Find a formula for a rational function $r(x)$ in the form $y=\frac{p(x)}{q(x)}$ where is the $q(x)$ is the lowest polynomial degree possible, with the following properties.

1. $\lim _{x \rightarrow-12^{-}} r(x)=\infty$ and $\lim _{x \rightarrow-12^{+}} r(x)=-\infty$
2. $\lim _{x \rightarrow-20} r(x)=30$
3. $r(-20)$ is undefined.
4. $\lim _{x \rightarrow \pm \infty} r(x)=0$

The above indicates that we have a vertical asymptote at $x=-12$ and a hole at $(-20,30)$. To the right is a graph with these properties

Step 1: Write a formula of the function without the hole.

Step 2: Incorporate the location of the vertical asymptote into the formula. This corresponds to the zero of the factor. A vertical asymptote occurs at $x=h$ if the denominator has a factor $(x-h)$ and the numerator does not.

Step 3: Incorporate the behavior near the vertical asymptote into the formula. This corresponds to the power of the factor.
Near the vertical asymptote $x=-12$, the shape $\left(\frac{\sigma}{\sigma}\right)$ of the graph indicates the power of the factor is odd.
Mathematically, this is written that from the left $\left(\lim _{x \rightarrow-12^{-}} r(x)=\infty\right)$ and from the right $\left(\lim _{x \rightarrow-12^{+}} r(x)=-\infty\right)$
Because $q(x)$ must be the smallest degree possible, the degree of the denominator must be $\mathbf{1}$.
So this means the formula is of the form $y=\frac{k}{x+12}$ (and in fact we expect k to be negative based on the graph.)
Step 4: Find the formula by plugging in the point $x=-20, y=30$ and solve for $k . \quad y=\frac{k}{x+12}$

$$
\begin{aligned}
30 & =\frac{k}{-20+12} \\
30 & =\frac{k}{-8} \\
k & =30 \cdot(-8) \\
& =-240
\end{aligned}
$$

Thus $y=\frac{-240}{x+12}$. (Check with a grapher that it passes through the point $x=-20, y=30$ using a table feature.)
Step 5: Modify the function so it has a hole at $x=-20$. Using common factors, we have $r(x)=\frac{-240(x+20)}{(x+12)(x+20)}$.

