Abstract for talk by Doug Weakley in Discrete Math Seminar 4:30 p.m. on Wednesday, September 29, in Kettler 119

Is every C^{∞}-word recurrent?

The sequence $K=12211212212211211221211212211 \ldots$ given by W. Kolakoski in 1965 can be described as an infinite sequence of 1's and 2's that begins with 1 and has the property that the length of the j th run of like symbols is equal to the j th symbol.

Question. What are the finite subwords of K ?
Definitions. A finite word W of 1's and 2's in which neither 111 nor 222 occurs is differentiable, and its derivative, denoted by W^{\prime} or $D(W)$, is the word whose j th symbol equals the length of the j th run of W, discarding the first and/or last run if it has length one. For example, $(12211)^{\prime}=22$ and $(121)^{\prime}=1$. Write ϵ for the empty word and set $\epsilon^{\prime}=\epsilon$.

Say that a finite word of 1's and 2's is C^{∞}, or is a C^{∞}-word, if it is arbitrarily often differentiable. For example, 1212 is C^{∞} and 12121 is differentiable but not C^{∞}.

If S is a finite subword of the Kolakoski sequence K, then S is differentiable and S^{\prime} is either ϵ or a subword of K. Thus every finite subword of K is C^{∞}.

Definition. A C^{∞} word W is recurrent (or almost periodic) if there is a positive integer n such that every C^{∞} word of length at least n contains W as a subword.

Considerable effort has been spent trying to prove
Conjecture. Every C^{∞}-word is recurrent.
This would imply that the finite subwords of K are exactly the C^{∞} words.
In this talk, we consider evidence for and against the conjecture.

