Summation Notation of Riemann Sums

1. $\lim _{n \rightarrow \infty} \sum_{j=1}^{n}\left(4\left(1+j \cdot \frac{10}{n}\right)^{3}+2\right)\left(\frac{10}{n}\right)=\int_{1}^{11}\left(4 x^{3}+2\right) d x$
2. $\lim _{n \rightarrow \infty} \sum_{j=1}^{n}\left(\left(2+j \cdot \frac{5}{n}\right)^{3}+1\right)\left(\frac{5}{n}\right)=\int_{2}^{7}\left(x^{3}+1\right) d x$
3. $\lim _{n \rightarrow \infty} \sum_{j=1}^{n}\left(4\left(5+j \cdot \frac{2}{n}\right)-2\right)\left(\frac{2}{n}\right)=\int_{5}^{7}(4 x-2) d x$
4. $\lim _{n \rightarrow \infty} \sum_{j=1}^{n}\left(3\left(2+j \cdot \frac{3}{n}\right)+1\right)\left(\frac{3}{n}\right)=\int_{2}^{5}(3 x+1) d x$

Complete the boxes. The area below is a right Riemann sum with $n=5$ subintervals of equal width Δx.

If the number if subintervals n were to grow without bound, i.e., $n \rightarrow \infty$, then the sum would approach the actual area represented by

$$
A=\int_{\square}^{\square}(\square) d x
$$

