Dig In to the Real World with the TI-84 Plus CE

27th Annual T³ International Conference Fort Worth, Texas

> Friday, March 13, 2015 10:00 a.m. – 11:30 a.m. Omni Hotel, Texas Ballroom H

John LaMaster, National T³ Instructor Indiana University Purdue University at Fort Wayne 2101 Coliseum Blvd. East Kettler 264 Fort Wayne, IN 46805-1445 E-mail: lamaster@ipfw.edu users.ipfw.edu/lamaster/technology/

Investigation 1: Ditch Diggers at http://threeacts.mrmeyer.com/ditchdiggers/

Prologue:

Common Core State Standards

8.EE.7: Solve linear equations in one variable.

a. Give examples of linear equations in one variable with one solution, infinitely many solutions, or no solutions. Show which of these possibilities is the case by successively transforming the given equation into simpler forms, until an equivalent equation of the form x = a, a = a, or a = b results (where *a* and *b* are different numbers).

MP4: Model with Mathematics

Act One:

Once you watch the video, what questions might arise from your students? Write in the space below

Will the two ditch diggers meet? If they don't meet, what is the closest they will come to each other? Are they digging at a steady rate? If so how fast is each digging per day? Are they digging at the *same* rate? If not, which one is faster? How much faster?

Act Two: Pull from students suggestions on what information would be useful to know.

Coordinates are	given for	Digger 1	(X1, Y1) and Digger 2	(X2, Y2)) for the first	t five days:
	0	00		,		/	2

Day, t	X1	Y1	X2	Y2
0	0	2	68	34
1	2	3	67	33.5
2	4	4	66	33
3	6	5	65	32.5
4	8	6	64	32
5	10	7	63	31.5

The formula of the line for Y1(X1):

Slope: 0.5 y-intercept: (0, 2)

/		03	3
X1		Y1	
0		2	
2		3	
4		4	
6		5	
7		6	
10		7	
X2	, ,	Y2	
68		34	
67		33.5	5
66		33	
65		32.5	5
64		32	

Formula: Y1 = 0.5X1 + 2

The formula of the line for Y2(X2):

Slope: _____

Formula: Y2 = _____

10	7
X2	Y2
68	34
67	33.5
66	33
65	32.5
64	32
63	31.5

Do the lines intersect?

Act Three: You can play the video at http://threeacts.mrmeyer.com/ditchdiggers/ or, alternatively, use the TI-84 CE (or any in its family) to see the complete dig by modeling the data below.

X1 (1)	Day, t	X1		Day, t	Y1
$X_{1}(t) = $	0	0	$Y_{1}(t) = $	0	2
	1	2		1	3
	2	4		2	4
	3	6		3	5
	4	8		4	6
	5	10		5	7
	Day, t	X2		Day, t	Y2
$X_2(t) = $	0	68	$Y_2(t) = $	0	34
	1	67		1	33.5
	2	66		2	33
	3	65		3	32.5
	4	64		4	32
	5	63		5	31.5

1.	Press MODE. Select Parametric and Simul graphing.	NORMAL FLOAT AUTO REAL RADIAN MP
		MATHPRINT CLASSIC Normal Sci Eng
		RADIAN 0123456789 RADIAN DE <u>GREE</u> Function Parametric Bolar Seq
		THIGH DOT-THICK THEN DOT-THIN SEQUENTIAL SITUU
		FRACTION TYPE: 12 Un/d
	New: GO TO 2ND FORMAT GRAPH is replaced with	ANSWERS:[]UIU] DEC STATDIAGNOSTICS:[]FF ON STATWIZARDS:[]N] OFF SETCLOCK 01/20/15/0723/10M
	a language search spinner	LANGUAGE: ENGLISH

- 2. Use a window to dig for Tmax = 28 days.
- 3. Enter your equations in Y= and press GRAPH.

NORMAL FLOAT AUTO KEAL RADIAN MP	
Plot1 Plot2 Plot3	
NX17 E2T	
Y1T ∎T+2	
■NX21 ■68-T	
Y2T #3451	

NORMAL	FLOAT	AUTO	REAL	RADIAN	MP	0
WINDO	W					
	(=28					
Tste	ер=.2 N=0	2				
Xmax						
XSCJ Ymir	.=2 n=0					
Ymax	(=34					

Sequel:

What is the closest they come to each other? On what day should they stop digging in their original direction and pick a new one?

What if we set Y1=Y2?	NORMAL FLOAT AUTO REAL RADIAN MP	NORMAL FLOAT AUTO REAL RADIAN MP
Y1 = Y2	WINDOW Tmin=0	
$t + 2 = 34 - \frac{1}{2}t$	Tmax=21+1∕3∎ Tstep=1∕3	
$\frac{3}{2}t = 32$	Xmin=41 Xmax=49	
$t = \frac{64}{3}$	Xscl=2/3 Ymin=21	
$= 21\frac{1}{3}$	Ymax=26 Yscl=2/3	

Utilizing the grid, they come $6 \cdot \frac{2}{3} = 4$ units apart. (The line was added to the image using Paint.)

We could also use TRACE to find the coordinates and then calculate the distance Alternatively, use the table, i.e. 46.667 - 42.667 = 4.

Can we get closer?

Т	Xit	Y1T	Х2т	Y2T	
21	42	23	47	23.5	Г
21.333	42.667	23.333	46.667	23.333	L
21.667	43.333	23.667	46.333	23.167	L
22	44	24	46	23	L
22.333	44.667	24.333	45.667	22.833	L
22.667	45.333	24.667	45.333	22.667	L
23	46	25	45	22.5	L
23.333	46.667	25.333	44.667	22.333	L
23.667	47.333	25.667	44.333	22.167	L
24	48	26	44	22	
24.333	48.667	26.333	43.667	21.833	

What if we set X1=X2?

$$X1 = X2$$

$$2t = 68 - t$$

$$3t = 68$$

$$t = \frac{68}{3}$$

$$= 22\frac{2}{3}$$

 NORMAL FLOAT AUTO REAL RADIAN MP

 y = 0.5x + 2

 y = 0.5x + 2

Use the previous window. Y3 shows when their distance apart decreases and when it increases.

NORMAL FLOAT AUTO REAL RADIAN MP	NORMAL FLOAT AUTO REAL RADIAN MP
WINDOW Tmin=0 Tmax=28 Tstep=.2 Xmin=0 Xmax=68 Xscl=2 Ymin=0 Ymax=34 Yscl=2	X9T=T Y9T=J((X1T-X2T) T=22.4 X=22.4 Y=1.7888544

Press TRACE, type 22, and use down arrow to move to the Distance function. Use the right arrow to find the minimum.

We could also use the fact that y = 0.5x + 2 is a vertical shift up 2 units of y = 0.5x.

Utilizing the grid, they come $3 \cdot \frac{2}{3} = 2$ units apart.

Can we come closer?

In Y3 we can create a function which gives the distance between the two diggers.

Set a new window or Zoom In to investigate the minimum. The lower the value of Tstep, the smoother the curve.

When moving from one curve to another the colored coordinates can help identify which curve you are tracing.

Optional Tip: You may want to deselect the diggers.	
(In the Y= menu highlight the = sign and press ENTER	(.)

What does the grid reveal about the line connecting the diggers? What is the exact value of the distance apart?

The connection line is perpendicular to the two parallel lines.

Using the Pythagorean Theorem we have the minimum distance is $\sqrt{(0.8)^2 + (1.6)^2} = \sqrt{3.2} \approx 1.7885$.

Prequel (?)

What would be the model if the diggers actually met? Shift the second digger up 2 units. Y2 = (34 - .5t) + 2

= 36 - 0.5t

Set Y1=Y2 to find when they meet.	Y1 = Y2
	$t + 2 = 36 - \frac{1}{2}t$
	$\frac{3}{2}t = 34$
	$t = \frac{68}{3}$
	$=22\frac{2}{3}$

Notice the Distance Function touches the *x*-axis. Cool fact: Some algebra can show that the Distance Function in this case is a transformation of an absolute value function with zero at $t = \frac{68}{3} = 22\frac{2}{3}$.

NORMAL FLOAT AUTO REAL RADIAN MP
Plot1 Plot2 Plot3 $X_{1T} = 2T$ $Y_{1T} = T+2$ $X_{2T} = 68-T$ $Y_{2T} = 365T$ $X_{3T} = T$ $Y_{3T} = \sqrt{(X_{1T} - X_{2T})^2 + (Y_{1T} - Y_{2T})^2}$
$Y_{4\tau} = Y_{4\tau} =$
NORMAL FLOAT AUTO REAL RADIAN MP
WINDOW Tmin=0 Tmax=28 Tstep=.2 Xmin=0 Xmax=68 Xscl=2 Ymin=0 Ymax=34 Yscl=2
NORMAL FLOAT AUTO REAL RADIAN MP

$$Y3 = \sqrt{(X1 - X2)^{2} + (Y1 - Y2)^{2}}$$
$$= \sqrt{[(2t - (68 - t)]^{2} + [(t + 2) - (36 - \frac{1}{2}t)]^{2}}$$
$$= \sqrt{(2t - 68 + t)^{2} + (t + 2 - 36 + \frac{1}{2}t)^{2}}$$
$$= \sqrt{(3t - 68)^{2} + (\frac{3}{2}t - 34)^{2}}$$
$$= \sqrt{(3t - 68)^{2} + (\frac{1}{2} \cdot 2(\frac{3}{2}t - 34))^{2}}$$
$$= \sqrt{(3t - 68)^{2} + (\frac{1}{2} \cdot (3t - 68))^{2}}$$
$$= \sqrt{(3t - 68)^{2} + \frac{1}{4} \cdot (3t - 68)^{2}}$$
$$= \sqrt{\frac{5}{4}(3t - 68)^{2}}$$
$$= \frac{\sqrt{5}}{2}|3t - 68|$$

Investigation 2: Ride the London Eye

We will use a photo from the Wikipedia. Commons. Permission is granted to copy, distribute and/or modify this image. You can download the image from or my Website (see cover). http://en.wikipedia.org/wiki/File: London_Eye_Twilight_April_2006.jpg

You will need the black link cable to move the image to your calculator. TI ConnectTM 5.0 does not support the silver cable.

You can get TI Connect[™] 5.0 from the accessories tab at education.ti.com/84ce.

- 1. Start the TI ConnectTM software that has already been installed on your machine.
- 2. Connect the TI-84Plus CE to the computer with the black cable.
- 3. Click on Calculator Explorer . The contents of your calculator will be displayed.
- 4. Drag the digital image over. It will convert it into a Background Image file and prompt where to put it.

🛃 TI Connect**	CE				
File Edit	View Actions Help				
			î C		
	CONNECTED CALCULATORS (1)	TI-84 Plus CE	Archive: 1,918 kB available	RAM: 149 kB available	e.
CAPTURE	TI-84 Plus CE - 1A6E	NAME	TYPE	+ SEZE	LOCATION
	CS 5.0	🕍 Imagel	Background Image	22 kB	Archive
ρ		Image2 الش	Background Image	22 kB	Archive
CALCULATOR EXPLORER		image3	Background Image	22 kB	Archive
		Image4 السَمَّ	Background Image	22 kB	Archive
*		Image5	Background Image	22 kB	Archive
PROGRAM EDITOR		Image6	Background Image	22 kB	rchive
		Image7 المل	Background Image	22 kB	Archive
		Y= Y ₇	Equation	15 P	RAM
		Y= Y ₆	Equation	11 B	RAM
		Y= Ys	Equation	9 B	RAM
		Y= Y5 v	Equation	21 B	RAM
		Y= Y4	Equation	15 B	RAM

It will convert it into a Background Image file, prompt you for a location, and send it to your calculator.

ILE NAME:	NAME ON CALCULATOR	LOCATION:			
.ondon_Eye_Twilight_April	Image6 🗸 🗸	Archive 💙			
	Image0				
Screen captures and converted ima calculators	Image1	s Pic Vars to black and white			
	Image2				
DESTINATION CALCULATORS: Onnected Calculators	Image3				
	Image4				
	Image5				
✓ TI-84 Plus CE-1A6E	Image6				
Replace existing content with the s	ame name on destina	tion calculators			

Similarly, send the program FERRIS.8xp to your calculator, available from my Website. You now are riding the London Eye.

Ask students to compare the both paths of the height of the car. When is the rate of change of the vertical height of the car with respect to time the fastest?

Classroom use: While students the "TI-84CE movie" is playing students work in groups on the activity below (which involves a different Ferris Wheel than the London Eye).

Use TRACE on the vertical line to explore the speed of the car. (Compare this motion to a vibrating spring or a fishing bob oscillating on a lake.)

The car is fastest at the 3 o'clock and 9 o'clock positions, where the curve has the steepest slope.

Investigation 3: Spotlight

Transfer the program SPTLGHT.8xp to your calculator to animate the scenario. (The program ONMYWALL.8xp shows the light moving across the wall in a continuous fashion.)

When done, press the ON key to interrupt the program. Then press **1:Quit**.

While this movie is playing, it is natural to wonder about the rate of change of *d* with respect to time.

Using the above right triangle, students find the formula of *d* as a function of θ :

$$\tan \theta = \frac{d}{50}$$
$$d = 50 \tan \theta$$

If negative values of *d* correspond to distances to the left of *P*, and positive values of *d* correspond to distances to the right of *P*, students can explore symmetry.

Students find values of *d* at special values, i.e., $\theta = 0$, $\theta = \frac{\pi}{4}$, $\theta = -\frac{\pi}{4}$, $\theta = -\frac{\pi}{2}$, $\theta = -\frac{\pi}{2}$ and as $\theta \to \pm \frac{\pi}{2}$.

If the spotlight makes 1 revolution every 2 seconds, students can write θ as a function of t: $\theta = \pi t$. Students substitute $\theta = \pi t$ into $d = 50 \tan \theta$ to create the formula $d = 50 \tan \pi t$.

Once you graph the function d, discuss the relationship between the slope of the curve and the rate of change of the distance d with respect to time.