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1 Introduction

Let Bn be the unit ball in the complex space Cn. Write Rat(Bn,BN) for the space of
proper rational holomorphic maps from Bn into BN and Poly(Bn,BN) for the set of proper
holomorphic polynomial maps from Bn into BN . We say that F and G ∈ Rat(Bn,BN) are
equivalent if there are automorphisms σ ∈ Aut(Bn) and τ ∈ Aut(BN) such that F = τ ◦G◦σ.

Proper holomorphic maps from Bn into BN with N ≤ 2n − 2, that are sufficiently
smooth up to the boundary, are equivalent to the identity map ([Fa] [Fr] [Hu]). In [HJX],
it is shown that F ∈ Rat(Bn,BN) with N ≤ 3n − 4 is equivalent to a quadratic monomial
map, called the D’Angelo map. However, when the codimension is sufficiently large, there
is plenty of room to construct rational holomorphic maps with certain arbitrariness by
the work in Catlin-D’Angelo [CD]. Hence, it is reasonable to believe that after lifting the
codimension restriction, many proper rational holomorphic maps are not equivalent to proper
holomorphic polynomial maps. In the last paragraph of the paper [DA], D’Angelo gave a
philosophic discussion on this matter. However, the problem of determining if an explicit
proper rational holomorphic map is equivalent to a polynomial map does not seem to have
been studied so far.

This short paper is concerned with such a problem. We will first give a simple and explicit
criterion when a rational holomorphic map is equivalent to a holomorphic polynomial map.
With the help of the classification result in [CJX], this criterion is used in §3 to show
that proper rational holomorphic maps from B2 into BN of degree two are equivalent to
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polynomial maps. On the other hand, making use of the criterion, we construct in §4
rational holomorphic maps of degree 3 that are ‘almost’ linear but are not equivalent to
holomorphic polynomial maps.
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2 A criterion

Let F = P
q

= (P1,...,PN )
q

be a non-constant rational holomorphic map from the unit ball

Bn ⊂ Cn into the unit ball BN ⊂ CN , where (Pj)
N
j=1, q are holomorphic polynomial functions

and (P1, ..., PN , q) = 1. We define deg(F ) = max{deg(Pj)
N
j=1, deg(q)}. Then F induces a

rational map from CPn into CPN given by

F̂ ([z1 : · · · : zn : t]) =

[
tkP (

z

t
) : tkq(

z

t
)

]

where z = (z1, ..., zn) ∈ Cn and deg(F ) = k > 0.
F̂ may not be holomorphic in general. Denote by Sing(F̂ ) the singular set of F̂ , namely,

the collection of points where F̂ fails to be (or fails to extend to be) holomorphic. Then
Sing(F̂ ) is an algebraic subvariety of codimension two or more in CPn. For instance, we
have the following:

Example 2.1
I. Let Fθ(z, w) = (z, cosθ w, sinθ zw, sinθ w2) be the proper monomial map from B2 into
B4 (called the D’Angelo map), where 0 < θ < π

2
. Then Sing(F̂θ) of F̂θ consists of one point:

{[z : w : t] ∈ CP2 : w = 0, t = 0} = {[1 : 0 : 0]}.
II. Let Gα = (z2,

√
1 + cos2α zw, cosα w2, sinα w) be the proper monomial map from B2

into B4 where 0 ≤ α < π
2
. Then Gα induces

Ĝα = [z2 :
√

1 + cos2α zw : cosα w2 : sinα wt : t2].

There are no singular points for Ĝα. Hence Ĝα is holomorphic.
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Write Bn
1 = {[z1 : · · · : zn : t] ∈ CPn :

∑n
j=1 |zj|2 < |t|2}, which is the projective

realization of Bn. Write U(n + 1, 1) for the collection of the linear transforms A : [Z](∈
CPn) 7→ [ZA](∈ CPn) such that

AEn+1,1A
t
= En+1,1

where

En+1,1 =

(
In 0
0 −1

)
.

Then U(n + 1, 1)/{±Id} = Aut(Bn
1 ) ≈ Aut(Bn).

Lemma 2.1 For any hyperplane H ⊂ CPn with H ∩Bn
1 = ∅, there is a σ ∈ U(n+1, 1) such

that σ(H) = H∞ = {[z1 : · · · : zn : 0] ∈ CPn}.
Proof: Assume that H :

∑n
j=1 ajzj − an+1t = 0 with ~a = (a1, ..., an+1) 6= 0. Under the

assumption that H ∩ Bn
1 = ∅, we have an+1 6= 0. Without loss of generality, we can assume

that an+1 = 1. Let U be an n× n unitary matrix such that

(a1, ..., an)U = (λ, 0, ..., 0),

for some λ ∈ C. Let σ =

(
U 0
0 I

)
. Then σ(H) = {[z : t] ∈ CPn | λz1 − t = 0} with |λ| < 1.

Let T ∈ Aut(Bn) be defined by

T (z1, z
′) =

(
z1 − λ

1− λz1

,

√
1− |λ|2z′
1− λz1

)

with z′ = (z2, ..., zn). Then T̂ ∈ U(n + 1, 1) is defined by

T̂ ([z1 : z′ : t]) = [z1 − λt :
√

1− |λ|2z′ : t− λz1].

Now, it is easy to see that T̂ ◦ σ maps H to H∞. ¤
Our criterion can be stated as follows:

Theorem 2.2 Let F be a non-constant rational holomorphic map from Bn into BN with
N,n ≥ 1. Then F is equivalent to a holomorphic polynomial map from Bn into BN , namely,
there are σ ∈ Aut(Bn) and τ ∈ Aut(BN) such that τ ◦F ◦σ is a holomorphic polynomial map
from Bn into BN , if and only if there exist (complex) hyperplanes H ⊂ CPn and H ′ ⊂ CPN

such that H ∩ Bn
1 = ∅, H ′ ∩ BN

1 = ∅ and

F̂ (H \ Sing(F̂ )) ⊂ H ′, F̂
(
CPn\(H ∪ Sing(F̂ ))

)
⊂ CPN\H ′.
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Proof: If F is a non-constant holomorphic polynomial map, then F̂ = [tkF ( z
t
), tk] with

deg(F ) = k > 0. Let H = H∞ and H ′ = H ′
∞. Then they satisfy the property described in

the theorem.
If F is equivalent to a holomorphic polynomial map G, then there exist σ̂ ∈ U(n +

1, 1), τ̂ ∈ U(n + 1, 1) such that F̂ = τ̂ ◦ Ĝ ◦ σ̂. Let H = σ̂−1(H∞) and H ′ = τ̂(H ′
∞). Then

they are the desired ones.
Conversely, suppose that F̂ , H and H ′ are as in the theorem. By Lemma 2.1, we can

find σ̂ ∈ U(n + 1, 1) and τ̂ ∈ U(n + 1, 1) such that σ̂(H) = H∞ and τ̂(H ′) = H ′
∞. Let

Q̂ = τ̂ ◦ F̂ ◦ σ̂−1. Then Q̂ induces a rational holomorphic map Q from Bn into BN . If Q = P
q

where (P, q) = 1 and deg(Q) = k > 0, then

Q̂ = [tkP (
z

t
) : tkq(

z

t
)].

Suppose that q 6≡ constant. Let z0 ∈ Cn be such that q(z0) = 0 but P (z0) 6= 0. Then
[z0 : 1] 6∈ Sing(Q̂) ∪ H∞ and Q̂([z0 : 1]) ∈ H ′

∞. Notice that Q̂(H∞ \ Sing(Q̂)) ⊂ H ′
∞ and

Q̂
(
CPn\(H∞ ∪ Sing(Q̂))

)
⊂ CPN\H ′

∞. This is a contradiction. Thus, we showed that Q

is a polynomial. ¤

Remark 2.3 (A): Suppose that F̂ = [F1 : · · · : FN : F0] is a non-constant rational map
from CPn into CPN , where F0, . . . , FN are homogeneous polynomials in (z, t) of degree k > 0
with

(F1, . . . , FN , F0) = 1.

Assume that H := {[z1 : · · · : zn : t] ∈ CPn :
∑n

j=1 ajzj + a0t = 0, aj ∈ C, (a0, . . . , an, a0) 6=
0}, H ′ := {[z′1 : · · · : z′N : t′] ∈ CPN :

∑N
j=1 Ajz

′
j + A0t

′ = 0, Aj ∈ C, (A0, . . . , AN , A0) 6= 0}
are (complex) hyperplanes. Also assume that H ∩ Bn

1 = ∅ and H ′ ∩ BN
1 = ∅. We easily see

that a0, A0 6= 0 ( thus we can always make a0, A0 = 1). Under such a set-up, by the basic
division property for polynomials, we can easily conclude that

F̂ (H \ Sing(F̂ )) ⊂ H ′, F̂
(
CPn\(H ∪ Sing(F̂ ))

)
⊂ CPN\H ′

if and only if
N∑

j=1

AjFj + A0F0 ≡ C · (
n∑

j=1

ajzj + a0t)
k,

where C 6= 0 is a constant and k(> 0) is the degree of F . This observation will be used for
our later application of Theorem 2.2.
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(B): From the argument of Theorem 2.2, it is clear that a similar result can also be
proved for non-constant rational maps from CPn into CPN .

Write the Cayley transformation

ρn(z′, zn) =

(
2z′

1− izn

,
1 + izn

1− izn

)
.

Then ρn biholomorphically maps ∂Hn to ∂Bn\{(0, 1)}, where Hn = {(z′, zn) ∈ Cn : =(zn) >
|z′|2}. ρn induces a linear transformation of CPn:

ρ̂n = [2z′ : t + izn : t− izn].

ρ̂n maps Sn
1 = {[z′ : zn : t] ∈ CPn : znt−tzn

2i
> |z′|2} to Bn

1 .
Now let G be a non-constant rational holomorphic map from an open piece of ∂Hn into

∂HN . Then ρN ◦G ◦ ρ−1
n extends to a proper rational holomorphic map from Bn to BN . By

Theorem 2.2, we have the following:

Theorem 2.4 ρN ◦G ◦ ρ−1
n is equivalent to a proper holomorphic polynomial map from Bn

into BN if and only if there are (complex) hyperplanes H ⊂ CPn, H ′ ⊂ CPN such that
Ĝ(H \ Sing(Ĝ)) ⊂ H ′ and Ĝ(CPn \ (H ∪ Sing(Ĝ)) ⊂ CPN \H ′ with

H ∩ Sn
1 = ∅, H ′ ∩ SN

1 = ∅.

3 Proper rational holomorphic maps from B2 into BN

of degree two

As a first application of Theorem 2.2, we prove the following:

Theorem 3.1 A map F ∈ Rat(B2,BN) of degree two is equivalent to a polynomial proper
holomorphic map in Poly(B2,BN).

Proof: By [HJX], we know that any rational holomorphic map of degree 2 from B2 into BN is
equivalent to a map of the form (G, 0), where the map G is from B2 into B5. Hence, to prove
Theorem 3.1, we need only to assume that N = 5. After applying Cayley transformations
and using the result in [CJX], we can assume that F = (f, φ1, φ2, φ3, g) is from H2 into H5
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with either
(I)

f =
z + i

2
zw

1 + e2w2
, φ1 =

z2

1 + e2w2
, φ2 =

c1zw

1 + e2w2
, φ3 = 0, g =

w

1 + e2w2

where −e2 = 1
4

+ c2
1 and c1 > 0 or

(II)

f =
z + ( i

2
+ ie1)zw

1 + ie1w + e2w2
, φ1 =

z2

1 + ie1w + e2w2
,

φ2 =
c1zw

1 + ie1w + e2w2
, φ3 =

c3w
2

1 + ie1w + e2w2
, g =

w + ie1w
2

1 + ie1w + e2w2

where −e1,−e2 > 0, c1, c3 > 0 and

e1e2 = c2
3, −e1 − e2 =

1

4
+ c2

1.

Write [z : w : t] for the homogeneous coordinates of CP2. In Case (I) the map F induces a
rational map F̂ : CP2 → CP5 given by

F̂ ([z : w : t]) = [tz +
i

2
zw : z2 : c1zw : 0 : tw : t2 + e2w

2] ∀[z : w : t] ∈ CP2.

In Case (II), F induces a rational map F̂ : CP2 → CP5 given by

F̂ ([z : w : t]) = [tz + (
i

2
+ ie1)zw : z2 : c1zw : c3w

2 : tw + ie1w
2 : t2 + ie1wt + e2w

2]

∀[z : w : t] ∈ CP2. In terms of Theorem 2.4, we will look for H = {−t = µ1z1 +µ2z2} ⊂ CP2

and H ′ = {−t′ =
∑5

j=1 λjz
′
j} ⊂ CP5 such that H ∩ S2

1 = ∅, H ′ ∩ S5
1 = ∅ with

F̂ (H \ Sing(F̂ )) ⊂ H ′ and F̂
(
CP2 \ (H ∪ Sing(F̂ ))

)
⊂ CP5 \H ′.

We next prove the following lemma:

Lemma 3.2 Let H = {−t =
∑n

j=1 Kjzj} ⊂ CPn. Then H ∩ Sn
1 = ∅ if and only if

4=(Kn) +
n−1∑
j=1

|Kj|2 < 0.
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Proof: Suppose for zj and t = −∑n
j=1 Kjzj, we have

wt− tw

2i
<

n−1∑
j=1

|zj|2.

Here we identify zn = w. We then get

−Kn|w|2 + Kn|w|2
2i

+
n−1∑
j=1

−Kjzjw + Kjzjw

2i
<

n−1∑
j=1

|zj|2.

Hence

|w|2=(Kn) <

n−1∑
j=1

{|zj|2 − 2<(
Kj

2i
zjw)},

or

|w|2
(
=(Kn) +

n−1∑
j=1

|Kj|2
4

)
<

n−1∑
j=1

|zj − i

2
Kjw|2.

Since {zj, w} are independent variables, this can only happen if and only if

=(Kn) +
n−1∑
j=1

|Kj|2
4

< 0.

This proves the lemma. ¤
We first consider Case (I). Here, we need only to find out µ1, µ2, λ1, ..., λ5 ∈ C such that

4=(µ2) + |µ1|2 < 0, 4=(λ5) +
4∑

j=1

|λj|2 < 0

and

λ1(tz +
i

2
zw) + λ2z

2 + λ3c1zw + λ5tw + (t2 + e2w
2) = (t + µ1z + µ2w)2,

∀[z : w : t] ∈ CP2. It is easy to verify that λ1 = λ2 = λ3 = λ4 = µ1 = 0, λ5 = −2
√
|e2|i and

µ2 = −
√
|e2|i satisfy the above conditions. Hence in Case (I), the map is always equivalent

to a holomorphic polynomial map in Poly(B2,B5).
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We next consider the second case. Similar to Case (I), it suffices for us to find

µ1, µ2, λ1, ..., λ5 ∈ C
such that

4=(µ2) + |µ1|2 < 0, 4=(λ5) +
4∑

j=1

|λj|2 < 0

and

λ1(tz + i(
1

2
+ e1)zw) + λ2z

2 + λ3c1zw + λ4c3w
2 + λ5(tw + ie1w

2)

+(t2 + ie1tw + e2w
2) = (t + µ1z + µ2w)2, ∀[z : w : t] ∈ CP2.

Comparing the coefficients, we get

λ1 = 2µ1, λ2 = µ2
1, λ3 =

1

c1

[−i(1 + 2e1)µ1 + 2µ1µ2],

λ4 =
1

c3

(µ2
2 − e2 − 2ie1µ2 − e2

1), λ5 = 2µ2 − ie1.

By Theorem 2.4 and Remark 2.3, we thus obtain the following statement:

ρN ◦ F ◦ ρ−1
n is equivalent to a holomorphic polynomial map if and only if there are

µ1, µ2 ∈ C such that 4=(µ2) + |µ1|2 < 0 and that

−4e1 + 8=(µ2) + 4|µ1|2 + |µ1|4 +
1

c2
1

|2µ1µ2 − i(1 + 2e1)µ1|2 +
1

c2
3

|µ2
2 − e2 − e2

1 − 2ie1µ2|2 < 0.

We will look for µ1 and µ2 with µ1 = 0 and µ2 = iy (y < 0).
To prove that ρN ◦ F ◦ ρ−1

n is equivalent to a polynomial map, it suffices for us to show
that there exists y < 0 such that

−4e1 + 8y +
1

c2
3

(−y2 − e2 − e2
1 + 2e1y)2 < 0,

or

J(y) := (−4e1 + 8y)e1e2 + (y2 − 2e1y + e2
1 + e2)

2 = (8y − 4e1)e1e2 + ((y − e1)
2 + e2)

2 < 0.

Notice that as a function in y < 0,

lim
y→−∞

J(y) = +∞, J(0) = (e2
1 − e2)

2 > 0.
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We need to show that
min
y≤0

J(y) < 0.

Notice that J ′(y) = 8e1e2 + 4((y − e1)
2 + e2)(y − e1). Setting J ′(y) = 0, we get

(y − e1)
3 + e2(y − e1) + 2e1e2 = 0.

J ′(y) = 0 thus has a root y0 ∈ (−∞, 0); for

lim
y→−∞

J ′(y) = −∞, J ′(0) = 4(−e3
1 + e1e2) > 0.

Let ζ0, ζ1, ζ2 be the solution of

ζ3 + e2ζ + 2e1e2 = 0 with ζ0 = y0 − e1.

Then ζ0 + ζ1 + ζ2 = 0, ζ0ζ1 + ζ0ζ2 + ζ1ζ2 = e2 and ζ0ζ1ζ2 = −2e1e2. Hence ζ0 = −ζ1 − ζ2.
We get

−ζ2
0 + ζ1ζ2 = e2,

or ζ1ζ2 = e2 + ζ2
0 , and

1

ζ1ζ2

= − ζ0

2e1e2

.

In particular, 1
ζ1ζ2

∈ R\{0}.
Now J(y0) = (−4e1+8ζ0+8e1)e1e2+(ζ2

0 +e2)
2 = 2e1e2(4ζ0+2e1)+(ζ1ζ2)

2 = −ζ0ζ1ζ2(4ζ0+
2e1) + (ζ1ζ2)

2.
Notice that 4ζ3

0 = −8e1e2 − 4e2ζ0. We see that

2e1e2
J(y0)

(ζ1ζ2)2
= 2e1e2 + ζ2

0 (4ζ0 + 2e1) = 2e1e2 − 8e1e2 − 4e2ζ0 + 2e1ζ
2
0

= −6e1e2 − 4e2ζ0 + 2e1ζ
2
0 = −2e2(3e1 + 2ζ0) + 2e1ζ

2
0 .

Since ζ0 = y0 − e1 < −e1, 3e1 + 2ζ0 < e1 < 0. Therefore J(y0)
(ζ1ζ2)2

2e1e2 < 0. Hence we showed

that J(y0) < 0. This also completes the proof of Theorem 3.1. ¤

Our proof of Theorem 3.1 is, in fact, a constructive proof, which can be used to find
precisely polynomial maps equivalent to the original ones. In the following, we demonstrate
this by giving an explicit example:

Proposition 3.3 Let F = (f, φ1, φ2, φ3, g) : H2 → H5 be defined as follows:

f(z, w) =
z − i

2
zw

1− iw − 1
3
w2

, φ1(z, w) =
z2

1− iw − 1
3
w2

,
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φ2(z, w) =

√
13
12

zw

1− iw − 1
3
w2

, φ3(z, w) =

√
3

3
w2

1− iw − 1
3
w2

, g(z, w) =
w − iw2

1− iw − 1
3
w2

.

It is equivalent to the proper polynomial holomorphic map G from B2 into B5:

G(z, w) =

(√
3

9
(−2 + 4z + z2),−

√
6

9
(1 + z + z2),

√
3

12
(5 + 3z)w,

√
6

6
w2,

√
13

12
i(1− z)w

)
.

Proof: In fact, for the map F given above, e1 = −1, e2 = −1
3
, c1 =

√
13
12

, c3 =
√

3
3

. From

the proof of Theorem 3.1, the hyperplanes H ⊂ CP2, H ′ ⊂ CP5 are defined by

H : t = −y0iw, or
w

t
=

i

y0

,

H ′ : t′ = −λ4z
′
4 − λ5w

′, or − λ4
z′4
t′
− λ5

w′

t′
= 1.

Here y0 < 0 is a solution for (y0 + 1)3 − 1
3
(y0 + 1) + 2

3
= 0, λ4 = 1

c3
[−(y0 − e1)

2 − e2] =

− (y0−e1)2+e2√
e1e2

and λ5 = 2iy0 − e1i. Therefore y0 = −2, λ4 = − 2√
3

and λ5 = −3i. Thus we see

that

H : t = 2iw, or
w

t
=

1

2i
,

H ′ : t′ =
2√
3
z′4 + 3iw′, or

2√
3

z′4
t′

+
3iw′

t′
= 1.

Consider F̃ := ρ5◦F ◦ρ−1
2 : B2 → B5 where ρi are the corresponding Cayley transformations.

An easy computation shows that the projectivization of F̃ , denoted by ˆ̃F , is as follows:

ˆ̃F ([z : w : t]) =

[
z(3t + w) : 2z2 : 2i

√
13

12
z(t− w) : −2

√
3

3
(t− w)2

:
1

3
(t2 + 10tw + w2) :

1

3
(13t2 − 2tw + w2)

]

and

ˆ̃H := ρ̂2(H) : t =
1

3
w,

ˆ̃
H ′ := ρ̂5(H

′) : t′ =

√
3

6
z′4 +

1

2
w′.
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We have ˆ̃H ⊂ CP2 and
ˆ̃
H ′ ⊂ CP5, that satisfy the property:

ˆ̃H ∩ B2
1 = ∅, ˆ̃

H ′ ∩ B5
1 = ∅ and

ˆ̃F ( ˆ̃H) ⊂ ˆ̃
H ′, ˆ̃F (CP2\ ˆ̃H) ⊂ CP5\ ˆ̃

H ′.

According to Lemma 2.1, let

σ̂1([z : w : t]) =

[
2
√

2

3
w : z +

t

3
: t +

z

3

]

σ̂2([z
′
1 : z′2 : z′3 : z′4 : w′ : t′]) =

[
1

2
(z′4 +

√
3w′)−

√
3

3
t′ :

√
6

6
(w′ −

√
3z′4)

:

√
6

3
z′1 :

√
6

3
z′2 :

√
6

3
z′3 : t′ −

√
3

6
(z′4 +

√
3w′)

]
,

then σ̂1 ∈ U(3, 1) and σ̂2 ∈ U(6, 1) with σ̂1(
ˆ̃H∞) = ˆ̃H and σ̂2(

ˆ̃
H ′) =

ˆ̃
H ′
∞. The desired proper

polynomial holomorphic map G is thus induced by σ̂2 ◦ ˆ̃F ◦ σ̂1, which has the expression
given in Proposition 3.3. ¤

Remark 3.4: It may be interesting to notice that the map G in Proposition 3.3 does
not preserve the origin and is not equivalent to a map of the form (G′, 0). We do not know
other examples of proper polynomial maps between balls of this type.

4 Examples of proper rational holomorphic maps that

are not equivalent to proper polynomial maps

In this section, we apply Theorem 2.2 to construct examples of rational holomorphic maps
which are not equivalent to proper holomorphic polynomial maps.

Example 4.1: Let G(z, w) =

(
z2,
√

2zw, w2( z−a
1−az

,

√
1−|a|2w

1−az
)

)
, |a| < 1, be a map in Rat(B2,

B4). Then G is equivalent to a proper holomorphic polynomial map in Poly(B2,B4) if and
only if a = 0.

Proof: Indeed, we have

Ĝ =

[
(t− az)z2 : (t− az)

√
2zw : w2(z − at) : w2

√
1− |a|2w : (t3 − at2z)

]
.
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Suppose there exist hyperplanes H = {µ1z1 +µ2w+µ0t = 0} ⊂ CP2 and H ′ = {∑4
j=1 λjz

′
j +

λ0t
′ = 0} ⊂ CP4 such that

H ∩ B2
1 = ∅, H ′ ∩ B4

1 = ∅, Ĝ(H \ Sing(Ĝ)) ⊂ H ′, Ĝ
(
CP2\(H ∪ Sing(Ĝ))

)
⊂ CP4\H ′.

Then

λ1(t− az)z2 + λ2(t− az)
√

2zw + λ3w
2(z − at) + λ4w

2
√

1− |a|2w
+λ0(t

3 − at2z) = (µ1z + µ2w + µ0t)
3 ∀[z : w : t] ∈ CP2.

Apparently λ0 6= 0. Hence we can assume that λ0 = 1, µ0 = 1. By comparing the coefficient
of z3, w3, wt2, zt2, z2t, zwt, z2w, zw2, w2t, respectively, in the above equation, we get

µ3
1 = −aλ1, µ3

2 = λ4

√
1− |a|2, 3µ2 = 0, 3µ1 = −a, 3µ2

1 = λ1,

6µ1µ2 =
√

2λ2, 3µ2
1µ2 = −

√
2λ2a, 3µ1µ

2
2 = λ3, 3µ2

2 = −aλ3.

We then have λ2 = λ3 = λ4 = µ2 = 0. If a 6= 0, then µ1, λ1 6= 0. From µ3
1 = −aλ1 and

3µ2
1 = λ1, we get µ1 = −3a. Since 3µ1 = −a, we get a = 0. This is a contradiction. Notice

that when a = 0, F is a polynomial. By Theorem 2.2, we see the conclusion. ¤

Example 4.2: Let F (z′, w) =

(
z′, wz′, w2(

√
1−|a|2z′

1−aw
, w−a

1−aw
)

)
with |a| < 1 be a map in

Rat(Bn,B3n−2). Then F has geometric rank 1 and is linear along each hyperplane defined
by w = constant. F is equivalent to a proper polynomial map in Poly(Bn,B3n−2) if and
only if a = 0.

Proof: The projectivization of F is

F̂ =
[
tz′(t− aw) : twz′ : w2

√
1− |a|2z′ : w2(w − at) : t2(t− aw)

]
.

Assume a 6= 0 and suppose there exist hyperplanes H ⊂ CPn and H ′ ⊂ CP3n−2 such that

H∩Bn
1 = ∅, H ′∩B3n−2

1 = ∅, F̂ (H\Sing(F̂ )) ⊂ H ′, F̂
(
CPn\(H ∪ Sing(F̂ ))

)
⊂ CP3n−2\H ′.

Then

λ′1tz
′(t−aw)+λ′2twz′+λ′3w

2
√

1− |a|2z′+λnw
2(w−at)+λ0t

2(t−aw) = (µ0t+µ′z′+µnw)3

for some λ′1, λ
′
2, λ

′
3, µ

′ ∈ Cn−1 and λn, λ0, µ0, µn ∈ C.
Then λ0 = µ3

0 6= 0. We thus can assume at the beginning that λ0 = µ0 = 1.
Since there are no terms like z3

j (j < n) on the left hand side, we conclude that µ′ = 0. Thus
we get

λnw
2(w − at) + t2(t− aw) = (t + µnw)3.

Therefore −a = 3µn, −λna = 3µ2
n, λn = µ3

n or µn = −a
3

and µn = − 3
a
. This contradicts the

assumption that 0 < |a|2 < 1. ¤
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