LET'S PLAY CALC-PARDY!!

\$200 Answer from Chain Gang

$$
\begin{aligned}
y & =\ln x^{9}=9 \ln x \\
y^{\prime} & =9 \cdot \frac{d}{d x} \ln x \\
& =9 \cdot \frac{1}{x} \\
& =\frac{9}{x}
\end{aligned}
$$

The graph helps you see this by inspection.

$$
\begin{aligned}
& \text { \$800 Answer from Chain Gang } \\
& \begin{aligned}
& y^{\prime}=\frac{\left(e^{x}-4\right) \cdot \frac{d}{d x} e^{2 x}-e^{2 x} \cdot \frac{d}{d x}\left(e^{x}-4\right)}{\left(e^{x}-4\right)^{2}}=\frac{\left(e^{x}-4\right) \cdot 2 e^{2 x}-e^{2 x} \cdot e^{x}}{\left(e^{x}-4\right)^{2}} \\
&=\frac{2 e^{2 x} \cdot e^{x}-8 e^{2 x}-e^{2 x} \cdot e^{x}}{\left(e^{x}-4\right)^{2}} \\
&=\frac{2 e^{3 x}-8 e^{2 x}-e^{3 x}}{\left(e^{x}-4\right)^{2}} \\
&=\frac{e^{3 x}-8 e^{2 x}}{\left(e^{x}-4\right)^{2}} \\
&=\frac{e^{2 x}\left(e^{x}-8\right)}{\left(e^{x}-4\right)^{2}}
\end{aligned}
\end{aligned}
$$

\$200 Answer from We're Related

If a circle's radius increases at $6 \mathrm{~cm} / \mathrm{s}$, find the rate the area increases when the radius is 10 cm .

$$
\begin{aligned}
A & =\pi r^{2} \\
\frac{d A}{d t} & =2 \pi r \cdot \frac{d r}{d t} \\
& =2 \pi 10 \cdot 6 \\
& =120 \pi \mathrm{~cm}^{2} / \mathrm{s}
\end{aligned}
$$

\$400 Answer from We're Related
If the sides of a cube increase at $6 \mathrm{~cm} / \mathrm{s}$, find the rate the volume increases when the side length is 10 cm .

$$
\begin{aligned}
V & =x^{3} \\
\frac{d V}{d t} & =3 x^{2} \cdot \frac{d x}{d t} \\
& =3 \cdot 10^{2} \cdot 6 \\
& =1800 \mathrm{~cm}^{3} / \mathrm{s}
\end{aligned}
$$

\$600 Answer from We're Related

If the height h increases at
$8 \mathrm{~cm} / \mathrm{s}$, and the base x is fixed at 2 cm , find the rate that
 the volume increases.

$$
\begin{aligned}
V & =2^{2} h \\
V & =4 h \\
\frac{d V}{d t} & =4 \cdot \frac{d h}{d t} \\
& =4 \cdot 8 \\
& =32 \mathrm{~cm}^{3} / \mathrm{s}
\end{aligned}
$$

\$400 Answer from Optimus Prime

The signs of f^{\prime} are shown. For what value(s) does f has a

f has a local minimum at $x=a$ and $x=d$.

\$800 Answer from Optimus Prime

The signs of f^{\prime} and $f^{\prime \prime}$ are shown. For what value(s) does f have a local minimum?
f has a local maximum at $x=2$.

\$200 Answer from Vital Signs
Sign of f "

Since f is concave up, $f^{\prime \prime}$ is positive.

\$400 Answer from Vital Signs

Sign of $f^{\prime \prime}$

Since f^{\prime} is increasing, $f^{\prime \prime}$ is positive

\$600 Answer from Vital Signs

Sketch a graph of \boldsymbol{f} which has

a value $x=c$ where
f^{\prime} and $f^{\prime \prime}$ are both 0
If f has an inflection point then $f^{\prime \prime}=0$.
If f has a horizontal tangent line then $f^{\prime}=0$.

The function has critical values at $x=b, c, e, f, g, h$

\$600 Answer from Critical Thinking
Which critical values correspond to neither local minima or local maxima?
$\$ 800$ Answer from Critical Thinking
$f(x)=e^{x}(x-4)$ has critical value at $x=3$.
Determine the sign of $f^{\prime \prime}(3)$.

has minimum and
f is concave up so
$f^{\prime \prime}(3)$ is positive.

$\$ 1000$ Answer from Critical Thinking
$f(x)=e^{x}(x-4)$ Find where $f^{\prime \prime}(x)=0$.
$f(x)=x e^{x}-4 e^{x}$
$f^{\prime}(x)=\left(x \cdot \frac{d}{d e^{x}}+e^{x} \cdot \frac{d x}{d x}\right)-4 e^{x}=x e^{x}+e^{x}-4 e^{x}=x e^{x}-3 e^{x}$
$f^{\prime \prime}(x)=\frac{d}{d x} x e^{x}-\frac{d}{d x} 3 e^{x}=\left(x e^{x}+e^{x}\right)-3 e^{x}=x e^{x}-2 e^{x}=e^{x}(x-2)$

Final Jeopardy Answer

Find $g^{\prime}(7)$

