Find formulas for the rational functions below.
a. Construct a formula for the rational function $f(x)$ in the form $y=\frac{p(x)}{q(x)}$ where $q(x)$ is the lowest polynomial degree possible, with the following graph.

The properties of $f(x)$ are as follows:

1. $\lim _{x \rightarrow-16} f(x)=\infty$
2. $\lim _{x \rightarrow \pm \infty} f(x)=0$
3. $f(8)=10$

Note that the vertical asymptote is $x=-16$ and $f(x)$ passes through $(8,10)$.

Step 1: Incorporate the location of the vertical asymptote into the formula.
A vertical asymptote occurs at $x=h$ if the denominator has a factor $(x-h)$ and the numerator does not.
Step 2: Incorporate the behavior near the vertical asymptote into the formula.
Near the vertical asymptote $x=-16$, the shape $\binom{$ 台 }{\hline} of the graph indicates the power of the factor is even.
Mathematically, this is written $\lim _{x \rightarrow-16} r(x)=\infty$ which indicates that both from the left $\left(\lim _{x \rightarrow-16} r(x)=\infty\right)$ and from the right $\left(\lim _{x \rightarrow-16^{+}} r(x)=\infty\right)$ the function gets larger and larger. Because $q(x)$ must be the smallest degree possible, the degree of the denominator must be $\mathbf{2}$. So this means the formula is of the form $y=\frac{k}{(x+16)^{2}}$ (and in fact we expect k to be positive based on the graph.)
Step 3: Find the formula by plugging in the point $x=8, y=10$ and solve for $k . \quad y=\frac{k}{(x+16)^{2}}$

$$
\begin{aligned}
& 10=\frac{k}{(8+16)^{2}}=\frac{k}{(24)^{2}}=\frac{k}{576} \\
& k=576 \cdot 10=5760 \\
& y=\frac{5760}{(x+16)^{2}}
\end{aligned}
$$

Thus $f(x)=\frac{5760}{(x+16)^{2}}$. (Check with a grapher that it passes through the point $x=8, y=10$ using a table feature.)
b. Construct a formula for the rational function $r(x)$ with the same properties as $f(x)$ except that $r(8)$ is undefined and $\lim _{x \rightarrow 8} r(x)=10$. In other words

1. $\lim _{x \rightarrow-16} f(x)=\infty$
2. $\lim _{x \rightarrow 8} r(x)=10$
3. $r(8)$ is undefined.
4. $\lim _{x \rightarrow \pm \infty} r(x)=0$

Modify the function $f(x)$ so it has a hole at $x=8$.
Using common factors, we have $r(x)=f(x) \cdot \frac{(x-8)}{(x-8)}$

$$
=\frac{5760(x-8)}{(x+16)^{2}(x-8)}
$$

