Find a formula for a rational function $r(x)$ in the form $y=\frac{p(x)}{q(x)}$ where is the $q(x)$ is the lowest polynomial degree possible, with the following properties.

1. $\lim _{x \rightarrow 0} r(x)=-\infty$
2. $\lim _{x \rightarrow-4} r(x)=-40$
3. $r(-4)$ is undefined.
4. $\lim _{x \rightarrow \pm \infty} r(x)=0$

A graph is shown.

Note that the vertical asymptote is $x=0$ and the hole is at $(-4,-40)$.
Step 1: Write a formula of the function without the hole.

Step 2: Incorporate the location of the vertical asymptote into the formula.
A vertical asymptote occurs at $x=h$ if the denominator has a factor $(x-h)$ and the numerator does not.
Step 3: Incorporate the behavior near the vertical asymptote into the formula.
Near the vertical asymptote $x=0$, the shape $\left(\frac{1}{)}\right)$ of the graph indicates the power of the factor is even.
Mathematically, this is written $\lim _{x \rightarrow 0} r(x)=-\infty$ which indicates that both from the left $\left(\lim _{x \rightarrow 0^{-}} r(x)=-\infty\right)$ and from the right $\left(\lim _{x \rightarrow 0^{+}} r(x)=-\infty\right)$ the function gets more and more negative.
Because $q(x)$ must be the smallest degree possible, the degree of the denominator must be $\mathbf{2}$.
So this means the formula is of the form $y=\frac{k}{x^{2}}$ (and in fact we expect k to be negative based on the graph.)
Step 4: Find the formula by plugging in the point $x=-4, y=-40$ and solve for $k . \quad y=\frac{k}{x^{2}}$

$$
\begin{aligned}
-40 & =\frac{k}{(-4)^{2}} \\
-40 & =\frac{k}{16} \\
k & =-40 \cdot 16 \\
& =-640
\end{aligned}
$$

Thus $y=\frac{-640}{x^{2}}$. (Check with a grapher that it passes through the point $x=-4, y=-40$ using a table feature.)
Step 5: Modify the function so it has a hole at $x=-4$. Using common factors, we have $r(x)=\frac{-640(x+4)}{x^{2}(x+4)}$.

