Luke Takes a Trip (Section 5.3)

The figure shows the velocity of Luke's trip from Beggar's Canyon. Positive velocities take him away from Beggar's Canyon and negative velocities take him toward Beggar's Canyon.

The formula of the velocity, in $\mathrm{km} / \mathrm{hr}$, is given by
$v(t)=6(t-3)(t-6)(t+1)=6 t^{3}-48 t^{2}+54 t+108$, where t is in hours.

Recall $v(t)=s^{\prime}(t)$, where $s(t)$ is his position from Beggar's Canyon.

Complete the blanks.
a. How many km is Luke away from Beggar's Canyon at the end of the 6 hours?

At the end of 6 hours Luke is a distance of \qquad km from Beggar's Canyon.

Represent this as an integral:

b When is Luke farthest from Beggar's Canyon? How far away was he at that time?
At $t=$ \qquad hours Luke is the maximum distance of \qquad km from Beggar's Canyon.

Represent this as an integral:

c. At the start of the trip, Luke had set his "trip odometer," which records km traveled, to 0 km .

Report the total number of kilometers the odometer reads at the end of the trip, i.e., after 6 hours.
\qquad km . The following graph of Luke's speed may be helpful.
Represent this as an integral:

$|v(t)|$ ($k m$ per hour)

