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1 Introduction

This paper is motivated by a CR embedding problem in Several Complex Variables. This
problem asks when a Levi non-degenerate hypersurface Mℓ in Cn+1 of signature ℓ with
0 ≤ ℓ ≤ n/2 can be embedded into a hyperqradric HN+1

ℓ in CN+1 of the same signature for
N >> n. By the general invariant theory and a Baire category argument, Forstneric [For1]
showed that most of such Mℓ

′s are not smoothly embeddable into HN+1
ℓ . (See also a recent

paper of Zaitsev [Zai] on the related issue.) On the other hand, 30 years ago, Webster in
[We1] showed that a Levi non-degenerate hypersurface in Cn+1 of signature ℓ, defined by a
real polynomial, can always be embedded into the hyperquadric Hn+2

ℓ+1 of signature ℓ+1 but
in the (n+2)-complex space. This has then led to an interesting open problem to understand
whether any algebraic Levi non-degenerate hypersurface in Cn+1 can be embedded into a
hyperquadric of the same signature but in a much higher dimensional complex space.

In this paper, we give a checkable necessary condition whether Mℓ can be embedded
into HN+1

ℓ when ℓ ∈ (0, [n/2]]. Our criterion is based on a monotonicity property for the
Chern-Moser-Weyl tensor along the cone defined by tangent vectors of type (1,0) in the
null space of the Levi form. Roughly speaking, our monotonicity property says that a
CR embedding from a Levi non-degenerate hypersurface into another one with the same
signature decreases the Chern-Moser-Weyl curvature. This phenomenon may be compared
with various monotonicity properties for (some type of ) curvatures under the application
of holomorphic maps, initiated from the classical Ahlfors-Pick-Schwarz lemma (see [GH]
[Yau], for instance). In the CR setting, the natural curvature tensor to be considered is
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the Chern-Moser-Weyl curvature tensor and the mappings to be involved are CR mappings.
Unfortunately, there is no monotonicity phenomenon in general. Our crucial observation is
that the monotonicity exists along directions in the null space of the Levi-form. Since the null
space of the Levi-from may be regarded as the ‘largest’ holomoprhic subset inside T (1,0)M ,
our result may be considered as a generalization of those results on complex manifolds.
Unfortunately, in our investigation, we have to exclude the important strongly pseudoconvex
case: ℓ = 0; for the null space of the Levi-form in this setting is the 0-space.

Since the hyperquarics have vanishing Chern-Moser-Weyl tensor, our criterion makes it
possible to construct many algebraic Levi non-degenerate hypersurfaces which can not be
embedded into a hyperquadric of the same signature ℓ > 0 in a complex space of higher
dimension. However, it still remains to be an open question to answer if any algebraic
strongly pseudoconvex hypersurface Mℓ can be embedded into HN

ℓ for some N with ℓ = 0.

2 Chern-Moser-Weyl tensor on a Levi non-degenerate

hypersurface

We use (z, w) ∈ Cn × C for the coordinates of Cn+1. We always assume that n ≥ 2. Let
M be a smooth real hypersurface. We say that M is Levi non-degenerate at p ∈ M with
signature ℓ ≤ n/2 if there is a local holomorphic change of coordinates, that maps p to the
origin, such that in the new coordinates, M is defined near 0 by an equation of the form:

r = v − |z|2ℓ + o(|z|2 + |zu|) = 0 (1)

Here, we write u = ℜw, v = ℑw and < a, b̄ >ℓ= −
∑

j≤ℓ aj b̄j +
∑n

j=ℓ+1 aj b̄j, |z|2ℓ =< z, z̄ >ℓ .
When ℓ = 0, we regard

∑
j≤ℓ aj = 0.

Assume that M is Levi non-degenerate with the same signature ℓ at any point. A
contact form θ over M is said to be appropriate if the Levi form Lθ|p associated with θ at
any point p ∈ M has ℓ negative eigenvalues and n − ℓ positive eigenvalues. (See (2) for our
definition of the Levi form.) Since our consideration in this paper is local, we only focus on
a small piece of M with 0 ∈ M and M is defined by an equation as in (1). In particular,
θ0 = i∂r is appropriate near 0. When ℓ < n/2, a contact form θ is appropriate if and only
if θ = k0θ0 with k0 > 0.

Let θ be an appropriate contact form over M . Then from the Chern-Moser Theory,
there is a unique 4th order curvature tensor Sθ associated with θ ([CM], [We2]), which we
call the Chern-Moser-Weyl tensor with respect to the contact form θ along M . Sθ can
be regarded as a section over T ∗(1,0)M ⊗ T ∗(0,1)M ⊗ T ∗(1,0)M ⊗ T ∗(0,1)M . We write Sθ|p
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for the restriction of Sθ at p ∈ M . For a basis {Xα}n
α=1 of T

(1,0)
p M with p ∈ M , write

(Sθ|p)αβ̄γδ̄ = Sθ|p(Xα, Xβ, Xγ, Xδ). We then have the following symmetric properties:

(Sθ|p)αβ̄γδ̄ = (Sθ|p)γβ̄αδ̄ = (Sθ|p)γδ̄αβ̄

(Sθ|p)αβ̄γδ̄ = (Sθ|p)βᾱδγ̄,

and the following trace-free condition:

n∑
β,α=1

gβ̄α(Sθ|p)αβ̄γδ̄ = 0.

Here
gαβ̄ = Lθ|p(Xα, Xβ) := −i < dθ|p, Xα ∧ Xβ >= − < ∂∂̄r|p, Xα ∧ Xβ > (2)

is the Levi form of M associated with θ at p ∈ M and (gβ̄α) is the inverse matrix of (gαβ̄).

For a different contact form θ̃ = k̃θ smooth along M with k̃ > 0, we have the following
transformation formula:

Sθ̃|p(Xα, Xβ, Xγ, Xδ) = k̃Sθ|p(Xα, Xβ, Xγ, Xδ)

For a smooth vector field X,Y, Z, W of type (1, 0) and a smooth contact form along
M , Sθ(X, Y , Z, W ) is also a smooth function along M . One easy way to see this is to use
the Webster-Chern-Moser-Weyl formula obtained in [We] through the curvature tensor of
the Webster pseudo-Hermitian metric, whose constructions are done by only applying the
algebraic and differentiation operations on the defining function of M .

Sθ is described in terms of the normal coordinates for M as follows: First, by the Chern-
Moser normal form theory [CM], we can find a coordinate in which M is defined near 0 by
an equation of the following form (see [(6.25), (6.30), CM]):

r = v − |z|2ℓ +
1

4
s(z, z̄) + o(|z|4) = v − |z|2ℓ +

1

4

∑
sαβ̄γδ̄zαz̄βzγ z̄δ + o(|z|4) = 0. (3)

Here s(z, z) =
∑

sαβ̄γδ̄zαz̄βzγ z̄δ, i∂r|0 = θ|0, sαβ̄γδ̄ = sγβ̄αδ̄ = sγδ̄αβ̄, sαβ̄γδ̄ = sβᾱδγ̄ and∑n
α,β=1 sαβ̄γδ̄g

β̄α = 0 where gβ̄α = 0 for β ̸= α, gβ̄β = 1 for β > ℓ, gβ̄β = −1 for β ≤ ℓ. Then

sαβ̄γδ̄ = Sθ|0(
∂

∂zα

|0,
∂

∂z̄β

|0,
∂

∂zγ

|0,
∂

∂z̄δ

|0).

Write △ℓ = −
∑

j≤ℓ
∂2

∂zj∂z̄j
+

∑n
j=ℓ+1

∂2

∂zj∂z̄j
and also write sθ|0(z, z̄) for s(z, z). Then the

trace-free condition above is equivalent to

△ℓsθ|0(z, z̄) ≡ 0.
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Indeed, this follows from the following fact: Let ∆H =
∑n

l,k=1 hlk∂l∂k with hlk = hkl for any
l, k. Then

∆Hsθ|0(z, z) = 4
n∑

γ,δ=1

n∑
α,β=1

hαβsαβγδzγzδ. (4)

For the rest of this section, we assume that ℓ > 0 and define

Cℓ = {z ∈ Cn : |z|ℓ = 0}.

Then Cℓ is a real algebraic variety of real codimension 1 in Cn with the only singularity at
0. For each p ∈ M , write CℓT

(1,0)
p M = {vp ∈ T

(1,0)
p M : < dθp, vp ∧ v̄p >= 0}. Apparently,

CℓT
(1,0)
p M is independent of the choice of θ. Let F be a CR diffeomorphism from M to

M ′. We also have F∗(CℓT
(1,0)
p M) = CℓT

(1,0)
F (p) M

′. (We will explain this in details in the later

discussion). Write CℓT
(1,0)M =

⨿
p∈M CℓT

(1,0)
p M with the natural projection π to M . We

say that X is a smooth section of CℓT
(1,0)M if X is a smooth vector field of type (1, 0) along

M such that X|p ∈ CℓT
(1,0)
p M for each p ∈ M . Later, we will see that CℓT

(1,0)M is a kind of
smooth bundle with each fiber isomorphic to Cℓ. (See Remark 3.3.)

We say that the Chern-Moser-Weyl curvature tensor Sθ is pseudo semi-positive definite
(or pseudo semi-negative definite) at p ∈ M if Sθ|p(X, X, X,X) ≥ 0 for any X ∈ CℓT

(1,0)
p M

(or Sθ|p(X, X, X, X) ≤ 0, respectively, for all X ∈ CℓT
(1,0)
p M). We say that Sθ is pseudo

positive-definite (or pseudo negative-definite) at p ∈ M if Sθ|p(X, X, X, X) > 0 for all

X ∈ CℓT
(1,0)
p M \ 0 (or Sθ|p(X, X, X, X) < 0, respectively, for all X ∈ CℓT

(1,0)
p M \ 0). We use

the terminology pseudo semi-definite to mean either pseudo semi-positive definite or pseudo
semi-negative definite. We can similarly define the notion of pseudo definiteness.

Cℓ is obviously a uniqueness set for holomorphic functions. The following lemma shows
that it is also a uniqueness set for the Chern-Moser-Weyl curvature tensor.

Lemma 2.1 (I). Suppose that H(z, z̄) is a real real-analytic function in (z, z̄) near 0. As-
sume that △ℓH(z, z̄) ≡ 0 and H(z, z̄)|Cℓ

= 0. Then H(z, z̄) ≡ 0 near 0. (II). Assume the

above notation. If Sθ|p(X, X,X,X) = 0 for any X ∈ CℓT
(1,0)
p M , then Sθ|p ≡ 0.

Proof: (I): Write H(z, z̄) =
∑∞

m=1 H(m)(z, z̄) with H(m)(z, z̄) homogeneous polynomials
in (z, z̄) of degree m. Then we easily see that △ℓH(z, z̄) ≡ 0 if and only if △ℓH

(m)(z, z̄) ≡ 0
for each m. For p ∈ Cℓ, since tp ∈ Cℓ for t ∈ R, we see that H(tp, tp) =

∑∞
m=1 tmH(m)(p, p̄)

and H(tp, tp) = 0 for each t ∈ R if and only if H(m)(p, p̄) = 0 for each m. Hence we see that
H(z, z̄)|Cℓ

= 0 if and only if H(m)(z, z̄) = 0 along Cℓ for each m. Therefore, to prove Lemma
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2.1, we can assume that H(z, z̄) is already a homogeneous polynomial of degree m in (z, z̄).
Next, notice that

V = {(z, ξ) ∈ Cn × Cn : < z, ξ >ℓ= −
ℓ∑

j=1

zjξj +
n∑

j=ℓ+1

zjξj = 0}

is a complex analytic variety defined by < z, ξ >ℓ= 0 with < z, ξ >ℓ irreducible as an
element in O(p,q) for each (p, q) ∈ V . Hence, we easily see that H(z, ξ) = h(z, ξ) < z, ξ >ℓ

for a certain holomorphic function h(z, ξ) in (z, ξ) ∈ Cn × Cn. Then it follows that h(z, ξ)
is a homogeneous polynomial of degree m− 2. Now by a well-known argument in harmonic
analysis (see [SW], pp140), we can prove H ≡ 0 as follows:
First, write H(z, z̄) =

∑
α+β=m aαβ̄zαz̄β. Then∑

α+β=m

|aαβ̄|2α!β! = H(∂z, ∂z̄)(H(z, z̄))

= h(∂z, ∂z̄)(△ℓ(H(z, z̄)))

= 0.

Thus H(z, z̄) ≡ 0.
(II): By the transformation law for the Chern-Moser-Weyl curvature tensor, we can

assume that p = 0 and M near 0 is given in normal coordinates as in (3) with θ|0 =

i∂r. Write X =
∑n

j=1 zj(
∂

∂zj
|0). Then X ∈ CℓT

(1,0)
0 M if and only if |z|ℓ = 0. Moreover

Sθ|0(X, X, X, X) = sθ|0(z, z) with ∆ℓsθ|0(z, z) ≡ 0. Now, since sθ|0(z, z) = 0 for |z|ℓ = 0, we
have, by Part I of the Lemma, sθ|0(z, z) = 0 for any z. Namely, Sθ|0(X, X, X, X) ≡ 0. This
then immediately shows that Sθ|0 ≡ 0. �

Write Hn+1
ℓ := {(z, w) ∈ Cn × C : ℑw =< z, z̄ >ℓ} for the Levi non-degenerate real

hyperquadric with signature ℓ > 0. By the Chern-Moser theory, M is locally CR equivalent
to Hn+1

ℓ if and only if Sθ ≡ 0. Together with the above lemma, we have the following:

Lemma 2.2 Let M be a Levi non-degenerate hypersurface of signature ℓ with 0 < ℓ ≤ n
2
.

Then M is locally CR equivalent to the hyperquadric Hn+1
ℓ of signature ℓ if and only

if for any contact form θ and any vector Xp ∈ CℓT
(1,0)
p M with p ∈ M , it holds that

Sθ|p(Xp, Xp, Xp, Xp) = 0.
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3 Monotonicity for the Chern-Moser-Weyl tensor and

CR embeddings

Next, we let M̃ ⊂ CN+1 = {(z, w) ∈ CN × C} be also a Levi non-degenerate smooth real
hypersurface near 0 of signature ℓ ≥ 0 defined by an equation of the form:

r̃ = ℑw̃ − |z̃|2ℓ + o(|z̃|2 + |z̃ũ|) = 0. (5)

Assume that N ≥ n and let F := (f̃ , g) = (f1, . . . , fN , g) : M → M̃ be a smooth CR map.
We say that F is CR transversal at a point p ∈ M , the normal component of F has a
non-vanishing normal derivative at p. Assume F (0) = 0. Then F is CR transversal at 0 if
and only if ∂g

∂w
|0 ̸= 0.

In our setting here, namely, when M and M̃ are both Levi non-degenerate hypersurfaces
with the same signature, the CR transversality of F is equivalent to the local embeddability.
Namely, F is CR transversal at p if and only if F is a CR embedding from a small neigh-
borhood of p in M into M̃ . When F extends to a holomorphic map to a neighborhood of p
in Cn+1, which is automatically the case when 0 < ℓ ≤ n/2 by the Lewy extension theorem,
this is further equivalent to the property that F is a local holomorphic embedding from a
neighborhood of p in Cn+1 into CN+1. To see this, we can assume, without loss of generality,
that p = 0. Since by the classical Hopf lemma, when ℓ = 0, either F is a constant map or
F is a local CR embedding at any point in M , we thus assume that 0 < ℓ ≤ n/2. When F
is CR transversal at p = 0, by the following (6), we easily see that F is a local embedding
from a neighborhood of 0 in Cn+1. Conversely, if F is not CR transversal at 0, then near 0,
we have g = O(|(z, w)|2) and f̃ = zU + a⃗w + O(|(z, w)|2), where U is an n × N matrix and
a⃗ ∈ CN . Since F (M) ⊂ M̃ , we have

ℑg = |f̃ |2ℓ + O(3), (z, w) ∈ M.

We easily see that U · Eℓ · Ū t = 0. Here Eℓ is the diagonal matrix with the first ℓ diagonal
elements −1 and the rest diagonal elements 1. Hence, by [Lemma 4.2, BH], the rank of U
is bounded by ℓ. Thus the Jacobian matrix of F at 0 can at most have rank ℓ + 1 < n + 1.
Namely, F can not be a holomorphic embedding near 0 in Cn+1.

Since the set of points where a holomorphic map fails to be local embedding is a complex
analytic variety in a neighborhood of M where F is holomorphic, the above observation has
an immediate consequence: When 0 < ℓ < n/2, either F fails to be CR transversal at any
point in M or the set of CR non-transversal points of F in M is an intersection of a certain
proper holomorphic variety with M and thus is a thin set in M . In particular, when M is
real analytic, it has codimension at least 2 in M . Hence, in this situation, the complement
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of the set of the CR non-transversal points of F is dense and connected. (We assume M, M̃
to be connected.)

Now, assume that F is CR transversal at 0. Then, as in [§2, BH], we can write

z̃ = f̃(z, w) = (f1(z, w), . . . , fN(z, w)) = λzU + a⃗w + O(|(z, w)|2)
w̃ = g(z, w) = σλ2w + O(|(z, w)|2).

(6)

Here U can be extended to an N × N matrix Ũ ∈ SU(N, ℓ) (namely < XŨ, Y Ũ >ℓ=<
X, Y >ℓ for any X, Y ∈ CN). Moreover, a⃗ ∈ CN , λ > 0 and σ = ±1 with σ = 1 for ℓ < n

2
.

When σ = −1, by considering F ◦ τn/2 instead of F , where τn
2
(z1, . . . , zn

2
, zn

2
+1, . . . , zn, w) =

(zn
2
+1, . . . , zn, z1, . . . , zn

2
,−w), we can make σ = 1. Hence, we will assume in what follows

that σ = 1.
Write r0 = 1

2
ℜ{g′′

ww(0)}, q(z̃, w̃) = 1 + 2i < z̃, λ−2a⃗ >ℓ +λ−4(r0 − i|⃗a|2ℓ)w̃,

T (z̃, w̃) =
(λ−1(z̃ − λ−2a⃗w̃)Ũ−1, λ−2w̃)

q(z̃, w̃)
. (7)

Then
F ♯(z, w) = (f̃ ♯, g♯)(z, w) := T ◦ F (z, w) = (z, 0, w) + O(|(z, w)|2) (8)

with ℜ{g♯′′
ww(0)} = 0.

Assume that M̃ is also defined in the Chern-Moser normal form up to the 4th order:

r̃ = ℑw̃ − |z̃|2ℓ +
1

4
s̃(z̃, ¯̃z) + o(|z̃|4) = 0. (9)

Then M ♯ = T (M̃) is defined by

r♯ = ℑw♯ − |z♯|2ℓ +
1

4
s♯(z♯, z̄♯) + o(|z♯|4) = 0 (10)

with s♯(z♯, z̄♯) = λ−2s̃(λz♯Ũ , λz♯Ũ).
One can verify that

(−
ℓ∑

j=1

∂2

∂z♯
j∂z̄♯

j

+
N∑

j=ℓ+1

∂2

∂z♯
j∂z̄♯

j

)s♯(z♯, z♯) = 0. (11)

Therefore (10) is also in the Chern-Moser normal form up to the 4th order. Now we assign
the weight of z, z̄ to be 1, and that of w to be 2. We use the standard notation h(k) and
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owt(k) to denote terms in function h of weighted degree k and terms vanishing to the weighted
degree higher than k, respectively. Write F ♯(z, w) =

∑∞
k=1 F ♯(k)(z, w). Since F ♯ maps M

into M ♯ = T (M̃), we get the following

ℑ{
∑
k≥2

g♯(k)(z, w) − 2i
∑
k≥2

< f ♯(k)(z, w), z̄ >ℓ}

=
∑

k1, k2≥2

< f ♯(k1)(z, w), f ♯(k2)(z, w) >ℓ +
1

4
(s(z, z̄) − s♯((z, 0), (z, 0))) + owt(4)

(12)

over ℑw = |z|2ℓ .
Here, we write F ♯(z, w) = (f̃ ♯(z, w), g♯(z, w)) = (f ♯(z, w), ϕ♯(z, w), g♯(z, w)).
Collecting terms of weighted degree 3 in (12), we get

ℑ{g♯(3)(z, w) − 2i < f ♯(2)(z, w), z̄ >ℓ} = 0 on ℑw = |z|2ℓ .

By [Hu], we get g♯(3) ≡ 0, f ♯(2) ≡ 0.
Collecting terms of weighted degree 4 in (12), we get

ℑ{g♯(4)(z, w) − 2i < f ♯(3)(z, w), z̄ >ℓ} = |ϕ♯(2)(z)|2 +
1

4
(s(z, z̄) − s♯((z, 0), (z, 0))).

Similar to the argument in [Hu] and making use of the fact that ℜ{∂2g♯(4)

∂w2 (0)} = 0, we get
the following:

g♯(4) ≡ 0, f ♯(3)(z, w) =
i

2
a(1)(z)w,

< a(1)(z), z̄ >ℓ |z|2ℓ = |ϕ♯(2)(z)|2+1

4
(s(z, z̄) − s♯((z, 0), (z, 0))).

(13)

We assume in the following (except in Proposition 3.1 and Remark 3.2) that ℓ > 0.
Letting z ∈ Cℓ, we get

4|ϕ♯(2)(z)|2 = s♯((z, 0), (z, 0)) − s(z, z̄)

= λ−2s̃((λz, 0)Ũ , (λz, 0)Ũ) − s(z, z̄)

= λ2s̃((z, 0)Ũ , (z, 0)Ũ) − s(z, z̄).

(14)

We claim that, for vp ∈ CℓT
(1,0)
p M, F∗(vp) ∈ CℓT

(1,0)
F (p) M̃ and F ♯

∗(vp) ∈ CℓT
(1,0)

F ♯(p)
M ♯. Indeed, to

see this, we need only to notice that for any contact form θ̃ along M̃ , F ∗(θ̃) is also a contact
form of M and

< d(F ∗(θ̃))|p, vp ∧ v̄p >=< dθ̃F (p), F∗(vp) ∧ F∗(vp) > .
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Thus, if vp ∈ CℓT
(1,0)
p M , then < dθ̃F (p), F∗(vp) ∧ F∗(vp) >= 0 and hence F∗(vp) ∈ CℓT

(1,0)
F (p) M̃ .

Next, if we identify z with the (1, 0) vector v =
∑

zj(
∂

∂zj
|0), then (λz, 0)Ũ is identified with

the vector F∗(v). Moreover, z ∈ Cℓ if and only if v ∈ CℓT
(1,0)
0 M .

Set θ = i∂r and θ̃ = i∂r̃. Then

F ∗(θ̃)|0 =
1

2
dg|0 = λ2θ|0.

Write F ∗(θ̃) = kθ, then k(0) = λ2. Hence (14) can now be written as:

S̃θ̃|0(F∗(v), F∗(v), F∗(v), F∗(v)) = λ2Sθ|0(v, v̄, v, v̄) + 4λ2|ϕ♯(2)(z)|2, v =
n∑

j=1

zj
∂

∂zj

∈ T
(1,0)
0 M,

or S̃θ̃|0(F∗(v), F∗(v), F∗(v), F∗(v)) = SF ∗(θ̃)|0(v, v̄, v, v̄) + 4λ2|ϕ♯(2)(z)|2. (15)

Summarizing the above, we have the following: (In Proposition 3.1 and Remark 3.2, ℓ can
be 0.)

Proposition 3.1 Let M and M̃ be defined by (3) and (9), respectively. Let

F = (z̃, w̃) = (f̃(z, w), g(z, w)) = (f1(z, w), · · · , fn−1(z, w), g(z, w))

be a smooth CR map sending M into M̃ , satisfying the normalization in (6) with σ = 1.

Let T be given as in (7) and write F# = T ◦ F = (f̃#, g#) as in (8). Then, for any

v =
∑n

j=1 zj
∂

∂zj
∈ T

(1,0)
0 M , the follows holds:

g♯(2) − w = g♯(3) = g♯(4) ≡ 0, f ♯(2) = 0, f ♯(3)(z, w) =
i

2
a(1)(z)w, and

4 < a(1)(z), z̄ >ℓ |z|2ℓ = 4|ϕ♯(2)(z)|2 − λ−2S̃θ̃|0(F∗(v), F∗(v), F∗(v), F∗(v)) + Sθ|0(v, v̄, v, v̄).
(16)

Remark 3.2 (1). We notice that when N = n, ϕ♯(2)(z) ≡ 0. Since the left hand side of the
second equation in (16) is divisible by |z|2ℓ and the right hand side of the second equation in
(16) is annihilated by ∆ℓ, we conclude that both sides have to be identically zero and thus
we have:

S̃θ̃|0(F∗(v), F∗(v), F∗(v), F∗(v)) = SF ∗(θ̃|0)(v, v̄, v, v̄) for any v ∈ T
(1,0)
0 M. (17)

This is the Chern-Moser invariant property (or the biholomoprhic transformation law) of
the Chern-Moser Weyl tensor in the case of N = n.
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(2). Our proof of the above proposition uses basically the same argument as what first
appeared in [Hu], where a certain version of Proposition 3.1 was first obtained. We repeated
it here due to the reason that we have to trace precisely how the tangent vectors of type (1,0)
and others are transformed when we normalize the map, which will be crucial for our later
application. Indeed, as in [Hu], in the case of ℓ = 0, we can just assume that the map F is
only a C2-smooth CR map.

Notice that when θ̃ is an appropriate contact form along M̃ , then F ∗(θ̃) is also an
appropriate contact form. From (15), we get the following monotonicity property for the
Chern-Moser-Weyl curvature tensor under a CR embedding:

Theorem 3.3 Let M ⊂ Cn+1 and M̃ ⊂ CN+1 be two Levi non-degenerate smooth real
hypersurfaces with the same signature 0 < ℓ < n

2
. Suppose that F : M → M̃ is a CR

transversal mapping (or, equivalently, a local holomorphic embedding). For an appropriate

contact form θ̃ along M̃, p ∈ M and vp ∈ CℓT
(1,0)
p M , we have

SF ∗(θ̃)|p(vp, v̄p, vp, v̄p) ≤ S̃θ̃|F (p)
(F∗(vp), F∗(vp), F∗(vp), F∗(vp)).

When ℓ = n
2
, after replacing M by τn

2
(M) and F by F ◦τn

2
(to make F ∗(θ̃) = k̃θ with k̃ > 0) if

necessary, we also have the same statement as above. Here τn
2
(z1, . . . , zn

2
, zn

2
+1, . . . , zn, w) =

(zn
2
+1, . . . , zn, z1, . . . , zn

2
,−w).

Now, assume that F is a holomorphic mapping from a domain U ⊂ Cn+1 into CN+1. F
is called to be totally degenerate if F fails to be a local holomorphic embedding at any point
inside U , namely, if the rank of the Jacobian matrix of F is less than n + 1 at any point
p ∈ U . Hence, F is not totally degenerate over U if and only if it is a local holomorphic
embedding away from a proper holomorphic variety. Now, let M, M̃ be as above with
M ⊂ U , F ∈ Hol(U, CN+1) and F (M) ⊂ M̃ . If F is not totally degenerate, then we

apparently have F (U) ̸⊂ M̃ . Conversely, in case M, M̃ are real analytic, if F (U) ̸⊂ M̃ ,
by a result of Baouendi-Ebenfelt-Rothschild [BER] (see already the paper of Baouendi-
Huang [BH] for a related investigation), F is not totally degenerate over U and thus is CR
transversal over a dense open subset of M .

As the first application of Theorem 3.3, we have the following:

Corollary 3.4 Let M ⊂ Cn+1 be a smooth Levi non-degenerate hypersurface of signature ℓ.
Suppose that F is not a totally degenerate holomorphic mapping defined in a neighborhood U
of M in Cn+1 that sends M into HN+1

ℓ ⊂ CN+1. Then when ℓ < n
2
, the Chern-Moser-Weyl

curvature tensor with respect to any appropriate contact form θ is pseudo semi-negative.
When ℓ = n

2
, along any contact form θ, Sθ is pseudo semi-definite.

10



Proof: By the observation above, since F is not totally non-degenerate, F is CR transversal
over an open dense subset EF of M . Without loss of generality, we assume that ℓ < n

2
.

Since the Chern-Moser-Weyl pseudo-conformal curvature tensor for the hyperquadric HN+1
ℓ

vanishes, by the previous theorem, we have for p ∈ EF ,

SF ∗(θ̃)|p(vp, v̄p, vp, v̄p) ≤ 0

when vp ∈ CℓT
(1,0)
p M and θ̃ is an appropriate contact form of HN+1

ℓ near F (p). This implies
that S is pseudo semi-negative definite at each point p ∈ EF .
When p /∈ EF , let θ be an appropriate contact form at p and X1, . . . , Xn an orthonormal
basis of T (1,0)M with respect to Lθ on some neighborhood of p, say Up. Indeed, ∀p ∈ M ,

choose X1(p), . . . , Xn(p) to be an orthonormal basis of T
(1,0)
p M with respect to Lθ|p , i.e.,

< Xj(p), Xk(p) >Lθ|p
=


−1 if j = k ≤ ℓ;
1 if j = k > ℓ;
0 otherwise.

Applying Gram-Schmidt process if necessary, one can always extend {Xj(p)}n
j=1 to an or-

thonormal basis {Xj}n
j=1 (with respect to the Levi form Lθ) of T (1,0)M on some small neigh-

borhood Up of p. Moreover, a straightforward computation shows that for any vector-valued
smooth function a⃗(q) = (a1(q), . . . , an(q)) along M near p,

n∑
j=1

ajXj is a smooth section of CℓT
(1,0)Up ⇔ |⃗a(q)|2ℓ = 0 for all q ∈ Up.

Now for the above p /∈ EF and any vp =
∑n

j=1 ajXj|p ∈ CℓT
(1,0)
p M with aj ∈ C, take

a sequence {qk}∞k=1 ∈ EF converging to p. By the previous argument,
∑n

j=1 ajXj|qk
∈

CℓT
(1,0)
qk M and Sθ|qk

(vqk
, v̄qk

, vqk
, v̄qk

) ≤ 0 for any k. Moreover, Sθ|q depends smoothly on q
as we mentioned before. Letting k → ∞, we then obtain the desired inequality at p. �

Remark 3.5 : From the above, we see the following fact: For any point p ∈ M , there is an
open neighborhood Up of p in M and a smooth frame {X1, · · · , Xn} of T (1,0)Up such that the
diffeomorphism Ψ from T (1,0)Up to Up × Cn defined by Ψ(

∑n
j=1 ajXj|q) = (q, (a1, · · · , an))

maps CℓT
(1,0)
q Up to {q} × Cℓ for each q ∈ Up.

In Theorem 3.3, suppose we only assume that F is not a totally degenerate holomorphic
map in a neighborhood U of M . Then F is CR transversal along a dense open subset of M .
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As observed at the beginning of this section, the complement of non-CR transversal points
of F in M is actually a dense open subset of M . Assume that F fails to be CR transversal
at p ∈ M . Choose a sequence of points {qj} ⊂ M with qj → p, where the CR transversality

holds. Apply a standard procedure to normalize M and M̃ at q ∈ M and F (q) up to 4th
order, respectively, for any q ≈ p. Notice that we can make the normalizations to depend
continuously on q and F (q), respectively. Now, we can similarly define λ(q) as in (6). Then
λ(q) depends continuously on q and thus converges to 0 as q → p, by the assumption that
F is not CR transversal at p. Now, applying (14) with q = qj and then letting qj → p, we
see the following:

Sθ|p(vp, vp, vp, vp) ≤ 0, for vp ∈ CℓT
(1,0)
p M. (18)

Here when ℓ < n/2, we have assumed that θ is appropriate and when ℓ = n/2, we have
assumed that F ∗(θ̃|F (qj)) = k̃(qj)θ|qj

with k̃(qj) > 0 for a certain choice of the sequence
qj → p. Hence, we get another application of Theorem 3.3:

Corollary 3.6 Let M ⊂ Cn+1 and M̃ ⊂ CN+1 be two smooth Levi non-degenerate hy-
persurfaces with the same signature 0 < ℓ ≤ n

2
. Suppose that F is not a totally degenerate

holomorphic map defined over a neighborhood U of M in Cn+1 with F (M) ⊂ M̃ . Let p ∈ M .
If F fails to be CR transversal at p (or, equivalently, if F fails to be a local holomorphic
embedding near p), then the following holds: (i) If 0 < ℓ < n/2, then the Chern-Moser-Weyl
tensor at p with respect to any appropriate contact form is pseudo semi-negative definite.
(ii) If ℓ = n/2, then the Chern-Moser-Weyl tensor of M (with respect to any contact form)
at p is pseudo semi-definite.

Corollary 3.4 can be used to construct many examples which fail to be embeddable into
hyperquadrics. Here we provide one example as follows.

Example 3.7 (1). Suppose that P (z, z) is a real-valued homogeneous polynomial of bidegree
(2, 2) for z ∈ Cn (n ≥ 3)and P (z, z) > 0 for z ̸= 0. Let 0 < ℓ < n/2. Let M ⊆ Cn+1 be
defined by

ℑw = |z|2ℓ − N4(z, z̄) (19)

for (z, w) ∈ Cn × C, where N4 is obtained from the following decomposition

P (z, z) = N4(z, z̄) + N2(z, z̄)|z|2ℓ

with ∆ℓN4(z, z̄) = 0. Then M cannot be CR embedded into HN
ℓ for any N .

(2). Suppose that P (z, z) is a real-valued homogeneous polynomial of bidegree (2, 2) for
z ∈ Cn (n = 2k ≥ 4) and P (z, z) does not have a fixed sign for |z|ℓ = 0. (namely, neither
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P ≥ 0 for all |z|ℓ = 0 nor P ≤ 0 for all |z|ℓ = 0.) Let 0 < ℓ = k. Let M ⊆ Cn+1 be defined
by

ℑw = |z|2ℓ − N4(z, z̄) (20)

as above. Then M cannot be CR embedded into HN
ℓ for any N .

Indeed, (19) and (20) are already of the Chern-Moser normal form near the origin and
their corresponding Chern-Moser-Weyl curvature tensor Sθ|0(z, z) = 4N4(z, z̄). Moreover,
by the construction of N4, it is pseudo positive-definite in (19) and not pseudo semi-definite
in (20). Corollary 3.4 then directly implies that M cannot be CR embedded into HN

ℓ . In
particular, the following two real hypersurfaces M1 and M2 can not be CR embedded into
real hyperquadrics of the same signature in any CN :

M1 ⊂ C4 : ℑw = |z|2ℓ − 1
2
(|z1|4 + |z2|4 + |z3|4 + 2|z1z2|2 + 2|z1z3|2 − 2|z2z3|2), ℓ = 1;

M2 ⊂ C5 : ℑw = |z|2ℓ − 1
3
(|z1|4 − |z3|4 − 2|z1z2|2 + 2|z1z4|2 − 2|z2z3|2 + 2|z3z4|2), ℓ = 2.

(21)
One may verify that, for M1, the corresponding P (z, z̄) = |z1|4 + |z2|4 + |z3|4 and N4(z, z̄) =
P (z, z̄)− 1

2
|z|4ℓ , which falls into Case (1); while for M2, the corresponding P (z, z̄) = |z1|4−|z3|4

and N4(z, z̄) = P (z, z̄) + 2
3
(|z1|2 + |z3|2)|z|2ℓ , which falls into Case (2).

We conclude this paper with the following two open problems related to our Corollary
3.4, Example 3.7 and Crollary 3.6:

Question 3.8 Let M be a strongly pseudoconvex hypersurface in Cn+1 with n ≥ 1 defined
by a real polynomial. For any p ∈ M , does there exist a sufficiently large positive integer
N , whihc may depend on p, such that a small piece of M near p can be embedded into the
Heisenberg hypersurface HN+1

0 (with signature 0)?

Question 3.9 Let M and M̃ be smooth Levi non-degenerate hypersurfaces in Cn+1 and
CN+1, respectively, with N > n. Assume that both M and M̃ have the same signature ℓ with
0 < ℓ < n/2. Let U be a (connected) neighborhood of M in Cn+1. Suppose that F is not a

totally degenerate holomorphic map from U into CN+1 with F (M) ⊂ M̃ . Is then F a local
holomorphic embedding along M?
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