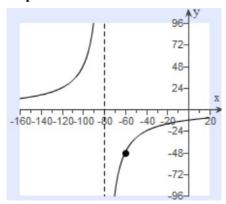
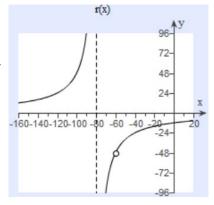
Find a formula for a rational function r(x) in the form $y = \frac{p(x)}{q(x)}$ where is the q(x) is the lowest polynomial degree possible, with the following properties.

- 1. $\lim_{x \to -80^{-}} r(x) = \infty$ and $\lim_{x \to -80^{+}} r(x) = -\infty$
- 2. $\lim_{x \to -60} r(x) = -48$
- 3. r(-60) is undefined.
- $4. \quad \lim_{x \to +\infty} r(x) = 0$

The above indicates that we have a vertical asymptote at x = -80 and a hole at (-60, -48). To the right is a graph with these properties

Step 1: Write a formula of the function without the hole.





Step 2: Incorporate the *location* of the vertical asymptote into the formula. This corresponds to the *zero* of the factor. A vertical asymptote occurs at x = h if the denominator has a factor (x - h) and the numerator does not.

Step 3: Incorporate the *behavior* near the vertical asymptote into the formula. This corresponds to the *power* of the factor.

Because q(x) must be the smallest degree possible, the degree of the denominator must be 1.

So this means the formula is of the form $y = \frac{k}{x+80}$ (and in fact we expect k to be negative based on the graph.)

Step 4: Find the formula by plugging in the point x = -60, y = -48 and solve for k. $y = \frac{k}{x + 80}$ $48 = \frac{k}{-60 + 80}$

$$48 = \frac{k}{-20}$$
$$k = 48 \cdot (-20)$$
$$= -960$$

Thus $y = \frac{-960}{x + 80}$. (Check with a grapher that it passes through the point x = -60, y = 48 using a table feature.)

Step 5: Modify the function so it has a hole at x = -60. Using common factors, we have $r(x) = \frac{-960(x+20)}{(x+80)(x+20)}$.