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1 Introduction

Denote by Rat(B2,BN) the space of all rational proper holomorphic maps from the unit ball
B2 ⊂ C2 into the unit ball BN ⊂ CN . We recall that F and G ∈ Prop(Bn,BN) are said to be
equivalent if there are automorphisms σ ∈ Aut(Bn) and τ ∈ Aut(BN) such that F = τ ◦G◦σ.
In this paper, we study the classification problem for elements in Rat(B2,BN) with degree
two. For an element F in Rat(B2,BN), there is a naturally associated invariant RkF ≤ 1,
called the geometric rank of the map. Since F is linear if and only if its geometric rank
(for the definition, see §2) RkF = 0, we only need to consider maps with geometric rank
RkF = 1. By using Cayley transformation ρk : Hk → Bk where Hk is the Siegel upper-half
space (see § 2), studying Rat(B2,BN) is equivalent to studying Rat(H2,HN).

Making use of results obtained in the previous work [HJX06] [CJX06], we give a complete
description for the modular space for maps in Rat(B2,BN) with degree ≤ 2 under the above
mentioned equivalence relation. Our main result is the following Theorem 1.1. Notice that
when N = 3, Rat(B2,B3) has been classified by Faran ([Fa82]); and when N = 4, a complete
list of monomial maps in Rat(B2,B4) has been given by D’Angelo ([DA88]):

Theorem 1.1 (i) Any nonlinear map in Rat(B2,BN) with degree 2 is equivalent to a map
(F, 0) where F ∈ Rat(B2,B5) is of one of the following forms:
(I): F = (Gt, 0) where Gt ∈ Rat(B2,B4) is defined by

Gt(z, w) = (z2,
√

1 + cos2 t zw, (cos t)w2, (sin t)w), 0 ≤ t < π/2. (1)

(IIA): F = (Fθ, 0) where Fθ ∈ Rat(B2,B4) is defined by

Fθ(z, w) = (z, (cos θ)w, (sin θ)zw, (sin θ)w2), 0 < θ ≤ π

2
. (2)
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(IIC): F = Fc1,c3,e1,e2 = ρ−1
5 ◦ F ◦ ρ2 = (f, φ1, φ2, φ3, g) ∈ Rat(H2, H5) is of the form:

f =
z + ( i

2
+ ie1)zw

1 + ie1w + e2w2
, φ1 =

z2

1 + ie1w + e2w2
,

φ2 =
c1zw

1 + ie1w + e2w2
, φ3 =

c3w
2

1 + ie1w + e2w2
, g =

w + ie1w
2

1 + ie1w + e2w2
,

where c1, c3 > 0,−e1,−e2 ≥ 0, e1e2 = c2
3, −e1 − e2 = 1

4
+ c2

1, satisfying one of the following
conditions: either

{
e1 =

−( 1
4
+c21)−

√
( 1
4
+c21)2−4c23

2
, e2 =

−( 1
4
+c21)+

√
( 1
4
+c21)2−4c23

2
,

0 < 4c2
3 ≤ (1

4
+ c2

1)
2,

(3)

or {
e1 =

−( 1
4
+c21)+

√
( 1
4
+c21)2−4c23

2
, e2 =

−( 1
4
+c21)−

√
( 1
4
+c21)2−4c23

2
,

1
2
c2
1 + c4

1 ≤ 4c2
3 ≤ (1

4
+ c2

1)
2.

(4)

(ii) Any two maps in Rat(B2,B5) in the form of types (I), (IIA), and (IIC) above are
equivalent if and only if they are identical.

Next, we give a review on the development of this problem and outline the proof for
Theorem 1.1 as follows. For some notations to be used, we refer the reader to §2.

• A result obtained in [HJX06] A classification result was proved in the last section of
[HJX06] under the action of the isotropic automorphism groups of the Heisenberg hypersur-
faces, which gives in particular the following: Any map F in Rat(H2,HN) with deg(F ) = 2
is equivalent to a map (G, 0) where G = (f, φ1, φ2, φ3, g) ∈ Rat(H2,H5) is of the form (see
also Lemma 2.3 below)

f(z, w) =
z−2ibz2+( i

2
+ie1)zw

1+ie1w+e2w2−2ibz
,

φ1(z, w) = z2+bzw
1+ie1w+e2w2−2ibz

, φ2(z, w) = c2w2+c1zw
1+ie1w+e2w2−2ibz

,

φ3(z, w) = c3w2

1+ie1w+e2w2−2ibz
, g(z, w) = w+ie1w2−2ibzw

1+ie1w+e2w2−2ibz
,

(5)

where b,−e1,−e2, c1, c2, c3 are real non-negative numbers satisfying e1e2 = c2
2+c2

3, −e1−e2 =
1
4

+ b2 + c2
1, −be2 = c1c2, and c3 = 0 if c1 = 0.

Since b and c2 are determined by c1, c3, e1 and e2, a map in the form of (5) is determined
by c1, c3, e1 and e2. We denote a map of the form (5) determined by c1, c3, e1 and e2 to be

F(c1,c3,e1,e2) ∈ K. (6)
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Sometimes we regard a such map F(c1,c3,e1,e2) as a point: (c1, c3, e1, e2) ∈ K. It was unclear
in [HJX06] which of the coefficients e1, e2, c1 and c3 of F are independent parameters.

• Review of the result in [CJX06] In [CJX06], by obtaining an extra equation, we got
a clearer picture on the maps in (5).

For any F ∈ Rat(H2,H5) with deg(F ) = 2, if the geometric rank of F at the origin is
one: RkF (0) = 1, then by a normalization procedure (see Lemma 2.2 and 2.3 below, or [Hu
03][HJX06]), F is equivalent to another map F ∗∗∗ ∈ Rat(H2,H5) of the form (5). Also we
can associate a family of maps Fp ∈ Rat(H2,H5) for any p ∈ ∂H2 (see § 2 below). Let us
define ΞF := {p ∈ ∂H2 | RkFp(0) = 0} to be the set of p at which the geometric rank of Fp

at the origin is zero. If p 6∈ ΞF , we obtain a normalized map (Fp)
∗∗∗ that is of the form (5),

and we define a real analytic function W(F ∗∗∗
p ) = c1(p)2 − e1(p) − e2(p) where c1(p), e1(p)

and e2(p) are the coefficients of F ∗∗∗
p as in (5).

The desired extra equation is obtained by moving up p to the extremal value as follows.
We choose a sequence of pm ∈ ∂H2 − ΞF such that RkFpm (0) = 1, pm → p0 ∈ ∂H2 and
limmW(F ∗∗∗

pm
) = infp∈∂H2−ΞF

{W(F ∗∗∗
p )}.

If p0 ∈ ∂H2, by [CJX06, § 4], we can write

F ∗∗∗
pm

= (Fp0)
∗∗∗
qm

(7)

where qm ∈ ∂H2 and qm → 0. Then it implies by [CJX06, Lemma 2.5] that RkFp0
(0) = 1,

and that F is equivalent to F ∗∗∗
p0

which is of the form (5) and with the minimum property
W(F ∗∗∗

p0
) = infp∈∂H2−ΞF

W(F ∗∗∗
p ). The minimum property implies the vanishing of deriva-

tives of the function W(F ∗∗∗
p ) at p0, which derives the extra equation.

If p0 = ∞, by [CJX06, § 4] we can similarly write

F ∗∗∗
pm

= (τ∞ ◦ F ◦ σ∞)∗∗∗qm
(8)

where σ∞ ∈ Aut(∂B2), τ∞ ∈ Aut(∂B5), qm ∈ ∂H2 and qm → 0 so that, by the same argument
above, Rkτ∞◦F◦σ∞(0) = 1 and that F is equivalent to (τ∞ ◦ F ◦ σ∞)∗∗∗ which is of the form
(5). The minimum property also derives the extra equation.

With the extra equation described above, it was proved in [CJX06] that F is equivalent
to another map Fc1,c3.e1,e2 ∈ K satisfying the property

W(
(Fc1,c3.e1,e2)

∗∗∗
p

) ≥ W(
(Fc1,c3.e1,e2)

∗∗∗
0

)
, ∀p ∈ ∂H2 near 0. (9)

and that the new map Fc1,c3.e1,e2 is of the form in one of the following types:
(I) F0,0,e1,e2 = (f, φ1, φ2, φ3, g) is of the form

f =
z+( i

2
+ie1)zw

1+ie1w+e2w2 , φ1 = z2

1+ie1w+e2w2 ,

φ2 = c2w2

1+ie1w+e2w2 , φ3 = 0, g = w+ie1w2

1+ie1w+e2w2

(10)
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where e1e2 = c2
2 and −e1 − e2 = 1

4
. Here e2 ∈ [−1

4
, 0) is a parameter. It then corresponds

to the family {Gt}0≤t<π/2 in (1). When e2 = −1
4
, F0,0,e1,e2 corresponds to G0, i.e. (z, w) 7→

(z2,
√

2zw, w2, 0); when e2 → 0, F0,0,e1,e2 goes to Gπ/2 = Fπ/2, i.e., (Z, w) 7→ (z, zw, w2).
(IIA) Fc1,0,e1,0 = (f, φ1, φ2, φ3, g) is of the form

f =
z + ( i

2
+ ie1)zw

1 + ie1w
, φ1 =

z2

1 + ie1w
, φ2 =

c1zw

1 + ie1w
, φ3 = 0, g = w (11)

where −e1 = 1
4
+ c2

1 and c1 ∈ [0,∞) is a parameter. It corresponds to the family {Fθ}0<θ≤π/2

in (2). When c1 = 0, Fc1,0,e1,0 corresponds to Fπ/2; when c1 →∞, Fc1,0,e1,0 goes to the linear
map, i.e., (z, w) 7→ (z, w, 0).

(IIB) Fc1,0,0,e2 = (f, φ1, φ2, φ3, g) is of the form:

f =
z + i

2
zw

1 + e2w2
, φ1 =

z2

1 + e2w2
, φ2 =

c1zw

1 + e2w2
, φ3 = 0, g =

w

1 + e2w2
, (12)

where −e2 = 1
4

+ c2
1 and c1 ∈ (0,∞) is a parameter. Notice that when c1 → 0, the map

Fc1,0,0,e2 goes to the map G0, i.e. the one in type (I) when e2 = −1
4
.

(IIC) Fc1,c3,e1,e2 = (f, φ1, φ2, φ3, g) is of the form:

f =
z+( i

2
+ie1)zw

1+ie1w+e2w2 , φ1 = z2

1+ie1w+e2w2 ,

φ2 = c1zw
1+ie1w+e2w2 , φ3 = c3w2

1+ie1w+e2w2 , g = w+ie1w2

1+ie1w+e2w2 ,
(13)

where c1, c3 > 0,−e1,−e2 ≥ 0, e1e2 = c2
3, −e1 − e2 = 1

4
+ c2

1.
For any map Fc1,c3,e1,e2 in one of these four types, we denote Fc1,c3,e1,e2 , or (c1, c3, e1, e2),

∈ KI , KIIA, KIIB, and KIIC , respectively.
Recall from (33) [CJX06]

F can be embedded into H4 ⇔ c3 = 0. (14)

Concerning the proof of Theorem 1.1, our main idea to establish following formula (see
(33)):

W(F ∗∗∗
Γ(t+∆t)) = W(F ∗∗∗

Γ(t)) + [4c1(bc1 + 2c2)− 8b(e1 + e2)](Γ(t))=(q1(t))∆t + o(|∆t|). (15)

One crucial point is that the term [4c1(bc1 + 2c2)− 8b(e1 + e2)](Γ(t)) is always non-negative
so that it allows us to reduce the study of (9) into the study for the term =(q1(t)).

We’ll prove in Lemma 3.4 below that indeed

there is no map F satisfying both (9) and (12), (16)
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and that a map

F satisfies (9) and (13) ⇔ F satisfies (13), (3) and (4), (17)

which proves Theorem 1.1(i). To prove Theorem 1.1(ii), we first prove its local version (see
Corollary 4.3). Then we shall find a way to reduce the global problem into the local one.

2 Notation and preliminaries

• Maps between balls Write Hn := {(z, w) ∈ Cn−1 × C : Im(w) > |z|2} for the
Siegel upper-half space. Similarly, we can define the space Rat(Hn,HN), Propk(Hn,HN)
and Prop(Hn,HN) respectively. Since the Cayley transformation

ρn : Hn → Bn, ρn(z, w) =

(
2z

1− iw
,

1 + iw

1− iw

)

is a biholomorphic mapping between Hn and Bn, we can identify a map F ∈ Propk(Bn,BN)
or Rat(Bn,BN) with ρ−1

N ◦ F ◦ ρn in the space Propk(Hn,HN) or Rat(Hn,HN), respectively.
Parametrize ∂Hn by (z, z, u) through the map (z, z, u) → (z, u + i|z|2). In what follows,

we will assign the weight of z and u to be 1 and 2, respectively. For a non-negative integer
m, a function h(z, z, u) defined over a small ball U of 0 in ∂Hn is said to be of quantity

owt(m) if h(tz,tz,t2u)
|t|m → 0 uniformly for (z, u) on any compact subset of U as t(∈ R) → 0.

• Partial normalization of F Let F = (f, φ, g) = (f̃ , g) = (f1, · · · , fn−1, φ1, · · · , φN−n, g)
be a non-constant C2-smooth CR map from ∂Hn into ∂HN with F (0) = 0. For each p ∈ ∂H2,
we write σ0

p ∈ Aut(Hn) and τF
p ∈ Aut(HN) for the maps

σ0
p(z, w) = (z + z0, w + w0 + 2i〈z, z0〉),

τF
p (z∗, w∗) = (z∗ − f̃(z0, w0), w

∗ − g(z0, w0)− 2i〈z∗, f̃(z0, w0)〉).
(18)

F is equivalent to Fp = τF
p ◦ F ◦ σ0

p = (fp, φp, gp). Notice that F0 = F and Fp(0) = 0. The
following is basic for the understanding of the geometric properties of F .

Lemma 2.1 ([§2, Lemma 5.3, Hu99], [Lemma 2.0, Hu03]): Let F be a C2-smooth CR map
from ∂Hn into ∂HN , 2 ≤ n ≤ N with F (0) = 0. For each p ∈ ∂Hn, there is an automorphism
τ ∗∗p ∈ Aut0(HN) such that F ∗∗

p := τ ∗∗p ◦ Fp satisfies the following normalization:

f ∗∗p = z +
i

2
a∗∗(1)

p (z)w + owt(3), φ∗∗p = φ∗∗p
(2)(z) + owt(2), g∗∗p = w + owt(4), (19)

〈z, a∗∗(1)p (z)〉|z|2 = |φ∗∗p (2)(z)|2.
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Let A(p) = −2i(
∂2(fp)∗∗l

∂zj∂w
|0)1≤j,l≤(n−1). We call the rank of A(p), which we denote by

RkF (p), the geometric rank of F at p. RkF (p) depends only on p and F , and is a lower semi-
continuous function on p. We define the geometric rank of F to be RkF := maxp∈∂HnRkF (p).
Notice that we always have 0 ≤ RkF ≤ n − 1. We define the geometric rank of F ∈
Prop2(Bn,BN) to be the one for the map ρ−1

N ◦F ◦ ρn ∈ Prop2(Hn,HN). It is proved that F
is linear fractional if and only if the geometric rank RkF = 0 ([Theorem 4.3, Hu99]). Hence,
in all that follows, we assume that RkF = κ0 ≥ 1.

Denote by S0 = {(j, l) : 1 ≤ j ≤ κ0, 1 ≤ l ≤ (n − 1), j ≤ l} and write S := {(j, l) :

(j, l) ∈ S0, or j = κ0 +1, l ∈ {κ0 +1, · · · , κ0 +N −n− (2n−κ0−1)κ0

2
}}. Then we further have

the following normalization for F :

Lemma 2.2 ([Lemma 3.2, Hu03]): Let F be a C2-smooth CR map from an open piece

M ⊂ ∂Hn into ∂HN with F (0) = 0 and RkF (0) = κ0. Let P (n, κ0) = κ0(2n−κ0−1)
2

. Then
N ≥ n + P (n, κ0) and there are σ ∈ Aut0(∂Hn) and τ ∈ Aut0(∂HN) such that F ∗∗∗

p =
τ ◦ F ◦ σ := (f, φ, g) satisfies the following normalization conditions:





fj =zj +
iµj

2
zjw + owt(3),

∂2fj

∂w2
(0) = 0, j = 1 · · · , κ0, µj > 0,

fj =zj + owt(3), j = κ0 + 1, · · · , n− 1,

g =w + owt(4),

φjl =µjlzjzl + owt(2), where (j, l) ∈ S with µjl > 0 for (j, l) ∈ S0

and µjl = 0 otherwise.

(20)

Moreover µjl =
√

µj + µl for j, l ≤ κ0 j 6= l, µjl =
√

µj if j ≤ κ0 and l > κ0 or if j = l ≤ κ0.

Here we denote Aut0(∂Hn) = {ψ ∈ Aut(∂Hn) | ψ(0) = 0}.

• Degree of a rational map For a rational holomorphic map H = (P1,...,Pm)
Q

over Cn,

where Pj, Q are holomorphic polynomials and (P1, ..., Pm, Q) = 1, we define

deg(H) = max{deg(Pj), 1 ≤ j ≤ m, deg(Q)}.

For a rational map H and a complex affine subspace S of dimension k, we say that H is
linear fractional along S, if S is not contained in the singular set of H and for any linear
parametrization zj = z0

j +
∑k

l=1 ajltl of S with j = 1, · · · , n, H∗(t1, · · · , tk) := H(z0
1 +∑k

l=1 a1ltl, · · · , z0
n +

∑k
l=1 ajntj) has degree 1 in (t1, · · · , tk).
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• Actions of the isotropic groups of the Heisenberg hypersurfaces Recall from
[(2.4.1), Hu03] and [(2.4.2), Hu03], we define σ ∈ Aut0(∂H2) and τ ∗ ∈ Aut0(∂H5) by

σ =
(λ(z + aw) · U, λ2w)

q(z, w)
, τ ∗(z∗, w∗) =

(λ∗(z∗ + a∗w∗) · U∗, λ∗2w∗)
q∗(z∗, w∗)

, (21)

with q(z, w) = 1− 2i〈a, z〉+ (r − i|a|2)w, λ > 0, r ∈ R, a, U ∈ C, |U | = 1, and q∗(z∗, w∗) =
1− 2i〈a∗, z∗〉 + (r∗ − i|a∗|2)w∗, λ∗ > 0, r∗ ∈ R, a∗ = (a∗1, a

∗
2) ∈ C1 × C3 and U∗ is an 4 × 4

unitary matrix, such that [((2.5.1), (2.5.2), Hu03] holds:

λ∗ = λ−1, a∗1 = −λ−1aU, a∗2 = 0, r∗ = −λ−2r, U∗ =

(
U−1 0
0 U∗

22

)
, (22)

where a∗ = (a∗1, a
∗
2), U∗

22 is an 3 × 3 unitary matrix. Define F ∗ = τ ∗ ◦ F ◦ σ. By [Lemma
2.3(A), Hu03], we can write

f(z, w) = z + i
2
zAw + owt(3), f ∗(z, w) = z + i

2
zA∗w + owt(3),

φ(z, w) = 1
2
z(B1, B2, B3)z + zBw + 1

2
∂2φ
∂w2 (0)w2 + o(|(z, w)|2),

φ∗(z, w) = 1
2
z(B∗1, B∗2, B∗3)z + zB∗w + 1

2
∂2φ∗
∂w2 (0)w2 + o(|(z, w)|2),

(23)

where Bi = ∂2φi

∂z2 (0), B∗i =
∂2φ∗i
∂z2 (0) for i = 1, 2, 3 and B = ( ∂2φ1

∂z∂w
, ∂2φ2

∂z∂w
, ∂2φ3

∂z∂w
), B∗ =

(
∂2φ∗1
∂z∂w

,
∂2φ∗2
∂z∂w

,
∂2φ∗3
∂z∂w

). Also, the same computation in [Hu03, Lemma 2.3 (A)] gives the fol-
lowing:

∂2g∗
∂z2 (0) = 0, ∂2g∗

∂z∂w
(0) = 0, ∂2g∗

∂w2 (0) = 0, ∂2f∗
∂z2 (0) = 0, A∗ = λ2UAU−1,

∂2f∗
∂w2 (0) = iλ2aUAU−1 + λ3 ∂2f

∂w2 (0)U−1,
[B∗1, B∗2, B∗3] = λU [B1, B2, B3]U tU∗

22,
B∗ = λU [B1, B2, B3]U tatU∗

22 + λ2UBU∗
22,

∂2φ∗
∂w2 (0) = λaU [B1, B2, B3]U tatU∗

22 + 2λ2aUBU∗
22 + λ3 ∂2φ

∂w2 (0)U∗
22.

(24)

Lemma 2.3 ([HXJ06, theorem 4.1]) Let F ∈ Rat(∂H2, ∂HN) have degree 2 with F (0) = 0
and RkF (0) = 1 (N ≥ 4). Then

(1) F is equivalent to (F ∗∗∗, 0) where F ∗∗∗ = (f, φ1, φ2, φ3, g) ∈ Rat(∂H2, ∂H5) defined
by

f(z, w) =
z−2ibz2+( i

2
+ie1)zw

1+ie1w+e2w2−2ibz
,

φ1(z, w) = z2+bzw
1+ie1w+e2w2−2ibz

,

φ2(z, w) = c2w2+c1zw
1+ie1w+e2w2−2ibz

,

φ3(z, w) = c3w2

1+ie1w+e2w2−2ibz
,

g(z, w) = w+ie1w2−2ibzw
1+ie1w+e2w2−2ibz

.

(25)
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Here b,−e1,−e2, c1, c2, c3 are real non-negative numbers satisfying

e1e2 = c2
2 + c2

3, −e1 − e2 = 1
4

+ b2 + c2
1, −be2 = c1c2, c3 = 0 if c1 = 0. (26)

(2) c1, c2, c3, e1, e2, b are uniquely determined by F . Conversely, for any non-negative
real numbers c1, c2, c3, e1, e2, b satisfying the relations in (26), the map F defined in (25) is
an element in Rat(∂H2, ∂H5) of degree 2 with F (0) = 0 and RkF (0) = 1.

(3) If e2 = 0, then F is equivalent to (Fθ, 0) with Fθ as in (1).

Remarks (i) The new normalized map in Lemma 2.3(1) can be obtained by F ∗∗∗ = τ ∗ ◦
F ∗∗ ◦ σ where F ∗∗ is as in Lemma 2.2 and σ and τ ∗ are as in (21).

(ii) For any map F in Lemma 2.3(1), b =
√
−e1 − e2 − 1

4
− c2

1 and c2 =
√

e1e2 − c2
3 are

determined by c1, c3, e1 and e2. Then c1, c3, e1 and e2 can be regarded as parameters, and
we denote F = Fc1,c3,e1,e2 .
(iii) We denote by K a subset of R4 such that (c1, c3, e1, e2), or Fc1,c3,e1,e2 ∈ K if and only if
Fc1,c3,e1,e2 is a map as above.

Lemma 2.4 ([CJX06, Lemma 2.5]) Let F ∈ Rat(∂H2, ∂H5) with F (0) = 0 and deg(F ) = 2.
Suppose that pm ∈ ∂H2 is a sequence converging to 0 ∈ ∂H2 and Fpm is of rank 1 at 0 for

any m and F ∗∗∗
pm

converges such that
∂2φ∗∗∗1,m

∂z∂w
|0, ∂2φ∗∗∗2,m

∂w2 |0, ∂2φ∗∗∗2,m

∂z∂w
|0 and

∂2φ∗∗∗3,m

∂w2 |0 are bounded for
all m. Then

(i) F is of rank 1 at 0.
(ii) F ∗∗∗

pm
→ F ∗∗∗.

(iii) If we write F ∗∗∗
pm

= G2,m◦τpm ◦F ◦σpm ◦G1,m where σpm and τpm := τF
pm

are as in (18),
G1,m and G2,m are as in (21), then G1,m and G2,m are convergent to some G1 ∈ Aut0(∂H2)
and G2 ∈ Aut0(∂H5) respectively.

Let F be as in Lemma 2.3 (1). By Lemma 2.3, Fp is equivalent to a map of the following
form F ∗∗∗

p = (f ∗∗∗p , φ∗∗∗1,p , φ∗∗∗2,p , φ∗∗∗3,p , g∗∗∗p ) for any p ∈ ∂H2 where RkF (p) = 1:

f ∗∗∗p (z, w) =
z − 2ib(p)z2 + ( i

2
+ ie1(p))zw

1 + ie1(p)w + e2(p)w2 − 2ib(p)z
,

φ∗∗∗1,p (z, w) =
z2 + b(p)zw

1 + ie1(p)w + e2(p)w2 − 2ib(p)z
,

φ∗∗∗2,p (z, w) =
c2(p)w2 + c1(p)zw

1 + ie1(p)w + e2(p)w2 − 2ib(p)z
,
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φ∗∗∗3,p (z, w) =
c3(p)w2

1 + ie1(p)w + e2(p)w2 − 2ib(p)z
,

g∗∗∗p (z, w) =
w + ie1(p)w2 − 2ib(p)zw

1 + ie1(p)w + e2(p)w2 − 2ib(p)z
.

Here b(p), e1(p), e2(p), c1(p), c2(p), c3(p) satisfy e2(p)e1(p) = c2
2(p)+c2

3(p),−e2(p) = 1
4
+e1(p)+

b2(p) + c2
1(p), and −b(p)e2(p) = c1(p)c2(p), c3(p) = 0 if c1(p) = 0, with c1(p), c2(p), b(p) ≥ 0,

e2(p), e1(p) ≤ 0.

Lemma 2.5 Let F and F ∗∗∗
p be as above. Let p = (z0, w0) = (z0, u0 + i|z0|2) ∈ ∂H2 near 0.

Then the followings hold.
(i) The real analytic functions have the formulas

b2(p) = b2 − 4b(2e1 + c2
1)=(z0) + o(1),

c2
1(p) = c2

1 + 4c1(bc1 + 2c2)=(z0) + o(1),

e2(p) + e1(p) = e2 + e1 + 8b(e1 + e2)=(z0) + o(1),

c2
1(p)− e1(p)− e2(p) = c2

1 − e1 − e2 +

(
4c1(bc1 + 2c2)− 8b(e1 + e2)

)
=(z0) + o(1)

where we denote o(k) = o(|(z0, u0)|k).
(ii) If c1 > 0, the real analytic function has the formula

c2
3(p) = c2

3 + 4(c3)
2(5b− 2c2

c1

)=(z0) + o(1),

(iii) If c1 = 0, then c3(p) ≡ 0.

Proof: (1) All these formulas were proved in [CJX06, lemma 3.1].
(ii) We use the formulas in [CJX06, Step 3 and 4, § 5] and the notation to obtain

c2
3 =

∣∣∣∣
1

2

∂2φ∗∗∗p3

∂w2
(0)

∣∣∣∣
2

=

∣∣∣∣
1

2

∂2φ∗∗pe3

∂w2
(0)

∣∣∣∣
2

= c2
3 + 4(c3)

2(5b− 2c2

c1

)=(z0) + o(1).

(iii) If c1 = 0, by Lemma 2.3, c3 = 0 and F ∈ Rat(H2,H4). We modify slightly on the
normalization F ∗∗∗ so that φ∗∗∗p3 ≡ 0 and hence c3(p) ≡ 0. ¤
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3 A Monotone Lemma

Recall that for any (c1, c3, e1, e2) ∈ K, we denote

• (c1, c3, e1, e2) ∈ KI (i.e. Fc1,c3,e1,e2 is of the form of type (I)) if c1 = 0 and b = 0;

• (c1, c3, e1, e2) ∈ KII (i.e. Fc1,c3,e1,e2 is of the form of type (II)) if c1 > 0 and b = c2 = 0.

Also recall that for any map (c1, c3, e1, e2) ∈ KII , we denote

• (c1, c3, e1, e2) ∈ KIIA (i.e. Fc1,c3,e1,e2 is of the form of type (IIA)) if c1 > 0, b = c2 = 0
and c3 = e2 = 0;

• (c1, c3, e1, e2) ∈ KIIB (i.e. Fc1,c3,e1,e2 is of the form of type (IIB)) if c1 > 0, b = c2 = 0
and c3 = e1 = 0;

• (c1, c3, e1, e2) ∈ KIIC (i.e. Fc1,c3,e1,e2 is of the form of type (IIC)) if c1 > 0, b = c2 = 0
and c3 > 0.

For any (c1, c3, e1, e2) ∈ KI ∪ KII , we denote

• (c1, c3, e1, e2) ∈ KI,II,1+4e2+2c21>0, if 1 + 4e2 + 2c2
1 > 0;

• (c1, c3, e1, e2) ∈ KI,II,1+4e2+2c21=0, if 1 + 4e2 + 2c2
1 = 0;

• (c1, c3, e1, e2) ∈ KI,II,1+4e2+2c21<0, if 1 + 4e2 + 2c2
1 < 0.

For any Fc1,c3,e1,e2 ∈ K, we define W(Fc1,c3,e1,e2) := W(c1, c3, e1, e2) := c2
1 − e1 − e2. We

also consider curves

Γ(t) = (αt, β1t + i|α|2t2) ∈ ∂H2, ∀t ∈ [0, 1], |α| ≤ 1 and |β1| ≤ 1 (27)

where α = α1 + iα2, αj, β1 are real numbers.

Lemma 3.1 Let Γ be any curve as in (27).
(a) If (c1, c3, e1, e2) ∈ KI,II,1+4e2+2c21>0, then there exists δ = δ(Γ) > 0 such that

W((Fc1,c3,e1,e2)
∗∗∗
Γ(t1)) ≤ W((Fc1,c3,e1,e2)

∗∗∗
Γ(t2)), ∀ 0 ≤ t1 < t2 ≤ δ. (28)

(b) If (c1, c3, e1, e2) ∈ KI,II,1+4e2+2c21=0, then there exists δ = δ(Γ) > 0 such that

W((Fc1,c3,e1,e2)
∗∗∗
Γ(t)) ≡ constant, ∀t. (29)

(c) If (c1, c3, e1, e2) ∈ KI,II,1+4e2+2c21<0, then there exists δ = δ(Γ) > 0 such that

W((Fc1,c3,e1,e2)
∗∗∗
Γ(t1)) ≥ W((Fc1,c3,e1,e2)

∗∗∗
Γ(t2)), ∀ 0 ≤ t1 < t2 ≤ δ. (30)
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Proof of Lemma 3.1: Step a. The basic setup The monotonicity (28) in (a) means

dW(F ∗∗∗
Γ(t)))

dt
= lim

∆t→0

W(F ∗∗∗
Γ(t+∆t))−W(F ∗∗∗

Γ(t))

∆t
≥ 0, ∀t ∈ [0, δ]. (31)

For any 0 < t < δ and sufficiently small ∆t > 0, if we can write

F ∗∗∗
Γ(t+∆t) =

(
F ∗∗∗

Γ(t)

)∗∗∗

q(t,∆t)

(32)

for some differentiable map q(t, ∆t) ∈ ∂H2, then from Lemma 2.5 we should have

W(F ∗∗∗
Γ(t+∆t)) = W(F ∗∗∗

Γ(t)) +

[
4c1(bc1 + 2c2)− 8b(e1 + e2)

]
(Γ(t))=(q1(t))∆t + o(|∆t|),

(33)
where we write q(t, ∆t) := (q1(t), q2(t))∆t + o(|∆t|). Notice that [4c1(bc1 + 2c2) − 8b(e1 +
e2)](Γ(t)) ≥ 0 always holds because c1, c2,−e1 − e2 ≥ 0. Then (31) follows if =(q1(t)) ≥ 0
holds. In particular, if [4c1(bc1 + 2c2)− 8b(e1 + e2)](Γ(t)) 6= 0 for any fixed t ∈ [0, δ), and if
the following condition is satisfied:

=(q1(t)) > 0, ∀t ∈ [0, δ], (34)

then the strict inequality (31) holds. To prove (31), it suffices to prove (34).

Step b. Γ(t) determines q(t, ∆t) To prove (32), we define q(t, ∆t) by

Γ(t + ∆t) = σΓ(t) ◦G1(q(t, ∆t)) (35)

where G1 = G1(t) ∈ Aut0(∂H2) and G2 ∈ Aut0(∂H5) are defined such that

(FΓ(t))
∗∗∗ = G2 ◦ τF

Γ(t) ◦ F ◦ σΓ(t) ◦G1. (36)

By (35), q(t, ∆t) is a function uniquely determined by Γ(t) given by

q(t, ∆t) = G−1
1 ◦ σ−1

Γ(t) ◦ Γ(t + ∆t). (37)

The definition (37) will be justified in Step c. Here we derive a formula (39).
By the definition of σ (see (18)),

σ−1
Γ(t)(z, w) = (z − z(t), w − w(t)− 2i〈z, z(t)〉+ 2i|z(t)|2),

11



and

Γ(t + ∆t) =

(
α(t + ∆t), β1(t + ∆t) + i|α|2(t2 + 2t∆t + ∆t2)

)

= Γ(t) + (α, β1 + i|α|2(2t + ∆t))∆t = Γ(t) + (α∆t, (β1 + 2i|α|2t)∆t) + o(|∆t|).
(38)

Then

σ−1
Γ(t) ◦ Γ(t + ∆t) = (α∆t, β1∆t) + o(|∆t|).

We denote G1 ∈ Aut0(∂H2) as in (21), and we have

G1(z, w) =

(
λ(z + ~aw)U

1− 2i〈~a, z〉 − (r + i|~a|2)w,
λ2w

1− 2i〈~a, z〉 − (r + i|~a|2)w
)

where U = U(t) = eiθ, θ = θ(t) ∈ R, λ = λ(t) > 0 and ~a = ~a(t) ∈ C, and r = r(t) ∈ R, and

G−1
1 (z∗, w∗) =

( 1
λ
(z − ~a

λ
Uw)U−1

1 + 2i〈~a
λ
U, z〉+ ( 1

λ2 r − i|~a
λ
|2)w,

1
λ2 w

1 + 2i〈~a
λ
U, z〉+ ( 1

λ2 r − i|~a
λ
|2)w

)
.

Therefore

q(t, ∆t) = G−1
1 ◦ σ−1

Γ(t) ◦ Γ(t + ∆t) = G−1
1 (α∆t, β1∆t) + o(|∆t|)

=

(
1

λ2
(λαU−1 − ~aβ1),

1

λ2
β1

)
∆t + o(|∆t|).

By using the notation in (34), we have

=(q1(t)) =
1

λ(t)2
=

(
λ(t)αU(t)−1 − ~a(t)β1

)
. (39)

Step c. The identity We want to prove that the identity (32) holds:

(FΓ(t+∆t))
∗∗∗ =

((
(FΓ(t))

∗∗∗
)

q(t,∆t)

)∗∗∗
, (40)

for sufficiently small t and ∆t, i.e., to prove the following identity

G4 ◦ τF
Γ(t+∆t) ◦ F ◦ σΓ(t+∆t) ◦G3 = G6 ◦ τF

q ◦
(

G2 ◦ τF
Γ(t) ◦ F ◦ σΓ(t) ◦G1

)
◦ σq(t,∆t) ◦G5. (41)
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Here by abusing of notion, we still use τF
q to denote τH

q where H = (FΓ(t))
∗∗∗. Notice

that G1, G5, G3 ∈ Aut0(∂H2), σΓ(t), σq, σΓ(t+∆t) ∈ Aut(∂H2), and G2, G6, G4∈ Aut0(∂H5),
τF
Γ(t), τF

q , τF
Γ(t+∆t) ∈ Aut(∂H5) are uniquely determined by F , Γ(t), q and Γ(t + ∆t) in the

normalization process, respectively.
If we can write

((
(FΓ(t))

∗∗∗
)

q(t,∆t)

)∗∗∗
= B ◦ (FΓ(t+∆t))

∗∗∗ ◦ A (42)

for some A ∈ Aut0(∂H2) and B ∈ Aut0(∂H5), then (40) holds by Lemma 2.3(2).
In fact, we write

((
(FΓ(t))

∗∗∗
)

q(t,∆t)

)∗∗∗

= G6 ◦ τF
q ◦

(
G2 ◦ τF

Γ(t) ◦ F ◦ σΓ(t) ◦G1

)
◦ σq(t,∆t) ◦G5

=

(
G6 ◦ τF

q ◦G2 ◦ τF
Γ(t) ◦ (τF

Γ(t+∆t))
−1 ◦G−1

4

)
◦

(
G4 ◦ τF

Γ(t+∆t) ◦ F ◦ σΓ(t+∆t) ◦G3

)
◦

◦
(

G−1
3 ◦ σ−1

Γ(t+∆t) ◦ σΓ(t) ◦G1 ◦ σq(t,∆t) ◦G5

)

= B ◦ (FΓ(t+∆t))
∗∗∗ ◦ A

where B = G6◦τF
q ◦G2◦τF

Γ(t)◦(τF
Γ(t+∆t))

−1◦G−1
4 and A = G−1

3 ◦σ−1
Γ(t+∆t)◦σΓ(t)◦G1◦σq(t,∆t)◦G5.

Writing A = G−1
3 ◦

(
σ−1

Γ(t+∆t) ◦ σΓ(t) ◦G1 ◦ σq(t,∆t)

)
◦G5. Notice G−1

3 , G5 ∈ Aut0(∂H2). By

(35), we know σ−1
Γ(t+∆t) ◦ σΓ(t) ◦ G1 ◦ σq(t,∆t) ∈ Aut0(∂H2). Then A ∈ Aut0(∂H2). Similarly,

we can show B ∈ Aut0(∂H5).

Step d. Proof of (a) - the case α 6= 0 Let α be as in (39). Suppose α 6= 0. By our
construction (see [CJX06, Step 3 in § 5]), the vector ~a and the matrix U in (39) are given
by

~a = ~a(t) = i
∂2f ∗∗pb

∂w2
(0) = i(e1 − 2e2)z0 + 2ic1c2u0 + (|p|) = i(e1 − 2e2)αt + o(t), (43)

U = U(t) =





eiθ =
∂2φ∗∗pe1

∂z∂w
(0)/

∣∣∣∣
∂2φ∗∗pe1

∂z∂w
(0)

∣∣∣∣, if
∂2φ∗∗pe1

∂z∂w
(0) 6= 0,

1, if
∂2φ∗∗pe1

∂z∂w
(0) = 0,

(44)
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and (see [CJX06, Step 3 in § 5])

∂2φ∗∗pe1

∂z∂w
(0) =

∂2φ∗∗pd1

∂z∂w
(0) = b− 2ib3u0 − ibe1u0 − 4ib2z0 − i

2
bu0

−iz0 − 4ie2z0 + 4ic1c2u0 − 2ibc2
1u0 − 2ic2

1z0 = −i(1 + 4e2 + 2c2
1)z0 + o(|p|),

where p = (z0, w0) = Γ(t) = (αt, β1t+i|α|2t2) ∈ ∂H2. Here we used the fact that b = c2c1 = 0
because (c1, c3, e1, e2) ∈ KI ∪ KII . Then we obtain

∂2φ∗∗pe1

∂z∂w
(0) = −i(1 + 4e2 + 2c2

1)αt + o(t) (45)

Now 1 + 4e2 + 2c2
1 > 0. Since α 6= 0, we have

∂2φ∗∗pe1

∂z∂w
(0) 6= 0 by (45) so that ~a, U−1 and

q1 are real analytic neat 0 from their construction (cf. [CJX06]). Then

U(t)−1 = e−iθ =

∂2φ∗∗pe1

∂z∂w
(0)

|∂2φ∗∗pe1

∂z∂w
(0)|

=
i(1 + 4e2 + 2c2

1)αt + o(|t|)
|∂2φ∗∗pe1

∂z∂w
(0)|

=
i(1 + 4e2 + 2c2

1)α

|(1 + 4e2 + 2c2
1)α|

+ O(|t|).

and there exists a constant δ > 0 such that

=(q1(t)) = 1
λ(t)2

=
(

λ(t)αU(t)−1 − ~a(t)β1

)
= 1

λ(t)
=

(
αU(t)−1

)
+ O(t)

= 1
λ
=

(
i(1+4e2+2c21)|α|2
|(1+4e2+2c21)α|

)
+ O(|t|) = |α|+ O(|t|), ∀t ∈ [0, δ]

(46)

because λ = λ(t) = 1 + O(|t|). This proves (34) as well as (28).

Step e. Proof of (a) - the case α = 0 Next we will prove (a) for the case α = 0. In

this case Γ(t) = (0, β1t), and =(q1(t)) = − β1

λ(t)2
=(~a(t)) and ~a(t) = i

∂2f∗∗pb

∂w2 (0). From [CJX06,

§ 5, step 3 and step 2], we have
∂2f∗∗pb

∂w2 (0) =
∂2f∗∗p

∂w2 (0) =

=
1

λ(p)
T 2f̃(p) · Lf̃(p)

t

− 1

λ(p)2
(T f̃ · Lf̃

t

)(T 2g − 2iT 2f̃ · f̃
t

− 2i‖T f̃‖2)(p) (47)

We want to prove ~a(t) ≡ 0 which implies (28). This will be done by direct computation.
Write F as in the following form:

f = zh + (
i

2
+ ie1)zwh, φ1 = z2h, φ2 = c1zwh, φ3 = c3w

2h, g = wh + ie1w
2h,
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where h = h(w) = 1
1+ie1w+e2w2 . Then

h′ = (−ie1 − 2e2w)h2, h′′ = (−2e2 − 2e2
1 + 6ie1e2w + 6e2

2w
2)h3.

From the definition of Fp where p = (z, w), we have [CJH06, § 5]

f(p) = zh + (
i

2
+ ie1)zwh,

Lf(p) = h + (
i

2
+ ie1)wh + 2iz

(
zh′ + (

i

2
+ ie1)z(h + wh′)

)
,

Tf(p) = zh′ + (
i

2
+ ie1)z(h + wh′),

T 2f(p) = zh′′ + (
i

2
+ ie1)z(2h′ + wh′′),

φ1(p) = z2h, Lφ1(p) = 2zh + 2izz2h′, Tφ1(p) = z2h′,

φ2(p) = c1zwh, Lφ2(p) = c1wh + 2ic1zz(h + wh′), Tφ2(p) = c1z(h + wh′),

T 2φ1(p) = z2h′′,

L2φ2(p) = 2ic1z(h + wh′) + 2iz

[
c1(h + wh′) + 2ic1zz(2h′ + wh′′)

]

= 4ic1z(h + wh′)− 4c1z
2z(2h′ + wh′′),

T 2φ2(p) = c1z(2h′ + wh′′),

φ3(p) = c3w
2h, Lφ3(p) = 2ic3z(2wh + w2h′), Tφ3(p) = c3(2wh + w2h′),
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T 2φ3(p) = c3(2h + 2wh′ + 2wh′ + w2h′′) = c3(2h + 4wh′ + w2h′′),

When p = (0, t), we have

λ(p) = |Lf(p)|2 + |Lφ1(p)|2 + |Lφ2(p)|2 + |Lφ3(p)|2 = |h(t)|2 + |c1th(t)|2 = 1 + o(t)

and Tf(p) = Tφ1(p) = Tφ2(p) = Lφ3(p) = T 2f(p) = T 2φ1(p) = T 2φ2(p) = 0 so that

(T f̃ · Lf̃
t

)(p) = 0 and that (T 2f̃ · Lf̃
t

)(p) = 0. Hence by (47) we obtain =(q1(t)) =
− β1

λ(t)2
=(~a(t)) ≡ 0. The proof of (a) is complete.

Step f. Proof of (b) and (c) Similarly we can prove (c). To prove (b), we first consider

the case when α 6= 0. In this case, we can take a sequence of points (c
(k)
1 , c

(k)
3 , e

(k)
1 , e

(k)
2 ) ∈

KIIC,1+4e2+2c21>0 such that (c
(k)
1 , c

(k)
3 , e

(k)
1 , e

(k)
2 ) → (c1, c3, e1, e2). Then (46) holds for such

maps F
c
(k)
1 ,c

(k)
3 ,e

(k)
1 ,e

(k)
2

:

=(q
(k)
1 (t))) = |α|+ O(|t|), ∀t ∈ [0, δ] (48)

Also, we can take another sequence of points (c̃
(k)
1 , c̃

(k)
3 , ẽ

(k)
1 , ẽ

(k)
2 ) ∈ KIIC,1+4e2+2c21<0 such that

(c̃
(k)
1 , c̃

(k)
3 , ẽ

(k)
1 , ẽ

(k)
2 ) → (c1, c3, e1, e2). Then by letting k →∞ and the same argument in the

proof for (c), we get

=(q̃
(k)
1 (t))) = −|α|+ O(|t|), ∀t ∈ [0, δ] (49)

for maps F
c̃
(k)
1 ,c̃

(k)
3 ,ẽ

(k)
1 ,ẽ

(k)
2

. Such estimate is uniform for all k. Notice that the function

[4c1(bc1+2c2)−8b(e1+e2)](Γ(t))=(q1(t)) in (33) is real analytic but 4c1(bc1+2c2)−8b(e1+e2)
and =(q1) may be not (see Remark (a) following the proof of Lemma 3.1 below). Then by
(48) and (49) and by letting k →∞, we must have

[4c1(bc1 + 2c2)− 8b(e1 + e2)](Γ(t))=(q1(t)) ≡ 0, ∀t ∈ [0, δ]

for the map Fc1,c3,e1,e2 so that =(q1(t)) ≡ 0 is proved.
Next we consider the case when α = 0, by Step e, we have =(q1(t)) ≡ 0 so that (c) is

proved ¤.

Remark (a) We notice that if 1 + 4e2 + 2c2
1 = 0,

∂2φ∗∗pe1

∂z∂w
(0) may be zero so that U and

hence U−1 may not be differentiable. By the way, W(F ∗∗∗
p ) = c2

1(p) − e1(p) − e2(p) =
1
4

+ 2c2
1(p) + b2(p) is real analytic but c1(p) and b(p) may not be differentiable; this is

because of some definitions such as (44) (cf. [CJX06, p.1521-1522]). Then the function

16



[4c1(bc1+2c2)−8b(e1+e2)](Γ(t))=(q1(t)) in (33) is real analytic but 4c1(bc1+2c2)−8b(e1+e2)
and =(q1) may be not.

(b) If we replace the curve Γ(t) = (αt, β1t + i|α|2t2) by another curve

Γ(t) = (αt, β0 + β1t + i|α|2t2), (50)

then (38) and hence (46) holds.

Recall (c1, c3, e1, e2) ∈ KII ⇐⇒ (5) holds with c1 > 0 and b = c2 = 0 ⇐⇒ c1 > 0 and
either

e1 =
−(1

4
+ c2

1)−
√

(1
4

+ c2
1)

2 − 4c2
3

2
, e2 =

−(1
4

+ c2
1) +

√
(1

4
+ c2

1)
2 − 4c2

3

2
, (51)

where 4c2
3 ≤ (1

4
+ c2

1)
2, or

e1 =
−(1

4
+ c2

1) +
√

(1
4

+ c2
1)

2 − 4c2
3

2
, e2 =

−(1
4

+ c2
1)−

√
(1

4
+ c2

1)
2 − 4c2

3

2
, (52)

where 4c2
3 ≤ (1

4
+ c2

1)
2. Here c1 and c3 are parameters.

We can write a disjoint union KII = KII,e1<e2 ∪ KII,e1=e2 ∪ KII,e1>e2 , where

KII,e1<e2 = {(c1, c3, e1, e2) ∈ KII | e1 < e2}

KII,e1=e2 = {(c1, c3, e1, e2) ∈ KII | e1 = e2},
and

KII,e1>e2 = {(c1, c3, e1, e2) ∈ KII | e1 > e2}.
Then KII,e1<e2 = {(c1, c3, e1, e2) ∈ KII | (51) and 4c2

3 < (1
4

+ c2
1)

2 hold}, KII,e1=e2 =
{(c1, c3, e1, e2) ∈ KII | (51)or (52) and 4c2

3 = (1
4
+c2

1)
2 hold}, and KII,e1<e2 = {(c1, c3, e1, e2) ∈

KII | (52) and 4c2
3 < (1

4
+ c2

1)
2 hold}.

Lemma 3.2 (i) KII,e1<e2 ⊆ KI,II,1+4e2+2c21>0, and KII,e1=e2 ⊆ KI,II,1+4e2+2c21>0.

(ii) Let (c1, c3, e1, e2) ∈ KII,e1>e2. Then
(a) (c1, c3, e1, e2) ∈ KI,II,1+4e2+2c21>0 if and only if 1

2
c2
1 + c4

1 < 4c2
3 < (1

4
+ c2

1)
2 holds.

(b) (c1, c3, e1, e2) ∈ KI,II,1+4e2+2c21=0 if and only if 1
2
c2
1 + c4

1 = 4c2
3 holds.

(c) (c1, c3, e1, e2) ∈ KI,II,1+4e2+2c21<0 if and only if 0 ≤ 4c2
3 < 1

2
c2
1 + c4

1 holds.
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Proof of Lemma 3.2: (i) For any (c1, c3, e1, e2) ∈ KII,e1<e2 ∪KII,e1=e2 , by −e1 − e2 = 1
4
+ c2

1

and (51), we have

1 + 4e2 + 2c2
1 =

1

2
+ 2e2 − 2e1 =

1

2
+ 2

√(
1

4
+ c2

1

)2

− 4c2
3 ≥

1

2
> 0.

(ii) For any (c1, c3, e1, e2) ∈ KII,e1>e2 , we know that 1 + 4e2 + 2c2
1 > 0 is equivalent to

1
2

+ 2e2 − 2e1 = 1
2
− 2

√
(1

4
+ c2

1)
2 − 4c2

3 > 0, i.e., 1
2
c2
1 + c4

1 < 4c2
3, so that (a) is proved. (b)

and (c) are proved similarly. ¤.

Lemma 3.3 Let E := {(c1, c3, e1, e2) ∈ KI ∪ KII | (Fc1,c3,e1,e2)
∗∗∗
p ≡ Fc1,c3,e1,e2 , ∀p ∈

∂H2 near 0}. Then Fc1,c3,e1,e2 ∈ E if and only if for any curve Γ as in (27),

(4c1(bc1 + 2c2)− 8b(e1 + e2))(Γ(t)) ≡ 0, ∀t ∈ [0, 1]. (53)

Proof: It is clear

Fc1,c3,e1,e2 ∈ E ⇐⇒ c1(p), c3(p) are constant, ∀p ∈ ∂H2 near 0. (54)

If Fc1,c3,e1,e2 ∈ E , then either c1(p) = b(p) = 0 or c1(p) > 0, b(p) = c2(p) = 0, ∀p ∈ ∂H2

near 0 (i.e., the case (I) or (IIA), (IIB) and (IIC)). Then the equality in (53) holds.
Conversely, suppose that (4c1(bc1 + 2c2)− 8b(e1 + e2))(Γ(t)) ≡ 0 for any choice of curve

Γ(t) and for any (c1, c3) in some open subset of R2. Then b1(p) = 0 and c1(p)c2(p) = 0,
∀p ∈ ∂H2 near 0. If c1 ≡ 0, then by Lemma 2.5(iii), c3(p) = 0,∀p so that Fc1,c3,e1,e2 ∈ E . If
c1(p) > 0 for any p in some open subset of ∂H2, then c2(p) = 0, ∀p. Then we apply Lemma
2.5(ii) to know

c2
3(p) = c2

3 + 4(c3)
2(5b− 2c2

c1

)=(z0) + o(|p|) = c2
3 + o(|p|), where p = (z0, w0) ∈ ∂H2 (55)

which implies as in (33) that c3(p) = constant, ∀p. Also, by (33), from (4c1(bc1 + 2c2) −
8b(e1 + e2))(Γ(t)) ≡ 0 it implies W((Fc1,c3,e1,e2)

∗∗∗
Γ(t)) = constant, ∀Γ and ∀t. Then

W((Fc1,c3,e1,e2)
∗∗∗
Γ(t)) = (c2

1 − e1 − e2)(Γ(t)) = (
1

4
+ 2c2

1)(Γ(t)) = constant,

which implies that c1(Γ(t)) = constant for any t ∈ [0, t0], i.e., c1 ≡ constant. By (54), we
obtain Fc1,c3,e1,e2 ∈ E . Claim (53) is proved. ¤

Theorem 1.1(i) will follow by Lemma 3.2 and the following lemma.
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Lemma 3.4 Let (c1, c3, e1, e2) ∈ KI ∪ KII . Then Fc1,c3,e1,e2 satisfies (9) if and only if
Fc1,c3,e1,e2 ∈ K∗ := KI ∪ KII −KI,II,1+4e2+2c21<0.

Proof: (⇐=) It follows from Lemma 3.1.
(=⇒) Take any map Fc1,c3,e1,e2 ∈ KI,II,1+4e2+2c21<0 satisfying the minimum property

(9). We first show that Fc1,c3,e1,e2 ∈ E where E was defined in above lemma.
By Step d in the proof of Lemma 3.1, we know that for any curve Γ as in Lemma 3.1,

there is δ > 0 such that

=(q1(t)) = −|α|+ O(|t|), ∀t ∈ [0, δ].

Suppose that Fc1,c3,e1,e2 satisfies (9). By (33), it implies (4c1(bc1+2c2)−8b(e1+e2))(Γ(t)) ≡ 0
for any such curves Γ(t) and for any (c1, c3) with 0 ≤ 4c2

3 ≤ (1
4
+c2

1)
2. Then by above lemma,

Fc1,c3,e1,e2 ∈ E .
E ∩ KI,II,1+4e2+2c21<0 is a real analytic set in KI,II,1+4e2+2c21<0. We claim:

E ∩ KI,II,1+4e2+2c21<0 = ∅. (56)

Suppose (56) is not true. Then we can take

(c
(0)
1 , c

(0)
3 , e

(0)
1 , e

(0)
2 ) ∈ KI,II,1+4e2+2c21<0 ∩ E . (57)

We can take a sequence of points (c
(k)
1 , c

(k)
3 , e

(k)
1 , e

(k)
2 ) ∈ KI,II,1+4e2+2c21<0 − E such that

(c
(k)
1 , c

(k)
3 , e

(k)
1 , e

(k)
2 ) → (c

(0)
1 , c

(0)
3 , e

(0)
1 , e

(0)
2 ).

By our choice of (c
(k)
1 , c

(k)
3 , e

(k)
1 , e

(k)
2 ), the corresponding maps F

c
(k)
1 ,c

(k)
3 ,e

(k)
1 ,e

(k)
2

has the property

that the associated function W(
(F

c
(k)
1 ,c

(k)
3 ,e

(k)
1 ,e

(k)
2

)∗∗∗Γ(t)

)
is strictly decreasing as t goes from 0

to 1. Then F
c
(k)
1 ,c

(k)
3 ,e

(k)
1 ,e

(k)
2

is equivalent to some map F
c̃
(k)
1 ,c̃

(k)
3 ,ẽ

(k)
1 ,ẽ

(k)
2
∈ K∗ = KI ∪ KII −

KI,II,1+4e2+2c21<0 with the minimumW value. Since the function valueW((F
c
(k)
1 ,c

(k)
3 ,e

(k)
1 ,e

(k)
2

)∗∗∗Γ )

is decreasing, the sequence of points (c̃
(k)
1 , c̃

(k)
3 , ẽ

(k)
1 , ẽ

(k)
2 ) is also bounded in K. By taking

subsequence, we may assume that (c̃
(k)
1 , c̃

(k)
3 , ẽ

(k)
1 , ẽ

(k)
2 ) → (c̃

(0)
1 , c̃

(0)
3 , ẽ

(0)
1 , ẽ

(0)
2 ) ∈ K∗. Then

F
c
(0)
1 ,c

(0)
3 ,e

(0)
1 ,e

(0)
2

is equivalent to F
c̃
(0)
1 ,c̃

(0)
3 ,ẽ

(0)
1 ,ẽ

(0)
2
∈ K∗, i.e.,

F
c̃
(0)
1 ,c̃

(0)
3 ,ẽ

(0)
1 ,ẽ

(0)
2

=

(
F

c
(0)
1 ,c

(0)
3 ,e

(0)
1 ,e

(0)
2

)∗∗∗

q

(58)

for some non zero q ∈ ∂H2, by the same argument as in (7) and (8) (or [CJX06, Step 1, §
4]). On the other hand, since F

c
(0)
1 ,c

(0)
3 ,e

(0)
1 ,e

(0)
2
∈ E , by the definition of E , (58) cannot occur.

This contradiction shows that (57) cannot occur. Thus Claim (56) is proved. ¤
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4 Local version of Theorem 1.1(ii)

For each point p = (a, b + i|a|2) ∈ ∂H2 where b ∈ R and a ∈ C, we denote π(p) = π(a, b +
i|a|2) := (|a|, |b|) ∈ R2. We denote by ¤c := [0, c] × [0, c] a square and 4c := {(x, y) | 0 ≤
x ≤ c, 0 ≤ y ≤ x} a triangle inside ¤c. Let Γ(t) = (αt, β1t + i|α|2t2) with t ∈ [0, 1] be line
segments, The set {π(Γ(t)) = π(αt, β1t + i|α|2t2) | |α| = 1, |β1| ≤ 1, 0 ≤ t ≤ t0} is equal
to 4t0 . Notice that π(a, b + i|a|2) ∈ 4t0 if and only if there exists such a line segment Γ(t)
so that (a, b + i|a|2) = Γ(t∗) for some t∗ ∈ [0, t0].

Lemma 4.1 For any P (0) = (c
(0)
1 , c

(0)
3 , e

(0)
1 , e

(0)
2 ) ∈ K∗, there is a neighborhood U of P (0)

in K∗ and a constant c > 0 such that for any point (c′1, c
′
3, e

′
1, e

′
2), (c

′′
1, c

′′
3, e

′′
1, e

′′
2) ∈ U with

Fc′′1 ,c′′3 ,e′′1 ,e′′2 = (Fc′1,c′3,e′1,e′2)
∗∗∗
p where p = (a, b + i|a|2) ∈ ∂H2, a ∈ C, b ∈ R, |p| := max{|a|, |b|}

≤ c, we have
(c′′1, c

′′
3, e

′′
1, e

′′
2) = (c′1, c

′
3, e

′
1, e

′
2). (59)

Proof of Lemma 4.1: Step 1. Choose U and c For the point P (0) ∈ K∗, by
Lemma 3.1 and the uniform estimate (46), there exists a neighborhood U of this point
and a constant 0 < t0 < 1 such that for any point (c′1, c

′
3, e

′
1, e

′
2) ∈ U and for any curve

Γ(t) = {(αt, β1t + i|α|2t2)} with α ∈ C, β1 ∈ R with |β1| ≤ 1, |α| = 1, 0 ≤ t ≤ t0, we have
the property

W((Fc′1,c′3,e′1,e′2)
∗∗∗
Γ(t)) is nondecreasing, ∀t ∈ [0, t0]. (60)

Since Fc′′1 ,c′′3 ,e′′1 ,e′′2 = (Fc′1,c′3,e′1,e′2)
∗∗∗
p = H ◦ τ ◦ Fc′1,c′3,e′1,e′2 ◦ σp ◦ G where G ∈ Aut0(∂H2),

H ∈ Aut0(∂H5), τ and and σp are as in (18), we can write

Fc′1,c′3,e′1,e′2 = (Fc′′1 ,c′′3 ,e′′1 ,e′′2 )
∗∗∗
q ,

where q = G−1(−z0,−w0). Since G(0) = 0 and G−1(0) = 0, by continuity, q → 0 as p → 0.
Then we can choose a number 0 < c < t0 such that ∀p = (a, b + i|a|2) ∈ ∂H2 with |p| ≤ c,
the point q = (A,B + i|A|2) satisfies |q| ≤ t0. Let us verify that c is the desired number.

Step 2. There exists a curve from 0 to p with monotone property We have
to put the condition |α| = 1 in (60); otherwise we may not be able to find the t0 for all
curves. We want to remove this condition by adding one more piece of the line segment,
namely, we claim that for any p and (c′1, c

′
3, e

′
1, e

′
2) as above, there is a curve Γ(t), t ∈ [0, t∗],

consisting of one or two pieces of line segments, such that (60) is still true: W((Fc′1,c′3,e′1,e′2)
∗∗∗
Γ(t))

is nondecreasing along Γ.
Write p = (a, b+ i|a|2) ∈ ∂H2. We distinguish two cases: (i) π(a, b+ i|a|2) ∈ 4c; and (ii)

π(a, b + i|a|2) ∈ ¤c −4c.
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In the first case (i): for any p = (a, b + i|a|2) with |a| ≤ c and |b| ≤ |a|c, assuming p 6= 0,
we have p = Γ(t∗) for some curve Γ(t) = (αt, β1t + i|α|2t2) with 0 ≤ β1 ≤ 1 and |α| = 1
as above with some t∗ ∈ [0, c]. In fact, we have α = a

|a| , β1 = b
|a| and t∗ = |a|. By (60) the

function W((Fc′1,c′3,e′1,e′2)
∗∗∗
Γ(t)) is increasing as t varies from 0 to t∗.

In the second case (ii): p = (a, b + i|a|2) with |a| ≤ c and |a| < |b| ≤ c. Let us assume
b > 0; otherwise it can be proved by the same argument. In this case, we cannot find Γ such
that it connects 0 and p as in the case (i). However, we can define two pieces of curves:

Γ(t) =

{
Γ1(t), 0 ≤ t ≤ b− |a|,
Γ2(t), b− |a| ≤ t ≤ b.

:=





(0, t), 0 ≤ t ≤ b− |a|,(
a
|a|(t− b + |a|), t + i

∣∣∣∣t− b + |a|
∣∣∣∣
2)

, b− |a| ≤ t ≤ t∗ := b.

Here π(Γ1) = {0} × [0, b− |a|] is a vertical line segment; and π(Γ2) is another line segment
connecting Γ1(b− |a|) and the point p.

By Step e in § 3, the function W((Fc′1,c′3,e′1,e′2)
∗∗∗
Γ1(t)) is constant for 0 ≤ t ≤ b − |a|. Next

we consider W((Fc′1,c′3,e′1,e′2)
∗∗∗
Γ2(t)). If we use a new variable u = t− b + |a|, then Γ2(t) can be

written as

Γ2(u) =

(
a

|a|u, (b− |a|) + u + iu2

)
, 0 ≤ u ≤ |a|.

By the remark (b) in (50), (46) is still valid for Γ2(u) so that W((Fc′1,c′3,e′1,e′2)
∗∗∗
Γ2(t)) is

nondecreasing for any b− |a| ≤ t ≤ t∗. Our claim is proved.

Step 3. The W function is constant We claim:

W((Fc′1,c′3,e′1,e′2)
∗∗∗
Γ ) = constant. (61)

In fact, since Fc′′1 ,c′′3 ,e′′1 ,e′′2 = (Fc′1,c′3,e′1,e′2)
∗∗∗
p and Fc′1,c′3,e′1,e′2 = (Fc′′1 ,c′′3 ,e′′1 ,e′′2 )

∗∗∗
q . We have Fc′1,c′3,e′1,e′2

= ((Fc′1,c′3,e′1,e′2)
∗∗∗
p )∗∗∗q .

Since π(p) ∈ ¤c, by our choice of c, q = (A,B + i|A|2) satisfies π(q) ∈ ¤t0 , i.e., |A| ≤ t0
and |B| ≤ t0. Then by Step 2, there exists a curve Γ̃(t̃), 0 ≤ t̃ ≤ t̃∗, connecting 0 and q such

that the function W((Fc′1,c′3,e′1,e′2)
∗∗∗
Γ̃(t̃)

) is nondecreasing along Γ̃. Then we obtain

W(Fc′1,c′3,e′1,e′2) = W((Fc′1,c′3,e′1,e′2)
∗∗∗
Γ(0)) ≤ W((Fc′1,c′3,e′1,e′2)

∗∗∗
Γ(t∗)) = W(Fc′′1 ,c′′3 ,e′′1 ,e′′2 ), (62)

and

W(Fc′′1 ,c′′3 ,e′′1 ,e′′2 ) = W((Fc′′1 ,c′′3 ,e′′1 ,e′′2 )
∗∗∗
Γ̃(0)

) ≤ W((Fc′′1 ,c′′3 ,e′′1 ,e′′2 )
∗∗∗
Γ̃(t̃∗)) = W((Fc′1,c′3,e′1,e′2). (63)
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By (62) and (63), Claim (61) is proved.

Step 4. Proof of the uniqueness We next claim that (Fc′1,c′3,e′1,e′2)
∗∗∗
Γ(t) is constant:

(Fc′1,c′3,e′1,e′2)
∗∗∗
Γ(t) ≡ Fc′1,c′3,e′1,e′2 , ∀t ∈ [0, t0]. (64)

Let us consider the case (i) in Step 2. From (31) and Lemma 2.5, it implies that
(
4c′1(b

′c′1 +
2c′2) − 8b′(e′1 + e′2)

)
Γ(t) = 0 for any t ∈ [0, t∗]. Thus by the argument in (55), we proved

c′1(Γ(t)) = c′3(Γ(t)) = 0 for any t ∈ [0, t∗]. This implies that (Fc′1,c′3,e′1,e′2)
∗∗∗
Γ(t) is the same map

for any t ∈ [0, t0]. Claim (64) is proved. The case (ii) will be proved by similar argument as
the case (i) and by the remark (b) in (50). ¤

Lemma 4.2 For any point P (0) = (c
(0)
1 , c

(0)
3 , e

(0)
1 , e

(0)
2 ) ∈ K∗ − E where E is defined in

Lemma 3.3, there is a neighborhood V of P (0) in K, a neighborhood U of P (0) in K∗ − E
and a neighborhood E of 0 in ∂H2 such that the map Ψ : U × E → V, (F, p) 7→ F ∗∗∗

p is
surjective.

Proof: We first claim that for any Fc1,c3,e1,e2 ∈ K∗ − E , the set N := {(Fc1,c3,e1,e2)
∗∗∗
p

| p ∈ ∂H2} is of real dimension ≥ 2. In fact, consider a function W((Fc1,c3,e1,e2)
∗∗∗
Γ ) on N

where Γ(t) = (αt, β1t + |α|2t2) is a curve in ∂H2 as (27). By (46), we have =(q1(t)) =
|α| + O(|t|) for t > 0 sufficiently small. Since Fc1,c3,e1,e2 ∈ K∗ − E , by Lemma 3.3, we have
(4c1(bc1 + 2c2)− 8b(e1 + e2))(Γ(t)) 6≡ 0 holds for some curve Γ. Then from (33),

W(F ∗∗∗
Γ(t+∆t)) = W(F ∗∗∗

Γ(t)) +

[
4c1(bc1 + 2c2)− 8b(e1 + e2)

]
(Γ(t))|α|∆t + o(|∆t|), (65)

Since α ∈ C ∼= R2, our claim is proved.
It remains to prove dimRΨ(U × E) = 4. Notice that dimRK = 4, dimR(K∗) ≥ 2, and

that the map defined by (K∗ − E) × ∂H2 → K, (F, p) 7→ F ∗∗∗
p is (Nash) algebraic. Then

it suffices to show that this map is injective, i.e., for any two distinct points (c1, c3, e1, e2),

(c̃1, c̃3, ẽ1, ẽ2) ∈ K∗, which are sufficiently close to (c
(0)
1 , c

(0)
3 , e

(0)
1 , e

(0)
2 ), and for any two points

p, p̃ ∈ ∂H2, which are sufficiently close to 0 ∈ ∂H2,

(Fc1,c3,e1,e2)
∗∗∗
p 6= (Fc̃1,c̃3,ẽ1,ẽ2)

∗∗∗
p̃ . (66)

If this can be proved, it follows dimRΨ(U × E) = 4.
Recall that for a fixed F , we write

F ∗∗∗
p = Hp ◦ τp ◦ F ◦ σp ◦Gp, (67)
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where σp ∈ Aut(H2) and τp ∈ Aut(H5) are defined in (18), Gp ∈ Aut0(H2) and Hp ∈
Aut0(∂H5).

In case (66) does not hold, i.e., we have (Fc1,c3,e1,e2)
∗∗∗
p = (Fc̃1,c̃3,ẽ1,ẽ2)

∗∗∗
p̃ . By (67), we

write
Hp ◦ τp ◦ Fc1,c3,e1,e2 ◦ σp ◦Gp = H̃p ◦ τ̃p ◦ Fc̃1,c̃3,ẽ1,ẽ2 ◦ σ̃p ◦ G̃p,

i.e.,

Fc1,c3,e1,e2 = τ−1
p ◦H−1

p ◦ H̃p ◦ τ̃p ◦ Fc̃1,c̃3,ẽ1,ẽ2 ◦ σ̃p ◦ G̃p ◦G−1
p ◦ σ−1

p = (Fc̃1,c̃3,ẽ1,ẽ2)
∗∗∗
p0

, (68)

where p0 = σ̃p ◦ G̃p ◦G−1
p ◦ σ−1

p (0).
Notice from (67) that there is δ > 0 such that as p → 0, σp, Gp, τp, Hp all converge to the

identity maps in Aut(H2) and Aut(H5) respectively. We apply this fact to (68) to conclude
that for any ε > 0, there exists δ > 0 such that for any (c1, c3, e1, e2), (c̃1, c̃3, ẽ1, ẽ2) ∈ K∗
with

dist
(
(c1, c3, e1, e2), (c

(0)
1 , c

(0)
3 , e

(0)
1 , e

(0)
2 )

)
< δ, dist

(
(c̃1, c̃3, ẽ1, ẽ2), (c

(0)
1 , c

(0)
3 , e

(0)
1 , e

(0)
2 )

)
< δ,

we must have |p0| < ε. We can choose ε to be the c as in Lemma 4.1. By applying Lemma
4.1 to (68) to conclude Fc1,c3,e1,e2 = Fc̃1,c̃3,ẽ1,ẽ2 . This contracts with the fact that (c1, c3, e1, e2)
and (c̃1, c̃3, ẽ1, ẽ2) are distinct. Hence (66) is proved. ¤

Corollary 4.3 (Local version of Theorem 1.1(ii)) For any P (0) = (c
(0)
1 , c

(0)
3 , e

(0)
1 , e

(0)
2 ) ∈

K∗ − E where E is defined in Lemma 3.3, there is a neighborhood U of P (0) in K∗ − E such
that ∀(c′1, c′3, e′1, e′2), (c′′1, c′′3, e′′1, e′′2) ∈ U such that Fc′′1 ,c′′3 ,e′′1 ,e′′2 and Fc′1,c′3,e′1,e′2 are equivalent, we
have (c′′1, c

′′
3, e

′′
1, e

′′
2) = (c′1, c

′
3, e′1, e

′
2).

Proof: Let U1 be a neighborhood of P (0) in K∗ − E , E a neighborhood of 0 in ∂H2 and V
a neighborhood of P (0) in K as in Lemma 4.2. Let U be a neighborhood of P (0) in K∗ − E
and c > 0 be a constant as in Lemma 4.1. We choose U1, E = {(z, u + i|z|2) ∈ ∂H2 | |z| <
c, |u| < c}, V such that U1 ⊂ U and V ∩ (K∗ − E) ⊂ U . Then by Lemma 4.2, we have
Fc′′1 ,c′′3 ,e′′1 ,e′′2 = (Fc′1,c′3,e′1,e′2)

∗∗∗
p with |p| < c, and by Lemma 4.1, (c′′1, c

′′
3, e

′′
1, e

′′
2) = (c′1, c

′
3, e

′
1, e

′
2).

¤

5 The proof of Theorem 1.1

Before proving Theorem 1.1, we mention a fact. Let σa and σb ∈ Aut(∂H2) defined as in (18)
and F ∈ Rat(H2,H5), then we can define a family of automorphism Θs = σsb+(1−s)a, 0 ≤
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s ≤ 1, and Ψs = τF
sb+(1−s)a ∈ Aut(∂H5) defined as in (18) so that Ψs ◦ F ◦Θs ∈ Rat(H2,H5)

satisfies Θ0 = σa, Θ1 = σb and

Ψs ◦ F ◦Θs(0) = 0, ∀s ∈ [0, 1]. (69)

Proof of Theorem 1.1: For any F ∈ Rat(H2,H5) with degree 2, by [CJX06] and Lemma
3.3, F is equivalent to another map Fc̃1,c̃3,ẽ1,ẽ2 ∈ K∗ with the minimum property (9). By
Lemma 3.2 and 3.4, Theorem 1.1(i) is proved.

It remains to prove Theorem 1.1(ii). We need to show: if two distinct maps F
c
(0)
1 ,c

(0)
3 ,e

(0)
1 ,e

(0)
2

and F
c̃
(0)
1 ,c̃

(0)
3 ,ẽ

(0)
1 ,ẽ

(0)
2

in K∗ are equivalent, then

(c̃
(0)
1 , c̃

(0)
3 , ẽ

(0)
1 , ẽ

(0)
2 ) = (c

(0)
1 , c

(0)
3 , e

(0)
1 , e

(0)
2 ). (70)

We assume that (c
(0)
1 , c

(0)
3 , e

(0)
1 , e

(0)
2 ) 6∈ E where E is defined in Lemma 3.3; otherwise these

two maps F
c
(0)
1 ,c

(0)
3 ,e

(0)
1 ,e

(0)
2

and F
c̃
(0)
1 ,c̃

(0)
3 ,ẽ

(0)
1 ,ẽ

(0)
2

cannot be equivalent.

Step 1. Construct a curve L̂0 Since F
c
(0)
1 ,c

(0)
3 ,e

(0)
1 ,e

(0)
2

and F
c̃
(0)
1 ,c̃

(0)
3 ,ẽ

(0)
1 ,ẽ

(0)
2

are equivalent,

F
c̃
(0)
1 ,c̃

(0)
3 ,ẽ

(0)
1 ,ẽ

(0)
2

= Ψ ◦ F
c
(0)
1 ,c

(0)
3 ,e

(0)
1 ,e

(0)
2
◦Θ (71)

where Θ ∈ Aut(H2) and Ψ ∈ Aut(H5). Notice Ψ ◦ F
c
(0)
1 ,c

(0)
3 ,e

(0)
1 ,e

(0)
2
◦Θ(0) = 0 holds.

We take a real analytic curve L = L(s) ∈ K∗ − E , 0 ≤ s < 1, such that L(0) =

(c
(0)
1 , c

(0)
3 , e

(0)
1 , e

(0)
2 ). In fact, since (c

(0)
1 , c

(0)
3 , e

(0)
1 , e

(0)
2 ) 6∈ E and E is closed, L could be taken

in a neighborhood of (c
(0)
1 , c

(0)
3 , e

(0)
1 , e

(0)
2 ).

By using automorphisms of balls, Cayley transformations and (69), we can take a real
analytic family of automorphisms Θs ∈ Aut(∂H2), Ψs ∈ Aut(∂H5), s ∈ [0, 1], such that
when s = 0, Θ0 = Θ, Ψ0 = Ψ; when s ∈ (0, 1), Θs(0) 6= ∞, Ψs ◦ FL(s) ◦ Θs(0) = 0; when
s = 1, Θ1 = Id, Ψ1 = Id. Then we define

L̂0(s) := Ψs ◦ FL(s) ◦Θs ∈ Rat(H2,H5), 0 ≤ s ≤ 1,

such that L̂0(s)(0) = 0 for all s, FL̂0(0) = Ψ ◦ FL(0) ◦ Θ and L̂0(1) = L(1). Our goal is to

show: L̂0(s) = L(s), ∀s ∈ [0, 1], so that L̂0(0) = L(0), i.e., (70) holds.

Step 2. Define a curve L̂(s) Notice that L̂0 must be in K, namely, FL̂0(s) may geometric
rank one at the origin for all s ∈ [0, 1], so that (FL̂0(s))

∗∗∗ is well defined for all s ∈ [0, 1].
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Recall Θs(0) 6= ∞ for any s ∈ (0, 1] and Θ1 = Id. Then for any s ∈ (0, 1], we denote
ψ(s) := Θs(0) ∈ ∂H2 with ψ(1) = 0, so that Θs = σψ(s) ◦Gs where σψ(s) is defined as in (18)
and Gs ∈ Aut0(∂H2), i.e., we have a continuous map ψ(s) ∈ ∂H2 such that ψ(1) = 0 and

(FL̂0(s))
∗∗∗ =

(
FL(s)

)∗∗∗

ψ(s)

, ∀s ∈ (0, 1], and (FL̂0(1))
∗∗∗ = FL(1). (72)

Even though (FL̂0(s))
∗∗∗ is in K for any s ∈ (0, 1], it may not be in K∗ because the

minimum property (9) may not be satisfied. We claim that (FL̂0(s))
∗∗∗ is equivalent to

another map FL̂(s) ∈ K∗. More precisely, we want to find q(s) ∈ ∂H2 so that

FL̂(s) := (FL̂0(s))
∗∗∗
q(s) ∈ K∗, ∀s ∈ (0, 1]. (73)

To define such q(s), we consider several cases below.
If s = 1, since FL(1) ∈ K∗ and ψ(1) = 0, we define q(1) = 0.
If s ∈ (0, 1] at which the minimum property (9) holds, we define q(s) = 0.
If s ∈ (0, 1] at which (9) does not hold, we consider a continuous curve Γ(s)(t) ∈ ∂H2−ΞF ,

0 ≤ t ≤ 1, with Γ(s)(0) = 0 such that the function value W((FL̂0(s))
∗∗∗
Γ(s)(t)

) is decreasing along

Γ(s). We denote by `s the infimum of W((FL̂0(s))
∗∗∗
Γ(s)) over all such curves. Then there exists

a sequence of curves Γ
(s)
m in ∂H2 such that

`s = lim
m→∞

W
(

(FL(s))
∗∗∗
Γ

(s)
m (1)

)
. (74)

Since W((FL̂0(s))
∗∗∗
p ) = c1(p)2 − e1(p)− e2(p), the decreasing property implies c1(p),−e1(p)

and −e2(p) are bounded (cf. [CJX06, Step 1, §4]), so that (FL̂0(s))
∗∗∗
Γ

(s)
m (t)

, regarded as a point,

is inside K and is contained a compact subset of K that is independent of Γ
(s)
m . Therefore,

by taking subsequences, we may assume that the limit limm→∞(FL̂0(s))
∗∗∗
Γ

(s)
m (1)

exists as a point

in K∗ and that limm→∞ Γ
(s)
m (1) ∈ ∂H2 exists. Let us define

FL̂(s) := lim
m→∞

(FL̂0(s))
∗∗∗
Γ

(s)
m (1)

∈ K∗. (75)

It remains to show that q(s) ∈ ∂H2 can be defined such that FL̂(s) = (FL̂0(s))
∗∗∗
q(s).

By the choice of L(1) and Corollary 4.3, there exists a neighborhood U of L(1) in K∗,
such that if a point (c1, c3, e1, e2) ∈ U such that Fc1,c3,e1,e2 and FL(1) are equivalent, then
(c1, c3, e1, e2) = L(1).

Let us consider K ∩ B4(L̂0(s), r), the intersection of K with the sphere in C4 which is
centered at L̂0(s) with radius r. We also consider K∗ ∩ B2(L̂0(s), r), the intersection of K∗
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with the sphere in C2 which is centered at L̂0(s) with radius r. We take r so small that
K∗ ∩ B2(L̂0(s), r) ⊂ U .

Step 3. Claim on FL̂(s) → FL̂0(s) Regarding FL̂(s) as points in K, we claim:

dist

(
FL̂(s), FL̂0(s)

)
→ 0, as s → 1. (76)

Suppose (76) is not true. Then there exists a sequence sk → 1 such that

dist

(
FL̂(sk), FL̂0(sk)

)
≥ δ0, as k →∞. (77)

for a certain δ0 > 0. By (75), we can take integer msk
for each sk such that

0 ≤ W((FL̂0(sk))
∗∗∗
Γ

(sk)
ms

k
(1)

)− `sk
<

1

k
, and dist

(
(FL̂0(sk))

∗∗∗
Γ

(sk)
ms

k
(1)

, FL̂(sk)

)
<

1

k
. (78)

By (77) we have

dist

(
(FL̂0(sk))

∗∗∗
Γ

(sk)
ms

k
(1)

, FL̂0(sk)

)
≥ δ0

2
. (79)

Then we can choose r < δ0
2
. Then {(FL̂0(sk))

∗∗∗
Γ

(sk)
ms

k

}t∈[0,1], regarded as a curve in K initiated

from the point FL̂0(sk), must be across through the sphere (K ∩ ∂B4(L̂0(sk), r)), i.e.,

{(FL̂0(sk))
∗∗∗
Γ

(sk)
ms

k

}t∈[0,1] ∩ (K ∩ ∂B4(L̂0(sk), r)) 6= ∅. (80)

Let Q(sk) be a point in the intersection (80) and then Q(sk) = (FL̂0(sk))
∗∗∗
Γ

sk
ms

k
(tk)

for some tk ∈
[0, 1]. By taking subsequences, we assume Q := limk→∞ Q(sk) exists. By the construction,
we see that the FQ is equivalent to FL(1) and

Q ∈ K∗, and dist(Q,L(1)) = r.

Since Q ∈ K∗ ∩ ∂B2(L̂0(1), r) ⊂ U , by Corollary 4.3, Q = L(1), i.e., dist(Q,L(1)) = 0, but
this is a contradiction. Claim (76) is proved.

Step 4. Proof of L̂(s) ≡ L(s) From (76), we have

dist

(
FL̂(s), FL(s)

)
→ 0, as s → 1.
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Since both FL̂(s) ∈ K∗ and FL(s) ∈ K∗ − E where s ∈ (s0, 1] for some s0 > 0 such that
0 ≤ 1− s0 is sufficiently small, by Corollary 4.3 and the choice of L(1), we conclude

FL̂(s) = FL(s), ∀s ∈ (s0, 1].

Repeating this process. Finally by continuity FL̂(s) = FL(s), ∀s ∈ [0, 1]. When restricted at
0, FL̂0(0) = FL̂(0) = FL(0), so that (70) is proved. ¤
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