THE DEPARTMENT OF MATHEMATICAL SCIENCES

Indiana University - Purdue University Fort Wayne

is pleased to present

Maya Stoyanova

Faculty of Mathematics and Informatics, Sofia University

Universal Lower Bounds on Energy — Computational Aspects

Abstract

Let \mathbb{S}^{n-1} be the unit sphere in \mathbb{R}^n . We refer to a finite set $C \subset \mathbb{S}^{n-1}$ as a spherical code and, for a given (extended real-valued) function $h(t) : [-1,1] \to [0,+\infty]$, we consider the *h*-energy (or the potential energy) of C defined by

$$E(n,C;h) := \sum_{x,y \in C, x \neq y} h(\langle x, y \rangle), \tag{1}$$

where $\langle x, y \rangle$ denotes the inner product of x and y.

A commonly arising problem is to estimate the potential energy provided the cardinality |C| of C is fixed, that is, to determine

$$\mathcal{E}(n, N; h) := \inf \{ E(C; h) : |C| = N, C \subset S^{n-1} \}$$

In this talk we address some computational aspects in connection with recently obtained universal lower bound on $\mathcal{E}(n, N; h)$ – decision making, generating necessary parameters, deriving bounds, test functions and (if possible) further improvements.

Joint work with: Peter G. Boyvalenkov, Peter Dragnev, Douglas Hardin, Edward Saff.

Noon – 1:00, Wednesday, March 18, 2015. Location: KT 216

http://ipfw.edu/departments/coas/depts/math/news/seminars.html