WHAT DO YOU NOTICE: Strategies for Inquiry with TI-84 Plus Technology

Karen Campe 🔶 karen.campe@gmail.com | John LaMaster 🔶 lamaster@pfw.edu | T³ National Instructors

Inquiry Strategies enable students to use critical thinking to build understanding of math topics. These techniques provide entry points into problem-solving, encourage engagement and sense-making, and can make the math learning deeper and more durable.

A. What do you notice, what do you wonder?

- This strategy is a way to get students involved in a mathematical context before being asked to do something with it.
- **HOW:** Present a graph, equation, problem scenario; give students <u>individual think time</u> to <u>note</u> <u>down</u> what they notice and wonder about the context.
- Sometimes students will attend to mathematical features of the situation that aren't part of the intended lesson objectives—don't be afraid to "take the scenic route" to discuss important math.
- Sources:
 - Search for #NoticeWonder
 - Annie Fetter @MFAnnie of MathForum
 - Also this blog post although elementary focused, good overview.

Example 1:

1. On y Y1=> Y2=> Y3=>	our calculator, graph: ‹ ² ‹ ⁴	2.	On your calculator, graph: Y1= x ³ Y2= x ⁵ Y3= x ⁷
What do	you observe?	Wł	nat do you observe?

Example 2:

Graph the following 3 functions on an appropriate window. What do you notice? What do you wonder?

$$y = 2x^2 - 8$$
 $y = x^2 - 16$ $y = \frac{2x^2 - 8}{x^2 - 16}$

B. Which One Doesn't Belong?

- This strategy has students generate a reason why each one of the four choices doesn't belong, and justify why their choice is valid. A well-constructed WODB will have good reasons why each of the 4 options does not belong with the other 3.
- **HOW:** Present 4 items, give students <u>individual think time</u> to <u>note down</u> what they think doesn't belong and why. <u>Orchestrate discussion</u> about why EACH of the 4 items might not belong.
- Provides access for all and encourages mathematical thinking, communicating, and justifying (and supports Mathematical Practices 1, 2, 3, 6).
- Sources:
 - Search for #WODB
 - Website <u>http://wodb.ca/</u> maintained by Mary Bourassa @MaryBourassa
 - o Lots of blog posts, including Jennifer Wilson T3 Instructor and Mashup Math and ATMIM

C. Action-Consequence-Reflection: What changes, what stays the same?

- This strategy asks students to perform a mathematical action, observe a math consequence, and reflect on the result, making mathematical meaning.
- Categories of this technique include using graphs/sliders, dynamic tables, and looking for invariants.
- **HOW:** Have students engage in a mathematical <u>action context</u>, ask themselves "what changes, what stays the same?, and <u>record</u> observations, reflections, predictions, conclusions.
- Key components: Require students to record, Ask good questions, Summarize results with class.
 - What will happen if...?

Sources:

- What must I change to make ... happen?
- How is ... affected by ...?
 - o karendcampe.wordpress.com Reflections & Tangents Blog <u>Action-Consequence Advantage</u>.
 - "Table Techniques" Article coming in Mathematics Teacher May 2019, based on this post.
 - John & Karen Webinar "Making Math Stick" <u>Replay</u> and <u>Documents</u>.
- Example 7: Use Transformation Graphing to graph the general Quadratic Function $Y = Ax^2 + Bx + C$. How does each parameter affect the graph?

• When will ... be true?

• What changes, what stays the same?

• Why does this happen?

Example 8: Use Transformation Graphing to graph the Exponential Function $Y = A^x$.

- What happens as A increases from 2 to 10, incrementing by 1?
- What happens if A = 1 or A = 0? Why?
- What happens as A increases from 2 to 3, incrementing by 0.1? Can you estimate value of *e*?

Example 9: Searching for Invariants (something about a mathematical situation—a measurement, calculation, shape, or location—that stays the same while other parts of the situation change)

- Cabri Jr. Circle Angles
- Many Geometry and Trigonometry examples possible, see sources.

Example 10: Dynamic Tables to model Growth

- I. Enter **Y1=** 2x and **Y2=** 2^x
 - Set the Independent variable to AUTO and the Dependent variable to ASK in [tblset]. Move *down* each column and notice how they grow.
- II. Model the situation below with equations
 Set the Independent variable to ASK and the Dependent variable to AUTO in [tblset].
 Determine how long for scenario B to catch up with scenario A.

A. You start with \$100 and save \$5 each	B. You start with \$5 and each week save
week.	double the amount you saved the previous
	week.

D. Same and Different (Compare and contrast)

- This strategy asks students to compare and contrast features of two mathematical situations. They may require different solution strategies, be similar *except* for one feature, or have mathematically meaningful nuances to notice.
- **HOW:** Present two math situations, have students <u>examine</u> and <u>note</u> how they are the same and how they are different.
- Powerful technique when Ss must choose among various solving techniques (systems of equations, solving quadratic equations, simplifying exponents & radicals, right triangles, calculus integration).
- Sources:
 - Search for #SameDifferent
 - o Same Surface Different Deep (SSDD) problems from Craig Barton @mrbartonmaths
 - <u>Minimally Different Problems</u> "intelligently varied Qs" from Jess Prior @FortyNineCubed
 - o Michelle Rinehart T3 instructor How We Teach blog math talks, look for Alike & Different

Example 11: Comparing Functions			Example 12: Exponential Functions		
Tracer Ball Style, ZoomDecimal Window, Trace, Table			What happens with different bases?		
			How is 2^x related to $log_2 x$?		
NORMAL FLOAT AUTO REAL RADIAN MP			NORMAL FLOAT AUTO REAL RADIAN MP		
Plot1 Plot2	Plot3		Plot1 Plot2	Plot3	
■ N Y1 E X ² +6X+8			■NY182 [×]		
■ Y 2 目 X²+6X+8 X+2			■ \ Y28(¹ / ₂) [×]		
NY 3= NY 4= NY 5= NY 6= NY 7= NY 8=	Graph the functions sho How are they alike, how different? Deactivate Y1 and enter What do you notice?	own. v are they r Y3 = X + 4.	NY382 ^{-X} NY4= NY5= NY6= NY7=	NORMAL FLOAT AUTO REAL RADIAN Plot1 Plot2 Plot3 NY182 ^X NY28109 ₂ (X) NY3= NY4=	