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AN INCREASING FUNCTION

WITH INFINITELY CHANGING CONVEXITY

TONG TANG, YIFEI PAN, AND MEI WANG

Abstract. We construct a smooth, strictly increasing function with its sec-

ond derivative changing signs infinitely many times near a point, then we

extend the function to a surface increasing in radial direction with curva-

tures changing signs infinitely often near the origin. The interesting ana-

lytical properties of the functions may serve as examples to understand the

reversed Hopf Lemma.

It is well known that there are many smooth functions vanishing at a point with

infinite order. A good example is the function f(t) = e−1/t
2

with f (k)(0) =

limt→0 f
(k)(t) = 0 for all k. In this study note, we are interested in finding a

strictly increasing function with second derivative changing signs infinitely often

near a point. Such function could be useful in understanding the reversed Hopf

Lemma, as studied in [1] and [2]. To our best knowledge, this example does not

seem to be presented in the current circulating publications. Hence in this note,

we construct such a function along with its extension to a two dimensional surface

strictly increasing in radial direction with curvature changing signs infinitely often

near the origin.

1. An example

Example 1.1. Consider the function

u(t) =

∫ t

0

(t− s)e−α/s
[
sin (1/s) + C sin2 (1/s)

]
ds, t ∈ [0, 1], α, C > 0.

The function u has the following properties:

(1) Vanishing at t = 0 of infinite order:

u(k)(0) = limt→0+ u
(k)(t) = 0 for k = 0, 1, 2, · · · .
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(2) Smoothness of infinite order: u ∈ C∞([0, 1]).

(3) Changing convexity infinitely often at 0:

u′′ changes signs in (0, ε), for any 0 < ε < 1.

(4) Strictly increasing:

u′(t) > 0 for t ∈ (0, 1] when C ≥ Cα = 4eαπ(9eαπ − 1)/π.

(Note: Cα is an increasing function of α. In particular, Cα > 32/π.)

Remarks: It is more straightforward to construct a function satisfying the first

three properties. The main effort is to maintain monotonicity in property (4).

Proof of the properties in Example 1.1. By the general Leibniz rule in

calculus,

d

dt

∫ b(t)

a(t)

f(t, s)ds = b′(t)f(t, b(t))− a′(t)f(t, a(t)) +

∫ b(t)

a(t)

d

dt
f(t, s)ds,

we have

u′(t) =

∫ t

0

e−α/s
[
sin (1/s) + C sin2 (1/s)

]
ds, t ∈ [0, 1],

u′′(t) = e−α/t
[
sin (1/t) + C sin2 (1/t)

]
, t ∈ (0, 1].

The kth derivative (k ≥ 2) can be written as

u(k)(t) = t−(k−1)e−α/tH(t), t ∈ (0, 1], where Hk(t) = O(t) as t→ 0.

That is, Hk(t) are uniformly bounded for all t ∈ (0, 1], k ≥ 2, according to Taylor’s

Theorem. To show Property (1), use the fact that for any s ∈ R, tse−α/t → 0 as

t↘ 0, so limt→0+ u
(k)(t) = 0 for all k by the boundedness of sine functions.

By the infinite differentiability of e−α/t and sin(1/t) on t > 0, u ∈ C∞((0, 1]).

Property (1) warrants the extension to C∞([0, 1]). Thus Property (2) holds.

To prove Property (3), we show that for any ε ∈ (0, 1), there exist t1, t2 ∈ (0, ε)

with u′′(t1) > 0, u′′(t2) < 0. Choose n such that 2nπ > 1/ε. Then t1 = (2nπ +

π/2)−1 ∈ (0, ε), and

u′′(t1) = e−α(2nπ+π/2)(1 + C) > 0.

Select δ ∈ (0, ε) such that C sin(δ) < 1. Then t2 = ((2n+ 1)π+ δ)−1 ∈ (0, ε), and

u′′(t2) = e−α((2n+1)π+δ)
[
sin(π + δ) + C sin2(π + δ)

]
= e−α((2n+1)π+δ) sin(δ)[−1 + C sin(δ)] < 0.
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Therefore Property (3) holds.

To prove Property (4), for fixed α > 0 and for any t ∈ (0, 1], we write

u′(t) =

∫ t

0

u′′(x)dx =

∫ ∞
1/t

u′′(1/y)

y2
dy =

∫ ∞
1/t

e−αy

y2
(
sin y + C sin2 y

)
dy.

The above integral converges absolutely for any t > 0. Express the integral form

of u′(t) as

u′(t) = It +

∞∑
n=no

I(n),

with

It =

∫ (2no+1)π

1/t

e−αy

y2
(
C sin2 y + sin y

)
dy,

no = no(t) = d1/te = min{n ∈ Z, (2n+ 1)π ≥ 1/t},

and

I(n) =

∫ (2n+3)π

(2n+1)π

e−αy

y2
(
sin y + C sin2 y

)
dy.

For t ∈ (0, 1], we prove u′(t) > 0 by showing I(n) > 0 for n = 0, 1, · · · and It > 0.

Write

I(n) = C

∫ (2n+3)π

(2n+1)π

e−αy

y2
sin2 y dy −

(
−
∫ (2n+3)π

(2n+1)π

e−αy

y2
sin y dy

)
= I1(n)− I2(n).

For the term I1(n), Shift the intervals to (0, π) and use the monotone property of

e−αy and y−2,

I1(n) = C

(∫ (2n+2)π

(2n+1)π

+

∫ (2n+3)π

(2n+2)π

)
e−αy

y2
sin2 y dy

= C

∫ π

0

e−αy−α(2n+2)π

(
eαπ

(y + (2n+ 1)π)2
+

1

(y + (2n+ 2)π)2

)
sin2 y dy

> C e−α(2n+2)π

∫ π

0

e−αy
eαπ + 1

(y + (2n+ 2)π)2
sin2 y dy

> C e−α(2n+2)π

∫ π

0

e−απ
eαπ + 1

(π + (2n+ 2)π)2
sin2 y dy

= C
e−α(2n+2)π

((2n+ 3)π)2
(1 + e−απ)

π

2
.
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Similarly for the second term,

I2(n) = −

(∫ (2n+2)π

(2n+1)π

+

∫ (2n+3)π

(2n+2)π

)
e−αy

y2
sin y dy

=

∫ π

0

e−αy−α(2n+2)π

(
eαπ

(y + (2n+ 1)π)2
− 1

(y + (2n+ 2)π)2

)
sin y dy

< e−α(2n+2)π

∫ π

0

e−αy
(

eαπ

((2n+ 1)π)2
− 1

(π + (2n+ 2)π)2

)
sin y dy

=
e−α(2n+2)π

((2n+ 3)π)2

∫ απ

0

e−αy
(

(2n+ 3)2

(2n+ 1)2
eaπ − 1

)
sin y dy

<
e−α(2n+2)π

((2n+ 3)π)2

∫ aπ

0

(9eαπ − 1) sin y dy =
e−α(2n+2)π

((2n+ 3)π)2
(9eαπ − 1) 2.

Therefore if we choose C ≥ Cα =
4(9eαπ − 1)

πe−απ
>

4(9eαπ − 1)

π(e−απ + 1)
,

I(n) = I1(n)− I2(n) >
e−α(2n+2)π

((2n+ 3)π)2

[
C
π(1 + e−απ)

2
− 2(9eαπ − 1)

]
> 0.

Now consider the boundary interval It =

∫ (2no+1)π

1/t

e−αy

y2
(
C sin2 y + sin y

)
dy. If

1/t ∈ [2noπ, (2no + 1)π] for some no ≥ 0, all integrands ≥ 0 on the interval of

integration so It > 0. If 1/t ∈ [(2no − 1)π, 2noπ] for some no > 0, notice that

C sin2 y + sin y = 0 only when sin y = −1/C, so C sin2 y + sin y < 0 only on two

sub-intervals

(
(2no − 1)π, (2no − 1)π + sin−1(1/C)

)
and

(
2noπ − sin−1(1/C), 2noπ

)
So it is only necessary to consider the “worst cases” when 1/t is the left endpoint

of either subintervals. When 1/t = (2no − 1)π, the integral It is over [(2no −
1)π, (2no + 1)π], an interval of length 2π. Then It = I(no − 1) > 0 based on

the above estimates for I(n). Now we only need to consider the case when 1/t =
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2noπ − sin−1(1/C), then

It =

(∫ 2noπ

1/t

+

∫ (2no+1)π

2noπ

)
e−αy

y2
(C sin2 y + sin y) dy

> C

∫ (2no+1)π

2noπ

e−αy

y2
sin2 y dy −

[
−

(∫ 2noπ

(2no−1)π
+

∫ (2no+1)π

2noπ

)
e−αy

y2
sin y dy

]

> C

∫ (2no+1)π

2noπ

e−αy

y2
sin2 y dy − I2(no − 1)

> C
e−α2noπ

((2no + 1)π)2

(
e−απ

π

2

)
− e−α2noπ

((2no + 1)π)2
(9eαπ − 1) 2.

In the last inequality we use similar derivations used earlier for I2(n) and I1(n).

Therefore It > 0 when C ≥ Cα = 4eαπ(9eαπ − 1)/π. Consequently

u′(t) = It +

∞∑
n=no(t)

I(n) > 0 ∀t ∈ (0, 1],

which proves Property (4). �

2. Functions on the plane

Next we consider the two dimensional case, where curvature is determined by both

the first and second derivatives of the function. Let DR = {(x, y) ∈ R2, ‖(x, y)‖ =√
x2 + y2 < R}. As before, we use D = D1 for simplicity. Define f : D → R by

f(x, y) = u(x2 + y2) for any u ∈ C2((0, 1]). Recall the Gaussian curvature of f

κ = κ(x, y) =
fxxfyy − f2xy

(1 + f2x + f2y )2
,

where fxx = fxx(x, y) is the second order partial derivative of f(x, y) with respect

to x, and so on. Let s = x2+y2. The following proposition describes the behavior

of the curvature near isolated critical points of the radial function f .

Proposition 2.1. Assume u′(s0) = 0, s0 ∈ (0, 1), and u′(s) 6= 0 for s ∈
(s0 − δ, s0 + δ) \ {s0} for some δ ∈ (0, s0). Then the Gaussian curvature of

f(x, y) = u(x2 +y2) changes signs in a neighborhood of (x0, y0) for any (x0, y0) =

(s0 cos θ, s0 sin θ), θ ∈ [0, 2π).
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Proof. The partial derivatives of f can be expressed as

fx = 2xu′(s), fxx = 2u′(s) + 4x2u′′(s), fyy = 2u′(s) + 4y2u′′(s), fxy = 4xyu′′(s).

The denominator of κ is always > 0. The denominator of κ can be written in the

forms

(2.1) D(x, y) = fxxfyy − f2xy = 4u′(s)2 + 8su′(s)u′′(s) = 4
d

ds

(
su′(s)2

)
= D(s).

For any s1 ∈ (s0, s0 + δ),∫ s1

s0

D(s)ds = 4

∫ s1

s0

d

ds

(
su′(s)2

)
ds = 4su′(s)2

∣∣∣∣s1
s0

= 4s1u
′(s1)2 > 0.

Therefore there must be t1 ∈ (s0, s1) such that D(t1) > 0. Consequently for

(x1, y1) = (t1 cos θ, t1 sin θ), we have κ(x1, y1) > 0. Similarly, for any s2 ∈ (s0 −
δ, s0), ∫ s0

s2

D(s)ds = 4su′(s)2
∣∣∣∣s0
s2

= −4s2u
′(s2)2 < 0.

So there must be t2 ∈ (s2, s0) such that D(t2) < 0. Hence κ(x2, y2) < 0 for

(x2, y2) = (t2 cos θ, t2 sin θ).

Since δ > 0 can be arbitrarily small, and both (x1, y1), (x2, y2) are in the disk

of raduis δ centered at (x0, y0), we have proved that κ(x, y) changes signs in a

neighborhood of (x0, y0) for any (x0, y0) = (s0 cos θ, s0 sin θ), θ ∈ [0, 2π). �

The following example is an extension of the function u in Example 1.1 to the

two dimensional case.

Example 2.2. For α > 0, let v : D→ R be v(x, y) = u(x2 + y2), where u is the

function in Example 1.1 with C > Cα. It is clear that v(x, y) is strictly increasing

in radial directions. Furthermore, the curvature of v(x, y) changes signs infinite

often near (0, 0): for any ε ∈ (0, 1), there are (x1, y1), (x2, y2) ∈ Dε such that

κ(x1, y1) > 0, κ(x2, y2) < 0.

Remarks: Similar to Example 1.1, it is not difficult to obtain a surface function

with infinitely changing curvature. Thus the main attribute of the constructed

function is having infinitely changing curvature while strictly increasing in radial

directions.

Proof of the curvature property for Example 2.2. Fix α,C > Cα and

ε ∈ (0, 1). Let t = x2 + y2 and

D(t) = 4u′(t)2 + 8tu′(t)u′′(t)
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as defined in (2.1). It is sufficient to show that, for ε ∈ (0, 1), there exist

t+, t− ∈ (0, ε) with D(t+) > 0, D(t−) < 0. To find D(t+) > 0 with t+ ∈ (0, ε) is

straightforward. Choose n such that 2nπ > 1/ε. Then t+ = (2nπ+π/2)−1 ∈ (0, ε)

and sin(1/t+) = 1, thus

u′′(t+) = e−α(2nπ+π/2)(1+C) > 0 ⇒ D(t+) = 4u′(t+)2+8t+u
′(t+)u′′(t+) > 0.

To attain D(t−) < 0, we need to choose t− ∈ (0, ε) such that

u′′(t−) < − u′(t−)

2t−

then consequently D(t−) = 8t−u
′(t−)

(
u′′(t−) + u′(t−)

2t−

)
< 0. Select δ ∈ (0, ε)

such that 0 < C sin(δ) < 1. Define

εo = C sin(δ)[1− C sin(δ)].

Next we examine a u′ related term J(t) to obtain an upper bound.

0 < J(t) = eα/t
u′(t)

t
=
eα/t

t

∫ t

0

u′′(x)dx =
eα/t

t

∫ ∞
1/t

u′′(1/y)

y2
dy

=
eα/t

t

∫ ∞
1/t

e−αy
sin y + C sin2 y

y2
dy = J1(t) + CJ2(t)

Consider the first term J1(t). Notice that for any tn such that 1/tn ∈ ((2n +

1)π, (2n+ 2)π), n > 0, we have

0 <

∫ 1/tn

0

sin y

y
dy <

∫ ∞
0

sin y

y
dy =

π

2
.

Therefore for such tn,∫ ∞
1/tn

sin y

y
dy =

π

2
−
∫ 1/tn

0

sin y

y
dy ↘ 0 as n→∞, tn → 0.

We may choose n > N1 such that

J1(tn) =
eα/tn

tn

∫ ∞
1/tn

e−αy
sin y

y2
dy =

∫ ∞
1/tn

e−α(y−1/tn)
1

tn

sin y

y2
dy

≤
∫ ∞
1/tn

e−α(y−1/tn) y
sin y

y2
dy =

∫ ∞
1/tn

e−α(y−1/tn)
sin y

y
dy (since 1/tn ≤ y)

≤
∫ ∞
1/tn

sin y

y
dy ≤ εo

C
(since e−α(y−1/tn) ≤ 1)
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Now look at the second term CJ2(t) in the u′ related term J(t). For tn chosen

above,

0 < J2(tn) =
eα/tn

tn

∫ ∞
1/tn

e−αy
sin2 y

y2
dy =

∫ ∞
1/tn

e−α(y−1/tn)
1

tn

sin2 y

y2
dy

≤
∫ ∞
1/tn

e−α(y−1/tn) y
sin2 y

y2
dy =

∫ ∞
0

e−αz
sin2(z + 1/tn)

z + 1/tn
dz

≤
∫ ∞
0

e−αzdz
1

1/tn
=

tn
α

Choose N2 such that 1
(2No+1)π < εo

α
C2 . Then for n ≥ N2, we may choose tn =

1
(2n+1)π+δ , where δ ∈ (0, ε) ⊂ (0, 1) was selected earlier and was used to define εo.

Notice that such tn satisfies the condition 1/tn ∈ ((2n+ 1)π, (2n+ 2)π). For the

selected sequence {tn}, we have

J2(tn) ≤ tn
α
<

1

α(2n+ 1)π
≤ 1

α(2No + 1)π
<

εo
C2

.

Combining the results we have obtained, for tn = 1
(2n+1)π+δ and n ≥ min{N1, N2},

we have

eα/tn
u′(tn)

tn
= J(tn) = J1(tn) + CJ2(tn) <

εo
C

+ C
εo
C2

=
2εo
C
.

For the u′′ term we can select n ≥ max{N1, N2} such that tn = ((2n+1)π+δ)−1 ∈
(0, ε), then

u′′(tn) = e−α/tn
[
sin(1/tn) + C sin2(1/tn)

]
= e−α/tn

[
sin((2n+ 1)π + δ) + C sin2((2n+ 1)π + δ)

]
= e−α/tn

[
sin(π + δ) + C sin2(π + δ)

]
= e−α/tn sin(δ)[−1 + C sin(δ)]

= − e−α/tnC sin(δ)[1− C sin(δ)]
1

C
= − e−α/tn

εo
C
.

Then

eα/tnu′′(tn) = − εo
C
< − 1

2
eα/tn

u′(tn)

tn
=⇒ u′′(tn) < − u′(tn)

2tn

Let t− = tn for any of the n ≥ max{N1, N2}. Then D(t−) < 0 with t− ∈ (0, ε).

This proves the claimed curvature property in Example 2.2. �
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