Super Size your TI-84 Plus Operating System to v2.53MP

$2010 \mathrm{~T}^{3}$ International Conference
March 5-7, 2010
Atlanta, Georgia

John LaMaster, National T ${ }^{3}$ Instructor
Indiana University Purdue University at Fort Wayne
2101 Coliseum Blvd. East
Fort Wayne, IN 46805-1445
lamaster@ipfw.edu
www.ipfw.edu/math/lamaster

Contents

Introducing TI-84 Plus OS Update 2.53MP	3
How To Check Your OS Version	4
What You Need to Begin	4
How to Archive Your Calculator Memory	4
Method 1 to Upgrade Your TI-84 OS: Let TI-Connect Do It	5
Method 2 to Upgrade Your TI-84 OS: Drag and Drop	5
Method 3 to Upgrade Your TI-84 OS: Get it From Another Upgraded Handheld	6
Update the CatalogHelp APP to version 1.1	6
Welcome to 2.53MP OS!	6
Update TI-Smartview ${ }^{\text {TM }}$ with the New OS	7
The Mode Screen Has Two Pages	8
Helpful Tips	9
Use Stacked Fractions, Scrolling History, and Zoom Features to Investigate Patterns	10
Use the \triangle Tbl Shortcut	12
Use log ${ }_{b} x$ to Build Conceptual Understanding of the Logarithm	13
Scroll Through the History to Build the Sum of a Sequence	14
An Old Favorite Cleans Up Well: The Quadratic Formula	15
Summary of New Functionality	16
Compatibility with Programs	17
Compatibility with Apps Released Before 2/15/2010	18
Carpe Diem!	18

Join a Google Group on the TI-84 Plus
Want more information? Stay connected at http://groups.google.com/group/ti84plus/

TI-84 Plus OS Update 2.53MP

Scrolling History

Home Screen

MathPrint and Classic

Fraction Support in LIST \& MATRIX

Update Mode Screen

- MATHPRINT to CLASSIC Selection
- Fraction Type Selection n/d U n/d
- ANSWERS: AUTO DEC FRAC
- GOTO FORMAT GRAPH: NO YES
- ON OFF - Stats Diagnostics

MATH PROB

randIntNoRep(startnum,endnum)
Random ordering of integers in a range.
MATH NUM
remainder(dividend, divisor)

How To Check Your OS Version

1. Press 2nd Mem on your handheld.
2. Select 1:About.
3. Press ENTER.
4. We want TI-84 Plus 2.53 MP .

What You Need to Begin

- Computer with Internet access
- The latest version of TI-Connect ${ }^{\mathrm{TM}}$ software (v 1.6). Go to http://education.ti.com/ticonnect/
- TI Connectivity Cable (included with the TI-84 Plus Silver Edition). Some below are ancient. Available for purchase at http://education.ti.com/ticonnect/

Serial for Windows ${ }^{\circledR}$ or Mac ${ }^{\circledR}$ (gray)

Serial for Windows only (black)

USB for Windows ${ }^{\circledR}$ or Mac ${ }^{\circledR}$ (silver)

Standard Mini-A to Mini-B USB Cable for Windows ${ }^{\circledR}$ or Mac ${ }^{\circledR}$

Warning: The cables are, from left to right, in order of oldest to most current. You will need to have TIConnect ${ }^{\text {TM }}$ Version 1.5 or later to use the Mini-A to Mini-B USB Cable. If you plug in the cable before installing the TI Connect ${ }^{\mathrm{TM}}$ software, Windows ${ }^{\circledR}$ may assign an incorrect driver for the cable. INSTALL TI-CONNECT FIRST!!!

- TI-84 Plus or TI-84Plus Silver Edition handheld with fresh batteries and memory archived. (You wouldn't undergo major surgery without being at the best you can be, would you?)

How to Archive Your Calculator Memory

When you upgrade your OS, archived items on the receiving unit are not lost. Move items stored in Random Access Memory (RAM) into the Archived Memory as follows:

1. Press 2nd Mem on your handheld.
2. Select 2:Mem Mgmt/Del...
3. Select 1:All...
4. Press ENTER next to anything that is not marked with a ${ }^{\prime}=$ to move it into archived memory, where it will be safe.

You won't be able to use the item (lists, variables, programs, etc.) while they are archived. It is like a fire proof vault!

Press ENTER again from this screen to unarchive them and move them into RAM.

Method 1 to Upgrade Your TI-84 OS: Let TI-Connect Do It

1. Run your Web browser and visit the TI Home Page http://education.ti.com
2. Start the TI Connect ${ }^{\mathrm{TM}}$ software (see above) that has already been installed on your machine.
3. Once TI Connect ${ }^{\text {TM }}$ software has started, connect your handheld to the computer with the TI Connectivity Cable (See above the four types of cables.)
4. To download Apps you need the latest Operating System (OS) version for your handheld. Once you connect your handheld, click on Updates on TI Connect.

Make sure Device Operating System is checked.
If you need a newer OS version, TI Connect will upload the new OS on your machine.

Method 2 to Upgrade Your TI-84 OS: Drag and Drop

1-3. Perform the first three steps of Method 1 above.
4. Go to http://education.ti.com/84 and follow the prompts to get the latest 84 OS.

Download it to your computer in a place you'll remember. Don't forget to download the guidebook. It has been updated too. Also download the App Catalog Help v1.1.
5. Once you connect your handheld, click on TI Device Explorer on TI Connect to open the DeviceExplorer window.
6. Drag the OS file into the DeviceExplorer window and follow the prompts.

File View Tools Actions Help	
Ready	

 Explore

If TEXAS INSTRUMENTS

\qquad

Method 3 to Upgrade Your TI-84 OS: Get it From Another Upgraded Handheld

1. Make sure the calculators are firmly connected by inserting the ends of a unit-to-unit link cable into the appropriate port
2. On the receiving calculator, press $\underset{2 \text { nd }}{\frac{\operatorname{LINK}, ~}{(x, \theta, n}, ~}$ to access the LINK menu.

Press \square to highlight the RECEIVE menu. Press ENTER so that the calculator is on Waiting

(The receiver must be on Waiting BEFORE the transfer.)
 to access the SEND menu.

Select G:SendOS.

Trouble Shooting:

1. If you receive an error, first check that the cables are firmly connected. Push in the cables tightly and then push in again.
You don't want any data leaking out into the air!

2. If you still get an error, try it again with another cable.

You could have trouble if the Input/Output port of the calculator is damaged.
3. If the receiving calculator does not have fresh batteries, it is unusable until new batteries have been replaced and the process is restarted.

Update the CatalogHelp APP to Version 1.1

Please also update to Catalog Help v1.1 if you update to 2.53MP. You can use any of the above three methods. There is no functionality update to Catalog Help, but version 1.1 is needed to run on 2.53MP.

The TI-SmartView ${ }^{\text {TM }}$ emulator software gives you a full functioning TI-84 Plus calculator on your computer.

To update TI-84 SmartView ${ }^{\text {TM }}$ with the latest OS 2.53MP*, your SmartView software needs to be version 3.1 or higher.
*If you have a version of TI-84 SmartView ${ }^{\text {TM }}$ below 3.0, you cannot download the Smartview software update from the TI Web Site. Instead, request your free upgrade by contacting TI Cares at 1-800-TI-CARES. You will need a photocopy of your Product Key.

1. If you haven't yet, go to http://education.ti.com/84 and follow the prompts to get the latest 84 OS and download it to your computer in a place you'll remember, i.e., the desktop or other folder.
2. Open up TI-Smartview
3. Click on File.
4. Click on Load File.
5. The Load file dialog box displays.
6. In the Files of type: pull down menu, make sure All Calculator Files (*.8x?) is selected.
7. Select the $.8 x u$ file you downloaded to your desktop.
8. Select Open to start loading the calculator OS to TI-SmartView.
9. If you use the Catalog Help APP, you will also want to load that file as well.

If your computer crashes while SmartView is open, it will revert back to OS v 2.43 when you restart it.

Tip: Click on File > Save Emulator State while you have TI-84 OS v 2.53 MP running and give it a name, such as MyState2010-03-07.84state, and click Save. Now if you have a crash while Smartview is running and it reverts back to OS V 2.43, you can just reload the Emulator State:

1. Click File > Load File.
2. In the dialog box:
a. Navigate to the folder that contains the emulator state file.
b. Click the emulator state name to highlight it.
c. Click Open.

The Mode Screen Has Two Pages

As before, the default settings for both Mode pages are all those on the left.

Second Screen:

MATHPRINT CLASSIC - Both Mathprint ${ }^{\mathrm{TM}}$ and Classic modes contain the same new functions, except MathPrint ${ }^{\mathrm{TM}}$ mode provides additional matrix shortcuts from the F3 soft key and displays on the home screen and $\mathrm{Y}=$ editor most inputs and outputs the way they are shown in textbooks, such as $\frac{1}{2}+\frac{3}{4}$ and $\sum_{k=1}^{100} k x^{2}$.
Classic mode displays expressions and answers as if written on one line, such as $1 / 2+3 / 4$ or $2(K \times 2, K, 1,160)$.
Note: If you switch between these modes, most entries typed on the home screen will be preserved; however matrix calculations will not be preserved unless you store them. Think of them as images drawn on the screen.
$\mathbf{n} / \mathbf{d} \mathbf{U} \mathbf{n} / \mathbf{d}$ - selection of fraction output as improper or mixed numbers.

ANSWERS

- Auto displays answers in a similar format as the input.

For example, if a fraction is entered in an expression, the answer will be in fraction form, if possible.

- Dec displays answers as integers or decimal numbers.
- Frac displays answers as their fractional approximation, if possible.

The Answers mode setting also affects how values in sequences, lists, and tables are displayed.
If any decimal point appears in the expression, then output is decimal. This is a quick way to force decimal output in AUTO mode.

You can also convert values from decimal to fraction or fraction to decimal using the FRAC shortcut menu or the MATH NUM menu.

GOTO FORMAT GRAPH: Selecting YES jumps from the MODE screen to the FORMAT screen. This handy shortcut puts the FORMAT screen on the user's radar as a place to check to avoid calculator glitches, as well as helps support teachers who begin an activity making sure all is highlighted on the left on both screens. Pressing MODE will return to MODE from the FORMAT screen.

STAT DIAGNOSTIC ON OFF - Quickly select the existing option of displaying r and r^{2} when calculating statistical regressions. This is a shortcut to an existing feature (only found in the catalog under Diganosticon or Diganosticoff) which is placed here for ease of use.

SET CLOCK was pushed to this screen so room could be made for the $\boldsymbol{+}$ IEXT + indicator on page 1.

Helpful Tips

- When using scrolling history to select an item, press ENTER to be able to manipulate it. "You must pluck the fruit off the tree before taking a bite."
- Make these commands your two new friends:
 takes you to the end of the line; 2nd 4 takes you to the beginning of the line.
These are handy when you may need to scroll horizontally.
- Use ALPHA [F1] to quickly access the fraction menu. (You can also can press MATH, press \square to the NUM menu, press $\square \Delta$ to get fird , etc.)
- In MathPrint ${ }^{\mathrm{TM}}$ mode, you get Super-Sized math templates of old functions as well as new ones where the screen real estate permits (namely, just the Home Screen and $\mathbf{Y}=$ editor);
品

otherwise these are displayed as inline Classic equivalents in tight quarters (namely, the expression on the graph screen, WINDOW, TBLSET, TABLE, List entries, etc.)
- Using the rids soft key in AUTO or FRAC mode with nondecimal numbers gives you different results than the \div hard key.

0 rurd soft key: \square (ALPHA [F1] ENTER $\square \square 2$ will display $\frac{1}{12}$ as a stacked fraction in template form where the screen real estate permits (namely, just the Home Screen and $\mathbf{Y}=$ editor); otherwise it is displayed as a "thick bar inline fraction", i.e. as $1 / 12$, in tight quarters (WINDOW, TBLSET, TABLE, List entries, the expression on the graph screen, etc.)
$0 \div$ hard key: $1 \div 1<2$ will display $1 / 12$, the usual "thin bar inline

- Look at the screen as you type!

In a math template arrows will appear as guideposts to steer you. Follow them.
 You may feel the urge to press \checkmark to move down. Resist the urge.

Floti Flote Pitita

- Because of the unpredictability of the height of the expression on the entry line when using templates in MathPrint ${ }^{\mathrm{TM}}$ Mode, entries and answers will not wrap as in Classic Mode; however, if you watch the screen as you type, you can just break longer calculations into smaller ones.

Classic

You can also scroll horizontally in MathPrint ${ }^{\mathrm{TM}}$ Mode with the left and right arrow keys, but make sure the expression is on the entry line. $358.25+255.12+1.6$

- Notice when you try to access the top row graphing keys $Y=$ WINDOW ZOOM TRACE and you are in ALPHA LOCK (for example, wherever there are list names).

1. Press 1.
2. Press A ALPHA $[F 1]$ to get to the shortcut FRAC menu.
3. Press ENTER or 1 to select fird .
4. Press $3 \square+\square \square$ ALPHA $[\mathrm{F} 1]$ ENTER $\square \square \square$
5. Press ENTER (to say "please").

$\sqrt{\frac{1}{2+\frac{1}{2}} \sqrt{\frac{1}{3}}}$

$$
\frac{1}{\frac{2}{3}+\left(\frac{1}{2}\right)+\frac{1}{2}}
$$

6. Press the \triangle key twice to climb up the tree and highlight the expression. Press ENTER to "pluck the fruit off the tree."
7. Press 2 nd \longleftarrow to go to the beginning of the line. Change the expression to increase each denominator by 1. Press ENTER.
8. Repeat.

Questions:

1. What pattern do you notice? Will it always work?

2. If you entered $\frac{\mathbf{1}}{\mathbf{1 0 0}}+\frac{\mathbf{1}}{9 \underline{g}}: \frac{\mathbf{1}}{\mathbf{1 0 0}}$ what would you expect? Confirm your guess.

| 3. Explore $\frac{1}{x+1}+\frac{1}{x} \cdot \frac{1}{x+1}$ on the home screen for values of x of your choice. |
| :--- | :--- |
| Store a number in $x: \square$ |
| by pressing the \square key twice, press ENTER to pluck the fruit, |
| and replace numbers with variable expressions. |

4. Replay, using 2 nd \square to go to the beginning of the line and make x any nondecimal value you wish. What do you observe?
5. Explore the graph of $y=\frac{1}{x+1}+\frac{1}{x} \cdot \frac{1}{x+1}$

Replay, use the delete key so only you have $\frac{1}{x+1}+\frac{1}{x} \cdot \frac{1}{x+1}$ on the
entry line, and press ENTER.
Press Y $=$, position your cursor in Y1, and press \square 2nd ENTER to "beam the expression up" into Y1.

Alternate Approach:

(You can also do this from the home screen but must use quotes. Use ALPHA [F4] ENTER to quickly get Y1.)

6. Press $Z 00 M$ and scroll to see some neat options. Use Z Freacicle press TRACE, and use the left and right arrow keys. Note: $\mathrm{ZFrac} 1,1 \mathrm{a}$ sets the window variables so that you can trace in increments of $\frac{1}{10}$, if possible, and sets \dot{X} and ΔY to $\frac{1}{10}$.

Notice the graph equation is in classic format. (Instead of a stacked fraction, $\mathrm{h}^{\mathbf{d}} \mathbf{d}$ is shown as a thick bar inline fraction.)
Compare the graph coordinate values as you trace.

What is happening when $x=-1$?
Press GRAPH to liberate the cursor from the curve and observe the screen coordinates in this window.
7. Press WINDOW.

Scroll to notice ΔX has now joined the party!
ZFrecirld uses thick bar inline fractions for Xmin, Xmax, Ymin, Ymax, and e^{X}.

Want 2 Frac $1 / 12$ instead?

You can make it (or others) yourself. Change $\dot{4} \times$ to $1,1 \overline{2}$.
(This adjusts Xmin or Xmax since $\Delta x=\frac{X \max -X \min }{94}$.) Press GRAPH and TRACE.
Notice it converts coordinates when possible. There is no longer a hole showing at $x=-1$. Why not?
Make the adjustment $\mathrm{Min=-47} 12$ to center the window.

$\mathrm{x} \operatorname{ma}=47 / 12$

Now press GRAPH and TRACE. Voila! There's the hole.
8. Build the motivation to get a common denominator and show $\frac{1}{x+1}+\frac{1}{x} \cdot \frac{1}{x+1}$ is algebraically $\frac{1}{x}$.

Use the $\Delta T b l$ Shortcut

Find how long it takes for $\$ 200$ compounded quarterly at 6 percent APR to grow to $\$ 475$. Report your answer correct to the nearest 0.1 year.

Advantages: This is a quick way to find approximate solutions, since you often use the table to help build the graphing window anyway. It also provides an avenue for multiple perspectives.

1. Enter the expression in Y1 and press 2nd WINDOW to match the screen shown to the right.
2. Scroll the table to find when the amount is closest to $\$ 475$.

X	Y 1	
0	200	
1	212.7	
$\frac{5}{3}$	$2{ }^{512}$	
4	259.8	
5	209. 9	
	Crese + + ${ }^{\text {cr }}$	

3. Position your cursor on the input whose output is closest to $\$ 475$. In this case, we highlight 14.

4. Press + and change Δ Tbl to 0.1. Press ENTER. It will take about 14.5 years to reach $\$ 475$.

X	Y1	
${ }_{14}^{14.1}$	$4{ }^{461.39}$	
14.2	${ }^{4615}$	
14.	4461.49	
1415	4478.314	
$8=14$		

To approximate the answer to 0.01 years, we need only repeat the last two steps, setting Δ Tbl to 0.01 .

It will take about 14.52 years to reach $\$ 475$.
Support the answer with a graphical and analytical solution, or use the equation solver in the MATH MATH menu.

X	Y_{1}	
${ }_{14}^{14}$	459.38	
14.2	46.14	
14,	${ }^{4691.49}$	
14.6	474.314	
X=14		

Another example: Consider using the table to explore the behavior of $y=\frac{x^{2}-4}{x-2}$ near $x=2$.

Use $\log _{b} x$ to Build Conceptual Understanding of the Logarithm

1. Compare the expressions on the screen to the right.

Notice the usual order of operations are followed.
Unveil $\log _{2}(4)^{3}=\left(\log _{2}(4)\right)^{3}=\left(\log _{2} 2^{2}\right)^{3}=(2)^{3}=8$
and $\quad \log _{2}\left(4^{3}\right)=\log _{2}\left(2^{2}\right)^{3}=\log _{2}\left(2^{6}\right)=6$

Explore with a table and a graph.

What is simplified form of each?

Do they look more familiar now?
Superimpose graphs of $y=2^{x}$ and $y=2 x$ over each. Facilitate a class discussion on inverse properties.

X	Y1		2
$\frac{1}{2}$			
4			
-			
Fres	+	,	

2. Consider the function $y=\log _{x} 10$.

Enter the expression in Y1.
F1ot1 Fote Fiots
$\times 1$ 日logen 10$)$
Press 2nd WiNDOW to match the screen shown to the right, where Indprit is set to Ask.

Explore with a table, where x is a power of 10

Explore with a graph after, say, ZoomQuadrant1.

Simplify the function $y=\log _{x} 10$ so that x is not the logarithmic base.
Compare tables and graph the result in the same window.
Answer: $y=\frac{1}{\log x}$
3. Perform a similar investigation with the function $y=\log _{x} e$, exploring in a table values of x which are powers of e. What is another way to write this function, where x is not the logarithmic base?

Scroll Through the History to Build the Sum of a Sequence

1. Using the scrolling history we can successively build up the series below.
a. Create these expressions on your home screen. Use rird once.

No need to use the parentheses keys at all.
$\frac{1}{2}$
$\frac{1}{2}+\left(\frac{1}{2}\right)^{2}=$
$\frac{1}{2}+\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{3}=$
$\frac{1}{2}+\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{3}+\left(\frac{1}{2}\right)^{4}=$
$\frac{1}{2}+\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{3}+\left(\frac{1}{2}\right)^{4}+\left(\frac{1}{2}\right)^{5}=$

b. Can you predict the next one?

Now use sigma notation $\sum_{k=1}^{5}\left[\frac{1}{2}^{\mathrm{K}}\right]$ using the बALPHA [F2] shortcut to make four more.
What pattern do you see with the total sums?
c. Is the sum getting bigger or smaller? Is the number we are adding each time getting bigger or smaller? Is the sum approaching a number? Explain your answer.
2. Pose new questions and make conjectures:
a. Suppose your first number for finding sums as in the previous problem was $\frac{1}{3}$ instead of $\frac{1}{2}$.

Use the same pattern as the one used above and investigate the sums in the same manner.
b. Try the same investigation with $\frac{1}{4}$.
c. What is the pattern if you use $\frac{1}{5}$?
d. Does a pattern hold for $\frac{2}{5}$?
e. What happens if you use $\frac{3}{2}$?

An Old Favorite Cleans Up Well: The Quadratic Formula*

Begin with the equation $2 x^{2}-11 x+14=0$.

1. Press 2 STO ALPHA \mathbf{A} to store the coefficient of the x^{2} term.
2. Press ALPHA [:]. The colon allows you to enter more than one instruction on a line.
$2 \rightarrow \mathrm{~A}:-11 \rightarrow \mathrm{~B}: 14+\mathrm{C}_{14}$
3. Press 11 STO ALPHA \mathbf{B} to store the coefficient of the X term. Press ALPHA [:] to enter a new instruction on the same line. Press 14 STO ALPHA C to store the constant.
4. Press ENTER to store the values to the variables A, B, and C .
5. The last value you stored is shown on the right side of the display. The cursor moves to the next line, ready for your next entry.
6. Press ALPHA [F1] 1 ALPHA $\mathbf{B}+2$ nd $[v]$

ALPHA B $x^{2}-4$ ALPHA A ALPHA C■ロ2 ALPHA \mathbf{A} to enter the expression for one of the solutions for the quadratic formula,
$\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
7. Press ENTER to find one solution for the equation $2 x^{2}-11 x+14=0$.
The answer is shown on the right side of the display. The cursor moves to the next line, ready for you to enter the next
 expression.
 press ENTER, edit as appropriate, and press ENTER.
*The above is taken from the updated TI-84 Plus / TI-84 Silver Edition guidebook, available online at http://education.ti.com/84 for download.

Summary of New Functionality

From the MATH MATH menu or ALPHA [F2]:

- Summation Σ (expression, start, end) displays the MathPrint ${ }^{\mathrm{TM}}$ summation entry template $\frac{\square}{2}$ and returns the sum of elements of list from

 start to end, where start <= end.
- \log BASE(value, base) displays the template 109 and returns $\log _{\text {base }}$ value .

From the MATH NUM menu or ALPHA [F1]:

- remainder(dividend, divisor) reports the remainder as a whole number from a division of two whole numbers where the divisor is not zero. remainder(125,2)

Fritic Funtinte

- Converts the results from a fraction to mixed number (Unid) or from a mixed number to a fraction ($\mathrm{r} \mathrm{r}^{\mathbf{d}}$), if applicable.
- Converts an answer from a fraction to a decimal or from a decimal to a fraction.
- Unird displays results as a mixed number, if applicable. :

The unit, numerator and denominator are limited to three digit integers.

- $\quad \mathrm{r}$ displays results as a simple fraction, if possible $:=$

The numerator and denominator are limited to five digit integers.
Complex arithmetic is not supported using hird .
From the MATH PRB menu:

- RandIntNoRep(startnum,endnum) gives a random reordering of an interval of integers.

```
randIntHoRef(1,5)
M1 32 5 5 45
    4-5 1 2 3)
andInt.NoRer(1, )
andIntHoRer(1,5)
    6 2 5 1 43
```

MATH NIMM CPK EPEE
a random reordering of an interval of integers.

Other Menu Shortcuts:

- MTRX Shortcut through ALPHA [F3] may be crossed out when it can't fit in one line, i.e., outside of Home Screen or $\mathrm{Y}=$ Editor or when in Classic Mode.

- YVAR Shortcut through (ALPHA [F4] is tied to graphing mode.

			\| FFinc	FUnc	
Function Mode	Parametric Mode	Polar Mode	Sequence Mode Note: $\mathbf{u}, \mathbf{v}, \mathbf{w}$, and \mathbf{n} are already on the keypad.		

Shortcuts continued:

- Scroll through the history of calculations on the home screen in MathPrint ${ }^{\mathrm{TM}}$ or Classic mode. Quickly recall an input/output by simply highlighting it and pressing enter. (Lists and matrices as output will not paste from the history)
- Use the $\dot{\Delta}$ Tbl Shortcut when Indfrat is set to Auto.

- Jumping to Format screen from second page of Mode screen facilitates classroom housekeeping.
- Stat Diagnostics display controls are easily accessible.

Compatibility with Programs

- Programs created with OS 2.43 and earlier should run correctly but may give unexpected results when you run them using OS 2.53 MP . You should test programs created with earlier OS versions to make sure you get the desired results. In particular, some programmers write strings without closing quotation marks or expressions without closing parentheses. Break this habit now to avoid unexpected results.
- Programs can run in Classic or MathPrint ${ }^{\mathrm{TM}}$ mode.
- Shortcut menus are available wherever the MATH menu can be accessed.
- MathPrint ${ }^{\mathrm{TM}}$ templates are not available for programs.

All input and output is in Classic format.

- You can use fractions in programs, but you should test the program to make sure that you get the desired results.
- The spacing of the display may be slightly different in MathPrint ${ }^{\mathrm{TM}}$ mode than in Classic mode. (In MathPrint ${ }^{\mathrm{TM}}$ Mode, the entire screen prints pixel by pixel. In Classic Mode, the screen prints line by line.) You may notice that programs run slightly slower in MathPrint Mode. If you prefer the spacing in Classic mode, set the mode using a command in your program.
- If a program dumps output to the Home Screen, it is not possible to access it by arrowing up through the scrolling history.
(Recall you could not access it with 2nd [ENTRY] either.)

APPs developed prior to OS V 2.53 MP will still run on the TI-84 Plus family in a classic format entry. For example, Transformation Graphing and Inequality Graphing Y= will be in classic format. The new features of MathPrint (templates and fraction math) will not be enabled since the APPs were developed for previous OS versions.

TI-Navigator will not accept the new MathPrint or fraction entry features as was true for new features that appeared in the 2.43 OS.
(ad) Remember, any version of Catalog Help prior to 1.1 is not compatible with 2.53 MP .

Carpe Deim!

Effective use of technology requires understanding what the machine is doing. Otherwise it is easy to be misled.

This is a finite decimal machine. Always has been. Always will be.
It tries to behave, however, as if it is not.
For example, ask any programmable device to compute $\sqrt{2}$.
$\left[\begin{array}{ll} \\ & 1.414213562\end{array}\right]$

That's a nice approximation, but we know there is a lot more after that, in fact, 1.414213562373095048801688724209698078569671875376948073176679737990732478..

Why did it do this?
Because you asked it to display it that way. ();

Now with TI-84 Plus OS Update 2.53 MP , the Fr .ac command is more powerful than ever, displaying any result as a fraction, if possible, where the numerator and denominator can be up to five digits. Wow!

So, if you change the Mode to "FRAC", and compute some anomalous irrational numbers (and these are not easy to find!),
 you may get unexpected results.

Why did it do this?
Because you asked it to display it that way. ©

The fraction command will approximate the output, if possible, as a fraction.
Moral: In a technological age, users must understand what they are asking the machine to do. If a student chooses to do the above, you have a wonderful teaching moment on your hands. This is a classic example of "Garbage In-Garbage Out" (GIGO), i.e, when the user blames the machine for not "doing the right thing" when given imperfect input.
They will have to learn this lesson sooner or later, and the sooner the better.
Carpe Diem!

