Optimal Hölder regularity for the $\bar{\partial}$ problem on product domains in \mathbb{C}^{2}

Yuan Zhang

Abstract

The note concerns the $\bar{\partial}$ problem on product domains in \mathbb{C}^{2}. We show that there exists a bounded solution operator from $C^{k, \alpha}$ into itself, $k \in \mathbb{Z}^{+} \cup\{0\}, 0<\alpha<1$. The regularity result is optimal in view of an example of Stein-Kerzman.

1 Introduction

Let $\Omega \subset \mathbb{C}^{n}$ be the product of planar domains whose boundaries consist of a finite number of non-intersecting rectifiable Jordan curves. Then Ω is weakly pseudoconvex with at most Lipschitz boundary. A natural question is to look for a solution operator to the $\bar{\partial}$ problem on Ω that achieves the optimal regularity.

As indicated by Example 3.2 of Stein-Kerzman [12], the $\bar{\partial}$ problem on product domains does not gain regularity in general. This phenomenon is in sharp contrast with some wellunderstood domains having nice geometry (such as strict pseudoconvexity, convexity and/or finite type), on which solutions with a gain in regularity always exist. See $[4,7,8,10,12,13]$ et al. and the references therein.

Initiated by the work of Henkin [9] on the bidisc, Bertrams [1], Chen-McNeal [2][3], Fassina-Pan [5] and Jin-Yuan [11] etc. investigated uniform C^{k} and Sobolev norms of solutions on product domains. In the Hölder category, the celebrated work of Nijenhuis and Woolf [14] constructed optimal Hölder solutions in some special iterated Hölder spaces for polydiscs. Pan and the author [15] recently proved existence of (the standard) Hölder solutions with an infinitesimal loss of Hölder regularity by analysing the parameter dependence of the Cauchy singular integrals.

[^0]In this note, we prove that for product domains in \mathbb{C}^{2}, the solution operator in [15] must attain the same regularity as that of the Hölder data. Thus the operator achieves the optimal regularity in view of Example 3.2. The proof relies on a careful inspection of the Hölder regularity along each direction.

Theorem 1.1. Let $\Omega=\Omega_{1} \times \Omega_{2}$, where Ω_{1} and Ω_{2} are two bounded domains in \mathbb{C} with $C^{k+1, \alpha}$ boundaries, $k \in \mathbb{Z}^{+} \cup\{0\}, 0<\alpha<1$. For any $0 \leq p \leq 2,1 \leq q \leq 2$, there exists a linear operator $T_{(p, q)}: C_{(p, q)}^{k, \alpha}(\Omega) \rightarrow C_{(p, q-1)}^{k, \alpha}(\Omega)$ such that for any $\bar{\partial}$-closed (p, q) form $\mathbf{f} \in C_{(p, q)}^{k, \alpha}(\Omega)$ (in the sense of distributions if $k=0$), Tf solves $\bar{\partial} u=\mathbf{f}$ on Ω. Moreover, $\|T \mathbf{f}\|_{C_{(p, q-1)}^{k, \alpha}(\Omega)} \leq C\|\mathbf{f}\|_{C_{(p, q)}^{k, \alpha}(\Omega)}$, where the constant C depends only on Ω, k and α.

It is not clear whether the same result extends to general product domains in $\mathbb{C}^{n}, n \geq 3$, as Example 3.3 demonstrates. As a direct consequence of Theorem 1.1, the following regularity corollary holds for smooth forms up to the boundary.

Corollary 1.2. Let $\Omega:=\Omega_{1} \times \Omega_{2}$, where Ω_{1} and Ω_{2} are two bounded domains in \mathbb{C} with smooth boundaries. Assume $\mathbf{f} \in C_{(p, q)}^{\infty}(\bar{\Omega})$ is a $\bar{\partial}$-closed (p, q) form on $\Omega, 0 \leq p \leq 2,1 \leq$ $q \leq 2$. Then there exists a solution $u \in C_{(p, q-1)}^{\infty}(\bar{\Omega})$ to $\bar{\partial} u=\mathbf{f}$ on Ω such that for each $k \in \mathbb{Z}^{+} \cup\{0\}, 0<\alpha<1,\|u\|_{C_{(p, q-1)}^{k, \alpha}(\Omega)} \leq C\|\mathbf{f}\|_{C_{(p, q)}^{k, \alpha}(\Omega)}$, where the constant C depends only on Ω, k and α.

Acknowledgement: The author thanks Professor Yifei Pan for helpful suggestions. She would also like to thank the referee and the journal editor for valuable comments. The author dedicates the paper to the memory of her father, Baoguo Zhang, who consistently supported her in life and work.

2 Notations and preliminaries

Let Ω be an open subset of \mathbb{C}^{n}. For $0<\alpha<1$, define the (α-)Hölder semi-norm of a function f on Ω to be

$$
H^{\alpha}[f]:=\sup _{z, z^{\prime} \in \Omega, z \neq z^{\prime}} \frac{\left|f(z)-f\left(z^{\prime}\right)\right|}{\left|z-z^{\prime}\right|^{\alpha}} .
$$

Given any $f \in C^{k}(\Omega), k \in \mathbb{Z}^{+} \cup\{0\}$, its C^{k} norm is denoted by $\|f\|_{C^{k}(\Omega)}:=\sum_{|\beta|=0}^{k} \sup _{z \in \Omega}\left|D^{\beta} f(z)\right|$, where D^{β} represents any $|\beta|$-th derivative operator. A function $f \in C^{k}(\Omega)$ is said to be in $C^{k, \alpha}(\Omega)$ if

$$
\|f\|_{C^{k, \alpha}(\Omega)}:=\|f\|_{C^{k}(\Omega)}+\sum_{|\beta|=k} H^{\alpha}\left[D^{\beta} f\right]<\infty .
$$

We say a (p, q) form is in $C_{(p, q)}^{k, \alpha}(\Omega)$ (or simply $C^{k, \alpha}(\Omega)$ when the context is clear) if all its coefficients are in $C^{k, \alpha}(\Omega)$. When $k=0$, we suppress k in the notations by writing $C^{0, \alpha}(\Omega)$ as $C^{\alpha}(\Omega)$, and $C^{0}(\Omega)$ as $C(\Omega)$.

Assume that $\Omega:=\Omega_{1} \times \ldots \times \Omega_{n}$ is a product of planar domains $\Omega_{j}, 1 \leq j \leq n$. Fixing $\left(z_{1}, \ldots, z_{j-1}, z_{j+1}, \ldots, z_{n}\right) \in \Omega_{1} \times \ldots \times \Omega_{j-1} \times \Omega_{j+1} \times \ldots \times \Omega_{n}$, denote the Hölder semi-norm of a function f on Ω along the z_{j} variable by

$$
\begin{aligned}
& H_{j}^{\alpha}[f]\left(z_{1}, \ldots, z_{j-1}, z_{j+1}, \ldots, z_{n}\right): \\
= & \sup _{\zeta, \zeta^{\prime} \in \Omega_{j}, \zeta \neq \zeta^{\prime}} \frac{\left|f\left(z_{1}, \ldots, z_{j-1}, \zeta^{\prime}, z_{j+1}, \ldots, z_{n}\right)-f\left(z_{1}, \ldots, z_{j-1}, \zeta, z_{j+1}, \ldots, z_{n}\right)\right|}{\left|\zeta^{\prime}-\zeta\right|^{\alpha}} .
\end{aligned}
$$

Then one has by the triangle inequality that

$$
\begin{equation*}
H^{\alpha}[f] \leq \sum_{j=1}^{n} \sup _{\substack{z_{l} \in \Omega_{l} \leq n \\ 1 \leq l(\neq j) \leq n}} H_{j}^{\alpha}[f]\left(z_{1}, \ldots, z_{j-1}, z_{j+1}, \ldots, z_{n}\right) \tag{1}
\end{equation*}
$$

Suppose in addition that each slice Ω_{j} of Ω is bounded with $C^{k+1, \alpha}$ boundary, $1 \leq j \leq n$. We define the solid and boundary Cauchy integral of a function $f \in C^{k, \alpha}(\Omega)$ along the z_{j} variable to be

$$
\begin{aligned}
T_{j} f(z) & :=-\frac{1}{2 \pi i} \int_{\Omega_{j}} \frac{f\left(z_{1}, \ldots, z_{j-1}, \zeta_{j}, z_{j+1}, \ldots, z_{n}\right)}{\zeta_{j}-z_{j}} d \bar{\zeta}_{j} \wedge d \zeta_{j}, \quad z \in \Omega \\
S_{j} f(z) & :=\frac{1}{2 \pi i} \int_{b \Omega_{j}} \frac{f\left(z_{1}, \ldots, z_{j-1}, \zeta_{j}, z_{j+1}, \ldots, z_{n}\right)}{\zeta_{j}-z_{j}} d \zeta_{j}, \quad z \in \Omega
\end{aligned}
$$

The classical one-dimensional singular integral theory (see [18], or [15, Lemma 4.1]) states that for each $1 \leq j \leq n$,

$$
\begin{align*}
& \sup _{\substack{z_{l} \in \Omega_{l} \\
1 \leq l(\neq j) \leq n}} H_{j}^{\alpha}\left[D_{j}^{k} T_{j} f\right]\left(z_{1}, \ldots, z_{j-1}, z_{j+1}, \ldots, z_{n}\right) \lesssim\left\{\begin{array}{cc}
\|f\|_{C(\Omega)}, & k=0 \\
\|f\|_{C^{k-1, \alpha}(\Omega)}, & k \geq 1
\end{array} ;\right. \tag{2}\\
& \sup _{\substack{z_{1} \in \Omega_{l} \\
1 \leq l(\neq j) \leq n}} H_{j}^{\alpha}\left[D_{j}^{k} S_{j} f\right]\left(z_{1}, \ldots, z_{j-1}, z_{j+1}, \ldots, z_{n}\right) \lesssim\|f\|_{C^{k, \alpha}(\Omega)} . \tag{3}
\end{align*}
$$

Here D_{j}^{k} represents a k-th order derivative operator with respect to the z_{j} variable, and two quantities a and b are said to satisfy $a \lesssim b$ if there exists a constant C dependent only on Ω, k and α, such that $a \leq C b$.

It was further proved in $\left[15\right.$, Theorem 1.1] that for each $1 \leq j \leq n$, the operator T_{j} sends $C^{k, \alpha}(\Omega)$ into $C^{k, \alpha}(\Omega)$ with

$$
\begin{equation*}
\left\|T_{j} f\right\|_{C^{k, \alpha}(\Omega)} \lesssim\|f\|_{C^{k, \alpha}(\Omega)} \tag{4}
\end{equation*}
$$

for any $f \in C^{k, \alpha}(\Omega)$; and for any small ϵ with $0<\epsilon<\alpha$, the operator S_{j} sends $C^{k, \alpha}(\Omega)$ into $C^{k, \alpha-\epsilon}(\Omega)$ with

$$
\begin{equation*}
\left\|S_{j} f\right\|_{C^{k, \alpha-\epsilon}(\Omega)} \lesssim\|f\|_{C^{k, \alpha}(\Omega)} \tag{5}
\end{equation*}
$$

for any $f \in C^{k, \alpha}(\Omega)$. It is worth mentioning that both (4) and (5) are sharp estimates (see Example 4.2-4.3 in [15]), in the sense that the Hölder regularity in neither inequality can be further improved.

Finally, given any $\bar{\partial}$ closed $(0,1)$ form $\mathbf{f}=\sum_{j=1}^{n} f_{j} d \bar{z}_{j} \in C^{k, \alpha}(\Omega)$, define as in [14]

$$
\begin{equation*}
T \mathbf{f}:=T_{1} f_{1}+T_{2} S_{1} f_{2}+\cdots+T_{n} S_{1} \ldots S_{n-1} f_{n} \tag{6}
\end{equation*}
$$

It is not hard to verify that T is a solution operator to $\bar{\partial}$ on Ω (in the sense of distributions if $k=0$), using the identities $\bar{\partial}_{j} T_{j}=S_{j}+T_{j} \bar{\partial}_{j}=i d$ and $\bar{\partial}_{j} S_{k}=0, j \neq k$. Here $\bar{\partial}_{j}:=\frac{\partial}{\partial \bar{z}_{j}}$ (and similarly denote $\frac{\partial}{\partial z_{j}}$ by ∂_{j}). In fact, employing the closedness of \mathbf{f} and Fubini's Theorem, we can compute as follows.

$$
\begin{aligned}
\bar{\partial}_{1} T \mathbf{f} & =\bar{\partial}_{1} T_{1} f_{1}+\bar{\partial}_{1} T_{2} S_{1} f_{2}+\cdots+\bar{\partial}_{1} T_{n} S_{1} \cdots S_{n-1} f_{n}=f_{1} ; \\
\bar{\partial}_{2} T \mathbf{f} & =\bar{\partial}_{2} T_{1} f_{1}+\bar{\partial}_{2} T_{2} S_{1} f_{2}+\cdots+\bar{\partial}_{2} T_{n} S_{1} \cdots S_{n-1} f_{n} \\
& =T_{1}\left(\bar{\partial}_{2} f_{1}\right)+S_{1} f_{2}=T_{1}\left(\bar{\partial}_{1} f_{2}\right)+S_{1} f_{2}=f_{2} \\
& \cdots \\
\bar{\partial}_{n} T \mathbf{f} & =\bar{\partial}_{n} T_{1} f_{1}+\bar{\partial}_{n} T_{2} S_{1} f_{2}+\cdots+\bar{\partial}_{n} T_{n} S_{1} \cdots S_{n-1} f_{n} \\
& =T_{1}\left(\bar{\partial}_{n} f_{1}\right)+T_{2} S_{1} \bar{\partial}_{n} f_{2}+\cdots+S_{1} \cdots S_{n-1} f_{n} \\
& =T_{1}\left(\bar{\partial}_{1} f_{n}\right)+S_{1} T_{2} \bar{\partial}_{2} f_{n}+\cdots+S_{1} \cdots S_{n-1} f_{n} \\
& =f_{n}-S_{1} f_{n}+S_{1}\left(f_{n}-S_{2} f_{n}\right)+\cdots+S_{1} \cdots S_{n-1} f_{n}=f_{n}
\end{aligned}
$$

As a consequence of (4) and (5), the solution operator T achieves the Hölder regularity with at most an infinitesimal loss from that of the data.

3 The optimal Hölder estimates

Let $\Omega=\Omega_{1} \times \Omega_{2}$, where $\Omega_{j} \subset \mathbb{C}$ is a bounded domain with $C^{k+1, \alpha}$ boundary, $j=1,2$, $k \in \mathbb{Z}^{+} \cup\{0\}, 0<\alpha<1$. Despite a loss of Hölder regularity of S_{j} in $C^{k, \alpha}(\Omega)$ as in (5), the following proposition shows that the composition operator $S_{j} T_{l}, j \neq l$, preserves exactly the
same Hölder regularity. The key observation of the proof is that the loss of Hölder regularity of S_{j} only occurs along the z_{l} direction, which is compensated by a gain of Hölder regularity of T_{l} in this same direction.

Proposition 3.1. For each $k \in \mathbb{Z}^{+} \cup\{0\}$ and $0<\alpha<1,1 \leq j \neq l \leq 2$, there exists some constant C dependent only on Ω, k and α, such that for any $f \in C^{k, \alpha}(\Omega)$,

$$
\left\|S_{j} T_{l} f\right\|_{C^{k, \alpha}(\Omega)} \leq C\|f\|_{C^{k, \alpha}(\Omega)}
$$

Proof. Without loss of generality, assume $j=1$ and $l=2$. Let $\gamma:=\left(\gamma_{1}, \gamma_{2}\right)$ with $|\gamma| \leq$ k. Since $S_{1} T_{2} f$ is holomorphic with respect to the z_{1} variable, we only need to estimate $\left\|D_{2}^{\gamma_{2}} \partial_{1}^{\gamma_{1}} S_{1} T_{2} f\right\|_{C^{\alpha}(\Omega)}$.

Write $b \Omega_{1}=\cup_{m=1}^{N} \Gamma_{m}$, where each Jordan curve Γ_{m} is connected, positively oriented with respect to Ω_{1}, and of length s_{m}. Let $\left.\zeta_{1}\right|_{s \in\left[\sum_{j=1}^{m-1} s_{j}, \sum_{j=1}^{m} s_{j}\right)}$ be a $C^{k+1, \alpha}$ parametrization of Γ_{m} with respect to the arclength variable s, and $\tilde{s}=\sum_{m=1}^{N} s_{m}$ is the total length of $b \Omega_{1}$. In particular, $\zeta_{1}^{\prime}=1 / \bar{\zeta}_{1}^{\prime}$ on the interval $\left(\sum_{j=1}^{m-1} s_{j}, \sum_{j=1}^{m} s_{j}\right)$ for each $1 \leq m \leq N$. For any $\left(z_{1}, z_{2}\right) \in \Omega$, integration by parts on $\left(\sum_{j=1}^{m-1} s_{j}, \sum_{j=1}^{m} s_{j}\right)$ for each $1 \leq m \leq N$ gives

$$
\begin{aligned}
\partial_{1} S_{1} T_{2} f\left(z_{1}, z_{2}\right) & =\frac{1}{2 \pi i} \int_{b \Omega_{1}} \partial_{z_{1}}\left(\frac{1}{\zeta_{1}(s)-z_{1}}\right) T_{2} f\left(\zeta_{1}(s), z_{2}\right) \zeta_{1}^{\prime}(s) d s \\
& =-\frac{1}{2 \pi i} \sum_{m=1}^{N} \int_{\sum_{j=1}^{m-1} s_{j}}^{\sum_{j=1}^{m} s_{j}} \partial_{s}\left(\frac{1}{\zeta_{1}(s)-z_{1}}\right) T_{2} f\left(\zeta_{1}(s), z_{2}\right) d s \\
& =\frac{1}{2 \pi i} \sum_{m=1}^{N} \int_{\sum_{j=1}^{m-1} s_{j}}^{\sum_{j=1}^{m} s_{j}} \frac{\partial_{s}\left(T_{2} f\left(\zeta_{1}(s), z_{2}\right)\right)}{\zeta_{1}(s)-z_{1}} d s \\
& =\frac{1}{2 \pi i} \sum_{m=1}^{N} \int_{\sum_{j=1}^{m-1} s_{j}}^{\sum_{j=1}^{m} s_{j}} \frac{T_{2}\left(\partial_{1} f\left(\zeta_{1}(s), z_{2}\right) \zeta_{1}^{\prime}(s)+\bar{\partial}_{1} f\left(\zeta_{1}(s), z_{2}\right) \bar{\zeta}_{1}^{\prime}(s)\right)}{\zeta_{1}(s)-z_{1}} d s \\
& =\frac{1}{2 \pi i} \sum_{m=1}^{N} \int_{\sum_{j=1}^{m-1} s_{j}}^{\sum_{j=1}^{m} s_{j}} \frac{T_{2}\left(\partial_{1} f\left(\zeta_{1}(s), z_{2}\right)+\bar{\partial}_{1} f\left(\zeta_{1}(s), z_{2}\right)\left(\bar{\zeta}_{1}^{\prime}(s)\right)^{2}\right)}{\zeta_{1}(s)-z_{1}} \zeta_{1}^{\prime}(s) d s \\
& =: \frac{1}{2 \pi i} \int_{b \Omega_{1}}^{\frac{T_{2} \tilde{f}\left(\zeta_{1}, z_{2}\right)}{\zeta_{1}-z_{1}} d \zeta_{1}=S_{1} T_{2} \tilde{f}\left(z_{1}, z_{2}\right),}
\end{aligned}
$$

where the function \tilde{f} is in $C^{k-1, \alpha}(\Omega)$ such that $\tilde{f}\left(\zeta_{1}(s), z_{2}\right)=\partial_{1} f\left(\zeta_{1}(s), z_{2}\right)+\bar{\partial}_{1} f\left(\zeta_{1}(s), z_{2}\right)\left(\bar{\zeta}_{1}^{\prime}(s)\right)^{2}$ on $[0, \tilde{s}) \times \Omega_{2}$ and $\|\tilde{f}\|_{C^{k-1, \alpha}(\Omega)} \lesssim\|f\|_{C^{k, \alpha}(\Omega)}$ (see [6, Lemma 6.38] on page 137 for the construction of an extension). Repeating the above process, proving the proposition is reduced
to proving for each $\gamma \in \mathbb{Z}^{+} \cup\{0\}, \gamma \leq k, 0<\alpha<1$,

$$
\left\|D_{2}^{\gamma} S_{1} T_{2} f\right\|_{C^{\alpha}(\Omega)} \lesssim\|f\|_{C^{\gamma, \alpha}(\Omega)}
$$

for all $f \in C^{\gamma, \alpha}(\Omega)$.
Firstly, choose an ϵ such that $0<\epsilon<\alpha$. Applying the estimates (5) and (4) to $S_{1} T_{2} f$, we get

$$
\left\|D_{2}^{\gamma} S_{1} T_{2} f\right\|_{C(\Omega)} \leq\left\|S_{1} T_{2} f\right\|_{C^{\gamma, \alpha-\epsilon}(\Omega)} \lesssim\left\|T_{2} f\right\|_{C^{\gamma}, \alpha}(\Omega)<\|f\|_{C^{\gamma, \alpha}(\Omega)}
$$

We next verify that $H^{\alpha}\left[D_{2}^{\gamma} S_{1} T_{2} f\right] \lesssim\|f\|_{C^{\gamma, \alpha}(\Omega)}$. Fixing $z_{2} \in \Omega_{2}$, since $D_{2}^{\gamma} S_{1} T_{2} f=$ $S_{1} D_{2}^{\gamma} T_{2} f$,

$$
H_{1}^{\alpha}\left[D_{2}^{\gamma} S_{1} T_{2} f\right]\left(z_{2}\right)=H_{1}^{\alpha}\left[S_{1} D_{2}^{\gamma} T_{2} f\right]\left(z_{2}\right) \lesssim\left\|D_{2}^{\gamma} T_{2} f\right\|_{C^{\alpha}(\Omega)}
$$

Here the last inequality used (3) for the estimate of S_{1} on Ω_{1}. Consequently, applying (4) to the operator T_{2} in the last term, we obtain

$$
H_{1}^{\alpha}\left[D_{2}^{\gamma} S_{1} T_{2} f\right]\left(z_{2}\right) \lesssim\left\|T_{2} f\right\|_{C^{\gamma, \alpha}(\Omega)} \lesssim\|f\|_{C^{\gamma, \alpha}(\Omega)}
$$

We further show for each $z_{1} \in \Omega_{1}, H_{2}^{\alpha}\left[D_{2}^{\gamma} S_{1} T_{2} f\right]\left(z_{1}\right) \lesssim\|f\|_{C^{\gamma, \alpha}(\Omega)}$. If $\gamma \geq 1$, making use of the identity $D_{2}^{\gamma} S_{1} T_{2} f=D_{2}^{\gamma} T_{2} S_{1} f$ by Fubini's theorem, and the second case of (2) for T_{2} along the z_{2} direction, one deduces

$$
H_{2}^{\alpha}\left[D_{2}^{\gamma} S_{1} T_{2} f\right]\left(z_{1}\right)=H_{2}^{\alpha}\left[D_{2}^{\gamma} T_{2} S_{1} f\right]\left(z_{1}\right) \lesssim\left\|S_{1} f\right\|_{C^{\gamma-1, \alpha}(\Omega)}
$$

Together with (5) for S_{1} on Ω, we infer

$$
H_{2}^{\alpha}\left[D_{2}^{\gamma} S_{1} T_{2} f\right]\left(z_{1}\right) \lesssim\|f\|_{C^{\gamma, \alpha}(\Omega)}
$$

When $\gamma=0$, the first case of (2) for T_{2} and (5) for S_{1} together give

$$
H_{2}^{\alpha}\left[D_{2}^{\gamma} S_{1} T_{2} f\right]\left(z_{1}\right)=H_{2}^{\alpha}\left[T_{2} S_{1} f\right]\left(z_{1}\right) \lesssim\left\|S_{1} f\right\|_{C(\Omega)} \lesssim\|f\|_{C^{\alpha}(\Omega)} .
$$

The proof of the proposition is complete in view of (1).

Proof of Theorem 1.1 and Corollary 1.2. We only need to prove the case when $p=0$. If $q=2$, for any datum $\mathbf{f}=f d \bar{z}_{1} \wedge d \bar{z}_{2}$, it is easy to verify that $T_{1} f d \bar{z}_{2}$ is a solution to $\bar{\partial}$ on Ω. The optimal Hölder estimate follows from that of the T_{1} operator demonstrated in (4). For $q=1$, the Hölder estimate of the solution given by (6) is a consequence of (4) and Proposition 3.1, from which the theorem and the corollary follow.

Motivated by an L^{∞} example of Stein and Kerzman [12], it was shown in [15] that the following $\bar{\partial}$ problem on the bidisc does not gain regularity in Hölder spaces, according to which the Hölder regularity in Theoerem 1.1 is optimal.

Example 3.2. [12] Let $\triangle^{2}=\left\{\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2}:\left|z_{1}\right|<1,\left|z_{2}\right|<1\right\}$ be the bidisc. For each $k \in$ $\mathbb{Z}^{+} \cup\{0\}$ and $0<\alpha<1$, consider $\bar{\partial} u=\mathbf{f}:=\bar{\partial}\left(\left(z_{1}-1\right)^{k+\alpha} \bar{z}_{2}\right)$ on $\triangle^{2}, \frac{1}{2} \pi<\arg \left(z_{1}-1\right)<\frac{3}{2} \pi$. Then $\mathbf{f} \in C^{k, \alpha}\left(\triangle^{2}\right)$ is $\bar{\partial}$-closed. However, there does not exist a solution $u \in C^{k, \alpha^{\prime}}\left(\triangle^{2}\right)$ to $\bar{\partial} u=\mathbf{f}$ for any α^{\prime} with $1>\alpha^{\prime}>\alpha$.

Unfortunately, our method does not obtain optimal Hölder estimates for product domains of dimension larger than 2 . For instance, the solution operator of the $\bar{\partial}$ problem for $(0,1)$ forms on product domains when $n=3$ is in the form of $T \mathbf{f}=T_{1} f_{1}+T_{2} S_{1} f_{2}+T_{3} S_{1} S_{2} f_{3}$. Yet not all three operators involved on the right hand side of the formula are bounded in $C^{\alpha}(\Omega)$ space. In fact, in the following we adapt an example of Tumanov [17] to show that $T_{2} S_{1}$ fails to send $C^{\alpha}(\Omega)$ into itself, due to the unboundedness of its Hölder semi-norm along the z_{3} variable. As a result of this, Proposition 3.1 holds only when $n=2$.

Example 3.3. For $\left(e^{i \theta}, \lambda\right) \in b \triangle \times \triangle$, let

$$
\tilde{h}\left(e^{i \theta}, \lambda\right):=\left\{\begin{array}{cc}
|\lambda|^{\alpha}, & -\pi \leq \theta \leq-|\lambda|^{\frac{1}{2}} \\
\theta^{2 \alpha}, & -|\lambda|^{\frac{1}{2}} \leq \theta \leq 0 \\
\theta^{\alpha}, & 0 \leq \theta \leq|\lambda| \\
|\lambda|^{\alpha}, & |\lambda| \leq \theta \leq \pi
\end{array}\right.
$$

and h be a C^{α} extension of \tilde{h} onto \triangle^{2}. Define $f\left(z_{1}, z_{2}, z_{3}\right):=h\left(z_{1}, z_{3}\right)$ for $\left(z_{1}, z_{2}, z_{3}\right) \in \triangle^{3}$. Then $f \in C^{\alpha}\left(\triangle^{3}\right)$. However, $T_{2} S_{1} f \notin C^{\alpha}\left(\triangle^{3}\right)$.

Proof. Clearly $\tilde{h} \in C^{\alpha}(b \triangle \times \triangle)$. For each $z^{\prime}=\left(z_{1}, z_{3}\right) \in \triangle^{2}$, let $h\left(z^{\prime}\right):=\inf _{w \in b \Delta \times \Delta}\{\tilde{h}(w)+$ $\left.M\left|z^{\prime}-w\right|^{\alpha}\right\}$, where $M=\|\tilde{h}\|_{C^{\alpha}(b \Delta \times \Delta)}$. Then $h \in C^{\alpha}\left(\triangle^{2}\right)$ is a C^{α} extension of \tilde{h} onto \triangle^{2} and $f \in C^{\alpha}\left(\triangle^{3}\right)$.

In [16, Section 3], it was verified that $H_{3}^{\alpha}\left[S_{1} h\right]\left(z_{1}\right)$ is unbounded near $1 \in b \triangle$, and so $S_{1} h \notin C^{\alpha}\left(\triangle^{2}\right)$. On the other hand, making use of the fact that $T_{2} 1(z)=\bar{z}_{2}, z \in \triangle^{3}$ (see [14, Appendix 6.1b] for instance), we get $T_{2} S_{1} f(z)=T_{2} 1(z) \cdot S_{1} h\left(z_{1}, z_{3}\right)=\bar{z}_{2} S_{1} h\left(z_{1}, z_{3}\right)$, which does not belong to $C^{\alpha}\left(\triangle^{3}\right)$.

References

[1] Bertrams, J.: Randregularität von Lösungen der $\bar{\partial}$-Gleichung auf dem Polyzylinder und zweidimensionalen analytischen Polyedern. Bonner Math. Schriften, 176(1986), 1-164.
[2] Chen, L.; McNeal, J.: A solution operator for $\bar{\partial}$ on the Hartogs triangle and L^{p} estimates. Math. Ann. 376 (2020), no. 1-2, 407-430.
[3] Chen, L.; McNeal, J.: Product domains, multi-Cauchy transforms, and the $\bar{\partial}$ equation. Adv. Math. 360 (2020), 106930, 42 pp.
[4] Diederich, K.; Fischer, B.; Forness, J. E.: Hölder estimates on convex domains of finite type. Math. Z. 232 (1999), no. 1, 43-61.
[5] Fassina, M.; Pan, Y.: Supnorm estimates for $\bar{\partial}$ on product domains in \mathbb{C}^{n}. Preprint. https://arxiv.org/pdf/1903.10475.pdf.
[6] Gilbarg, D.; Trudinger, N. S.: Elliptic partial differential equations of second order. Classics in Mathematics. Springer-Verlag, Berlin, 2001. xiv+517 pp.
[7] Grauert, H.; Lieb, I.: Das Ramirezsche Integral und die Lösung der Gleichung $\bar{\partial} f=\alpha$ im Bereich der beschränkten Formen. (German) Rice Univ. Studies 56 (1970), no. 2, (1971), 29-50.
[8] Henkin, G. M.: Integral representation of functions in strictly pseudoconvex domains and applications to the $\bar{\partial}$-problem. Mat. Sbornik. 124 (1970), no. 2, 300-308.
[9] Henkin, G. M.: A uniform estimate for the solution of the $\bar{\partial}$-problem in a Weil region. (Russian) Uspehi Mat. Nauk 26 (1971), no. 3(159), 211-212.
[10] Henkin, G. M.; Romanov, A. V.: Exact Hölder estimates of the solutions of the $\bar{\partial}$-equation. (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 35 (1971), 1171-1183.
[11] Jin, M.; Yuan, Y.: On the canonical solution of $\bar{\partial}$ on polydisks. C. R. Math. Acad. Sci. Paris 358 (2020), no. 5, 523-528.
[12] Kerzman, N.: Hölder and L^{p} estimates for solutions of $\bar{\partial} u=f$ in strongly pseudoconvex domains. Comm. Pure Appl. Math. 24(1971) 301-379.
[13] Lieb, I; Range, R. M.: Lösungsoperatoren für den Cauchy-Riemann-Komplex mit C^{k}-Abschätzungen. (German) Math. Ann. 253 (1980), no. 2, 145-164.
[14] Nijenhuis, A.; Woolf, W.: Some integration problems in almost-complex and complex manifolds. Ann. of Math. (2) 77 (1963), 424-489.
[15] Pan, Y.; Zhang, Y.; Hölder regularity of $\bar{\partial}$ problem on product domains. Internat. J. Math., 32(2021), no. 3, 20 pp.
[16] Pan, Y.; Zhang, Y.: Cauchy singular integral operator with parameters in Log-Hölder spaces. J. Anal. Math., to appear.
[17] Tumanov, A.: On the propagation of extendibility of $C R$ functions. Complex analysis and geometry (Trento, 1993), 479-498, Lecture Notes in Pure and Appl. Math., 173, Dekker, New York, 1996.
[18] Vekua, I. N.: Generalized analytic functions, International Series of Monographs on Pure and Applied Mathematics, Vol. 25, Pergamon Press, 1962 xxix +668 pp.

Yuan Zhang, zhangyu@pfw.edu, Department of Mathematical Sciences, Purdue University Fort Wayne, Fort Wayne, IN 46805-1499, USA

[^0]: 2010 Mathematics Subject Classification. Primary 32W05; Secondary 32A26, 32A55.
 Keywords. $\bar{\partial}$ problem, product domains, Hölder spaces, optimal.

