course f is left-monogenic at
any point of Ω.

Remark 217 This is useful to deal with uniqueness of weak solutions. for example,
if u, v ∈ L1

loc(Ω,A) are two weak solutions of Du = f , then u = v + w with any w
left-monogenic.

Remark 218 An important example of a left monogenic function is the generalized
Cauchy kernel

G(x) =
1

ωn+1

x

|x|n+1
,

where ωn+1 denotes the surface area of the unit ball in Rn+1. This function obviously
belongs to L1

loc(Ω,A) and is a fundamental solution of the Dirac operator in the classical
sense at any point of Rn+1 except 0. However, it is not a weak solution of the Dirac
operator. In fact, if it satisfies Df = 0 in weak sense, then from Theorem 216, it must
be left-monogenic in the any point of Ω which could include 0. Therefore, we get a
contradiction.

For f ∈ L2(Ω,A, φ), u : Ω → A. If Du = f , based on the Stokes-Green theorem,

we can define the dual operator D
∗
φ of D under the inner product of L2(Ω,A, φ). For

any α ∈ C∞
0 (Ω,A),

(α, f)φ =

∫
Ω

ᾱfe−φdx =

∫
Ω

ᾱe−φfdx

=

∫
Ω

(ᾱe−φ)(Du)dx

= −
∫
Ω

(
(ᾱe−φ)D

)
udx

= −
∫
Ω

(
(ᾱe−φ)D

)
eφue−φdx

=

∫
Ω

−eφD(αe−φ)ue−φdx

= (−e−φD(αe−φ), u)φ , (D
∗
φα, u)φ,

(9)
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where D
∗
φα = −eφD(αe−φ) = α(Dφ)−Dα, i.e.

(α,Du)φ = (D
∗
φα, u)φ.

In the same way, we also have

(Du,α)φ = (u,D
∗
φα)φ.

3 The proof of Theorem 11

Now we are in the position of proving Theorem 11.

Proof (Sufficiency) From the definition of dual operator and Cauchy-Schwarz inequal-
ity in Proposition 26, we have

|(f, α)φ|20 =|(Du,α)φ|20 = |(u,D∗
φα)φ|20

≤ ∥u∥2 · ∥D∗
φα∥2

≤ c · ∥D∗
φα∥2.

(necessity) We aim to prove the necessity with Riesz representation theorem. First,
we denote the submodule

E = {D∗
φα, α ∈ C∞

0 (Ω,A), φ ∈ C2(Ω,R)} ⊂ L2(Ω,A, φ).

Then we define a linear functional Lf on E, i.e., Lf ∈ E∗alg for a fixed f ∈ L2(Ω,A, φ)
as follows,

⟨Lf , D
∗
φα⟩ = (f, α)φ =

∫
Ω

f̄ · α · e−φdx ∈ A.

From (3), we have

|⟨Lf , D
∗
φα⟩|0 = |(f, α)φ|0 ≤

√
c · ∥D∗

φα∥,

which meas that Lf is a bounded functional from Definition 23. By the Hahn-Banach

type theorem in Theorem 24, Lf can be extended to a linear functional L̃f on L2(Ω,A, φ),
and with

|⟨L̃f , g⟩|0 ≤
√
c∗∥g∥, ∀g ∈ L2(Ω,A, φ), (10)

where
√
c∗ =

√
c · |e0|0, since |eA|0 = 2n/2, then c∗ = 2nc from [Brackx et al(1982)].

Now we are in the position to use the Riesz representation theorem for the operator
L̃f . From Theorem 28, there exists a u ∈ L2(Ω,A, φ) such that

⟨L̃f , g⟩ = (u, g)φ, ∀g ∈ L2(Ω,A, φ). (11)

For ∀α ∈ C∞
0 (Ω,A), let g = D

∗
φα. Then

(f, α)φ =⟨L∗
f ,D

∗
φα⟩ = (u,D

∗
φα)φ = (Du,α)φ,

which deduces that ∫
Ω

f̄αe−φdx =

∫
Ω

(Du)αe−φdx.

Conjugating both sides of above equation leads to∫
Ω

ᾱf · e−φdx =

∫
Ω

ᾱ(D)ue−φdx.

Let α = ᾱeφ, then it can be obtained that∫
Ω

αfdx =

∫
Ω

α(Du)dx, ∀α ∈ C∞
0 (Ω,A).
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Hence,

Du = f

is proved from the definition of weak solutions.

Next, we give the bound for the norm of u. Let g = u =
∑

A eAuA ∈ L2(Ω,A, φ),
from (10) and (11), we get that

|(u, u)φ|0 ≤
√
c∗∥u∥. (12)

On the other hand,

|(u, u)φ|20 =
∣∣ ∫

Ω

ūue−φdx
∣∣2
0

= 2n ·
[ ∫

Ω

ūue−φdx ·
∫
Ω

ūue−φdx
]
0

= 2n
[ ∫

Ω

(
∑
A

u2
A +

∑
A̸=B

ēAeBuAuB)e
−φdx ·

∫
Ω

(
∑
A

u2
A +

∑
A ̸=B

ēAeBuAuB)e−φdx
]
0

= 2n
[
(

∫
Ω

∑
A

u2
Ae

−φdx)2 + (

∫
Ω

∑
A ̸=B

uAuBe
−φdx)2

]
,

(13)

and

∥u∥2 =

∫
Ω

|u|20e−φdx = 2n
∫
Ω

[ūu]0e
−φdx = 2n

∫
Ω

∑
A

u2
A · e−φdx (14)

So we have ∥u∥4 = 22n · (
∫
Ω

∑
A

u2
A · e−φdx)2. Hence,

|(u, u)φ|20 = 2n[(

∫
Ω

∑
A

u2
A · e−φdx)2 + (

∫
Ω

∑
A ̸=B

uAuBe
−φdx)2] ≥ 2−n∥u∥4.

Combining with (12), it is obtained that

∥u∥2 ≤ 2n/2|(u, u)φ|0 ≤ 2n/2
√
c∗∥u∥,

and

∥u∥2 ≤ 2nc.

The proof is completed.

4 The proof of Theorem 12

It should be noticed that inequality (3) in Theorem 11 is related with α ∈ C∞
0 (Ω,A). In

the following, we will give another sufficient condition that has nothing to do with the
space C∞

0 (Ω,A). First, we need to compute the norm of ∥D∗
φα∥ for any α ∈ C∞

0 (Ω,A).
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∥D∗
φα∥2 =

∫
Ω

|D∗
φα|20e−φdx

=

∫
Ω

⟨τe0 , D
∗
φα ·D∗

φα⟩e−φdx

=⟨τe0 ,
∫
Ω

D
∗
φα ·D∗

φαe
−φdx⟩

=⟨τe0 , (D
∗
φα,D

∗
φα)φ⟩

=⟨τe0 , (α,DD
∗
φα)φ⟩

=⟨τe0 , (α,D(α(Dφ)−Dα))φ⟩

=⟨τe0 , (α,Dα(Dφ) + α∆φ−∆α+
n∑

j=1

(ejα− αej)
∂

∂xj
(Dφ))φ⟩

=⟨τe0 , (α,D
∗
φ(Dα) + α∆φ+

n∑
j=1

(ejα− αej)
∂

∂xj
(Dφ))φ⟩

=⟨τe0 , (α,D
∗
φ(Dα))φ + (α, α∆φ)φ + (α,

n∑
j=1

(ejα− αej)
∂

∂xj
(Dφ))φ⟩

=⟨τe0 , (α,D
∗
φ(Dα))φ⟩+ ⟨τe0 , (α, α∆φ)φ⟩+ ⟨τe0 , (α,

n∑
j=1

(ejα− αej)
∂

∂xj
(Dφ))φ⟩

=I1 + I2 + I3,

where

I1 =⟨τe0 , (α,D
∗
φ(Dα))φ⟩ = ⟨τe0 , (Dα,Dα)φ⟩ = ∥Dα∥2,

I2 =⟨τe0 , (α, α∆φ)φ⟩ =
∫
Ω

|α|20∆φe−φdx,

and

I3 =⟨τe0 , (α,
n∑

j=1

(ejα− αej)
∂

∂xj
(Dφ))φ⟩

=⟨τe0 , (α,
n∑

j=1

(ejα− αej)
∂

∂xj
(

n∑
i=0

ēi
∂φ

∂xi
))φ⟩

=⟨τe0 , (α,
n∑

j=1

n∑
i=0

(ejαēi − αej ēi)
∂2φ

∂xj∂xi
)φ⟩

=⟨τe0 ,
∫
Ω

ᾱ
n∑

j=1

n∑
i=0

(ejαēi − αej ēi)
∂2φ

∂xj∂xi
e−φdx⟩

=

∫
Ω

⟨τe0 , ᾱ
n∑

j=1

n∑
i=0

(ejαēi − αej ēi)
∂2φ

∂xj∂xi
⟩e−φdx.

(15)

It should be noticed that if n = 1, i.e., the space R2 is considered, then I3 = 0.
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Since for 1 ≤ i, j ≤ n and i ̸= j, ej ēi = −ejei = eiej = −eiēj . For simplicity, let

I4 =⟨τe0 , ᾱ
n∑

j=1

n∑
i=0

(ejαēi − αej ēi)
∂2φ

∂xj∂xi
⟩

=⟨τe0 ,
n∑

j=1

n∑
i=1

(ᾱejαēi − ᾱαej ēi)
∂2φ

∂xj∂xi
⟩+ ⟨τe0 ,

n∑
j=1

(ᾱejαē0 − ᾱαej ē0)
∂2φ

∂xj∂x0
⟩

=⟨τe0 ,
n∑

i=1

(ᾱeiαēi − ᾱαeiēi)
∂2φ

∂x2
i

⟩+ ⟨τe0 ,
n∑

j ̸=i

(ᾱejαēi)
∂2φ

∂xj∂xi
⟩

+ ⟨τe0 ,
n∑

j=1

(ᾱejαē0 − ᾱαej ē0)
∂2φ

∂xj∂x0
⟩

=⟨τe0 ,
n∑

i=1

(ᾱeiαēi − ᾱα)
∂2φ

∂x2
i

⟩+ ⟨τe0 ,
n∑

j ̸=i

(ᾱejαēi)
∂2φ

∂xj∂xi
⟩

+ ⟨τe0 ,
n∑

j=1

(ᾱejαē0 − ᾱαej ē0)
∂2φ

∂xj∂x0
⟩

=I5 + I6 + I7.

(16)

Assume α =
∑
A

αAeA ∈ A, ᾱ =
∑
A

αAēA, then for any 1 ≤ i ≤ n,

ᾱeiαēi =
∑
A

αAēAei ·
∑
A

αAeAēi

=
∑
A

(−1)
|A|(|A|+1)

2 αAeAei ·
∑
A

(−1)αAeAei
(17)



A variant of Hörmander’s L2 theorem for Dirac operator in Clifford analysis 13

Then

I5 =⟨τe0 ,
n∑

i=1

(ᾱeiαēi − ᾱα)
∂2φ

∂x2
i

⟩

=⟨τe0 ,
n∑

i=1

(ᾱeiαēi)
∂2φ

∂x2
i

⟩ − ⟨τe0 ,
n∑

i=1

(ᾱα)
∂2φ

∂x2
i

⟩

=⟨τe0 ,
n∑

i=1

(
∑
A

(−1)
|A|(|A|+1)

2 αAeAei ·
∑
A

(−1)αAeAei)
∂2φ

∂x2
i

⟩ − ⟨τe0 ,
n∑

i=1

(ᾱα)
∂2φ

∂x2
i

⟩

=2n
n∑

i=1

(
∑
A

(−1)
|A|(|A|+1)

2 +1α2
AeAeieAei)

∂2φ

∂x2
i

−
n∑

i=1

|α|20
∂2φ

∂x2
i

=2n
n∑

i=1

(
∑
i ̸∈A

(−1)
|A|(|A|+1)

2 +1α2
A · eAei · eAei · (−1)

(|A|+1)(|A|+2)
2

+
∑
i∈A

(−1)
|A|(|A|+1)

2 +1 · α2
A · eA−i · eA−i · (−1)

(|A|−1)(|A|)
2 )

∂2φ

∂x2
i

−
n∑

i=1

|α|20
∂2φ

∂x2
i

=2n
n∑

i=1

(
∑
i ̸∈A

(−1)
|A|(|A|+1)

2 +1+
(|A|+1)(|A|+2)

2 · α2
A

+
∑
i∈A

(−1)
|A|(|A|+1)

2 +1+
(|A|−1)(|A|)

2 · α2
A)

∂2φ

∂x2
i

−
n∑

i=1

|α|20
∂2φ

∂x2
i

=2n
n∑

i=1

(
∑
i ̸∈A

(−1)|A|2 · α2
A +

∑
i∈A

(−1)|A|2+1 · α2
A)

∂2φ

∂x2
i

−
n∑

i=1

|α|20
∂2φ

∂x2
i

=2n
n∑

i=1

(
∑

i ̸∈A,|A|2 is odd

(−2)α2
A +

∑
i∈A,|A|2 is even

(−2)α2
A)

∂2φ

∂x2
i

=− 2n+1
n∑

i=1

(
∑

i ̸∈A,|A|2 is odd

α2
A +

∑
i∈A,|A|2 is even

α2
A)

∂2φ

∂x2
i

.

(18)

To consider I7, we first study ᾱejα for any 1 ≤ j ≤ n. Without loss of generality, let
ej = e1, ᾱ =

∑
A

αAēA, α =
∑
A

αAeA. Then ᾱe1α = (
∑
A

αAēA)e1(
∑
A

αAeA).

When eA = e1eh2eh3 · · · ehr , where 1 < h2 < h3 < · · · < hr and 1 < r ≤ n.

αAēAe1 =α1h2···hr (−1)
r(r+1)

2 · e1eh2eh3 · · · ehr · e1

=α1h2···hr (−1)
r(r+1)

2 +reh2eh3 · · · ehr

αAeAe1 =α1h2···hre1eh2 · · · ehr · e1 = α1h2···hr (−1)reh2 · · · ehr .

(19)

When eA = e1,

αAēAe1 =α1

αAeAe1 =− α1.
(20)

When eA = eh2eh3 · · · ehr , where 1 < h2 < h3 < · · · < hr and 1 < r ≤ n.

αAēAe1 =αh2···hr
(−1)

(r−1)(r)
2 · eh2

eh3
· · · ehr

· e1

=αh2···hr (−1)
(r−1)(r)

2 +r−1e1eh2 · · · ehr

αAeAe1 =αh2···hreh2 · · · ehr · e1 = αh2···hr (−1)r−1e1eh2 · · · ehr .

(21)

When eA = e0,

αAēAe1 =α0e1

αAeAe1 =α0e1.
(22)
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To compute I7, one needs to know the coefficient for e0 of ᾱe1α− ᾱαe1. It means that
we should find out the corresponding terms of e1eh2eh3 · · · ehr and eh2 · · · ehr in ᾱe1 and
α, in ᾱ and αe1.

Case a1. For ᾱe1α, from (21), the corresponding terms of e1eh2eh3 · · · ehr with
1 < h2 < h3 < · · · < hr and 1 < r ≤ n in ᾱe1 = (

∑
A

αAēA)e1 and α =
∑
A

αAeA are

αh2···hr (−1)
(r−1)(r)

2 +r−1e1eh2 · · · ehr and α1h2···hre1eh2 · · · ehr , respectively. Multiplying
these terms leads to

(−1)
(r−1)(r)

2 +r−1e1eh2 · · · ehr · e1eh2 · · · ehr · α1h2···hr · αh2···hr

= (−1)
(r−1)(r)

2 +r−1(−1)
(r)(r+1)

2 · e1 · · · ehr · e1eh2 · · · ehr · α1h2···hrαh2···hr

= (−1)
(r)(r+1)

2 +r−1+
(r−1)(r)

2 · α1h2···hrαh2···hr .

(23)

On the other hand, for ᾱe1α, from (19), the corresponding terms of eh2eh3 · · · ehr with

1 < h2 < h3 < · · · < hr and 1 < r ≤ n in ᾱe1 and α are α1h2···hr (−1)
r(r+1)

2 +reh2eh3 · · · ehr

and αh2···hreh2 · · · ehr , respectively. Multiplying these terms leads to

(−1)
(r)(r+1)

2 +reh2···hr · eh2···hr · α1h2···hr · αh2···hr

= (−1)
(r)(r+1)

2 +r(−1)
(r−1)(r)

2 · eh2···hr · eh2···hr · α1h2···hrαh2···hr

= (−1)
(r)(r+1)

2 +r+
(r−1)(r)

2 · α1h2···hrαh2···hr .

(24)

From (23) and (24), these two terms cancel.
Case a2. For ᾱe1α, from (22), the corresponding terms of e1 in ᾱe1 and α are α0e1

and α1e1, respectively. Multiplying these terms leads to

α0e1α1e1 = −α0α1. (25)

On the other hand, for ᾱe1α, from (20), the corresponding terms of e0 in ᾱe1 and α are
α1 and α0, respectively. Multiplying these terms leads to α0α1. Combining with (25),
these two terms also cancel.

From Cases a1 and a2, one can obtain that the coefficient for e0 of ᾱe1α equals zero,
i.e.,

⟨τe0 ,
n∑

j=1

(ᾱejαē0)
∂2φ

∂xj∂x0
⟩ = 0. (26)

Case b1. For ᾱαe1, from (21), the corresponding terms of e1eh2eh3 · · · ehr with
1 < h2 < h3 < · · · < hr and 1 < r ≤ n in αe1 = (

∑
A

αAeA)e1 and ᾱ =
∑
A

αAēA

are αh2···hr (−1)r−1e1eh2 · · · ehr and α1h2···hre1eh2 · · · ehr , respectively. Multiplying these
terms leads to

(α1h2···hre1eh2 · · · ehr ) · (αh2···hreh2 · · · ehr · e1)
= (α1h2···hre1eh2 · · · ehr ) · ((−1)r−1e1eh2 · · · ehr · αh2···hr )

= (−1)r−1α1h2···hr · αh2···hr .

(27)

On the other hand, for ᾱαe1, from (19), the corresponding terms of eh2eh3 · · · ehr with
1 < h2 < h3 < · · · < hr and 1 < r ≤ n in αe1 and ᾱ are α1h2···hr (−1)reh2 · · · ehr and
αh2···hreh2 · · · ehr , respectively. Multiplying these terms leads to

(αh2···hreh2 · · · ehr ) · (α1h2···hre1 · · · ehr · e1)
= (αh2···hreh2 · · · ehr ) · ((−1)reh2 · · · ehr · α1h2···hr )

= (−1)rαh2···hr · α1h2···hr .

(28)

From (27) and (28), these two terms cancel.
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Case b2. For ᾱαe1, from (22), the corresponding terms of e1 in αe1 and ᾱ are α0e1
and α1ē1, respectively. Multiplying these terms leads to

α0e1α1ē1 = α0α1. (29)

On the other hand, for ᾱαe1, from (20), the corresponding terms of e0 in αe1 and ᾱ
are −α1 and α0, respectively. Multiplying these terms leads to −α0α1. Combining with
(29), these two terms also cancel.

From Cases b1 and b2, one can obtain that the coefficient for e0 of ᾱe1α equals zero,
i.e.,

⟨τe0 ,
n∑

j=1

(ᾱαej ē0)
∂2φ

∂xj∂x0
⟩ = 0. (30)

Thus, I7 = 0 from (26) and (30).
To compute I6, i.e., to get [ᾱeiαēj ]0 for i ̸= j, similar with the analysis of I7, we

should divide the vectors in ᾱei and αēj into four cases.
Case c1. i ∈ A, j ̸∈ A for eA in ᾱ and i ̸∈ B, j ∈ B for eB in α with A− i = B− j.
For this case, firstly, we assume eA = eh1···hp(i)···hr

and hp(i) = i, eB = eh1···hp(j)···hr

and hp(j) = j. We have

αAēAei =αA(−1)
r(r+1)

2 · eh1 · · · ei · · · ehr · ei

=αA(−1)
r(r+1)

2 +r−p(i)eh1 · · · e2i · · · ehr ,

=αA(−1)
r(r+1)

2 +r−p(i)+1eA−i,

αBeB ēj =αBeh1 · · · ej · · · ehr · ēj
=αB(−1)r−p(j)eh1 · · · ej ēj · · · ehr ,

=αB(−1)r−p(j)eB−j .

(31)

Then

αAēAeiαBeB ēj =αA(−1)
r(r+1)

2 +r−p(i)+1eA−iαB(−1)r−p(j)eB−j

=αAαB(−1)
r(r+1)

2 +r−p(i)+1+r−p(j)+
r(r−1)

2 eA−ieB−j

=αAαB(−1)r
2+1−p(i)−p(j).

(32)

Case c2. i ̸∈ A, j ∈ A for eA in ᾱ and i ∈ B, j ̸∈ B for eB in α with A+ i = B+ j.
We assume eA = eh1···hp(j)···hr and hp(j) = j, eB = eh1···hp(i)···hr and hp(i) = i. We

have

αAēAei =αA(−1)
r(r+1)

2 · eh1 · · · ej · · · ehr · ei,
αBeB ēj =αBeh1 · · · ei · · · ehr · ēj

=− αBeh1 · · · ei · · · ehr · ej
=αBeh1 · · · ej · · · ehr · ei.

(33)

Then

αAēAeiαBeB ēj =αA(−1)
r(r+1)

2 · eh1 · · · ej · · · ehr · eiαBeh1 · · · ej · · · ehr · ei

=αAαB(−1)
r(r+1)

2 +
(r+1)(r+2)

2 eh1 · · · ej · · · ehr · eieh1 · · · ej · · · ehr · ei
=αAαB(−1)r

2+1.

(34)

Case c3. i ∈ A, j ∈ A for eA in ᾱ and i ̸∈ B, j ̸∈ B for eB in α with A− i = B+ j.
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For this case, we assume eA = eh1···hp(i)···hp(j)···hr+2 with hp(i) = i, hp(j) = j. With-
out loss of generality, we assume i < j. Furthermore, let eB = eh1···hr . We have

αAēAei =αA(−1)
(r+2)(r+3)

2 · eh1 · · · ei · · · ej · · · ehr+2 · ei

=αA(−1)
(r+2)(r+3)

2 +r+2−h(i) · eh1 · · · ej · · · ehr+2 · e2i
=αA(−1)

(r+2)(r+3)
2 +r+1−h(i) · eh1

· · · ej · · · ehr+2

=αA(−1)
(r+2)(r+3)

2 +r+1−h(i)+r+2−h(j) · eh1 · · · ehr+2 · ej ,
αBeB ēj =αBeh1 · · · ehr · ēj

=− αBeh1 · · · ehr · ej .

(35)

Then

αAēAeiαBeB ēj =αA(−1)
(r+2)(r+3)

2 +r+1−h(i)+r+2−h(j) · eh1 · · · ehr+2 · ej(−1)αBeh1 · · · ehr · ej

=αAαB(−1)
(r+2)(r+3)

2 −h(i)−h(j) · eh1 · · · ehr+2 · ejeh1 · · · ehr · ej

=αAαB(−1)
(r+2)(r+3)

2 −h(i)−h(j)+
(r+1)(r+2)

2 · eh1 · · · ehr+2 · ejeh1 · · · ehr · ej
=αAαB(−1)r

2−h(j)−h(i).

(36)

Case c4. i ̸∈ A, j ̸∈ A for eA in ᾱ and i ∈ B, j ∈ B for eB in α with A+ i = B− j.

For this case, we assume eA = eh1···hr , eB = eh1···hp(i)···hp(j)···hr+2 with hp(i) =
i, hp(j) = j and i < j. We have

αAēAei =αA(−1)
r(r+1)

2 · eh1 · · · ehr · ei,
αBeB ēj =αBeh1 · · · ei · · · ej · · · ehr+2 · ēj

=αB(−1)r+2−h(j) · eh1 · · · ei · · · ehr+2 · ej ēj
=αB(−1)r+2−h(j)+r+2−h(i)−1 · eh1 · · · ehr+2 · ei
=αB(−1)1−h(j)−h(i) · eh1 · · · ehr+2 · ei

(37)

Then

αAēAeiαBeB ēj =αA(−1)
r(r+1)

2 · eh1 · · · ehr · eiαB(−1)1−h(j)−h(i) · eh1 · · · ehr+2 · ei

=αAαB(−1)
r(r+1)

2 +1−h(j)−h(i) · eh1 · · · ehr · ei · eh1 · · · ehr+2 · ei

=αAαB(−1)
r(r+1)

2 +1−h(j)−h(i)+
(r+1)(r+2)

2 · eh1 · · · ehr · ei · eh1 · · · ehr+2 · ei
=αAαB(−1)r

2−h(j)−h(i).

(38)
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Combining cases c1-c4, we have

I6 =⟨τe0 ,
n∑

j ̸=i

(ᾱejαēi)
∂2φ

∂xj∂xi
⟩

=⟨τe0 ,
n∑

j ̸=i

(
(
∑
A

ēAαA)ej(
∑
B

eBαB)ēi
) ∂2φ

∂xj∂xi
⟩

=⟨τe0 ,
n∑

j ̸=i

(
(
∑
A

ēAαA)ei(
∑
B

eBαB)ēj
) ∂2φ

∂xi∂xj
⟩

=
n∑

j ̸=i

⟨τe0 , (
∑
A

ēAαA)ei(
∑
B

eBαB)ēj⟩
∂2φ

∂xi∂xj

=
n∑

j ̸=i

⟨τe0 , (
∑
A

ēAαA)ei(
∑
B

eBαB)ēj⟩
∂2φ

∂xi∂xj

=2n
n∑

j ̸=i

( ∑
i∈A, j ̸∈A;A−i=B−j

αAαB(−1)r
2+1−p(i)−p(j)

+
∑

i ̸∈A, j∈A;A+i=B+j

αAαB(−1)r
2+1

+
∑

i∈A, j∈A;A−i=B+j

αAαB(−1)r
2−h(j)−h(i)

+
∑

i ̸∈A, j ̸∈A;A+i=B−j

αAαB(−1)r
2−h(j)−h(i)

) ∂2φ

∂xi∂xj
.

(39)

In all,

I3 =

∫
Ω

I4e
−φdx

=

∫
Ω

(I5 + I6 + I7)e
−φdx

=− 2n+1

∫
Ω

n∑
i=1

(
∑

i ̸∈A,|A|2 is odd

α2
A +

∑
i∈A,|A|2 is even

α2
A)

∂2φ

∂x2
i

e−φdx

+ 2n
∫
Ω

n∑
j ̸=i

( ∑
i∈A, j ̸∈A;A−i=B−j

αAαB(−1)r
2+1−p(i)−p(j)

+
∑

i̸∈A, j∈A;A+i=B+j

αAαB(−1)r
2+1

+
∑

i∈A, j∈A;A−i=B+j

αAαB(−1)r
2−h(j)−h(i)

+
∑

i̸∈A, j ̸∈A;A+i=B−j

αAαB(−1)r
2−h(j)−h(i)

) ∂2φ

∂xi∂xj
e−φdx.

(40)

Then we have

∥D∗
φα∥2 = ∥Dα∥2 +

∫
Ω

|α|20∆φe−φdx+ I3. (41)

It is obtained that if ∂2φ
∂xj∂xi

= 0, i ̸= j, 1 ≤ i, j ≤ n and ∂2φ
∂x2

i
≤ 0, 1 ≤ i ≤ n. Then we

have I3 ≥ 0, and

∥D∗
φα∥2 ≥

∫
Ω

|α|20∆φe−φdx,

With the above analysis, we can prove Theorem 12 easily.
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Proof It is sufficient to prove the theorem if condition (3) in Theorem 11 is presented.
By Cauchy-Schwarz inequality in Proposition 26, we have for any α ∈ C∞

0 (Ω,A) that

|(f, α)φ|20 =
∣∣ ∫

Ω

f̄ · αe−φdx
∣∣2
0

=
∣∣ ∫

Ω

f̄ · 1√
∆φ

· α ·
√

∆φ · e−φdx
∣∣2
0

≤
∥∥f̄ 1√

∆φ

∥∥2 · ∥∥α ·
√
∆φ

∥∥2
=

∫
Ω

∣∣ f̄√
∆φ

∣∣2
0
e−φdx ·

∫
Ω

∣∣α ·
√
∆φ

∣∣2
0
e−φdx

≤c∥D∗
φα∥2.

The proof is completed with Theorem 11.

It should be noticed that when n = 1, I3 = 0. Then it comes from equation (41) that
the Hörmander’s L2 theorem in R2 which equals the classical Hörmander’s L2 theorem
in C could be described as follows.

Corollary 41 Given φ ∈ C2(Ω,R) with Ω being an open subset of R2; ∆φ ≥ 0. Then

for all f ∈ L2(Ω,A, φ) with
∫
Ω

|f |20
∆φ e−φdx = c < ∞, there exists a u ∈ L2(Ω,A, φ) such

that
Du = f

with

∥u∥2 ≤
∫
Ω

|f |20
∆φ

e−φdx.

5 Conclusion

In this paper, based on the Hörmander’s L2 theorem in complex analysis, the Hörmander’s
L2 theorem for Dirac operator in Rn+1 with n > 1 has been obtained by Clifford alge-
bra. When n = 1, the result is equivalent to the classical Hörmander’s L2 theorem in
complex variable from the proof of the main theorem. As a result, for any f in L2 space
over a bounded domain with value in Clifford algebra, we can find a weak solution of
Dirac operator with the solution in the L2 space as well. The potential applications of
the result will be studied in our future work.
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