THE DEPARTMENT OF MATHEMATICAL SCIENCES

Indiana University - Purdue University Fort Wayne
is pleased to present
Peter Boyvalenkov
\section*{Institute of Mathematics and Informatics

Bulgarian Academy of Sciences}

On Bounds for Antipodal Spherical Codes

Abstract

We are interested in antipodal spherical codes $C \subset \mathbb{S}^{n-1}$ with a few possible distances which have maximal possible size M. We will first review bounds for codes with only inner products $\pm s$ (so-called equiangular lines). Then we will develop specific bounds for codes with inner products $\{0, \pm s\}$, and with $\left\{ \pm s_{1}, \pm s_{2}\right\}$, as generalizations of the relative bound for equiangular lines and in the special case of spherical designs of good strength.

For example, we obtain: Theorem. If $C \subset \mathbb{S}^{n-1}$ is an antipodal spherical 3-design with inner products in $\{-1,0, \pm s\}, k \geq 2$ and $P_{2 k}^{(n)}(s)+\left(n s^{2}-1\right) P_{2 k}^{(n)}(0)<0$, then $$
M \leq \frac{n\left(2 n s+\left(1-2 s^{2}\right) P_{2 k}^{(n)}(0)-P_{2 k}^{(n)}(s)\right)}{\left|P_{2 k}^{(n)}(s)+\left(n s^{2}-1\right) P_{2 k}^{(n)}(0)\right|}
$$

Here $P_{i}^{(n)}(t)$ are Gegenbauer polynomials, corresponding to \mathbb{S}^{n-1}.
Joint work with K. Delchev.

Noon - 1:00, Wednesday, May 10, 2017. Location: Kettler 216

