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Abstract Let M` be a smooth Levi-nondegenerate hypersurface of signature ` in Cn

with n≥ 3, and write HN
` for the standard hyperquadric of the same signature in CN

with N−n< n−1
2 . Let F be a holomorphic map sending M` into HN

` . Assume F does
not send a neighborhood of M` in Cn into HN

` . We show that F is necessarily CR
transversal to M` at any point. Equivalently, we show that F is a local CR embedding
from M` into HN

` .

1 Introduction and the main theorems

Let M1 and M2 be two connected smooth CR hypersurfaces in Cn and CN , respec-
tively, with 3≤ n≤ N. Let F be a holomorphic map from some small neighborhood
U ⊂ Cn of M into CN with F(M1) ⊂M2. Given a point p ∈M, denote by T (1,0)

p M
the holomorphic tangent vector space of M at p. Assume F does not send a neigh-
borhood of p in Cn into M2. An important question in the study of the geometric
structure of F is to understand the geometric conditions for the manifolds in which
F is CR transversal to M1 at p. Recall that F is said to be CR transversal at p if

T (1,0)
F(p) M2 +dF(T (1,0)

p Cn) = T (1,0)
F(p) CN .

Roughly speaking, the CR transversality property can be interpreted as an non-
vanishing property of the normal derivative of the normal components for the map.
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The problem has been extensively investigated in the literature. When both the
target and the source manifolds are strongly pseudoconvex, CR transversality al-
ways holds due to the classical Hopf lemma. In the equal dimensional case (n = N),
work has been done by Pinchuk [Pi], Fornaess [Fo], Baouendi-Rothschild [BR],
Ebenfelt-Rothschild [ER], Huang [Hu2] and the references therein. The study of the
higher codimensional case starts with the work of Baouendi-Huang in [BH] where
it is proved that the CR transversality always holds when the manifolds are hyper-
quadrics of the same signature. Baouendi-Ebenfelt-Rothschild [BER2] proved, un-
der rather general setting, that the CR transversality holds in an open dense subset.
See also a recent paper of Ebenfelt-Son [ES] and the references therein.

While there exist examples where CR transversality fails on certain thin sets (see,
for instance [BER2]), as mentioned above, the rigidity theorem due to Baouendi-
Huang [BH] indicates that the CR transversality holds everywhere when both M1
and M2 are hyperquadrics of the same signature `. Enlightened by this result, the
following conjecture concerning the CR transversality was asked by Baouendi and
the first author in the year of 2005:

Conjecture (Baounedi-Huang, 2005): Let M1 ⊂ Cn and M2 ⊂ CN be two (con-
nected) Levi non-degenerate real analytic hypersurfaces with the same signature
` > 0. Here 3 ≤ n < N. Let F be a holomorphic map defined in a neighborhood U
of M1, sending M1 into M2. Then either F is a local CR embedding from M1 into M2
or F is totally degenerate in the sense that it maps a neighborhood U of M1 in Cn

into M2.

We point out that, for the M1 and M2 given in the conjecture, the fact that F
is CR transversal at p is equivalent to the fact that F is a CR embedding from
a neighborhood of p in M1 into M2. Along these lines, in a recent paper of the
authors [HZ2], by developing a new technique, we showed the CR transversality
holds when M2 = Hn+1

` and the point under study is not CR umbilical in the sense
of Chern-Moser.

In this paper, combining a quantitative version of a very useful lemma due to the
first author with the tools developed in [HZ2], we are able to drop the geometric
assumption of the umbilicality and relax the codimension-one restriction in [HZ2].
The generalization of the above mentioned lemma in [Hu] will be addressed in detail
in section 3.

We next state our main theorems:

Theorem 1. Let M` be a smooth Levi non-degenerate hypersurface of signature `
in Cn with n ≥ 3 and 0 ∈ M`. Suppose that F is a holomorphic map in a small
neighborhood U of 0 ∈ Cn such that

F(M`∩U)⊂ HN
`

with N− n < n−1
2 . If F(U) 6⊂ HN

` , then F is CR transversal to M` at 0, or equiva-
lently, F is a CR embedding from a small neighborhood of 0 ∈M` into HN

` .
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Theorem 2. Let M` be a germ of a smooth Levi non-degenerate hypersurface at 0
of signature ` in Cn, n ≥ 3. Suppose that there exists a holomorphic map F in a
neighborhood U of 0 in Cn sending M` into HN

` but F(U) 6⊂ HN
` , N < 2n−1. Then

M` is CR embeddable into HN
` near 0. Equivalently, there exists a holomorphic map

F̃ : M`→ HN
` near 0, which is CR transversal to M` at 0.

The idea of the proof is based on a re-scaling technique that was initially intro-
duced in [HZ2]. With the aid of a quantitative lemma of the first author in [Hu],
we generate a formal CR transversal map which, by a result of Meylan-Mir-Zaitsev
proved in [MMZ], is necessarily convergent. Finally, using a rigidity result in [EHZ],
F differs from the CR transversal map only by an automorphisms of the target and
hence it is CR transversal as well.

The outline of the paper is as follows. In section 2, the notations and a normal-
ization procedure of Baouendi-Huang is revisited. A modified lemma in [Hu] is
discussed and proved in section 3. Section 4 is devoted to the proof of the main
theorem.

2 Notations and a normalization procedure

Let M` be a germ at 0 of a smooth Levi non-degenerate hypersurface of signature ` in
Cn. After a holomorphic change of coordinates, M` near the origin can be expressed
as follows.

M` =
{
(z,w) ∈ Cn−1×C : ℑw = |z|2` −

1
4
S (z)+o(4)

}
. (1)

Here for any n-tuples a and b, 〈a, b̄〉` := −
`

∑
j=1

a jb̄ j +
n
∑

j=`+1
a jb̄ j and |a|2` = 〈a, ā〉`,

S (z) := ∑
1≤α,β ,γ,δ≤n

s
αβ̄γδ̄

zα z̄β zγ z̄δ is a homogeneous polynomial of bi-degree (2,2),

called the Chern-Moser-Weyl curvature function of M` at 0. See [CM] for more de-
tails. Without loss of generality, we always assume that `≤ (n−1)/2 so ` becomes
an invariant.

As in [CM], assign the weighted degree 1 to variable z and 2 to variable w. Given
a holomorphic function h, denote by h(k) the terms of weighted degree k, and by
h(µ,ν) the terms of degree µ in z variable and of degree ν in w variable in the power
series expansion of h at 0. For each integer k ≥ 0, we write o(k) for terms of degree
larger than k, and owt(k) for terms of weighted degree larger than k. To simplify our
notation, we also preassign the coefficient of h with negative degrees to be 0.

Let M̃` be a germ at 0 of another smooth Levi-nondegenerate hypersurface in CN

of signature ` given by

M̃` =
{
(z̃, w̃) ∈ CN−1×C : ℑw̃ = |z̃|2` −

1
4
S̃ (z̃)+o(4)

}
. (2)



4 Xiaojun Huang and Yuan Zhang

Here S̃ is the corresponding Chern-Moser curvature tensor function of M̃` at 0.
Let F be a smooth CR map sending (M`,0) into (M̃`,0). Write

F := ( f̃ ,g) = ( f ,φ ,g) (3)

with f = ( f1, . . . , fn−1) and φ = (φ1, . . . ,φN−n) being components of F . Assume that
F is CR transversal at 0. Then, following a normalization procedure as in [§2, BH],
we have

z̃ = ( f1(z,w), . . . , fn−1(z,w),φ1(z,w), . . . ,φN−n(z,w)) = λ zU +aw+O(|(z,w)|2)
w̃ = g(z,w) = σλ 2w+O(|(z,w)|2). (4)

Here U can be extended to an (N−1)× (N−1) matrix Ũ ∈ SU(N−1, `) (namely
〈XŨ ,YŨ〉` = 〈X ,Y 〉` for any X ,Y ∈ CN−1), a ∈ CN−1 and λ > 0, σ = ±1 with
σ = 1 for ` < n−1

2 . When σ = −1, by considering F ◦ τn−1/2 instead of F , where
τ n−1

2
(z1, . . . ,z n−1

2
,z n−1

2 +1, . . . ,zn−1,w) = (z n−1
2 +1, . . . ,zn−1,z1, . . . ,z n−1

2
,−w), we can

make σ = 1. Hence, we will assume in what follows that σ = 1. Moreover, as in
[HZ], F can be normalized as follows:

Proposition 1. ([HZ]) Let M` and M̃` be defined by (1) and (2), respectively, and let
F be a smooth CR map sending M` into M̃` given by (3) and (4) with σ = 1. Then
after composing F from the left by some automorphism T ∈ Aut0(HN

` ) preserving
the origin, the following holds:

F] = ( f ],φ ],g]) := T ◦F,

with

f ](z,w) = z+ i
2 a(1,0)(z)w+owt(3),

φ ](z,w) = φ (2,0)(z)+owt(2),
g](z,w) = w+owt(4),

and
〈a(1,0)(z), z̄〉`|z|2` = |φ (2,0)(z)|2 + 1

4
(S (z)−λ

−2S̃ (λ (z,0)Ũ)).

In particular, the automorphism T is given by

T (z̃, w̃) =
(λ−1(z̃−λ−2aw̃)Ũ−1,λ−2w̃)

q(z̃, w̃)

with r0 =
1
2 ℜ{g′′ww(0)}, q(z̃, w̃) = 1+2i〈z̃,λ−2a〉`+λ−4(r0− i|a|2`)w̃. Moreover, F]

sends M` into M̃] := T (M̃`) given by

M̃] = {(z̃], w̃]) ∈ CN+1 : ℑw̃] = |z̃]|2` +
1
4
S̃ ](z̃])+o(4)

}
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with S̃ ](z]) = λ−2S̃ (λ z]Ũ).

3 A quantitative version of a basic lemma

In this section, some simple preparation facts will be given without proof at first.
In the second part of the section, we will discuss a quantitative version of a lemma
obtained in [Hu], which played crucial role for us to get the convergence in our
rescaling argument.

Given a polynomial φ , define ‖φ‖ to be the maximum modulus of all the co-
efficients in φ . For a given vector-valued polynomial φ = (φ1, . . . ,φs), ‖φ‖ :=
max1≤ j≤s ‖φ j‖. We first refer to a lemma in [HZ2] without proof.

Lemma 1. [HZ2] (1). Let X(z, z̄) and Y (z, z̄) be two polynomials such that X(z, z̄) =
Y (z, z̄)|z|2` . Then ‖Y‖ is bounded by a constant depending only on ‖X‖ and the
degree of X.

(2). Let h(z) be a homogeneous holomorphic polynomial of degree d in z ∈ Cn.
If |h(z)| ≤ c|z|d on {|z|2` = 0}, then ‖h‖ ≤C for some C depending only on c and d.

In various rigidity problems concerning CR immersions, the following lemma in
[Hu] plays an essential role in deriving key identities to eventually conclude unique-
ness:

Lemma 2. [Hu] Let {φ j}n−1
j=1 and {ψ j}n−1

j=1 be two families of holomorphic functions
in Cn. Let B(z,ξ ) be a real-analytic function in (z,ξ ). Suppose that

n−1

∑
j=1

φ j(z)ψ j(ξ ) = B(z,ξ )〈z,ξ 〉`.

Then B(z,ξ ) =
n−1
∑
j=1

φ j(z)ψ j(ξ ) = 0.

We find a quantitative version of the above lemma serves our purpose under this
context perfectly well.

Lemma 3. Let {φ j}n−1
j=1 and {ψ j}n−1

j=1 be two families of holomorphic polynomials of
degree k and m in Cn, respectively. Let H(z,ξ ),B(z,ξ ) be two polynomials in (z,ξ ).
Suppose that

n−1

∑
j=1

φ j(z)ψ j(ξ ) = H(z,ξ )+B(z,ξ )〈z,ξ 〉`

and ‖H‖ ≤C. Then ‖B‖ ≤ C̃ and ‖
n−1
∑
j=1

φ j(z)ψ j(ξ )‖ ≤ C̃ with C̃ dependent only on

(C,k,m,n).
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The proof of the lemma is based on the following algorithm together with Lemma
2. First, let us formulate the algorithm procedure so as to re-adjust two families
{φ j}n−1

j=1 and {ψ j}n−1
j=1 in Lemma 3.

Lemma 4. Let φ := {φ j}s
j=1 and ψ := {ψ j}s

j=1 be two families of holomorphic
polynomials of degree k and m in Cn, respectively. There exist two families φ̃ :=
{φ̃ j}s

j=1 and ψ̃ := {ψ̃ j}s
j=1 of holomorphic polynomials of degree k and m in Cn,

respectively, such that

s

∑
j=1

φ j(z)ψ j(ξ ) =
s

∑
j=1

φ̃ j(z)ψ̃ j(ξ ) (5)

and

‖φ̃‖ ≤ 1, C‖ψ̃‖ ≤ ‖
s

∑
j=1

φ̃ j(z)ψ̃ j(ξ )‖ ≤ s‖ψ̃‖ (6)

for some positive constant C dependent only on s.

Proof of Lemma 4: Without loss of generality, assume ‖φ j‖ 6= 0 for all 1 ≤ j ≤ s
and {φ j}s

j=1 are linearly independent. Moreover, by replacing φ j and ψ j by φ j
‖φ j‖

and ‖φ j‖ψ j, respectively, one can assume that ‖φ j‖ = 1 for all 1 ≤ j ≤ s. Denote
by {el}

d(k)
l=1 a basis of unit monomials to span the polynomial spaces of degree k and

write φ j = ∑
1≤l≤d(k)

Dl
jel ,1≤ j≤ s. Here d(k) is the dimension of polynomial spaces

of degree k. Hence ‖φ j‖ = max
1≤l≤d(k)

Dl
j for each 1 ≤ j ≤ s. Arranging the order of

{el} if necessary, we can make D1
1 = 1 and |Dl

1| ≤ 1.
Step 1: Let 1φ1 := φ1,

1 φ j := φ j−D1
j ·φ1,2 ≤ j ≤ s. Then in terms of the basis

representation 1φ j :=1 Dl
j · el , one has

1D1
1 = 1, |1Dl

1| ≤ 1, 2≤ l ≤ d(k);
1D1

j = 0, |1Dl
j| ≤ 2, 2≤ j ≤ s, 2≤ l ≤ d(k).

Moreover, letting 1ψ1 := ψ1 +
s
∑
j=2

D1
j ·ψ j,

1 ψ j := ψ j,2≤ j ≤ s, then

s

∑
j=1

φ j(z)ψ j(ξ ) =
s

∑
j=1

1
φ j(z) · 1ψ j(ξ ). (7)

Step 2: Normalize 1φ j,2≤ j ≤ s by replacing 1φ j,
1 ψ j by

1φ j
‖1φ j‖

and ‖1φ j‖ · 1ψ j,

respectively. By abuse of notation, we still denote them by 1φ j,
1 ψ j and the represen-

tation matrix under the basis {el} by {1Dl
j}. Moreover, since {φ j}s

j=1 are linearly

independent, by rearranging the order of {el}
d(k)
l=2 if necessary, we have (7) holds

with
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1D1
1 = 1, |1Dl

1| ≤ 1, 2≤ l ≤ d(k);
1D1

2 = 0, 1D2
2 = 1, |1Dl

2| ≤ 1, 3≤ l ≤ d(k);
1D1

j = 0, |1Dl
j| ≤ 1, 3≤ j ≤ s, 2≤ l ≤ d(k)

and for each 1≤ j ≤ s,
max

1≤l≤d(k)

1Dl
j = 1.

Step 3: Let 2φ2 =
1φ2,

2φ j := 1φ j− 1D2
j · 1φ2 for 1≤ j ≤ s, j 6= 2. Then in terms

of the basis representation 2φ j := 2Dl
j · el , we deduce

2D1
1 = 1, 2D2

1 = 0, |2Dl
1| ≤ 2, 3≤ l ≤ d(k);

2D1
2 = 0, 2D2

2 = 1, |2Dl
2| ≤ 1, 3≤ l ≤ d(k);

2D1
j = 0, 2D2

j = 0, |2Dl
j| ≤ 2, 3≤ j ≤ s, 3≤ l ≤ d(k).

Moreover, letting 2ψ2 := 1ψ2 + ∑
j 6=2

1D2
j · 1ψ j,

2ψ j := 1ψ j,1≤ j ≤ s with j 6= 2, then

s

∑
j=1

φ j(z)ψ j(ξ ) =
s

∑
j=1

2
φ j(z) · 2ψ j(ξ ). (8)

Step 4: Normalize 2φ j,1≤ j≤ s, j 6= 2 by replacing 2φ j,
2 ψ j by

2φ j
‖2φ j‖

and ‖2φ j‖·
2ψ j, respectively. As before, we still denote them by 2φ j,

2 ψ j and the representation
matrix under the basis {el} by {2Dl

j}. Furthermore, (8) holds with

1≥ 2D1
1 ≥

1
2 ,

2D2
1 = 0, |2Dl

1| ≤ 1, 3≤ l ≤ d(k);
2D1

2 = 0, 2D2
2 = 1, |2Dl

2| ≤ 1, 3≤ l ≤ d(k);
2D1

j = 0, 2D2
j = 0, |2Dl

j| ≤ 1, 3≤ j ≤ s, 3≤ l ≤ d(k)

and for each 1≤ j ≤ s,
max

1≤l≤d(k)

2Dl
j = 1.

Step 5: Continue the above process until we get new families {sφ j}s
j=1,{sψ j}s

j=1

such that under the basis representation, sφ j := sDl
j · el with

sD =



sD1
1 0 0 · · · 0 sDs+1

1 · · · sDd(k)
1

0 sD2
2 0 · · · 0 sDs+1

2 · · · sDd(k)
2

0 0 sD3
3 · · · 0 sDs+1

2 · · · sDd(k)
3

· · ·
· · ·
· · ·

0 0 0 · · · sDs
s

sDs+1
s · · · sDd(k)

s


,
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where
1≥ sD j

j ≥
1

2s− j , 1≤ j ≤ s−1; sDs
s = 1;

and for each 1≤ j ≤ s,
max

1≤l≤d(k)

sDl
j = 1.

Moreover,
s

∑
j=1

φ j(z)ψ j(ξ ) =
s

∑
j=1

s
φ j(z) · sψ j(ξ ).

Let φ̃ j := sφ j, ψ̃ j := sψ j,1 ≤ j ≤ s. Then from the construction, for 1 ≤ j ≤ s,

‖φ̃ j‖= 1 with
s
∑
j=1

φ j(z)ψ j(ξ ) =
s
∑
j=1

φ̃ j(z)ψ̃ j(ξ ). Hence

‖
s

∑
j=1

φ j(z)ψ j(ξ )‖ ≤
s

∑
j=1
‖φ̃ j‖‖ψ̃ j‖ ≤ s‖ψ̃‖.

Furthermore, since sD j
j ≥

1
2s− j when 1≤ j ≤ s,

‖
s

∑
j=1

φ j(z)ψ j(ξ )‖ ≥ max
1≤ j≤s

sD j
j · ‖ψ̃ j‖ ≥

1
2s−1 ‖ψ̃‖.

The proof of Lemma 4 is therefore complete. ut

Proof of Lemma 3: Assume by contradiction that there exist families of {φ λ} and
{ψλ}, such that

n−1

∑
j=1

φ
λ
j (z)ψ

λ
j (ξ ) = Hλ (z,ξ )+Bλ (z,ξ )〈z,ξ 〉` (9)

with ‖Hλ‖ ≤C while ‖
n−1
∑
j=1

φ λ
j (z)ψ

λ
j (ξ )‖= λ → ∞. Applying Lemma 4 to φ λ and

ψλ if necessary, we can further assume that φ λ and ψλ satisfy

‖φ λ‖ ≤ 1, C‖ψλ‖ ≤ ‖
n−1

∑
j=1

φ
λ
j (z)ψ

λ
j (ξ )‖= λ ≤ (n−1)‖ψλ‖.

In special, for each 1≤ j ≤ n−1,

‖φ λ
j ‖ ≤ 1,

1
n−1

≤ ‖
ψλ

j

λ
‖ ≤ 1

C
. (10)

Dividing both sides of (9) by λ , then one obtains for some polynomial B̃λ that
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n−1

∑
j=1

φ
λ
j (z)

ψλ
j (ξ )

λ
=

Hλ (z,ξ )
λ

+ B̃λ (z,ξ )〈z,ξ 〉`. (11)

Since φ λ and ψλ satisfy (10), we deduce after passing to a subsequence that φ λ and
ψλ

λ
converges, say, to polynomials φ ∞ and ψ∞. Moreover, the same inequalities in

(10) pass onto φ ∞ and ψ∞ without change, i.e., ‖φ ∞‖ ≤ 1, 1
n−1 ≤ ‖ψ

∞‖ ≤ C and

C‖ψ∞‖ ≤ ‖
n−1
∑
j=1

φ ∞
j (z)ψ

∞
j (ξ )‖ ≤ (n−1)‖ψ∞‖.

On the other hand, from (11) and Lemma 1, after passing λ → ∞, there exists
some polynomial B∞ such that

n−1

∑
j=1

φ
∞
j (z)ψ

∞
j (ξ ) = B∞(z,ξ )〈z,ξ 〉`.

According to Lemma 2, it immediately gives that

n−1

∑
j=1

φ
∞
j (z)ψ

∞
j (ξ ) = 0.

This however contradicts with the fact that ‖
n−1
∑
j=1

φ ∞
j (z)ψ

∞
j (ξ )‖ ≥ C‖ψ∞‖ ≥ C

n−1 .

Therefore, there exists some C̃ dependent only on (C,k,m,n) such that ‖
n−1
∑
j=1

φ j(z)ψ j(ξ )‖

≤ C̃ and hence ‖B‖ ≤ C̃ because of Lemma 1. ut

With a routine induction process, Lemmas 1 and 3 combined together can be
used to show the following:

Lemma 5. Let {φ jr}n−1
j=1 and {ψ jr}n−1

j=1 be two families of holomorphic polynomials
in Cn, 1≤ r ≤ m. Let H(z,ξ ),B(z,ξ ) be two polynomials in (z,ξ ). Suppose that

m

∑
r=1

( n−1

∑
j=1

φ jr(z)ψ jr(ξ )

)
〈z,ξ 〉r` = H(z,ξ )+B(z,ξ )〈z,ξ 〉m+1

`

and ‖H‖ ≤C. Then ‖B‖ ≤ C̃ and ‖
n−1
∑
j=1

φ jr(z)ψ jr(ξ )‖ ≤ C̃ for all 1≤ r ≤ m with C̃

dependent only on (C,n,m) and the degrees of φ jr,ψ jr for all 1≤ r ≤ m.
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4 Proof of the main theorems

The proof of the main theorems is motivated by the ideas in [HZ2] and [EHZ].
Assume F is not CR transversal to M` at 0 and F(U) 6⊂ HN

` . Assume also N−n <
n−1 for the moment.

By a result of [BER2], the set of points where the CR transversality holds for
such an F forms an open dense subset in M`. Choose a sequence {p j} ∈ M` such
that p j→ 0 and F is CR transversal at each p j with j ≥ 1. Write q j := F(p j). Now
for each j, applying the normalization process to F at p j as in section 2, we obtain
F]

p j in the following form:

F]
p j
= ( f ]p j

,φ ]
p j
,g]p j

) = ( f1
]
p j
, . . . , fn

]
p j
,φ ]

p j
,g]p j

) := Tp j ◦ τF(p j) ◦F ◦σp j , (12)

where

f ]p j(z,w) = z+ i
2 a(1,0)p j (z)w+owt(3),

φ
]
p j(z,w) = φ

(2,0)
p j (z)+owt(2),

g]p j(z,w) = w+owt(4),

with the following CR Gauss-Codazzi equation

〈a(1,0)p j (z), z̄〉`|z|2` = |φ
(2,0)
p j (z)|2 + 1

4
Sp j(z). (13)

Here τF(p j) is the translation map of HN
` sending F(p j) to 0, σp j is a biholomorphic

map sending 0 to p j such that σ−1
p j

(M`) is normalized up to the 4th order, and Sp j is
the resulting Chern-Moser-Weyl curvature function of M` at p j. Note σp j depends
smoothly on p j. Since F is not CR transversal at 0, lim j→∞ λp j = 0 with λp j defined

in (4) for the map τF(p j) ◦ F ◦ σp j . By construction, at each point p j, F]
p j sends

σ−1
p j

(M`) into HN
` . We then have for (z,u)≈ 0,

−ℑg]p j(z,u+ i(|z|2` +owt(3)))+ | f ]p j(z,u+ i(|z|2` +owt(3)))|2` +

+|φ ]
p j(z,u+ i(|z|2` +owt(3)))|2 = 0, (14)

Here (z,u+ i(|z|2` + owt(3))) is a local parametrization of σ−1
p j

(M`) near 0. Due to
the smooth dependence of σp j with respect to p j, the error term owt(3) depends
smoothly on p j. With an abuse of notation, we shall suppress ] and the subindex j
of p for the map in (14).

Given any positive integer k≥ 2, collect terms of weighted degree k in the power
series expansion of (14). We have:

ℑg(k)p (z,w)−2ℜ〈 f (k−1)
p (z,w), z̄〉` = (|φp(z,w)|2)(k)

+ H(g(r)p |0≤r≤k−1, f (r)p |0≤r≤k−2,(|φp|2)(r)|0≤r≤k−1) (15)
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on w = u+ i|z|2` . Here H is a certain bounded polynomial on all its variables. From
now on and in what follows, we use C in general to represent constants independent
of p, and use H(·, ·) in general to represent polynomials whose norm is bounded by
C. C and H may be different in different contexts.

Lemma 6. Assume that N−n < n−1. For Fp constructed as above and for each k,
‖F(k)

p ‖ ≤C with C independent of p.

Proof of Lemma 6: According to the normalization procedure conducted in Section
2, ‖g(k)p ‖≤C,‖ f (k−1)

p ‖≤C,‖(|φp|2)(k)‖≤C automatically hold when k≤ 4. Indeed,
‖g(k)p ‖≤ 1,‖ f (k−2)

p ‖≤ 1,‖(|φp|2)(k−1)‖= 0,k≤ 4 by (12). Moreover, since ‖Sp‖≤
C, applying Lemma 3 to (13), one has ‖ f (3)p ‖ ≤C,‖(|φp|2)(4)‖ ≤C.

Assuming by induction that (‖g( j)
p ‖,‖ f ( j−1)

p ‖,‖(|φp|2)( j)‖) are all uniformly
bounded by some constant independent of p for j ≤ k, we shall show the unform
boundedness of (‖g(k+1)

p ‖,‖ f (k)p ‖,‖(|φp|2)(k+1)‖). Complexifying (15) at level k+1,
we obtain

g(k+1)
p (z,w)− ḡ(k+1)

p (ξ ,η)−2i〈 f (k)p (z,w),ξ 〉`−2i〈 f̄ (k)p (ξ ,η),z〉`
= 2i〈φp(z,w), φ̄p(ξ ,η)〉(k+1)+H(z,ξ ,w,η) (16)

which holds on w−η = 2i〈z,ξ 〉`.
Let L j =

∂

∂ z j
+2iδ jξ j

∂

∂w ,1≤ j≤ n−1 with δ j =−1 when j≤ ` and δ j = 1 with
j ≥ `+ 1. Then L j is a holomorphic tangent vector field on w−η = 2i〈z,ξ 〉` for
each j. Applying L j onto (16), we get

L jg
(k+1)
p (z,w)−2i〈L j f (k)p (z,w),ξ 〉`−2i f̄ (k)p, j (ξ ,η)

= 2iL j〈φp(z,w), φ̄p(ξ ,η)〉(k+1)+H(z,ξ ,w,η) (17)

on w−η = 2i〈z,ξ 〉`.
Now we expand g(k+1)

p , f (k)p ,〈φp(z,w), φ̄p(ξ ,η)〉(k+1) in the following manner:

g(k+1)
p (z,w) = ∑

µ+2ν=k+1
(gp)µν(z)wν ;

f (k)p (z,w) = ∑
µ+2ν=k

( fp)µν(z)wν ;

〈φp(z,w), φ̄p(ξ ,η)〉(k+1) = ∑
µ+γ+2(ν+δ )=k+1

(Ap)µγνδ (z,ξ )wν ηδ .

Here (gp)µν and ( fp)µν are homogeneous polynomials of degree µ in z, (Ap)µγνδ

is a homogeneous polynomial of bi-degree (µ,γ) in (z,ξ ).
Let w = 0,η =−2i〈z,ξ 〉` in (16). Then we have

(gp)(k+1)0(z)− ∑
µ+2ν=k+1

(ḡp)µν(ξ )η
ν −2i〈( fp)k0(z),ξ 〉`
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−2i〈 ∑
µ+2ν=k

( f̄p)µν(ξ )η
ν ,z〉` = 2i ∑

µ+γ+2δ=k+1
(Ap)µγ0δ (z,ξ )ηδ +H(z,ξ ,η)(18)

on η =−2i〈z,ξ 〉`.
Collect terms in (z,ξ ) of bi-degree (k+ 1,0) and (k,1) in (18). By the fact that

φp(0) =
∂φp
∂ z (0) =

∂φp
∂w (0) = 0 and the definition of (Ap)µγνδ ,

(Ap)k+1,0,0,0 = (Ap)k,1,0,0 = (Ap)k−1,0,0,1 = 0. (19)

Then we have that
‖( fp)k0‖ ≤C, ‖(gp)(k+1)0‖ ≤C.

Hence for each 1≤ j ≤ n−1,

L j f (k)p (z,0) = 2iδ jξ j ∑
µ=k−2

( fp)µ1(z)+H(z);

L jg
(k+1)
p (z,0) = 2iδ jξ j ∑

µ=k−1
(gp)µ1(z)+H(z). (20)

Collecting terms in (z,ξ ) of bi-degree (α,β ),β ≥ 2 with α +β = k+1 in (18)
gives

−(ḡp)β−α,α(ξ )η
α −2i〈z,( f̄p)β−α+1,α−1(ξ )η

α−1〉`

= 2i
α−2
∑

θ=0
(Ap)α−θ ,β−θ ,0,θ (z,ξ )ηθ +H(z,ξ ,η) (21)

with η = −2i〈z,ξ 〉`. Here once again we used the fact that φp(0) =
∂φp
∂ z (0) = 0

which implies (Ap)1,(β−α−1),0,(α−1) = (Ap)0,β−α,0,α = 0, so the summation on
the right hand side runs only till θ = α − 2. Recall from the definition of Ap,

(Ap)µγνδ (z,ξ ) =
N−n
∑
j=1

φ
(µ,ν)
p, j (z,1)φ̄ (γ,δ )

p. j (ξ ,1). Since N − n < n− 1 by assumption,

we immediately have, by applying Lemma 5 to (21) and by using (19), that

‖(ḡp)β−α,α(ξ )〈z,ξ 〉`−〈z,( f̄p)β−α+1,α−1(ξ )〉`‖ ≤C (22)

with β ≥ 2, and
‖(Ap)µγ0δ‖ ≤C.

Hence from the above inequality,

L j(Ap)(z,ξ ,0,η) = 2iδ jξ j ∑
µ+γ+2δ=k−1

(Ap)µγ1δ (z,ξ )η
δ +H(z,ξ ,η). (23)

Letting w= 0,η =−2i〈z,ξ 〉` and then substituting (20) and (23) in (17), we have
for each 1≤ j ≤ n−1,

2iδ jξ j ∑
µ=k−1

(gp)µ1(z)−2i〈2iδ jξ j ∑
µ=k−2

( fp)µ1(z),ξ 〉`−2i ∑
µ+2ν=k+1

( f̄p, j)µν(ξ )η
ν
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= 2iδ jξ j ∑
µ+γ+2δ=k−1

(Ap)µγ1δ (z,ξ )ηδ +H(z,ξ ,η) (24)

on η = −2i〈z,ξ 〉`. Collect terms in (z,ξ ) of bi-degree (k− 1,1) and (k− 2,2) in
(24). Since (Ap)k−1,0,1,0 = (Ap)k−3,0,1,1 = 0, one obtains that

‖(gp)(k−1)1‖ ≤C,

‖2iδ j〈ξ j( fp)(k−2)1(z),ξ 〉`+( f̄p, j)(4−k)(k−2)(ξ )(−2i〈z,ξ 〉`)k−2‖ ≤C. (25)

Here we have used the convention that hµ = 0 if µ is negative.
Moreover, collecting terms of bi-degree (α,β ) in (z,ξ ) with β ≥ 3 and α+β = k

in (24), one gets for each 1≤ j ≤ n,

( f̄p, j)(β−α)α(ξ )(−2i〈z,ξ 〉`)α

=−δ jξ j
α−1
∑

θ=0
(Ap)(α−θ)(β−θ−1)1θ (z,ξ )(−2i〈z,ξ 〉`)θ +H(z,ξ ).

Here we use the fact that (Ap)0,β−α−1,1,α = 0, so the summation on the right hand
sides runs only till α − 1. Applying Lemma 5 onto the above identity as before,
we obtain ‖( fp)µν‖ ≤ C for µ + 2ν = k with µ + ν ≥ 3. When µ + 2ν = k ≥ 4
with µ + ν ≤ 2, or equivalently, when µ = 0,ν = 2, one substitutes the fact that
‖( fp)21‖ ≤C into (25) and gets ‖( fp)02‖ ≤C and hence

‖( fp)µν‖ ≤C (26)

for µ +2ν = k. Substitute (26) into (22), then

‖(gp)µν‖ ≤C (27)

for µ +2ν = k+1 (with µ +ν ≥ 3, which is always fulfilled when µ +2ν = k+1≥
5).

Using equation (16), we then have from (26) and (27),

〈φp(z,w), φ̄p(ξ ,η)〉(k+1) = H(z,ξ ,w,η) (28)

on w−η = 2i〈z,ξ 〉`.
We claim that, for arbitrary (z,w,ξ ,η), we have

〈φp(z,w), φ̄p(ξ ,η)〉(k+1) = H(z,ξ ,w,η).

Indeed, by (28), we have

∑
µ+γ+2(ν+δ )=k+1

(Ap)µγνδ (z,ξ )
(

η +2i〈z,ξ 〉`
)ν

η
δ = H(z,ξ ,η) (29)
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near 0. If ‖(Ap)µγνδ‖ ≤C does not hold uniformly in p, then there exists a smallest
integer δ0 such that ‖(Ap)µγνδ0‖ → ∞ as p→ 0 after passing to a subsequence if
necessary. Moving the terms with δ < δ0 to the right, we obtain

∑
µ+γ+2(ν+δ0)=k+1

(Ap)µγνδ0(z,ξ )
(
2i〈z,ξ 〉`

)ν
= H(z,ξ ).

Collecting terms in (z,ξ ) of bi-degree (α,β ) with α +β = k+1−2δ0 in the above
expression, we get

α

∑
θ=0

(Ap)(α−θ)(β−θ)θδ0(z,ξ )
(
2i〈z,ξ 〉`

)θ
= H(z,ξ ).

Recall (Ap)µγνδ =
N−n
∑
j=1

φ
(µ,ν)
p, j (z,1)φ̄ (γ,δ )

p. j (ξ ,1) by definition and N−n < n−1. Ap-

plying Lemma 5 to the above identity, one deduces ‖(Ap)µγνδ0‖ ≤ C for µ + γ +
2(ν +δ0) = k+1. This is a contradiction! Hence the claim holds.

The induction is thus complete. Consequently, for each k, ‖φ (k)
p ‖ ≤ C with C

independent of p. We have shown for each fixed k, {‖F(k)
p j ‖}∞

j=1 is bounded by some
constant independent of j. ut

We are now in a position to prove Theorem 2 and Theorem 1, making use of the
result in [MMZ].

Proof of Theorem 2: If F is CR transversal to M` at 0, then we are done. Assume F
is not CR transversal at 0. Then there exists p j → 0 such that Fp j as constructed

at the beginning of the section satisfies (12). Moreover, for each k, ‖F(k)
p j ‖ ≤ C

with C independent of j by Lemma 6. Following the same trick as in [HZ2], for
each k, {F(k)

p j }∞
j=1 converges as j → ∞ after passing to subsequences, to a cer-

tain F∗(k). By the way these maps were constructed, the nontrivial formal map
F∗(= ( f ∗,φ ∗,g∗)) := ∑

k
F∗(k) sends M` into HN

` satisfying the following normal-

ization:

f ∗(z,w) = z+owt(2),
φ ∗(z,w) = owt(1),

g∗(z,w) = w+owt(4).

According to a result of Meylan-Mir-Zaitsev [MMZ], the formal map F∗ is con-
vergent. Hence, F∗ is a CR immersion at 0 sending M` into HN

` . ut

Proof of Theorem 1: Assume by contradiction that F neither is CR transversal to
M` at 0 nor sends U into HN

` . Then there exists a CR immersion F∗ sending M` into
HN
` by Theorem 2. On the other hand, since any two CR transversal maps between

a Levi-nondegenerate hypersurface and a hyperquadric of the same signature differ
only by an automorphism of the hyperquadric (see [EHZ]) when the codimension
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is less than n−1
2 , there exists an automorphism T of HN

` such that near p j ≈ 0, and
hence at all points in M` near the origin,

F = T ◦F∗.

Since T extends to an automorphism of the projective space PN and T (0) = 0, F
must be CR transversal at 0. This is a contradiction. ut
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