Equilibrium problems for infinite dimensional vector potentials with external fields

NATALIA ZORII

Institute of Mathematics National Academy of Sciences of Ukraine natalia.zorii@gmail.com

The lecture deals with a minimal energy problem in the presence of an external field $\mathbf{f} = (f_i)_{i \in I}$ over noncompact classes of infinite dimensional vector measures $\mu = (\mu^i)_{i \in I}$ in a locally compact space. The components μ^i are positive measures (charges) normalized by $\int g_i d\mu^i = a_i$ (where a_i and g_i are given) and supported by given closed sets A_i with the sign +1 or -1 prescribed such that $A_i \cap A_j = \emptyset$ whenever sign $A_i \neq \text{sign } A_j$, and the law of interaction of μ^i , $i \in I$, is determined by the interaction matrix $(\operatorname{sign} A_i \operatorname{sign} A_j)_{i,j \in I}$. For all positive definite kernels satisfying Fuglede's condition of consistency between the vague (=weak*) and strong topologies, sufficient conditions for the existence of equilibrium measures are established and properties of their uniqueness, vague compactness, and continuity under exhaustion of A_i by compact K_i are studied. Sharpness of the statement on the existence of equilibrium measures is discussed by providing examples of non-solvability. We also obtain variational inequalities for the fweighted equilibrium potentials, single out their characteristic properties, and analyze continuity of the equilibrium constants. Such results are new even for classical kernels in \mathbb{R}^n , which is important in applications.