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Abstract

In this paper, we prove weighted Lp estimates for the canonical solutions on product
domains. As an application, we show that if p ∈ [4,∞), the ∂̄ equation on the Hartogs
triangle with Lp data admits Lp solutions with the desired estimates. For any ϵ > 0, by
constructing an example with Lp data but having no Lp+ϵ solutions, we verify the sharpness
of the Lp regularity on the Hartogs triangle.

1 Introduction

Let H be the Hartogs triangle defined by

H = {(z1, z2) ∈ C2 : |z1| < |z2| < 1}.

Being a special bounded pseudoconvex domain without Lipschitz boundary, the Hartogs triangle
has played an important role in complex analysis and attracted considerable attention. See [1,7–
11,16, 17,23] et al. Among others a well-known result by Chaumat-Chollet [2] in function theory
states that the ∂̄ problem with smooth data on H has no smooth solutions in general. On the other
hand, when restricted at each Hölder level, they showed that the ∂̄ equation admits solutions in the
same Hölder space as that of the data. (Note this does not contradict with the global irregularity,
as the solution operators are different at different Hölder levels.)

In view of a biholomorphism between the punctured bidisc and the Hartogs triangle, a natural
machinery was introduced in works of Ma-Michel [20] and Chakrabarti-Shaw [6] to treat with the
∂̄ problem on the Hartogs triangle. That is, using the biholomorphism to pull back the data and
obtain a ∂̄ equation on the punctured bidisc. Upon solving it via available integral representations
on the punctured bidisc (or, on the bidisc after extension), use the biholomorphism again to push
forward the solutions onto the Hartogs triangle. See also a recent joint work [26] with Yuan for
some applications to a general class of quotient domains. Since the push-forward and pull-back
operators via the biholomorphism introduce a certain (nontrivial) weight, the regularity problem
of ∂̄ on the Hartogs triangle is reduced to a weighted ∂̄ regularity problem on the underlying
bidisc.

Motivated by these works and the machinery, we study the weighted optimal Lp estimates for
the canonical solutions on general product domains, when the weights lie in a class of Muckenhoupt
spaces A∗

p (see Definition 2.1). Recall that the canonical solutions to ∂̄ are the unique square-
integrable solutions satisfying the non-homogeneous Cauchy-Riemann equation ∂̄u = f that are
orthogonal to ker(∂̄).
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Theorem 1.1. Let Ω := D1 × · · · ×Dn be a bounded product domain in Cn, where each Dj has
C2 boundary, j = 1, . . . , n. Assume µ ∈ A∗

p, 1 < p < ∞. Then the canonical solution operator Tc
to ∂̄ on Ω extends as a bounded operator from Lp(Ω, µ) into itself. Namely, there exists a constant
C dependent only on Ω, p and the A∗

p constant of µ such that for any (0, 1) forms f ∈ Lp(Ω, µ),

∥Tcf∥Lp(Ω,µ) ≤ C∥f∥Lp(Ω,µ).

The main ingredient of the proof is the weighted Lp estimates for some Riesz-type integrals,
as well as a pointwise estimate of the canonical solution kernel established by Dong, Pan and
the author [12] (see also an observation by Yuan [25]). According to an example of Kerzman
(Example 1), the theorem gives the optimal weighted Lp regularity on product domains in terms
of the canonical solutions. In particular, since 1 ∈ A∗

p for all p > 1, the canonical solutions provides
optimal solutions to ∂̄ in the (unweighted) Lp category as well (Example 2), unlike another well-
investigated solution operator along the line of Henkin which by a result of Chen-McNeal [3] is
unbounded in Lp, p < 2.

As an application of Theorem 1.1, we obtain the following (unweighted) Lp regularity for ∂̄ on
the Hartogs triangle if p ≥ 4.

Theorem 1.2. There exists a solution operator T such that for any ∂̄-closed (0, 1) form f ∈
Lp(H), 4 ≤ p < ∞, T f ∈ Lp(H) and solves ∂̄u = f on H. Moreover, there exists a constant C
dependent only on p such that for any ∂̄-closed (0, 1) form f ∈ Lp(H),

∥T f∥Lp(H) ≤ C∥f∥Lp(H).

Unfortunately, our method only works in the special range p ≥ 4. In fact, as shown in Lemma
3.2, this range allows us to deal with a technical difficulty arisen from extending the ∂̄-closed forms
from the punctured bidisc to the whole bidisc, where Theorem 1.1 can be applied. Remark 3.3
further demonstrates that such a ∂̄-closed extension to the bidisc fails in general if p < 4.

At the end of the paper, we construct an example (Example 3) to demonstrate the sharpness
of Theorem 1.2, in the sense that for any ϵ > 0, there exists an Lp datum which does not admit
any Lp+ϵ solutions on the Hartogs triangle. This non-improving phenomenon for the ∂̄ regularity
on the Hartogs triangle is essentially rooted from that for product domains. Theorem 1.1 and
the general framework in [26] can certainly be applied to other special domains such as proper
holomorphic map images of product domains, which are left to interested readers.

Acknowledgement: The author thanks Professor Yifei Pan for helpful suggestions and Yuan
Yuan for discussions.

2 Weighted Lp estimates on product domains

2.1 Notations and Preliminaries

We first introduce our weight space under consideration. Denote by dVz the Lebesgue integral
element along the z directions, and by |S| the Lebesgue measure of a subset S in Cn. For
z = (z1, · · · , zn) ∈ Cn, let ẑj = (z1, · · · , zj−1, zj+1, · · · , zn) ∈ Cn−1, where the j-th component of z
is skipped.
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Definition 2.1. Given 1 < p <∞, a weight µ : Cn → [0,∞) is said to be in A∗
p if

A∗
p(µ) := sup

(
1

|D|

∫
D

µ(z)dVzj

)(
1

|D|

∫
D

µ(z)
1

1−pdVzj

)p−1

<∞,

where the supremum is taken over almost every ẑj ∈ Cn−1, j = 1, . . . , n, and all discs D ⊂ C.

We also recall the standard Muckenhoupt’s class Ap, which consists of all weights µ : Cn →
[0,∞) satisfying

Ap(µ) := sup

(
1

|B|

∫
B

µ(z)dVz

)(
1

|B|

∫
B

µ(z)
1

1−pdVz

)p−1

<∞,

where the supremum is taken over all balls B ⊂ Cn. See [24, Chapter V] for an introduction of
the class. It is not hard to see that Aq ⊂ Ap if 1 < q < p. Moreover, Ap spaces satisfy an open-end
property: if µ ∈ Ap for some 1 < p <∞, then µ ∈ Ap̃ for some p̃ < p.

Clearly, A∗
p = Ap when n = 1. In general, µ ∈ A∗

p if and only if the δ-dilation µδ(z) :=
µ(δ1z1, . . . , δnzn) ∈ Ap with a uniform Ap constant for all δ = (δ1, . . . , δn) ∈ (R+)n ( [14, pp. 454]).
This in particular implies A∗

p ⊂ Ap. As will be seen in the rest of the paper, the setting of A∗
p

weights allows us to apply the slicing property of product domains rather effectively.

Given a non-negative weight µ and 1 < p <∞, the weighted function space Lp(Ω, µ) is the set
of functions f on Ω such that its weighted Lp norm

∥f∥Lp(Ω,µ) :=

(∫
Ω

|f(z)|pµ(z)dVz
) 1

p

<∞.

When µ ≡ 1, it is reduced to the (unweighted) Lp(Ω) space. From now on, we shall say a ≲ b if
a ≤ Cb for a constant C > 0 dependent only possibly on Ω, p and the A∗

p (or Ap) constant of µ.
We say a ≈ b if and only if a ≲ b and b ≲ a at the same time.

2.2 Weighted Lp estimates for Riesz-type integrals

We focus on a bounded product domain Ω = D1 × · · · × Dn ⊂ Cn, where Dj has C2 boundary.
Fixing a multi-index α = (α1, . . . , αn) with 0 < αj < 2, j = 1, . . . , n and 1 < p < ∞, define the
following Riesz-type integral of f ∈ Lp(Ω)

Rαf(z) :=

∫
Ω

f(ζ)∏n
j=1 |ζj − zj|αj

dVζ , z ∈ Ω.

Rα is a bounded operator from Lp(Ω) into itself by Riesz integral theory. We shall show a weighted
version of this result in Lp(Ω, µ) under the assumption that µ ∈ A∗

p.
Firstly we consider the n = 1 case below, whose proof is a slight modification of a standard

trick for fractional integrals.

Proposition 2.2. Let D be a bounded domain in C. Assume 0 < α < 2 and µ ∈ Ap, 1 < p <∞.
Then Rα is a bounded operator from Lp(D,µ) into itself. Namely,

∥Rαf∥Lp(D,µ) ≲ ∥f∥Lp(D,µ). (2.1)
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Proof. Without loss of generality, assume f ≥ 0 and f trivially extends to C by letting it be zero
outside D. Denote by Mf the Hardy-Littlewood maximal function of f . For each z ∈ C with
δ > 0 to be chosen later,∫

|ζ−z|<δ,ζ∈D

f(ζ)

|ζ − z|α
dVζ =

∞∑
k=1

∫
δ

2k
<|ζ−z|< δ

2k−1

f(ζ)

|ζ − z|α
dVζ ≤

∞∑
k=1

2kα

δα

∫
|ζ−z|< δ

2k−1

f(ζ)dVζ

≲
∞∑
k=1

2−k(2−α)δ2−αMf(z) ≈ δ2−αMf(z).

(2.2)

Due to the open-end property of Ap, we can pick some p̃ ∈
(

(2−α)p
2

, p
)
such that µ ∈ Ap̃. Then∫

|ζ−z|>δ,ζ∈D

f(ζ)

|ζ − z|α
dVζ ≤

(∫
|ζ−z|>δ,ζ∈D

|f(ζ)|pµ(ζ)dVζ
) 1

p
(∫

|ζ−z|>δ,ζ∈D
|ζ − z|

αp
1−pµ(ζ)

1
1−pdVζ

) p−1
p

≲∥f∥Lp(D,µ)

(∫
|ζ−z|>δ,ζ∈D

|ζ − z|
αp
p̃−pdVζ

) p−p̃
p

(∫
D

µ(ζ)
1

1−p̃dVζ

) p̃−1
p

≲δ2−α− 2p̃
p ∥f∥Lp(D,µ)

(∫
D

µ(ζ)
1

1−p̃dVζ

) p̃−1
p

.

(2.3)

Combining (2.2) and (2.3), we have

Rαf(z) ≲ δ2−αMf(z) + δ2−α− 2p̃
p ∥f∥Lp(D,µ)

(∫
D

µ(ζ)
1

1−p̃dVζ

) p̃−1
p

.

Choosing δ =

∥f∥Lp(D,µ)

(∫
D µ(ζ)

1
1−p̃ dVζ

) p̃−1
p

Mf


p
2p̃

in the above, we further get

Rαf(z) ≲ ∥f∥
(2−α)p

2p̃

Lp(D,µ)

(∫
D

µ(ζ)
1

1−p̃dVζ

) (2−α)(p̃−1)
2p̃

Mf(z)
2p̃−(2−α)p

2p̃ .

Note that 2p̃ − (2 − α)p > 0 by the choice of p̃. Making use of the boundedness of the maximal
function operator in Lp(C, µ),

∥Rαf∥
L

2pp̃
2p̃−(2−α)p (D,µ)

≲∥f∥
(2−α)p

2p̃

Lp(D,µ)

(∫
D

µ(ζ)
1

1−p̃dVζ

) (2−α)(p̃−1)
2p̃

∥Mf∥
2p̃−(2−α)p

2p̃

Lp(C,µ)

≲∥f∥Lp(D,µ)

(∫
D

µ(ζ)
1

1−p̃dVζ

) (2−α)(p̃−1)
2p̃

.

Lastly, since µ ∈ Ap̃, we have

∥Rαf∥pLp(D,µ)
≤∥Rαf∥p

L

2pp̃
2p̃−(2−α)p (D,µ)

(∫
D

µ(ζ)dVζ

) (2−α)p
2p̃

≲∥f∥pLp(D,µ)

(∫
D

µ(ζ)
1

1−p̃dVζ

) (2−α)(p̃−1)p
2p̃

(∫
D

µ(ζ)dVζ

) (2−α)p
2p̃

≲ ∥f∥pLp(D,µ).
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It is worth pointing out that µ ∈ Ap can not be dropped in Proposition 2.2. Indeed, letting△ be
the unit disc on C, a function f ∈ L2(△, |z|2) was constructed in [26] such that R1f /∈ L2(△, |z|2).
Note that |z|2 /∈ A2.

Theorem 2.3. Let Ω be a bounded product domain in Cn, n ≥ 1. Assume α = (α1, . . . , αn) with
0 < αj < 2, j = 1, . . . , n, and µ ∈ A∗

p, 1 < p < ∞. Then Rα is a bounded operator from Lp(Ω, µ)
into itself. Namely,

∥Rαf∥Lp(D,µ) ≲ ∥f∥Lp(D,µ).

Proof. n = 1 case is due to Proposition 2.2. We shall prove n ≥ 2 cases by induction. Denote by
α′ the first n− 1 components of α. Similarly define z′, ζ ′ and Ω′. Write ∥Rαf∥pLp(Ω,µ) as∫

D1×···Dn−1

∫
Dn

∣∣∣∣∫
Dn

1

|ζn − zn|αn

(∫
D1×···Dn−1

f(ζ)

|ζ ′ − z′|α′ dVζ′

)
dVζn

∣∣∣∣p µ(z′, zn)dVzndVz′ .
For almost everywhere fixed z′ ∈ Ω′, note that µ(z′, ·) ∈ Ap by definition. Applying (2.1) to∫
D1×···Dn−1

f(ζ)

|ζ′−z′|α′ dVζ′ on Dn, we have∫
Dn

∣∣∣∣∫
Dn

1

|ζn − zn|αn

(∫
D1×···Dn−1

f(ζ)

|ζ ′ − z′|α′ dVζ′

)
dVζn

∣∣∣∣p µ(z′, zn)dVzn
≲
∫
Dn

∣∣∣∣∫
D1×···Dn−1

f(ζ ′, zn)

|ζ ′ − z′|α′ dVζ′

∣∣∣∣p µ(z)dVz.
Thus

∥Rαf∥pLp(Ω,µ) ≲
∫
D1×···Dn−1×Dn

∣∣∣∣∫
D1×···Dn−1

f(ζ ′, zn)

|ζ ′ − z′|α′ dVζ′

∣∣∣∣p µ(z′, zn)dVz
=

∫
Dn

(∫
D1×···×Dn−1

∣∣∣∣∫
D1×···Dn−1

f(ζ ′, zn)

|ζ ′ − z′|α′ dVζ′

∣∣∣∣p µ(z′, zn)dVz′) dVzn
≲ · · ·

≲
∫
D1×···Dn−1×Dn

|f(z)|pµ(z)dVz = ∥f∥pLp(Ω,µ),

where in the omitted part, we have employed a standard induction to the term inside the paren-
thesis for almost everywhere fixed zn ∈ Dn.

2.3 Proof of Theorem 1.1

The (unweighted) ∂̄ theory on product domains has been thoroughly understood through the
works, for instance, [3–5, 13, 15, 18, 21, 22, 27] and the references therein. In particular, it was
proved in [12] that there exists a family of functions ew on Ω such that

Tcf(z) =
n∑

s=1

∑
1≤i1<···<is≤n

s∑
k=1

∫
Di1

×···×Dis

fik(ζ
′, z′′)

∂s−1ek,i1,...,isw (ζ)

∂ζ̄i1 · · · ∂ζ̄ik−1
∂ζ̄ik+1

· · · ∂ζ̄is
(2.4)

is the canonical solution to ∂̄u = f(=
∑n

j=1 fjdz̄j) on Ω. In fact, after the preprint [12] was
submitted to a journal, we observed no boundary integrals should be involved in the solution
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representation originally constructed in [12, Section 5], due to the vanishing property of the kernels.
This leads to the above simplified expression of the canonical solution. Moreover, formula (5.2)
in [12] with s = m+ 1 states that there exists some constant 0 < αj < 2 such that ew satisfies∣∣∣∣ ∂s−1ek,i1,...,isw

∂ζ̄i1 · · · ∂ζ̄ik−1
∂ζ̄ik+1

· · · ∂ζ̄is

∣∣∣∣ ≲ 1∏s
r=1 |ζir − wir |αj

(2.5)

on Ω. The unweighted Lp theory for the canonical solution operator on product domains follows
immediately from (2.5) by Young’s inequality. Recently the same observation on the vanishing of
the boundary integrals was made in [25] as well (we contacted the author right away and provided
with our email record in 2021 on the observation and the completed proof to the Lp estimates).

It turns out our weighted Lp estimate Theorem 1.1 is essentially a consequence of (2.5) and
Theorem 2.3.

Proof of Theorem 1.1: We estimate the term in (2.4) with (i1, . . . , is) = (1, . . . , s) and ik = s. Let
α = (α1, . . . , αs) satisfying (2.5). Denote z′ = (z1, . . . , zs) and z

′′ = (zs+1, . . . , zn), and similarly
define D′ and D′′. By Fubini theorem and (2.5),∥∥∥∥∥∥∥

∫
Di1

×···×Dis

fik(ζ
′, z′′)

∂s−1ek,i1,...,isw (ζ)

∂ζ̄i1 · · · ∂ζ̄ik−1
∂ζ̄ik+1

· · · ∂ζ̄is

∥∥∥∥∥∥∥
p

Lp(Ω,µ)

≲
∫
D′′

∫
D′

|Rαfs(z
′, z′′)|pµ(z′, z′′)dVz′dVz′′

≲
∫
D′′

∫
D′

|fs(z′, z′′)|pµ(z′, z′′)dVz′dVz′′ ≲ ∥f∥pLp(Ω,µ).

Here we used Theorem 2.3 on D′ in the second inequality for almost every fixed z′′ ∈ D′′. The
rest of the terms in the sum in Tcf are proved similarly. The proof is complete.

The following example along the line of Kerzman [19] demonstrates that given a weighted Lp

data, the ∂̄ problem on product domains in general does not admit weighted Lp+ϵ, ϵ > 0 solutions.
Thus Theorem 1.1 gives the optimal weighted Lp regularity on product domains in terms of the
canonical solutions.

Example 1. For each 1 < p <∞, ϵ > 0 and any r ∈
(

2
1+ϵ

, 2
)
, consider f = (z2 − 1)−rdz̄1 on △2,

1
2
π < arg(z2 − 1) < 3

2
π and µ = |z2 − 1|r(p−1). Then µ ∈ A∗

p, f ∈ Lp(△2, µ) and is ∂̄-closed on △2.
However, there does not exist a solution u ∈ Lp+ϵ(△2, µ) to ∂̄u = f on △2.

Proof. Clearly f is ∂̄-closed on △2. Since r < 2, we can also verify directly that µ ∈ A∗
p and

f ∈ Lp(△2, µ). Suppose there exists some u ∈ Lp+ϵ(△2, µ) satisfying ∂̄u = f on △2. Noting that
Lp(△2, µ) ⊂ L1(△2), an application of Weyl’s lemma gives the existence of some holomorphic
function h on △2, such that u = (z2 − 1)−rz̄1 + h ∈ Lp+ϵ(△2, µ).

For almost everywhere (r, z2) ∈ U := (0, 1)×△ ⊂ R3, consider

v(r, z2) :=

∫
|z1|=r

u(z1, z2)dz1.
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By Hölder inequality, Fubini theorem and the fact that p > 1,

∥v∥p+ϵ
Lp+ϵ(U,µ) =

∫
U

∣∣∣∣∫
|z1|=r

u(z1, z2)dz1

∣∣∣∣p+ϵ

µ(z2)dVz2,r

≤
∫
|z2|<1

∫
r<1

∣∣∣∣r ∫ 2π

0

|u(reiθ, z2)|dθ
∣∣∣∣p+ϵ

drµ(z2)dVz2

≲
∫
|z2|<1

∫
r<1

∫ 2π

0

|u(reiθ, z2)|p+ϵdθrdrµ(z2)dVz2

=

∫
|z2|<1,|z1|<1

|u(z)|p+ϵµ(z2)dVz = ∥u∥p+ϵ
Lp+ϵ(△2,µ) <∞.

Thus v ∈ Lp+ϵ(U, µ). On the other hand, by Cauchy’s theorem, for almost everywhere (r, z2) ∈ U ,

v(r, z2) =

∫
|z1|=r

(z2 − 1)−rz̄1dz1 = (z2 − 1)−r

∫
|z1|=r

r2

z1
dz1 = 2πr2i(z2 − 1)−r,

which is not in Lp+ϵ(U, µ) by the choice of r > 2
1+ϵ

. This is a contradiction! The example is thus
verified.

In the case when µ ≡ 1, one can verify similarly the following example to conclude that the ∂̄
problem on product domains does not improve regularity in Lp space, either. Thus the canonical
solutions provide optimal Lp solutions on product domains. Example 2 can easily be tailored to
show that the ∂̄ operator does not improve regularity in unweighted W k,p spaces as well. This
phenomenon is consistent with that in Hölder spaces ( [22,27]).

Example 2. For each 1 < p < ∞, let f = (z2 − 1)−
2
pdz̄1 on △2, 1

2
π < arg(z2 − 1) < 3

2
π. Then

f ∈ Lp̃(△2) for all 1 < p̃ < p and is ∂̄-closed on △2. However, there does not exist a solution
u ∈ Lp(△2) to ∂̄u = f on △2.

Proof. The proof is similar to that of Example 1 with µ ≡ 1 instead, so we only sketch it here.
Clearly f ∈ Lp̃(△2) for all 1 < p̃ < p. Suppose there exists some u ∈ Lp(△2) satisfying ∂̄u = f

on △2. Then for some holomorphic function h on △2 we have u = (z2 − 1)−
2
p z̄1 + h ∈ Lp(△2).

Consider v(r, z2) :=
∫
|z1|=r

u(z1, z2)dz1 for almost everywhere (r, z2) ∈ U := (0, 1)×△ ⊂ R3. Then

v ∈ Lp(U). However, by Cauchy’s theorem, v(r, z2) = 2πr2i(z2 − 1)−
2
p almost everywhere in U ,

which contradicts with the fact that v ∈ Lp(U).

3 Lp estimates on the Hartogs triangle

Denote by △∗ := △ \ {0}, the punctured disc on C. Then ψ : △×△∗ → H given by

(w1, w2) 7→ (z1, z2) = ψ(w) = (w1w2, w2)

is a biholomorphism, with its inverse ϕ : H → △×△∗ given by

(z1, z2) 7→ (w1, w2) = ϕ(z) =

(
z1
z2
, z2

)
.
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This biholomorphism allows us to pull back and push forward between H and △×△∗. Due to the
explicit and simple form of ψ, we shall be self-contained and chase concretely how the singularity
affects the ∂̄-closedness, the pull-back of the data and push-forward of (solution) functions. The
general framework can be founded in [26]. In fact, for any f =

∑2
j=1 fj(z)dz̄j ∈ Lp(H), making

use of change of variables formula we have the pull-back

ψ∗f = f1 ◦ ψ · w̄2dw̄1 + (f1 ◦ ψ · w̄1 + f2 ◦ ψ) dw̄2 ∈ Lp(△2, |w2|2) (3.1)

with

∥ψ∗f∥pLp(△2,|w2|2) ≲
2∑

j=1

∫
△2

|fj ◦ ψ(w)|p|w2|2dVw =
2∑

j=1

∫
H
|fj(z)|pdVz = ∥f∥pLp(H). (3.2)

The inverse ϕ is used to push forward any function ũ ∈ Lp(△2, |w2|2) to be in Lp(H) with

∥ũ ◦ ϕ∥pLp(H) =

∫
H
|ũ ◦ ϕ(z)|pdVz =

∫
△2

|ũ(w)|p|w2|2dVw = ∥ũ∥pLp(△2,|w2|2). (3.3)

Note that |w2|2 ∈ A∗
p, p > 2. In order to apply the weighted Lp estimates in Theorem 1.1

(where each portion Dj are assumed to have C2 boundary), we need to justify that the pull-back
data is ∂̄-closed on △2.

Proposition 3.1. Let f ∈ Lp(H) be a ∂̄-closed (0, 1) form on H. If 4 ≤ p < ∞, then ψ∗f lies in
Lp(△2, |w2|2) and is a ∂̄-closed (0, 1) form on △2.

The proof of the proposition boils down to showing the following Harvey-Polking type extension
(or resolution) of ∂̄-closed Lp(△2, |w2|2) forms from △ × △∗ to △2, p ≥ 4. We remark that if
the forms lie in W 1,p(△, |w2|2) in addition, then this range of p can be relaxed to p > 2. See, for
instance, [26, Proposition 5.10].

Lemma 3.2. Suppose a (0, 1) form h ∈ Lp(△2, |w2|2) is ∂̄-closed on △×△∗. If 4 ≤ p <∞, then
h is ∂̄-closed on △2.

Proof. Write h(w) = h1(w)dw̄1 + h2(w)dw̄2. Let η = η(w)dw1 ∧ dw2 be a smooth (2, 0)-form in
△2 with compact support. We shall show

−
〈
∂̄h, η

〉
△2 :=

∫
△2

h1(w)
∂η(w)

∂w̄2

− h2(w)
∂η(w)

∂w̄1

dVw = 0.

Denote by △r the disc centered at 0 with radius r > 0. Choose a cut-off function χ ∈ C∞
c (△)

such that χ = 1 on △ 1
2
and |∇χ| < 1

3
on △. Letting χk(w2) = χ(kw2) on △, then χk is supported

on △ 1
k
and |∇χk| ≲ k. Consequently,∣∣∣∣∫

△2

h2(w)
∂η(w)

∂w̄1

dVw −
∫
△2

h1(w)
∂ ((1− χk(w2))η(w))

∂w̄2

dVw

∣∣∣∣
≤
∫
△2

∣∣∣∣h2(w)∂ (χk(w2)η(w))

∂w̄1

∣∣∣∣ dVw
+

∣∣∣∣∫
△2

h2(w)
∂ ((1− χk(w2))η(w))

∂w̄1

− h1(w)
∂ ((1− χk(w2))η(w))

∂w̄2

dVw

∣∣∣∣ .
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Since (1− χk(w2))η(w) has compact support on △×△∗, the last line in the above is zero by the
∂̄-closedness of h on △×△∗. For the first term, since p > 2,∫

△2

∣∣∣∣h2(w)∂ (χk(w2)η(w))

∂w̄1

∣∣∣∣ dVw ≲
∫
△×△ 1

k

|h2(w)||w2|
2
p |w2|−

2
p |dVw

≲∥h2∥Lp(△2,|w2|2)

∫
△ 1

k

|w2|−
2

p−1dVw2


p−1
p

→ 0

(3.4)

as k → ∞. Hence as k → ∞,∣∣∣∣∫
△2

h2(w)
∂η(w)

∂w̄1

dVw −
∫
△2

h1(w)
∂ ((1− χk(w2))η(w))

∂w̄2

dVw

∣∣∣∣ → 0. (3.5)

On the other hand,∣∣∣∣∫
△2

h1(w)
∂ (χk(w2)η(w))

∂w̄2

dVw

∣∣∣∣ ≲ ∫
△×△ 1

k

∣∣∣∣h1(w)∂ (χk(w2))

∂w̄2

∣∣∣∣ dVw +

∫
△×△ 1

k

|h1(w)|dVw.

By the same reasoning as in (3.4), the last term goes to 0 as k → ∞. For the first term in the

right hand side of the last line, making use of the fact that
∣∣∣∂(χk(w2))

∂w̄2

∣∣∣ ≲ k on △ 1
k
, we get∣∣∣∣∣∣

∫
△×△ 1

k

h1(w)
∂ (χk(w2))

∂w̄2

dVw

∣∣∣∣∣∣ ≲k
∫
△×△ 1

k

|h1(w)||w2|
2
p |w2|−

2
p |dVw

≲k∥h1∥Lp(△×△ 1
k
,|w2|2)

∫
△ 1

k

|w2|−
2

p−1dVw2


p−1
p

≲k
4
p
−1∥h1∥Lp(△×△ 1

k
,|w2|2).

Since p ≥ 4, as k → ∞ the last term goes to zero, and thus∣∣∣∣∫
△2

h1(w)
∂ (χk(w2)η(w))

∂w̄2

dVw

∣∣∣∣ → 0. (3.6)

The proof of the proposition is complete by combining (3.5) and (3.6).

Remark 3.3. The p ≥ 4 assumption in Lemma 3.2 can not be relaxed. For instance, h(w) =
1
w2
dw̄1 is ∂̄-closed on △ × △∗ and lies in Lp(△2, |w2|2) for all 1 < p < 4. However, h(w) is

not ∂̄-closed on △2. In fact, given a smooth (2, 0)-form η = η(w)dw1 ∧ dw2 in △2 with compact
support, by Stokes’ theorem and Residue theorem,

−⟨∂̄h, η⟩△2 =

∫
△2

1

w2

∂η(w)

∂w̄2

dVw =

∫
△
lim
ϵ→0

∫
△\△ϵ

1

w2

∂η(w)

∂w̄2

dVw2dVw1

=
1

2

∫
△
lim
ϵ→0

∫
△\△ϵ

∂̄

(
η(w)

w2

dw2

)
dVw1 = −1

2

∫
△
lim
ϵ→0

∫
∂△ϵ

η(w)

w2

dw2dVw1

=− πi

∫
△
η(w1, 0)dVw1 ,

which is not zero in general.
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Proof of Proposition 3.1: In view of Lemma 3.2 and (3.2), we only need to verify that ψ∗f is ∂̄-
closed on △×△∗. Indeed, for any smooth function χ with compact support on H, by ∂̄-closedness
of f on H, we have ∫

H
f1(z)

∂χ

∂z̄2
(z)− f2(z)

∂χ

∂z̄1
(z)dVz = 0. (3.7)

For any (2, 0) form η with compact support on △×△∗, by (3.1), chain rule and change of variables
formula,

−⟨∂̄ψ∗f , η⟩△2 =

∫
△2

f1 ◦ ψ(w)w̄2
∂η(w)

∂w̄2

− (f1 ◦ ψ(w)w̄1 + f2 ◦ ψ(w))
∂η(w)

∂w̄1

dVw

=

∫
H

(
f1(z)z̄2

(
∂η ◦ ϕ(z)
∂z̄1

z̄1
z̄2

+
∂η ◦ ϕ(z)
∂z̄2

)
−

(
f1(z)

z̄1
z̄2

+ f2(z)

)
∂η ◦ ϕ(z)
∂z̄1

z̄2

)
1

|z2|2
dVz

=

∫
H
f1(z)

∂

∂z̄2

(
η ◦ ϕ(z)
z2

)
− f2(z)

∂

∂z̄1

(
η ◦ ϕ(z)
z2

)
dVz = 0,

where the last line is due to (3.7) and the fact that η◦ϕ(z)
z2

is smooth with compact support on H.

Proof of Theorem 1.2: Given a ∂̄-closed (0, 1) form f ∈ Lp(H), ψ∗f ∈ Lp(△2, |w2|2) and is ∂̄-
closed on △2 by Proposition 3.1. As |w2|2 ∈ A∗

p, an application of Theorem 1.1 gives a solution
ũ ∈ Lp(△2, |w2|2) to ∂̄ũ = ψ∗f on △2. Namely, for any smooth and compactly supported (2, 1)
form η = (η1dw̄1 + η2dw̄2) ∧ dw1 ∧ dw2 on △2,∫

△2

ũ(w)

(
∂η1(w)

∂w̄2

− ∂η2(w)

∂w̄1

)
dVw = −⟨∂̄ũ, η⟩△2 = −⟨ψ∗f , η⟩△2

=

∫
△2

f1 ◦ ψ(w)w̄2η2(w)− (f1 ◦ ψ(w)w̄1 + f2 ◦ ψ(w)) η1(w)dVw.
(3.8)

We now verify that u := ũ ◦ ϕ solves ∂̄u = f on H. Indeed, for any smooth (2, 1) form
χ = (χ1dz̄1+χ2dz̄2)∧dz1∧dz2 with compact support on H, by chain rule and change of variables,

−⟨∂̄u, χ⟩H =

∫
H
ũ ◦ ϕ(z)

(
∂χ1(z)

∂z̄2
− ∂χ2(z)

∂z̄1

)
dVz

=

∫
△2

ũ(w)

(
−∂χ1 ◦ ψ(w)

∂w̄1

w̄1

w̄2

+
∂χ1 ◦ ψ(w)

∂w̄2

− ∂χ2 ◦ ψ(w)
∂w̄1

1

w̄2

)
|w2|2dVw

=

∫
△2

ũ(w)

(
−∂χ1 ◦ ψ(w)

∂w̄1

w̄1w2 +
∂χ1 ◦ ψ(w)

∂w̄2

|w2|2 −
∂χ2 ◦ ψ(w)

∂w̄1

w2

)
dVw

=

∫
△2

ũ(w)

(
∂

∂w̄2

(
χ1 ◦ ψ(w)|w2|2

)
− ∂

∂w̄1

(χ2 ◦ ψ(w)w2 + χ1 ◦ ψ(w)w̄1w2)

)
dVw.

Note that η1(w) := χ1 ◦ ψ(w)|w2|2, η2(w) := χ2 ◦ ψ(w)w2 + χ1 ◦ ψ(w)w̄1w2 are both smooth with
compact supports on △×△∗ and thus on △2. Making use of (3.8), we further simplify the above
to get

−⟨∂̄u, χ⟩H =

∫
△2

(f1 ◦ ψ(w)χ2 ◦ ψ(w)− f2 ◦ ψ(w)χ1 ◦ ψ(w)) |w2|2dVw

=

∫
H
f1(z)χ2(z)− f2(z)χ1(z)dVz = −⟨f , χ⟩H.
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Altogether, by (3.2)-(3.3) and Theorem 1.1, the solution u = ũ ◦ ϕ satisfies

∥u∥Lp(H) = ∥ũ∥Lp(△2,|w2|2) ≲ ∥ψ∗f∥Lp(△2,|w2|2) ≲ ∥f∥Lp(H).

The proof is complete.

The following example shows Theorem 1.2 is optimal, in the sense that solutions can not lie in
a better Lebesgue space than that of the data in general.

Example 3. For each 1 < p < ∞, let f = (z2 − 1)−
2
pdz̄1 on H, 1

2
π < arg(z2 − 1) < 3

2
π. Then

f ∈ Lp̃(H) for all 1 < p̃ < p and is ∂̄-closed on H. However, there does not exist a solution
u ∈ Lp(H) to ∂̄u = f on H.

Proof. Clearly f ∈ Lp̃(H) for all 1 < p̃ < p and f is ∂̄-closed on H. Arguing by contradiction,
suppose there exists some u ∈ Lp(H) satisfying ∂̄u = f on H. In particular, since △ 1

2
× (△ \

△ 1
2
) ⊂ H, there exists some holomorphic function h on △ 1

2
× (△ \△ 1

2
) such that u|△ 1

2
×(△\△ 1

2
) =

(z2 − 1)−
2
p z̄1 + h ∈ Lp(△ 1

2
× (△ \△ 1

2
)).

For almost everywhere fixed (r, z2) ∈ U :=
(
0, 1

2

)
×
(
△ \△ 1

2

)
⊂ R3, consider

v(r, z2) :=

∫
|z1|=r

ũ(z1, z2)dz1.

Similarly as in the proof of Example 1 (with µ = 1 and △2 replaced by △ 1
2
× (△ \△ 1

2
)), we see

that v ∈ Lp(U). Note that h(·, z2) is holomorphic on △ 1
2
for each fixed z2 ∈ △ \ △ 1

2
. Thus for

almost everywhere fixed (r, z2) ∈ U , Cauchy’s theorem gives

v(r, z2) =

∫
|z1|=r

z2(z2 − 1)−
2
p z̄1dz1 = 2πr2iz2(z2 − 1)−

2
p ,

which does not belong to Lp(U). Contradiction!
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[22] Y. Pan, Y. Zhang: Hölder estimates for the ∂̄ problem for (p.q) forms on product domains. International Journal of
Mathematics. 32(2021), no. 3, 20 pp. 5, 7

[23] M. Shaw: The Hartogs triangle in complex analysis. Geometry and topology of submanifolds and currents, 105–115,
Contemp. Math., 646, Amer. Math. Soc., Providence, RI, 2015. 1

[24] E. Stein: Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals. Princeton University
Press, Princeton, NJ, 1993. xiv+695 pp. 3

[25] Y. Yuan: Uniform estimates of the Cauchy-Riemann equatiosn on product domains. Preprint. arXiv:2207.02592. 2, 6

[26] Y. Yuan, Y. Zhang: Weighted Sobolev estimates of ∂̄ on domains covered by polydiscs. Preprint. 1, 2, 5, 8
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