Section 4.7: L'Hôpital's Rule or L'Hôspital's Rule

1. For the function $f(x)=x^{2}$, what is happening to the y-values as x approaches infinity?
2. For the function $g(x)=\ln x$, what is happening to the y-values as x approaches infinity?
3. Which function, $f(x)$ or $g(x)$ is growing at a faster rate? How do you know?
4. Evaluate $\lim _{x \rightarrow \infty} \frac{\ln x}{x^{2}}$. Explain your thinking.
5. Let $f(x)=x^{2}+2 x-15$ and $g(x)=x-3$.
a. Evaluate $f(3)$ and $g(3)$.
b. Why does direct substitution not work to evaluate $\lim _{x \rightarrow 3} \frac{f(x)}{g(x)}$?
c. Use the factoring method to evaluate $\lim _{x \rightarrow 3} \frac{f(x)}{g(x)}$
6. Now let's look at this limit from a different perspective.
a. How do the values of $f(x)$ and $g(x)$ at $x=3$ compare?
b. Which function, $f(x)$ or $g(x)$, is changing at a faster rate at $x=3$? How do you know?
7. Evaluate $\lim _{x \rightarrow 3} \frac{f^{\prime}(x)}{g^{\prime}(x)}$. What do you notice?
8. When do you think comparing growth rates is a helpful strategy for evaluating limits?

Check Your Understanding! Use L'Hôpital's Rule when it is convenient and applicable.

1. $\lim _{x \rightarrow 0} \frac{k \sin a x}{b x}$
2. $\lim _{x \rightarrow 0} \frac{e^{x}-1}{\sin x}$
3. $\lim _{x \rightarrow-7} \frac{x^{2}+10 x+21}{x^{2}-49}$
4. $\lim _{x \rightarrow 0} \frac{4 x^{3}-6 x^{2}}{-5 x^{2}}$
5. $\lim _{x \rightarrow \infty} \frac{x^{3} \ln x}{x^{5}}$
6. $\lim _{x \rightarrow \infty} \frac{x^{999}}{x^{1000}}$
7. $\lim _{x \rightarrow 0} x^{3} \cot x$
8. $\lim _{x \rightarrow \infty} \frac{e^{10 / \sqrt{x}}-1}{\frac{10}{\sqrt{x}}}$
9. $\lim _{x \rightarrow \infty}\left(1+\frac{r}{x}\right)^{x}$
10. $\lim _{x \rightarrow 0}(1+2 x)^{5 / x}$
11. Compare $y=\ln x, y=e^{x}$, and $y=x^{n}$ for positive n. Which grows fastest as $x \rightarrow \infty$?
