Find formulas for the rational functions below.
a. Construct a formula for the rational function $f(x)$ in the form $y=\frac{p(x)}{q(x)}$ where $q(x)$ is the lowest polynomial degree possible, with the following graph.

The properties of $f(x)$ are as follows:

$$
\begin{aligned}
& \text { 1. } \lim _{x \rightarrow-15^{-}} f(x)=-\infty \text { and } \lim _{x \rightarrow-15^{+}} r(x)=\infty \\
& \text { 2. } \lim _{x \rightarrow \pm \infty} f(x)=0 \\
& \text { 3. } f(-25)=-9
\end{aligned}
$$

Note that the vertical asymptote is $x=-15$ and $f(x)$ passes through $(-25,-9)$.

Step 1: Incorporate the location of the vertical asymptote into the formula. This corresponds to the zero of the factor. A vertical asymptote occurs at $x=h$ if the denominator has a factor $(x-h)$ and the numerator does not.

Step 2: Incorporate the behavior near the vertical asymptote into the formula. This corresponds to the power of the factor. Near the vertical asymptote $x=-15$, the shape $\left(\frac{h}{i}\right)$ of the graph indicates the power of the factor is odd.
Mathematically, this is written that from the left $\left(\lim _{x \rightarrow-15^{-}} r(x)=-\infty\right)$ and from the right $\left(\lim _{x \rightarrow-15^{+}} r(x)=\infty\right)$
Because $q(x)$ must be the smallest degree possible, the degree of the denominator must be $\mathbf{1}$.
So this means the formula is of the form $y=\frac{k}{x+15}$ (and in fact we expect k to be positive based on the graph.)
Step 3: Find the formula by plugging in the point $x=-25, y=-9$ and solve for k.

$$
\begin{aligned}
& y=\frac{k}{x+15} \\
& -9=\frac{k}{-25+15}=\frac{k}{-10} \\
& k=-9 \cdot 1-0=90 \\
& y=\frac{90}{x+15}
\end{aligned}
$$

Thus $f(x)=\frac{90}{x+15}$. (Check with a grapher that it passes through the point $x=-25, y=-9$ using a table feature.)
b. Construct a formula for the rational function $r(x)$ with the same properties as $f(x)$ except that $r(-25)$ is undefined and $\lim _{x \rightarrow-25} r(x)=-9$. In other words:

1. $\lim _{x \rightarrow-15^{-}} f(x)=-\infty$ and $\lim _{x \rightarrow-15^{+}} r(x)=\infty$
2. $\lim _{x \rightarrow-25} r(x)=-9$
3. $r(-25)$ is undefined.
4. $\lim _{x \rightarrow \pm \infty} r(x)=0$

Modify the function $f(x)$ so it has a hole at $x=-25$.
Using common factors, we have $r(x)=f(x) \cdot \frac{(x+25)}{(x+25)}$

$$
=\frac{90(x+25)}{(x+15)(x+25)}
$$

