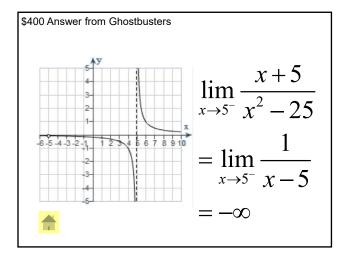
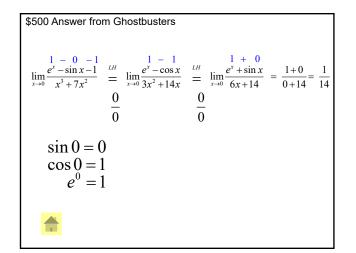
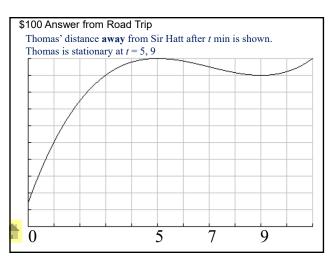
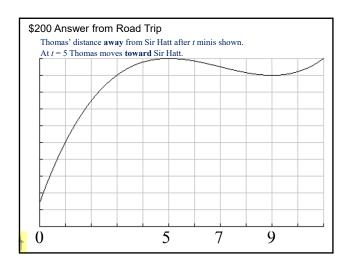
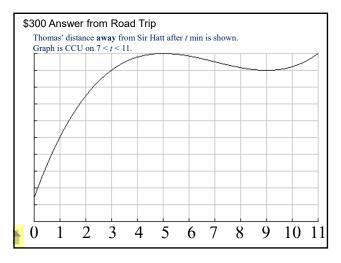

LET'S PLAY CALC-PARDY!!

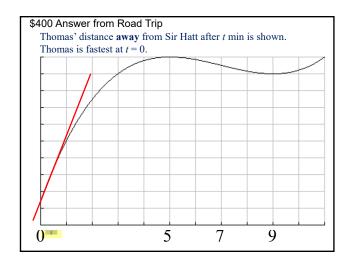

http://www.magicnet.net/~itms/jeopardy/index.htm

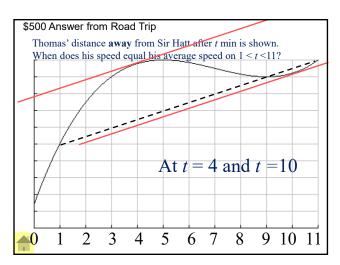

Ghostbusters	Road Trip	FTC	Aunty Derivative
Q \$100	<u>Q \$100</u>	<u>Q \$100</u>	Q \$100
Q \$200	<u>Q \$200</u>	<u>Q \$200</u>	Q \$200
Q \$300	<u>Q \$300</u>	<u>Q \$300</u>	<u>Q \$300</u>
<u>Q \$400</u>	<u>Q \$400</u>	Q \$400	Q \$400
Q \$500	Q \$500	Q \$500	Q \$500

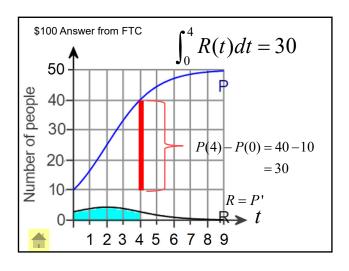


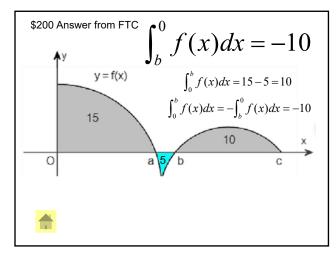








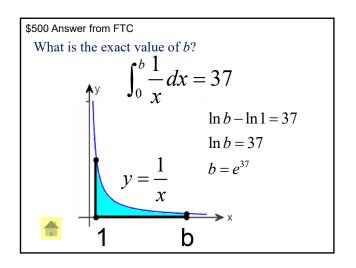


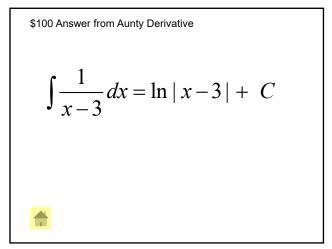


\$300 Answer from FTC

Time, t (years)		Marginal Profit, P' (thousands of dollars per year)
0	-6	- 48
1	- 29	0
2	- 10	36
3	39	60
4	106	72

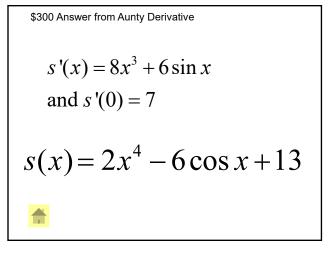
$$\int_0^4 P'(t)dt = P(4) - P(0) = 106 - (-6) = 112$$




\$400 Answer from FTC

$$g(x) = \int_9^x \ln(\sin(e^{t^3})) dt$$

$$g'(x) = \ln(\sin(e^{x^3}))$$



\$200 Answer from Aunty Derivative
$$\int \cos 4x dx = \frac{1}{4} \int \cos 4x \, 4dx$$

$$= \frac{1}{4} \int \cos u \, du$$

$$= \frac{1}{4} \sin u + C$$

$$= \frac{1}{4} \sin 4x + C$$

\$400 Answer from Aunty Derivative

Let
$$u = 36t - 18t^2$$
 so that $du = (36 - 36t)dt$.

$$\int (1 - t)e^{36t - 18t^2}dt$$

$$= \frac{1}{36}e^{36t - 18t^2} + C$$

\$500 Answer from Aunty Derivative Exact value please
$$\int_0^{1000} e^{-2x} dx$$

$$\int e^{-2x} dx = -\frac{1}{2} \int e^{-2x} (-2) dx = -\frac{1}{2} e^{-2} + C$$

$$\int_0^{1000} e^{-2x} (-2) dx = -\frac{1}{2} e^{-2} \Big|_0^{1000} = -\frac{1}{2} e^{-2000} - (-\frac{1}{2} e^0)$$

$$= -\frac{1}{2} e^{-2000} + \frac{1}{2}$$