THE DEPARTMENT OF MATHEMATICAL SCIENCES

Indiana University - Purdue University Fort Wayne

is pleased to present

Peter Boyvalenkov

Institute of Mathematics and Informatics Bulgarian Academy of Sciences

On Bounds for Antipodal Spherical Codes

Abstract

We are interested in antipodal spherical codes $C \subset \mathbb{S}^{n-1}$ with a few possible distances which have maximal possible size M. We will first review bounds for codes with only inner products $\pm s$ (so-called equiangular lines). Then we will develop specific bounds for codes with inner products $\{0, \pm s\}$, and with $\{\pm s_1, \pm s_2\}$, as generalizations of the relative bound for equiangular lines and in the special case of spherical designs of good strength.

For example, we obtain:

Theorem. If $C \subset \mathbb{S}^{n-1}$ is an antipodal spherical 3-design with inner products in $\{-1, 0, \pm s\}, k \geq 2$ and $P_{2k}^{(n)}(s) + (ns^2 - 1)P_{2k}^{(n)}(0) < 0$, then

$$M \le \frac{n\left(2ns + (1 - 2s^2)P_{2k}^{(n)}(0) - P_{2k}^{(n)}(s)\right)}{\left|P_{2k}^{(n)}(s) + (ns^2 - 1)P_{2k}^{(n)}(0)\right|}.$$

Here $P_i^{(n)}(t)$ are Gegenbauer polynomials, corresponding to \mathbb{S}^{n-1} . Joint work with K. Delchev.

Noon – 1:00, Wednesday, May 10, 2017. Location: Kettler 216

http://ipfw.edu/departments/coas/depts/math/news/seminars.html