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Abstract

In this note, we investigate the unique continuation property and the sign changing
behavior of weak solutions to −∆u = V u near infinity under certain conditions on the blow-
up rate of the potential V near infinity.

1 Introduction

Given V ∈ L∞
loc(Rn), n ≥ 1, we study properties of real-valued weak solutions to

−∆u = V u on Rn

near infinity. Landis [10] conjectured that if V ∈ L∞(Rn), then every bounded weak solution u
such that |u| ≤ Ce−|x|1+ϵ

near infinity for some C, ϵ > 0 must be identically 0. The conjecture
has attracted much attention since the fundamental work [2] of Bourgain and Kenig. See, for
instance, [3,4,9,13] and the references therein. Recently, Logunov, Malinnikova, Nadirashvili and
Nazarov proved the full Landis conjecture when n = 2 in [11].

Motivated by the Landis conjecture, we first investigate the following unique continuation
property at infinity. Denote by (r, θ) the polar coordinates, r > 0, θ ∈ Sn−1.

Theorem 1.1. Let V ∈ L∞
loc(Rn). Assume further that when |x| >> 1, V is locally Lipschitz,

V = O(|x|M) (1.1)

for some constant M , and
∂

∂r
(r2V ) ≥ 0 (1.2)

in terms of the polar coordinates (r, θ). Let u ∈ L2
loc(Rn) be a weak solution to

−∆u = V u on Rn.

If limr→∞ rm
∫
|x|>r

|u|2 = 0 for each m ≥ 0, then u ≡ 0.

In comparison to Landis’s case, while imposing an additional condition (1.2), we allow V to
blow up in a finite order at infinity. In conclusion, we obtain the unique continuation property
by assuming that u vanishes to infinite order in the L2 sense (see Section 2 for the definition)
rather than to an exponential order at infinity. Our main tool of the proof involves a local unique
continuation property presented in [12] by Li and Nirenberg, coupled with the application of
the Kelvin transform which brings the equation from infinity to a punctured neighborhood of
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the origin. As the Kelvin transform introduces extra singularity at the origin, we will need the
assumption (1.1) to resolve the singularity of the new equation at the origin (in Lemma 2.3). This
assumption also reduces the regularity assumption of the solution to being merely in L2

loc(B1\{0})
in Theorem 3.1. In fact, as demonstrated in Example 1 and Example 2, the unique continuation
property fails at infinity in general if (1.1) and/or (1.2) is dropped.

In particular, Theorem 1.1 can be applied to infer the unique continuation property at infinity
when the potential is homogeneous as follows. See also Example 3 for the construction of more
potentials that satisfy the assumptions of Theorem 1.1.

Corollary 1.2. Let V ∈ L∞
loc(Rn \ {0}) be a homogeneous function of order α on Rn. Assume

either α = 2, or α > −2 and V ≥ 0 on Rn, or α < −2 and V ≤ 0 on Rn. Let u ∈ L2
loc(Rn) be a

weak solution to
−∆u = V u on Rn.

If limr→∞ rm
∫
|x|>r

|u|2 = 0 for each m ≥ 0, then u ≡ 0.

Corollary 1.3. Let u ∈ L2
loc(Rn) be an eigenfunction of −∆ on Rn with

−∆u = c2u on Rn

for some constant c. Then u does not vanish to infinite order in the L2 sense at ∞. Namely, there
exists some N ≥ 0 such that limr→∞ rN

∫
|x|>r

|u|2 = ∞.

Next, we study the sign changing behavior of bounded weak solutions near infinity. The
following theorem states that when V satisfies certain integrability condition near infinity, then
the weak solutions must change sign constantly near infinity.

Theorem 1.4. Let V ∈ L∞
loc(Rn). Assume further that V ≥ 0 when |x| >> 1,

∫
|x|>r

1
|x|n+2V

< ∞
and

∫
|x|>r

|x|4−2nV = ∞ for some r >> 1. Then every non-constant bounded weak solution to

−∆u = V u on Rn.

must change sign near ∞. Namely, if u ≥ 0 (or u ≤ 0) when |x| >> 1, then u ≡ 0.

As indicated by the following corollary, there exist ample examples where the assumptions of
the potential in Theorem 1.4 are satisfied.

Corollary 1.5. Let V ∈ L∞
loc(Rn \{0}) be a positive homogeneous function of order α on Rn \{0}.

Let u be a bounded weak solution to

−∆u = V u on Rn.

If α > −2 when n ≤ 2, or α ≥ n− 4 when n ≥ 3, then u must change sign near ∞.

According to Liouville’s theorem, every bounded eigenfunction of Laplacian with respect to
eigenvalue 0 (namely, harmonic function) must be a constant. The following theorem shows
that bounded eigenfunctions with respect to nonzero eigenvalues will constantly change sign near
infinity. As seen in the statement of Corollary 1.5, the order α = 0 case is covered by this
corollary only when n ≤ 4. The remaining cases when n ≥ 5 has to be dealt with through a
different approach. See Section 4 for its proof.

Theorem 1.6. Every bounded eigenfunction of −∆ with

−∆u = c2u on Rn

for a constant c ̸= 0 must change sign near ∞.

Equivalently, the above theorem states that every bounded nonconstant eigenfunction is neither
subharmonic nor superharmonic near infinity.
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2 Preliminaries

As mentioned in the introduction, when pulling the equation from infinity to the origin via the
Kelvin transform, the procedure results in a new equation that carries singularity at the origin.
The purpose of this section is to extend the new equation across the origin, and meanwhile resolve
the singularity of weak solutions there. We shall also discuss properties of flat functions.

Denote by Br the ball of radius r centered at 0 in Rn. Given u on Rn \ B1, recall that the

Kelvin transform of u is defined by w(x) := 1
|x|n−2u

(
x

|x|2

)
on B1 \ {0}. One of the properties for

the Kelvin transform is that in the distribution sense,

∆w(x) =
1

|x|n+2
∆u

(
x

|x|2

)
on B1 \ {0}. (2.1)

In particular, the harmonicity is invariant under the Kelvin transform, a property that we will
apply repeatedly.

Lemma 2.1. Let V ∈ L∞
loc(Rn \B1), and u ∈ L2

loc(Rn \B1). Define

w(x) :=
1

|x|n−2
u

(
x

|x|2

)
and W (x) :=

1

|x|4
V

(
x

|x|2

)
on B1 \ {0}. (2.2)

Then the following properties hold.
(1) W ∈ L∞

loc(B1 \ {0}), and w ∈ L2
loc(B1 \ {0}).

(2) If V = O(|x|M) near ∞ for some constant M , then W = O
(

1
|x|M+4

)
near 0.

(3) For every r > 0, one has∫
|x|> 1

r

1

|x|n+2V
=

∫
|x|<r

1

|x|n+2W
and

∫
|x|> 1

r

|x|4−2nV =

∫
|x|<r

W.

(4) If

lim
r→∞

rm
∫
|x|>r

|u|2 = 0

for some constant m ≥ 0, then w ∈ L2
loc(B1) with

lim
r→0

r−(m+4)

∫
|x|<r

|w|2 = 0.

(5) If u is a weak solution to
−∆u = V u on Rn \B1,

then w is a weak solution to

−∆w = Ww on B1 \ {0}.

Proof. (1) and (2) are true by definition. For (3), we apply change of coordinates x → x
|x|2 to

verify the equalities directly as follows.∫
|x|<r

1

|x|n+2W
=

∫
|x|<r

1

|x|n−2V
(

x
|x|2

) =

∫
|x|> 1

r

|x|n−2

V (x)
|x|−2n =

∫
|x|> 1

r

1

|x|n+2V
;

∫
|x|<r

W =

∫
|x|<r

1

|x|4
V

(
x

|x|2

)
=

∫
|x|> 1

r

|x|4V (x)|x|−2n =

∫
|x|> 1

r

|x|4−2nV.
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Here we used the fact that the Jacobian of the coordinates change is |x|−2n.
For the decay property of w in (4), by the same change of coordinates as above,∫

|x|<r

|w|2 =
∫
|x|<r

1

|x|2n−4

∣∣∣∣u( x

|x|2

)∣∣∣∣2 = ∫
|x|> 1

r

|x|2n−4 |u(x)|2 |x|−2n

=

∫
|x|> 1

r

|x|−4 |u(x)|2 ≤ r4
∫
|x|> 1

r

|u|2 .

Note that by assumption, limr→0 r
−m

∫
|x|> 1

r
|u|2 = limr→∞ rm

∫
|x|>r

|u|2 = 0. Hence

lim
r→0

r−(m+4)

∫
|x|<r

|w|2 ≤ lim
r→0

r−m−4r4
∫
|x|> 1

r

|u|2 = 0.

(5) follows from (2.1) by a straightforward computation: on B1 \ {0},

−∆w(x) = − 1

|x|n+2
∆u

(
x

|x|2

)
=

1

|x|n+2
V

(
x

|x|2

)
u

(
x

|x|2

)
=

1

|x|4
V

(
x

|x|2

)
w(x) = W (x)w(x)

in the distribution sense.

Next we extend the weak solutions across the singularity at the origin, with the help of a
Harvey-Polking type (see [6]) lemma below for an isolated singularity. Throughout the rest of the
paper we use the following notation: two quantities A and B are said to satisfy A ≲ B, if A ≤ CB
for some constant C > 0 that depends only possibly on n.

Lemma 2.2. Let P (x,D) be a linear differential operator of order l and f ∈ L1(B1). If u ∈ L1(B1)
satisfies P (x,D)u = f on B1 \ {0} and

lim
r→0

r−l

∫
|x|<r

|u| = 0, (2.3)

then P (x,D)u = f on B1.

Proof. Let ϕr be a smooth function on B1 such that ϕr = 1 on B r
2
, ϕr = 0 outside Br and

|∇kϕr| ≲ r−k on Br, k ≤ l. Then for any testing function ϕ on B1, (1− ϕr)ϕ is a testing function
on B1 \ {0}. Thus

⟨P (x,D)u− f, (1− ϕr)ϕ⟩ = 0,

and so

⟨P (x,D)u− f, ϕ⟩ = ⟨P (x,D)u− f, ϕrϕ⟩ = ⟨u, tP (x,D)(ϕrϕ)⟩ − ⟨f, ϕrϕ⟩.

Passing r to 0, since f ∈ L1(B1),

⟨f, ϕrϕ⟩ ≲
∫
Br

|f | → 0.

On the other hand, by assumption (2.3),

⟨u, tP (x,D)(ϕrϕ)⟩ ≲ r−l

∫
|x|<r

|u| → 0.

We thus have the desired identity ⟨P (x,D)u− f, ϕ⟩ = 0.
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Lemma 2.3. Let W ∈ L∞
loc(B1 \ {0}), W ≤ O( 1

|x|M ) near 0 for some constant M ≥ 0, and

w ∈ L2
loc(B1) be a weak solution to

−∆w = Ww on B1 \ {0}.

If further

lim
r→0

r−2M−3

∫
|x|<r

|w|2 = 0, (2.4)

then w ∈ W 2,2
loc (B1) ∩W 2,p

loc (B1 \ {0}) for all p <∞, and w is a weak solution to

−∆w = Ww on B1.

Proof. First, for all r << 1, by (2.4)∫
|x|<r

|Ww|2 ≲
∫
|x|<r

|w|2

|x|2M
=

∞∑
j=0

∫
2−j−1r<|x|<2−jr

|w|2

|x|2M
≤

∞∑
j=0

22(j+1)Mr−2M

∫
|x|<2−jr

|w|2 ≤ Cr3

(2.5)
for some constant C dependent only on M . So Ww ∈ L2

loc(B1). On the other hand, by Hölder
inequality and (2.4) again,

lim
r→0

r−2

∫
|x|<r

|w| ≤ lim
r→0

r−2+n
2

(∫
|x|<r

|w|2
) 1

2

≤ lim
r→0

(
r−3

∫
|x|<r

|w|2
) 1

2

= 0.

As a consequence of the Harvey-Polking type Lemma 2.2, −∆w = Ww holds true on B1 in the
distribution sense. PDE theory then tells that w ∈ W 2,2

loc (B1). In particular, w ∈ Lp0
loc(B1) where

p0 =
2n
n−4

if n > 4, or any number less than ∞ if n ≤ 4 by the Sobolev embedding theorem.

Restricted on B1 \ {0}, since Ww ∈ Lp0
loc(B1 \ {0}), we further have w ∈ W 2,p0

loc (B1 \ {0}). With
a boot-strap argument, we eventually obtain w ∈ W 2,p

loc (B1 \ {0}) for all p <∞.

Next, we discuss properties of flat functions at 0. A function w ∈ L2
loc(Rn) is said to vanish to

infinite order (or, flat) in the L2 sense at x0 ∈ Rn if for every m ≥ 0,

lim
r→0

r−m

∫
|x−x0|<r

|w|2 = 0. (2.6)

In view of (the proof to) Lemma 2.1 (4), it makes sense to call that a function u ∈ L2
loc(Rn)

vanishes to infinite order in the L2 sense at infinity, if for every m ≥ 0,

lim
r→∞

rm
∫
|x|>r

|u|2 = 0.

Thus, as a consequence of Lemma 2.1 (4), if u vanishes to infinite order in the L2 sense at infinity,
then w defined in (2.2) vanishes to infinite order in the L2 sense at 0.

In general the flatness of a function does not necessarily imply the flatness of its derivatives.

For instance, w(x) := e−
1
x2 cos(e

1
x2 ), x ∈ R is flat at 0. However, the derivative w′ is not even L1

loc

at 0. On the other hand, the following lemma states that the flatness naturally passes onto its
derivatives if w is a weak solution to −∆w = Ww when W blows up at most in a finite order at
0. We shall need the following well-known inequality with proof provided below for completeness.
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Lemma 2.4. Let f ∈ W 2,2
loc (B1). Then for any 0 < r < 1

2
,∫

|x|<r

|∇f |2 ≲ 1

r2

∫
|x|<2r

|f |2 + r2
∫
|x|<2r

|∆f |2. (2.7)

Proof. Let ϕ be a nonnegative smooth function with compact support on B2r such that ϕ = 1 on
Br, ϕ ≤ 1 and |∇kϕ| ≲ 1

rk
, k ≤ 2 on B2r. Since ϕ∇f = ∇(ϕf)− f∇ϕ, we have∫

|x|<2r

ϕ2|∇f |2 ≤ 2

∫
|x|<2r

|f∇ϕ|2 + 2

∫
|x|<2r

|∇(ϕf)|2.

Making use of Stokes’ theorem to the second term on the right, one further has∫
|x|<2r

ϕ2|∇f |2 ≤ 2

∫
|x|<2r

|f∇ϕ|2 + 2

∫
|x|<2r

ϕ|f ||△(ϕf)|. (2.8)

On the other hand, note that △(ϕf) = f△ϕ+ ϕ△f + 2∇ϕ · ∇f . By the choice of ϕ and with
a repeated application of the Schwartz inequality,∫

|x|<2r

ϕ|f ||△(ϕf)| ≤
∫
|x|<2r

ϕ|f |2|△ϕ|+
∫
|x|<2r

ϕ2|f ||△f |+ 2

∫
|x|<2r

ϕ|f ||∇ϕ||∇f |

≲
1

r2

∫
|x|<2r

|f |2 +
∫
|x|<2r

1

r
|f | · r|△f |+

∫
|x|<2r

ϕ|∇f | · 1
r
|f |

≲
1

r2

∫
|x|<2r

|f |2 + r2
∫
|x|<2r

|△f |2 + 1

4

∫
|x|<2r

ϕ2|∇f |2.

(2.9)

Combining (2.8)-(2.9), we have∫
|x|<2r

ϕ2|∇f |2 ≲ 1

r2

∫
|x|<2r

|f |2 + r2
∫
|x|<2r

|△f |2,

from which (2.7) follows.

Lemma 2.5. Suppose w ∈ L2
loc(B1) vanishes to infinite order in the L2 sense at 0. Then the

following holds.

(1) If f = O
(

1
|x|M

)
near 0 for some constant M , then fw ∈ L2 near 0, and vanishes to infinite

order in the L2 sense at 0.
(2) If w is a weak solution to

−∆w = Ww on B1.

for some W ∈ L∞
loc(B1 \ {0}) such that W = O( 1

|x|M ) near 0 for some constant M . Then ∇w
vanishes to infinite order in the L2 sense at 0. In particular, ∇θw and wr with respect to the polar
coordinates (r, θ) vanish to infinite order in the L2 sense at 0.

Proof. (1) can be proved by making use of a similar argument as in (2.5), with the assumption
(2.4) replaced by the L2 flatness (2.6) of w at 0.

For (2), since w vanishes to infinite order in the L2 sense at 0, w satisfies (2.4). Hence w ∈
W 2,2

loc (B1) by Lemma 2.3. On the other hand, by (1) Ww also vanishes to infinite order in the L2

sense at 0. Thus we apply (2.7) to w and obtain the flatness of ∇w in the L2 sense.
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That ∇θw and wr vanish to infinite order in the L2 sense at 0 follows directly from the equality

|∇w|2 = |wr|2 +
1

r2
|∇θv|2

in terms of the polar coordinates (r, θ).

Lemma 2.6. Suppose that w ∈ L2(B1) ∩ C(B1 \ {0}) satisfies

lim
r→0

r−1

∫
|x|<r

|w|2 = 0.

Then there exists rj → 0 such that ∫
|x|=rj

|w|2 → 0.

Proof. First note that by assumption,
∫
|x|=r

|w|2 as a function of r is in C((0, 1)). By the mean-

value theorem, for each j ≥ 1, there exists rj ∈ ( r
2j
, r
2j−1 ) such that∫

2−jr<|x|<2−j+1r

|w|2 =
∫ 2−j+1r

2−jr

∫
|x|=s

|w|2 = 2−jr

∫
|x|=rj

|w|2.

When j → ∞, we have rj → 0 and thus by assumption,∫
|x|=rj

|w|2 ≤ 2j

r

∫
2−jr<|x|<2−j+1r

|w|2 ≤ 2
(
2−j+1r

)−1
∫
|x|<2−j+1r

|w|2 → 0.

3 Unique continuation property at infinity

To prove Theorem 1.1, we shall make use of a unique continuation property near the origin that
was established by Li and Nirenberg [12, Theorem 10] for smooth solutions without an assumption
on the potential’s growth near the singularity. However, to adapt its proof to our context of L2

weak solutions, considerable modifications are needed in order for its application. It is also crucial
to point out that a specific boundary term involving V in [12] can not be discarded, due to
insufficient information on the blow-up rate of the potential near the origin in [12]. By imposing
the additional assumption (1.1), we have the desired control of singularity for the potential near
the origin when pulling to the origin by the Kelvin transform, so that the aforementioned boundary
term can be managed. For clarification we are compelled to provide the detailed proof below.

Theorem 3.1. Let W ∈ L∞
loc(B1 \ {0}) with W = O( 1

|x|M ) near 0 for some constant M . Assume

further there exists some 0 < r0 < 1 such that W is locally Lipschitz in Br0 \{0} with ∂
∂r
(r2W ) ≤ 0

on 0 < r < r0. Let w ∈ L2
loc(B1 \ {0}) be a weak solution to

−∆w = Ww on B1 \ {0}.

If w vanishes to infinite order in the L2 sense at 0, then w ≡ 0.
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Proof. By Lemma 2.3, we have w ∈ W 2,2
loc (B1) ∩W 2,p

loc (B1 \ {0}) for all p <∞, and

−∆w = Ww on B1.

In particular, w ∈ C1(B1 \ {0}) by Sobolev embedding theorem. Under the polar coordinates
(r, θ),−∆w = Ww is written as

r2wrr + (n− 1)rwr +∆θw = −r2Ww, 0 < r < 1, θ ∈ Sn−1.

Setting r = es, s < 0, then a direct computation gives

ws = wre
s = rwr,

wss = wrre
2s + wre

s = r2wrr + rwr.

Thus we have
wss + (n− 2)ws +∆θw = −e2sWw, s < 0, θ ∈ Sn−1. (3.1)

Now let w = easv with a = −n−2
2
. One can further verify that

ws = aeasv + easvs = eas(av + vs),

wss = aeas(av + vs) + eas(avs + vss) = eas(vss + 2avs + a2v).

Plugging the above into (3.1), after simplification we obtain

vss +∆θv =

(
−e2sW +

(n− 2)2

2

)
v := mv, (3.2)

where m = −e2sW + (n−2)2

2
. By assumption, there exists some s0 < 0 such that

ms = −(e2sW )s = −(r2W )re
s ≥ 0, s < s0. (3.3)

On the other hand, by the assumption of the L2 flatness of w at 0, we have ws(= rwr) and
∇θw vanish to infinite order in the L2 sense at r = 0 by Lemma 2.5. Moreover, since v = r−aw,
one infers that vs = r−aws − av and ∇θv = ra∇θw. Thus vs and ∇θv vanish to infinite order in

the L2 sense at r = 0 by Lemma 2.5 again. Similarly, as m = O
(

1
|x|N

)
near r = 0 by definition,

where N := max{M −2, 0}, we also have |m| 12v vanishes to infinite order in the L2 sense at r = 0.

Thus applying Lemma 2.6 to |vs|+ |∇θv|+ |m 1
2v|, there exists sj → −∞ such that∫

Sn−1

v2s
∣∣
s=sj

+

∫
Sn−1

|∇θv|2
∣∣
s=sj

+

∫
Sn−1

|m|v2
∣∣
s=sj

→ 0. (3.4)

Multiply both sides of (3.2) by 2vs and integrate from sj to s about s and over Sn−1 about θ.
Then ∫

Sn−1

∫ s

sj

2vsvss + 2

∫
Sn−1

∫ s

sj

∆θvvs = 2

∫
Sn−1

∫ s

sj

mvvs (3.5)

For the second term on the left hand, we use Green’s theorem and obtain

2

∫
Sn−1

∫ s

sj

∆θvvs = −2

∫ s

sj

∫
Sn−1

∇θv · ∇θvs = −
∫
Sn−1

∫ s

sj

(|∇θv|2)s

= −
∫
Sn−1

|∇θv|2 +
∫
Sn−1

|∇θv|2
∣∣
s=sj

=

∫
Sn−1

v∆θv +

∫
Sn−1

|∇θv|2
∣∣
s=sj

.
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For the rest of the terms in (3.5), we compute directly to have∫
Sn−1

∫ s

sj

2vsvss =

∫
Sn−1

∫ s

−∞
(v2s)s =

∫
Sn−1

v2s − v2s
∣∣
s=sj

,

2

∫
Sn−1

∫ s

sj

mvvs =

∫
Sn−1

∫ s

sj

(mv2)s −
∫
Sn−1

∫ s

sj

msv
2 =

∫
Sn−1

mv2 −
∫
Sn−1

∫ s

sj

msv
2 −

∫
Sn−1

mv2
∣∣
s=sj

Altogether we infer∫
Sn−1

v2s =−
∫
Sn−1

v∆θv +

∫
Sn−1

mv2 −
∫
Sn−1

∫ s

sj

msv
2

+

(∫
Sn−1

v2s
∣∣
s=sj

−
∫
Sn−1

|∇θv|2
∣∣
s=sj

−
∫
Sn−1

mv2
∣∣
s=sj

)
.

Here the last term
∫
Sn−1 mv

2|s=sj
could potentially be troublesome due to the presence of uncon-

trolled growth ofW in m at r = 0, but seems to have been overlooked in [12]. As seen in (3.4), the
additional assumption W = O( 1

rM
) allows us to eliminate this term as j → ∞. In detail, letting

sj → −∞, and making use of (3.3)-(3.4), we have∫
Sn−1

v2s ≤ −
∫
Sn−1

v∆θv +

∫
Sn−1

mv2. (3.6)

Now we consider

ρ(s) =

∫
Sn−1

v2(s, θ)dθ, s < s0.

We shall prove that
ρ2s ≤ ρρss, s < s0. (3.7)

In fact,

ρs = 2

∫
Sn−1

vvs,

and by (3.2),

ρss = 2

∫
Sn−1

v2s + vvss = 2

∫
Sn−1

v2s + 2

∫
Sn−1

v(−∆θv +mv).

Making use of Hölder inequality and (3.6), we have

ρ2s ≤4

∫
Sn−1

v2
∫
Sn−1

v2s = 4ρ

∫
Sn−1

v2s

≤ρ
(
2

∫
Sn−1

v2s + 2

∫
Sn−1

v(−∆θv) + 2

∫
Sn−1

mv2
)

= ρρss.

(3.7) is proved. In particular, this implies that whenever ρ > 0,

(log ρ)ss ≥ 0. (3.8)

Assume by contradiction that there exists s̄ < s0 such that ρ(s̄) > 0. Let s♯ be the infimum of
all ŝ such that ρ > 0 on the interval (ŝ, s̄). Then by (3.8),

log ρ(s) ≥ log ρ(s̄) +
d

ds
log ρ(s̄)(s− s̄), s♯ < s < s̄. (3.9)

9



In particular, this implies that ρ(s♯) > 0 whenever s♯ is finite, which would violate the choice of
s♯. Thus s♯ = −∞. Namely, ρ > 0 for all s < s̄. Consequently, by (3.9) there exists some C1, C2

such that ρ(s) ≥ C1e
C2s for all s < s̄. Equivalently, for all r < r0 := es̄,∫

Sn−1

v2 ≥ C1r
C2 .

Recalling that w = r−
n−2
2 v, we further have when r << 1,∫

|x|<r

w2 =

∫ r

0

tn−1

∫
Sn−1

w2 =

∫ r

0

tn−1t−n+2

∫
Sn−1

v2 ≥ C1

∫ r

0

t1+C2 ,

which is either infinite or O(r2+C2). This contradicts with the L2 flatness of w at 0. Thus ρ = 0
for all s < s0 and so is w on |x| < es0 . We further apply the classical unique continuation property
for L∞ potentials (see, for instance, [7]) to get w ≡ 0.

Theorem 1.1 is a direct consequence of the above theorem after imposing the Kelvin transform.

Proof of Theorem 1.1: Adopt the Kelvin transform to obtain w andW under the setting in Lemma
2.1. In order to apply Theorem 3.1, we only need to verify that (r2W )r ≤ 0 for 0 < r << 1.
Clearly W is locally Lipschitz on Br0 \ {0} for some r0 > 0. In terms of the polar coordinates
(r, θ),

(r2W )r(r, θ) =

(
V (1

r
, θ)

r2

)
r

= − 2

r3
V

(
1

r
, θ

)
− 1

r4
Vr

(
1

r
, θ

)
=− 1

r2

(
2

r
V

(
1

r
, θ

)
+

1

r2
Vr

(
1

r
, θ

))
.

On the other hand, when r << 1, by assumption

0 ≤ (r2V )r

(
1

r
, θ

)
=

(
2rV + r2Vr

)(1

r
, θ

)
=

2

r
V

(
1

r
, θ

)
+

1

r2
Vr

(
1

r
, θ

)
.

So we have (r2W )r ≤ 0. Theorem 3.1 thus applies to give w = 0 on B1. Then u = 0 outside B1.
That u = 0 on B1 is a direct consequence of the classical unique continuation property with L∞

loc

potentials.

Remark 3.2. An inspection of the proof to Theorem 1.1 indicates that the local Lipschitzian
assumption of V in Theorem 1.1 can be weakened to merely assuming Vr ∈ L∞

loc for r >> 1 in the
polar coordinates (r, θ).

Proof of Corollary 1.2 and Corollary 1.3: Note that every homogeneous function in L∞
loc(Rn\{0})

is automatically Lipschitz along the r direction. In view of Theorem 1.1 and Remark 3.2, we just
need to show that (r2V )r ≥ 0 for Corollary 1.2. Since V (r, θ) = rαV (1, θ) for θ ∈ Sn−1, by a
straight-forward computation we get

(r2V )r(r, θ) = (r2+αV (1, θ))r = (2 + α)rα+1V (1, θ) = (2 + α)rV (r, θ).
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This is always non-negative in either one of the three cases in the corollary. Corollary 1.2 is thus
proved.

Corollary 1.3 is a special case of Corollary 1.2 with α = 0 and V = c2 ≥ 0. Hence we
immediately see that u does not vanish to infinite order in the L2 sense at 0. In other words, there
exists some N > 0, such that limr→∞ rN

∫
|x|>r

|u|2 > 0. Thus limr→∞ rN+1
∫
|x|>r

|u|2 = ∞.

The following two examples show that the unique continuation at infinity in Theorem 1.1 fails
if (1.1) and/or (1.2) is dropped.

Example 1. Given a C2 function ϕ on R+∪{0} such that ϕ(r) = 1 when 0 ≤ r ≤ 1
2
and ϕ(r) = r

when r ≥ 1, let u = e−eϕ(r) on Rn. Then u vanishes to infinite order in the L2 sense at ∞ and is
a weak solution to

−∆u = V u on Rn

with

V := −e2ϕ(r) (ϕ′(r))
2
+

(
ϕ′′(r) + (ϕ′(r))

2
+
n− 1

r
ϕ′(r)

)
eϕ(r).

Clearly, V ∈ L∞
loc(Rn). Note that V = O(e2r) when r > 1.

Example 2. For every ϵ ≥ 2, the function u = e−rϵ vanishes to infinite order in the L2 sense at
∞, and is a weak solution to

−∆u = V u on Rn

with
V := −ϵ2r2ϵ−2 + ((n− 2)ϵ+ ϵ2)rϵ−2 ∈ L∞

loc(Rn).

Then V = O(r2ϵ−2) when r >> 1. Note that a direct computation shows that when r >> 1,

(r2V )′ = −rϵ−1ϵ
(
2ϵ2rϵ − (n− 2)ϵ− ϵ2)

)
) < 0.

On the other hand, it is worth pointing out that there are many functions satisfying the
assumptions for V in Theorem 1.1. Thus the theorem can be readily applied to obtain the unique
continuation property of −∆u = V u at infinity for such potentials.

Example 3. Given any measurable nonnegative function g on Rn such that g = O(|x|M) for some
constant M when x >> 1, let V (r, θ) = 1

r2

∫ r

1
g(r, θ)dr for a.e. (r, θ) in its polar coordinates. Then

V satisfies all the assumptions in Theorem 1.1.

We end the section by providing a simple case of the Landis conjecture when the potential
decays sufficiently near infinity.

Proposition 3.3. Let V ∈ L∞(Rn), n ≥ 3 and V = O( 1
|x|M ) near ∞ for some constant M ≥ 2.

Let u ∈ L2
loc(Rn) be a weak solution to

−∆u = V u on Rn.

If limr→∞ rm
∫
|x|>r

|u|2 = 0 for each m ≥ 0, then u ≡ 0. In particular, if V has compact support,

then u ≡ 0 whenever u vanishes to infinite order in the L2 sense at ∞.

11



Proof. Applying the Kelvin transform as in Lemma 2.1, we have

−∆w = Ww on B1 \ {0}

for w and W defined in (2.2). By Lemma 2.3, w ∈ W 2,2
loc (B1), vanishes to infinite order in the L2

sense at 0, and satisfies −∆w = Ww on B1. On the other hand, whenM > 2, W = O(|x|−4+M) ∈
L

n
2
loc(B1). According to the unique continuation property of [7] for L

n
2 potentials, we see that

w = 0 on B1 and thus u ≡ 0. When M = 2, we shall use the unique continuation property of [14]
for potentials of the form C

|x|2 instead, which completes the proof.

The proof of Proposition 3.3 immediately yields the following unique continuation property for
harmonic functions near infinity.

Corollary 3.4. Suppose u is harmonic on Rn\Br0 for some r0 >> 1 and limr→∞ rm
∫
|x|>r

|u|2 = 0

for each m ≥ 0. Then u ≡ 0 on Rn \ Br0. Namely, if u ̸= 0 somewhere on Rn \ Br0, then there
exists some N ≥ 0 such that limr→∞ rN

∫
|x|>r

|u|2 = ∞.

It is not clear to us but would be desirable to know if the flatness assumption of u at infinity
in Proposition 3.3 could be relaxed to a finite order vanishing at infinity in particular when V
has compact support. On the other hand, we point out that for the truncated domain Rn \ Br0

in Corollary 3.4, the L2 flatness assumption of u at infinity can not be weakened. In fact, the
following simple example gives harmonic functions on Rn \ B1 that vanishes at infinity at any
given order in the L2 sense.

Example 4. Let Pk be a homogeneous harmonic polynomial of degree k ≥ 0 on Rn. Then the

function u = 1
|x|n−2Pk

(
x

|x|2

)
is harmonic on Rn \B1. Note that u is only of O

(
1

|x|k+n−2

)
at ∞. In

particular, for each m ≥ 2k − 4 + n,

lim
r→∞

rm
∫
|x|>r

|u|2 ̸= 0

Proposition 3.3 can be compared with a uniqueness result of Chirka and Rosay [5] for ∂̄, which
states that for V ∈ L∞(R2) with compact support, any solution u to

∂̄u = V u on R2

with limz→∞ u = 0 must vanish identically. We also mention an example of Meshkov in [13]: there
exists a nontrivial function which decays superexponentially at infinity and is a weak solution to
−∆u = V u for some complex-valued V ∈ L∞(R2). Interestingly, in that example V vanishes on
a family of concentric annuli with radii going to infinity.

4 Sign changing property near infinity

Once again, we will use the Kelvin transform to convert the solution behavior at infinity to that
near the origin. As seen in the previous sections, the order of the potential singularity is changed
as a result of the transform, which needs be taken care of in discretion.
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Theorem 4.1. Let W ∈ L∞
loc(B1 \ {0}),W ≥ 0 on B1,

W /∈ L1 and
1

|x|n+2W
∈ L1 (4.1)

near 0. Let w ∈ L1
loc(B1 \ {0}) be a weak solution to

−∆w = Ww on B1 \ {0}, (4.2)

with

w = O

(
1

|x|n−2

)
(4.3)

near 0. If w ≥ 0 (or w ≤ 0) on B1, then w ≡ 0.

We first need the following preparation lemmas to resolute the singularity at 0.

Lemma 4.2. For W and w in Theorem 4.1, one has

Ww ∈ L1
loc(B1).

Proof. Since Ww ∈ L1
loc(B1 \{0}), we only need to show that Ww ∈ L1 near 0. Let ζϵ be a cut-off

function on B1 such that ζϵ = 0 when |x| ≤ ϵ and |x| ≥ 3
4
; ζϵ = 1 when 2ϵ ≤ |x| ≤ 1

2
; |∇kζϵ| ≲ ϵ−k

on ϵ < |x| < 2ϵ, and |∇kζϵ| ≲ 1 on 1
2
< |x| < 3

4
, k ≤ 2.

Since ζ4ϵ is a a testing function for B1 \ {0}, we have by (4.2)∫
B1

−ζ4ϵ∆w =

∫
B1

Wwζ4ϵ . (4.4)

The right hand side is nonnegative since Ww ≥ 0 by assumption. Using Stokes’ theorem, the left
hand side ∫

B1

−ζ4ϵ∆w =

∫
B1

−w∆ζ4ϵ =

∫
ϵ<|x|<2ϵ

−w∆ζ4ϵ +
∫

1
2
<|x|<1

−w∆ζ4ϵ . (4.5)

Firstly, ∣∣∣∣∣
∫

1
2
<|x|<1

−w∆ζ4ϵ

∣∣∣∣∣ ≤ C1 (4.6)

for some constant C1 > 0. By the fact that ∆ζ4ϵ = 4ζ2ϵ (3|∇ζϵ|2 + ζϵ∆ζϵ) and Hölder inequality,∣∣∣∣∫
ϵ<|x|<2ϵ

w∆ζ4ϵ

∣∣∣∣ ≲ ∫
ϵ<|x|<2ϵ

ϵ−2wζ2ϵ ≲
∫
ϵ<|x|<2ϵ

wζ2ϵ
|x|2

≤
(∫

ϵ<|x|<2ϵ

Wwζ4ϵ

) 1
2
(∫

ϵ<|x|<2ϵ

w

|x|4W

) 1
2

.

Note that
w

|x|4W
∈ L1(B 1

2
) (4.7)

by (4.1) and (4.3). Then
(∫

ϵ<|x|<2ϵ
w

|x|4W

) 1
2 ≤ C2 for a constant C2 > 0 and thus

∣∣∣∣∫
ϵ<|x|<2ϵ

w∆ζ4ϵ

∣∣∣∣ ≤ C2

(∫
ϵ<|x|<2ϵ

Wwζ4ϵ

) 1
2

≤ C2

(∫
B1

Wwζ4ϵ

) 1
2

. (4.8)
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Combining (4.4)-(4.8), we have for A :=
(∫

B1
Wwζ4ϵ

) 1
2
,

A2 ≲ C2A+ C1.

This implies A is bounded by a constant dependent only on C1 and C2. Passing ϵ to 0, we have
the desired integrability property for Ww near 0.

Lemma 4.3. For W and w in Theorem 4.1, we have w is a weak solution to

−∆w = Ww on B1.

Proof. In view of Lemma 2.2, we only need to prove that

lim
ϵ→0

ϵ−2

∫
|x|<ϵ

|w| = 0.

Indeed,

ϵ−2

∫
|x|<ϵ

|w| ≤
∫
|x|<ϵ

w

|x|2
≤

(∫
|x|<ϵ

Ww

) 1
2
(∫

|x|<ϵ

w

|x|4W

) 1
2

,

which goes to zero as ϵ→ 0 due to the facts thatWw ∈ L1
loc(B1) in Lemma 4.2 and w

|x|4W ∈ L1
loc(B1)

in (4.7).

Proof of Theorem 4.1: Assume by contradiction that w ̸≡ 0. By Lemma 4.3, we have −∆w =
Ww on B1. In particular, −∆w ≥ 0 on B1. Since w ≥ 0 on B1, by mean-value inequality there
exists some positive number γ0 and a small neighborhood of 0, say, Bϵ, such that w ≥ γ0 almost
everywhere on Bϵ. Noting that W ≥ 0, we further have −∆w ≥ γ0W ≥ 0 on Bϵ. Since W /∈ L1

near 0, ∫
Bϵ

−∆w ≥ γ0

∫
Bϵ

W = ∞.

However, this would contradict with the fact that
∫
Bϵ

−∆w =
∫
Bϵ
Ww, which is finite according

to Lemma 4.2. With w replaced by −w, one can prove the case when w ≤ 0 on B1. The proof is
completed.

Proof of Theorem 1.4 and Corollary 1.5: After performing the Kelvin transform as in Lemma 2.1,
we have by Lemma 2.1 (3) that W defined by (2.2) satisfy the assumption in Theorem 4.1. The
rest of the proof to Theorem 1.4 is then a consequence of Theorem 4.1.

In the setting of Corollary 1.5, one can also directly verify that V satisfies both assumptions
in Theorem 1.4 as long as α > −2 and α ≥ n− 4. Thus Corollary 1.5 follows from Theorem 1.4.

In particular, as a consequence of Corollary 1.5, every non-trivial bounded weak solution to

−∆u =
c2

|x|α
u on Rn

must change sign near infinity if α > −2 for n ≤ 2, or α ≥ n− 4 for n ≥ 3.

As will be seen immediately, Theorem 4.1 only allows us to prove Theorem 1.6 when the
dimension n is small. To cover the case of higher dimensions, we shall need the following variant
of Kato’s inequality:
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Lemma 4.4. [1, 8] let w ∈ L1
loc(Ω), f ∈ L1

loc(Ω) and −∆w ≥ f on Ω in the distribution sense.
Let ϕ : R → R be a Lipschitz concave function with 0 ≤ ϕ′ ≤ C on R. Then ψ := ϕ ◦ w ∈ L1

loc(Ω)
and

−∆ψ ≥ ψ′f on Ω

in the distribution sense.

Proof of Theorem 1.6: Repeating a similar procedure as in Lemma 2.1 with V ≡ c2, it boils down
to prove for W := c2

|x|4 on B1, every weak solution to −∆w = Ww on B1 \ {0} must change sign
in every neighborhood of 0. By replacing w by −w, this is further reduced to showing that every
nonnegative weak solution to −∆w = Ww on B1 \ {0} must be identically zero.

If n ≤ 4, clearly W ∈ L∞
loc(B1 \ {0}),W ≥ 0,W /∈ L1 near 0, and 1

|x|n+2W
∈ L1(B1). Moreover

w(x) = 1
|x|n−2u(

x
|x|2 ) = O( 1

|x|n−2 ) near 0 by the boundedness assumption of u. If w ≥ 0, then one
can apply Theorem 4.1 to conclude that w ≡ 0.

For n ≥ 5, assume by contradiction that w ̸≡ 0 on B1. Since w ≥ 0 and −∆w ≥ 0 on B1,
we have w ≥ γ0 almost everywhere for some positive γ0 on a small neighborhood Bϵ of 0. Let
ϕ : R → R be the function such that ϕ(s) = 0 when s ≤ γ0; ϕ(s) = log 1

γ0
− log 1

s
when s ≥ γ0. It

is straight forward to verify that ϕ satisfies the assumption in Kato’s inequality. Let ψ := ϕ ◦ w.
Then

0 ≤ ψ ≤ log
1

γ0
on B1, (4.9)

and

ψ = log
1

γ0
− log

1

w
on Bϵ.

By Kato’s inequality,

−∆ψ ≥ ψ′Ww =
c2

|x|4
on Bϵ.

On the other hand, note that ∆
(

1
|x|2

)
= 8−2n

|x|4 . So −∆ψ ≥ ∆
(

c2

(8−2n)|x|2

)
on Bϵ, or equivalently,

−∆

(
ψ − c2

(2n− 8)|x|2

)
≥ 0 on Bϵ.

Due to the fact that ψ − c2

(2n−8)|x|2 ∈ L1(Bϵ), there exists some constant β > 0 such that

ψ ≥ c2

(2n− 8)|x|2
− β on B ϵ

2
.

However, 2n−8 > 0 when n ≥ 5, which would imply that ψ is unbounded from above, contradicting
(4.9).
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