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Abstract

In this paper, we establish a Residue-type phenomenon for the fundamental solution
of the Laplacian. With the aid of the formula, we derive a higher order derivative formula
for the Newtonian potential and its Hölder estimates with a gain of two derivatives. The
estimates allow us to obtain the solvability of a type of higher order nonlinear Poisson
system.

1 Introduction and the main theorems

Denote by BR the ball of radius R centered at 0 in Rn, and by Γ(x) := 1
(2−n)ωn|x|n−2 the

fundamental solution of the Laplacian in Rn \ {0}, n ≥ 3, where ωn is the surface area of the
unit sphere in Rn. Motivated by the classical Residue theorem for holomorphic functions on
the complex plane, we establish for the fundamental solution of the Laplacian an analogous
phenomenon which seems to have been overlooked in the literature. In detail, denote by Pk the
space of polynomials of degree k restricted in BR, and by Z+ the set of nonnegative integers.
We have, making use of zonal spherical harmonics, the following Residue-type theorem for Γ.

Theorem 1.1. For any f ∈ Pk with k ∈ Z+,∫
∂BR

Γ(· − y)f(y)dσy ∈ Pk.

Here dσy is the surface area element of ∂BR.

The Residue-type theorem allows us to obtain the explicit higher order derivative formula for
the Newtonian potential on BR. Recall for any integrable function f , the Newtonian potential
on BR is defined by N (f) :=

∫
BR

Γ(· − y)f(y)dy = Γ ∗ f.
∗Supported in part by National Science Foundation DMS-1501024.
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Theorem 1.2. Let f ∈ Ck,α(BR) with k ∈ Z+, 0 < α < 1, and let β be a multi-index with
|β| = k + 2. Then DβN (f)(x) exists for x ∈ BR. Moreover, for x ∈ BR,

DβN (f)(x) =

∫
BR

Dβ
xΓ(x− y)

(
f(y)− T xk (f)(y)

)
dy −

∑
|µ|=k

cµD
µf(x),

where T xk (f) is the k-th order power series expansion of f at x and cµ is some constant dependent
only on µ and n.

When k = 0, the theorem is reduced to the classical second order derivative formula for the
Newtonian potential (cf. [Fr]). We note that different from the explicit derivative formula as in
[GT], the formula in Theorem 1.2 does not require to shrink the domain, and hence allows us
to derive a uniform Hölder estimates of (k+2)-th order derivatives for the Newtonian potential
on the function space Ck,α. Here the Hölder norm ‖ · ‖α is in the sense of (3) whose definition
is postponed till Section 2.

Theorem 1.3. If f ∈ Ck,α(BR) with k ∈ Z+, 0 < α < 1, then N (f) ∈ Ck+2,α(BR). Moreover,
for any multi-index β with |β| = k + 2,

‖ DβN (f) ‖α≤ C
∑
|γ|=k

‖ Dγf ‖α,

where C is a constant dependent only on k, α and n. In particular, C is independent of R.

Consequently, we investigate the existence of solutions u = (u1, . . . , uN) to the following
nonlinear system in Rn, n ≥ 3:

4mu(x) = a(x, u,∇u, . . . ,∇2mu). (1)

Here 1 ≤ m ∈ Z+, ∇ju represents all j-th order partial derivatives of the components of u,
and a := (a1, . . . , aN) is a vector-valued function on x and the derivatives of u up to order
2m. Label the variables of a by (p−1, p0, p1, . . . , p2m), with p−1 representing the position of the
variable x and pj representing the position of ∇ju, 0 ≤ j ≤ m.

The solvability for linear equations was widely explored since the counterexample of Hans
Lewy [Lw] in 1957. See [Ho1], [NT], [Mo], [Ho2], [BF], [Ln], [De] and the references therein.
Unlike linear equations, there is in general no systematic theory about the solvability for non-
linear equations or systems. Recently, Pan investigated the existence problem to (1) through
Cauchy-Riemann operator in the case when n = 2 in [Pan1] and when m = 1 for general n ≥ 3
in [Pan2].

We call a family of vectors {cj}0≤j≤2m−1 an appropriate jet if there exists a vector-valued
function such that for each 0 ≤ j ≤ 2m−1, cj is the vector whose components consist of all the
j-th order derivatives of the function at a point. Namely, {cj}0≤j≤2m−1 satisfies the necessary
compatibility conditions being the derivatives up to order 2m−1 of some vector-valued function
at a point. A vector-valued function u of class Ck is said to be of vanishing order m (m ≤ k)
at 0 if ∇ju(0) = 0 for all 0 ≤ j ≤ m−1 and ∇mu(0) 6= 0. Making use of Theorem 1.3, especially
the fact that the estimate is independent of R, we obtain the solvability for the following case.
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Theorem 1.4. Let a ∈ C1,α(0 < α < 1). For any given appropriate jet {cj}0≤j≤2m−1, there
exist infinitely many solutions of class C2m,α satisfying

4mu(x) = a(x, u,∇u, . . . ,∇2m−1u);

u(0) = c0;

∇u(0) = c1;

· · ·
∇2m−1u(0) = c2m−1

(2)

in some small neighborhood of 0. Moreover, all those solutions are of vanishing order at most
2m and not radially symmetric.

Since the solutions are not radially symmetric, they are not obtained by, if possible, reducing
the system into an ODE system with respect to the radial variable r = |x|. This phenomenon
can be compared with the case in [GNN], where there are only radial solutions satisfying an
additional assumption.

We note that, due to the flexibility of a, Theorem 1.4 can be used to construct local m-
harmonic maps from Euclidean space to any given Riemannian manifold. The resulting image
in the target manifold can be either smooth or singular, depending on the given jet.

When a is dependent also on the p2m variable, we obtain the following existence theorem
with some additional assumption on a.

Theorem 1.5. If a ∈ C2 and a(0) = ∇p2ma(0) = ∇2
p2m

a(0) = 0, then there exist infinitely many
solutions in the class of C2m,α (0 < α < 1) to the system

4mu(x) = a(x, u,∇u, . . . ,∇2mu)

in some small neighborhood of 0. Moreover, all those solutions are of vanishing order 2m and
not radially symmetric.

On the other hand, when the system (1) is autonomous, i.e., independent of the variable x,
then there exist solutions on arbitrarily large domains in the following sense.

Theorem 1.6. If a ∈ C2 and a(0) = ∇a(0) = 0, then for any R > 0, there exist infinitely
many solutions in the class of C2m,α to the autonomous system

4mu = a(u,∇u, . . . ,∇2mu)

in {x ∈ Rn : |x| < R}. Moreover, all those solutions are of vanishing order 2m and are not
radially symmetric.

Although the autonomous system in Theorem 1.6 is itself translation invariant, none of the
solutions is obtained by trivial translation of the radial solution, from the proof of Theorem
1.6. On the other hand, the regularity of a in Theorem 1.6 can be reduced to C1,α if a is in
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addition independent of ∇2mu variable. This fact will be seen from the proof of Theorem 1.5
and 1.6 in Section 4 and will be used in some of the examples in Section 5.

The rest of the paper is outlined as follows. The notations for the function spaces with the
corresponding norms and a preparation lemma are given in Section 2. In Section 3, we prove
Theorem 1.1. The higher order derivative formula for the Newtonian potential along the line
of [GT] is derived in Section 4. Restricting on BR and applying the residue-type phenomenon,
we obtain Theorem 1.2. The corresponding Hölder estimates is proved in Section 5. Section
6 is devoted to the construction of the contraction map with the necessary estimates for the
application of the fixed point theorem. After a delicate chasing of the parameters, we show
the main theorems hold in Section 7, following the idea of [Pan2]. Examples and remarks
concerning solvability of the nonlinear system are discussed in the last section. In Appendix,
we compute an interesting integral concerning the fundamental solution over the sphere, making
use of Gegenbauer polynomials. This approach provides a practical way to compute the explicit
values of all the residue-type formulas for the fundamental solution. Our approach throughout
the whole paper is purely elementary.

2 Notations and an elementary lemma

Denote BR := {x ∈ Rn : |x| < R} and ∂BR := {x ∈ Rn : |x| = R}, n ≥ 3. Here | · | is
the standard Euclidean norm. We consider the following function spaces and norms over BR

following [Pan2].
Let C(BR) be the set of continuous functions in BR and Cα(BR) the Hölder space in BR

with order α. For f ∈ Cα(BR), the norm of f is defined by

‖ f ‖α:=‖ f ‖ +RαHα[f ], (3)

where

‖ f ‖:= sup{|f(x)| : x ∈ BR};

Hα[f ] := sup
{ |f(x)− f(x′)|
|x− x′|α

: x, x′ ∈ BR, x 6= x′
}
.

We note when f ∈ Cα(BR), the trivial unique extension of f onto B̄R is identified as an element
in Cα(B̄R). Cα(BR) is then a Banach space under the norm ‖ · ‖α.

For 0 < k ∈ Z+, denote by Ck(BR) the collection of all functions in BR whose partial
derivatives exist and are continuous up to order k. Denote by‖ · ‖Ck the corresponding norm,
where

‖f‖Ck := sup{‖ Dβf ‖: |β| = k}
if ‖f‖Ck is finite.
Ck,α(BR) is the subset of Ck(BR) whose k-th order derivatives belong to Cα(BR). For

any multi-index β = (β1, . . . , βn) with nonnegative entries, define |β| :=
∑n

j=1 βj and β! :=
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β1! · · · βn!. Given any f ∈ Ck(BR), we represent Dβf := ∂β11 ∂
β2
2 · · · ∂βnn f with ∂j the partial

derivative with respect to the xj variables. If f ∈ Ck,α(BR), we define the semi-norm

‖ f ‖(k)
α := sup{‖ Dβf ‖α: |β| = k}.

The notation and norm ‖ · ‖(k)
α are naturally extended to vector-valued functions by defining

‖ (f1, . . . , fN) ‖(k)
α := sup1≤j≤N ‖ fj ‖

(k)
α .

Of special interest, we introduce the subset of Ck,α(BR) as follows.

Ck,α0 (BR) := {f ∈ Ck,α(BR) : Dβf(0) = 0, |β| ≤ k − 1}.

The following two preparation lemmas are elementary but essential in deriving the desired
estimates in the rest of the paper. The original proof of the lemmas can be found in [Pan2].
For the convenience of the reader, we enclose the details as follows.

Lemma 2.1. If f ∈ Ck,α(BR), then for any x, x′ ∈ BR and 0 < α < 1,

|f(x′)− T xk (f)(x′)| ≤ |x− x′|k+α
( ∑
|µ|=k

Hα[Dµf ]
)
.

Here T xk (f)(·) is the k-th order power series expansion of f at x.

Proof of Lemma 2.1: The proof is based on the following identity in calculus. Indeed, for
x, x′ ∈ BR,

f(x′)− T xk (f)(x′)

=

∫ 1

0

∫ tk−1

0

· · ·
∫ t1

0

dk

dtk
(
f(tx′ + (1− t)x)

)
dtdt1 . . . dtk−1 −

∑
|µ|=k

1

µ!
Dµf(x)(x′ − x)µ

=

∫ 1

0

∫ tk−1

0

· · ·
∫ t1

0

∑
|µ|=k

(
(Dµf)(tx′ + (1− t)x)− (Dµf)(x)

)
(x′ − x)µdtdt1 . . . dtk−1.

Hence

|f(x′)− T xk (f)(x′)| ≤
∫ 1

0

∫ tk−1

0

· · ·
∫ t1

0

∑
|µ|=k

Hα[Dµf ]|x′ − x|α|x′ − x|µdtdt1 . . . dtk−1

≤|x− x′|k+α
( ∑
|µ|=k

Hα[Dµf ]
)
.

Lemma 2.2. If f ∈ Ck,α0 (BR), then for any l < k and 0 ≤ α ≤ 1,

‖ f ‖(l)
α ≤ CRk−l ‖ f ‖(k)

α ,

where C depends only on k and n.
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Proof of Lemma 2.2: If f ∈ Ck,α0 (BR) and β with |β| = l < k, Dβf ∈ Ck−l,α0 (BR). For any
x ∈ BR,

Dβf(x) =Dβf(x)− T 0
k−l−1D

βf(x)

=
∑
|µ|=k−l

∫ 1

0

∫ tk−l−1

0

· · ·
∫ t1

0

(DµDβf)(tx)xµdtdt1 . . . dtk−l−1

=
∑
|µ|=k−l

Fµ(x)xµ,

where Fµ :=
∫ 1

0

∫ tk−l−1

0
· · ·
∫ t1

0
(DµDβf)(t·)dtdt1 . . . dtk−l−1. Note that ‖ Fµ ‖α≤‖ f ‖(k)

α .
Hence

‖ Dβf ‖α≤
∑
|µ|=k−l

‖ Fµ ‖α · ‖ xµ ‖α≤ CRk−l ‖ f ‖(k)
α .

Ck,α0 (BR) (0 < α < 1) thus becomes a Banach space under the norm ‖ · ‖(k)
α , as a consequence

of Lemma 2.2.
From now on and throughout the rest of the paper, we use C to represent any positive

constant number dependent only on n, α,m, k and N , where 0 < α < 1, n ≥ 3 and N ≥ 1.
Especially, C is independent of R.

3 The Residue-type theorem for the fundamental solu-

tion of the Laplacian in Rn

In one complex variable, the Residue theorem implies, given any holomorphic function f defined
in Ω ⊂ C with B̄R ⊂ Ω, and for any z ∈ BR,∫

|ξ|=R

f(ξ)

ξ − z
dξ = 2πif(z),

Here 1
z

is the Cauchy kernel for the ∂̄ operator in C. It is also related to the first derivative
of the fundamental solution of the Laplacian in R2. As a special case, if f is a holomorphic
polynomial of degree k in Ω, then for z ∈ BR,

∫
|ξ|=R

f(ξ)
ξ−z dξ is a polynomial of the same degree.

Theorem 1.1 in this sense serves as a suitable substitute of the Residue theorem in Rn.
The proof of Theorem 1.1 makes use of zonal spherical harmonics Z

(l)
x and their reproducing

properties for spherical harmonics. In particular, let Hl be the set of all spherical harmonics of
degree l, then for any f ∈ Hl and x ∈ B1,

f(x) =

∫
∂B1

Z(l)
x (y)f(y)dσy.
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Moreover, if f ∈ Hk with l 6= k, then for x ∈ B1,

0 =

∫
∂B1

Z(l)
x (y)f(y)dσy.

Moreover, denote by Phk the space of all homogeneous polynomials of degree k restricted in
BR. For any f ∈ Phk , there exist Pj’s, some homogenous harmonic polynomials of degree j,
such that for x ∈ BR,

f(x) = Pk(x) + |x|2Pk−2(x) + · · ·+ |x|kP0(x), when k is even, (4)

and
f(x) = Pk(x) + |x|2Pk−2(x) + · · ·+ |x|k−1P1(x), when k is odd. (5)

Note Pj|∂B1 ∈ Hj. See [SW] for more details.
We are now in a position to prove the residue-type Theorem 1.1 for the fundamental solution

of the Laplacian in Rn.

Proof of Theorem 1.1: Without loss of generality, we assume f is a monomial of degree k.
We also assume that R = 1. This is due to the following simple fact that for any f ∈ Phk and
x ∈ BR, ∫

∂BR

Γ(x− y)f(y)dσy = Rk+1

∫
∂B1

Γ(
x

R
− y)f(y)dσy.

Under the zonal spherical harmonics, we have when x ∈ B1 \ {0},

Γ(x− y) =
∞∑
l=0

Cn,l
|x|l

|y|n+k−2
Z

(l)
x
|x|

(
y

|y|
),

where Cn,l = 2l+n−2
(n−2)ωn

. Letting y ∈ ∂B1, the above expression for x ∈ B1 \ {0} simplifies as

Γ(x− y) =
∞∑
l=0

Cn,l|x|lZ(l)
x
|x|

(y). (6)

On the other hand, since f ∈ Phk , letting y ∈ ∂B1 and making use of (5), one has when k
is odd,

f(y) = Pk(y) + Pk−2(y) + · · ·+ P1(y) (7)

for some harmonic spherics Pj ∈ Hj. Therefore, combining (6) and (7) together with the
reproducing property of the zonal spherical harmonics, we have for x ∈ B1 \ {0},∫

∂B1

Γ(x− y)f(y)dσy =

∫
∂B1

( ∞∑
l=0

Cn,l|x|lZ(l)
x
|x|

(y)

)(
Pk(y) + Pk−2(y) + · · ·+ P1(y)

)
dσy

= Cn,k|x|kPk(
x

|x|
) + Cn,k−2|x|k−2Pk−2(

x

|x|
) + · · ·+ Cn,1|x|P1(

x

|x|
)

= Cn,kPk(x) + Cn,k−2Pk−2(x) + · · ·+ Cn,1P1(x) ∈ Pk.
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The formula extends automatically to x = 0 for the sake of continuity on both sides at 0. The
case when k is even can be treated similarly and is omitted here.

It is not clear to us whether the Residue-type phenomenon is true on general domains due
to a lack of symmetry of their boundaries. On the other hand, despite of the constructive proof
of the Residue-type formula in Theorem 1.1 for the fundamental solution of the Laplacian, the
integral can actually be computed directly. See Appendix for a computation of the formula
when k = 1. The same method could practically be used for general k > 1.

As immediate consequences of Theorem 1.1, we obtain the following two corollaries.

Corollary 3.1. For any f ∈ Pk and any multi-index β and x ∈ BR,∫
∂BR

Dβ
xΓ(x− y)f(y)dσy =

{
0 when |β| ≥ k + 1;
C(f)R when |β| = k.

Here C(f) is some constant dependent on f . In particular, C(f) is independent of R.

Proof of Corollary 3.2: We only need to show C(f) is independent of R for any monomial
f of degree k when |β| = k. Indeed, for x ∈ BR,∫

∂BR

Dβ
xΓ(x− y)f(y)dσy =Dβ

x

∫
∂BR

Γ(x− y)f(y)dσy

=R1+kDβ

∫
∂B1

Γ(
x

R
− y)f(y)dσy.

According to Theorem 1.1,
∫
∂B1

Γ( x
R
− y)f(y)dσy is a polynomial of degree k for x ∈ BR.

Write
∫
∂B1

Γ( x
R
−y)f(y)dσy = Pk(

x
R

)+Rk−1( x
R

) for some homogeneous polynomial Pk of degree
k and another polynomial Rk−1 of degree k − 1. Hence for x ∈ BR,∫

∂BR

Dβ
xΓ(x− y)f(y)dσy =R1+kDβ

(
Pk(

x

R
) +Rk−1(

x

R
)
)

=R1+kDβPk(
x

R
)

=RDβPk(x) = C(f)R

with C(f) = DβPk.

Corollary 3.2. For any f ∈ Pk and any multi-index β with |β| ≥ k + 2,∫
BR\Bε(z)

Dβ
xΓ(x− y)f(y)dy = 0, (8)

when x ∈ Bε(z) ⊂ BR. Here Bε(z) is the ball centered at z with radius ε.
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Proof of Corollary 3.2: Write β = (β1, . . . , βn). Without loss of generality, assume R = 1,
β1 > 0 and f is a monomial of degree k. Moreover we write β′ = (β1 − 1, . . . , βn). Hence
applying Stokes’ Theorem on Dβ′Γ(x− y)f(y) over the domain BR \Bε(z), one has∫

B1\Bε(z)
Dβ
yΓ(y − x)f(y)dy

=−
∫
B1\Bε(z)

Dβ′

y Γ(y − x)∂1f(y)dy +

∫
∂B1

Dβ′

y Γ(y − x)f(y)y1dσy

−
∫
∂Bε(z)

Dβ′

y Γ(y − x)f(y)
y1 − z1

|y − z|
dσy.

(9)

Write I :=
∫
∂B1

Dβ′
y Γ(y − x)f(y)y1dσy and II :=

∫
∂Bε(z)

Dβ′
y Γ(y − x)f(y)y1−z1|y−z| dσy. We show

next that I = II in B1 and therefore∫
B1\Bε(z)

Dβ
yΓ(y − x)f(y)dy = −

∫
B1\Bε(z)

Dβ′

y Γ(y − x)∂1f(y)dy. (10)

First, after a change of coordinates by letting y = z + ετ , II is computed as follows.

II =ε2−|β|
∫
∂B1

Dβ′

y Γ(
z − x
ε

+ τ)f(z + ετ)τ1dστ

=ε2−|β|
∫
∂B1

Dβ′

y Γ(
z − x
ε

+ τ)
(
f(ετ) + Pk−1(τ)

)
τ1dστ

=ε2−|β|+k
∫
∂B1

Dβ′

y Γ(
z − x
ε

+ τ)f(τ)τ1dστ .

(11)

Here Pk−1(·) is some polynomial of degree k − 1 such that f(z + ετ) = f(ετ) + Pk−1(τ). The
last identity is due to the fact that f(ετ) = εkf(τ), together with an application of Corollary
3.1 onto Pk−1(τ)τ1.

We divide the proof of (10) into two cases. When |β| ≥ k+ 3 and hence |β′| ≥ k+ 2, I and
II are both zero because of Corollary 3.1 and we are done. When |β| = k + 2 so |β′| = k + 1,
I is a constant in x ∈ B1 dependent only on the degree k + 1 polynomial f(y)y1 by Corollary
3.1. On the other hand, for II, (11) is further simplified as

II =

∫
∂B1

Dβ′

y Γ(τ +
z − x
ε

)f(τ)τ1dστ ,

which by Corollary 3.1 again is the same constant. Therefore I = II when |β| ≥ k + 2 and
hence (10) holds.
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Now applying the induction process on (10), we get for x ∈ B1,∫
B1\Bε(z)

Dβ
yΓ(y − x)f(y)dy =−

∫
B1\Bε(z)

Dβ′

y Γ(y − x)∂1f(y)dy

= · · ·

=C(f)

∫
B1\Bε(z)

Dµ
yΓ(y − x)dy

=0.

Here µ is some multi-index with |µ| ≥ 2 and C(f) is some constant dependent only on f and
β.

We briefly note that by Corollary 3.2, the principal value ofDβΓ∗f (: = limε→0

∫
Rn\Bε(x)

DβΓ(x−
y)f(y)dy) is well defined in BR whenever f ∈ Ck,α(BR). Moreover, for x ∈ BR,

p.v.(DβΓ ∗ f)(x) =

∫
BR

Dβ
xΓ(x− y)

(
f(y)− T xk (f)(y)

)
dy.

4 The higher order derivative formula of the Newtonian

potential

Due to the nonintegrability of the fundamental solution of the Laplacian after differentiation
more than once, the second order derivatives of the Newtonian potential becomes a distribution.
However, when the function space is regular enough, such as Cα, the Newtonian potential is
twice differentiable. See Lemma 4.4 in [GT] and references therein.

We first compute the higher order derivatives of the Newtonian potential on general domains
following the idea of [GT]. Let Ω ⊂ Rn be a smooth bounded open set. The Newtonian potential
over Ω is denoted accordingly by

NΩ(f) :=

∫
Ω

Γ(· − y)f(y)dy

for any given integrable function f in Ω.

Definition 4.1. Given two multi-indices β and µ, and j with 1 ≤ j ≤ n, we define for x ∈ Ω,

IΩ(β, µ, j)(x) :=

∫
∂Ω

Dβ
xΓ(x− y)(y − x)µνjdσy,

where dσy is the surface area element of ∂Ω with the unit outer normal vector (ν1, . . . , νn).

It is clear to see that IΩ(β, µ, j) ∈ C∞(Ω).
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The following notations will be adopted throughout the rest of the paper. Unless otherwise
indicated, we always regard derivatives inside the integration as derivatives with respect to y
variables. For instance, inside an integral, ∂1Γ(x− y) := ∂(Γ(x−y))

∂y1
while ∂x1Γ(x− y) := ∂Γ(x−y)

∂x1
.

Given any two multi-indices β = (β1, . . . , βn) and µ = (µ1, . . . , µn), we say β < µ if βj ≤ µj for
each 1 ≤ j ≤ n and |β| < |µ|. Moreover, we define µ− β := (µ1 − β1, · · · , µn − βn) if β < µ. If
in addition |µ| = |β|+ 1 with ∂jD

β = Dµ for some 1 ≤ j ≤ n, we write µ− β = j.

Definition 4.2. Given a multi-index β, we call {β(j)}kj=1 a continuously increasing nesting

of length k for β if |β(j)| = j for 1 ≤ j ≤ k and β(j) < β(j+1) ≤ β for 1 ≤ j ≤ k − 1. Given
two multi-indices γ and γ′, we say γ′ is the dual of γ with respect to β if Dβ = DγDγ′.

Proposition 4.3. Let β be a multi-index with |β| = k + 2. Let {β(j)} be a continuously
increasing nesting of length k + 2 for β and let β(j)′ be the dual of β(j) with respect to β for
1 ≤ j ≤ k + 2. Then given a bounded and locally Ck,α function f in Ω and for any x ∈ Ω,

DβNΩ(f)(x) =

∫
Ω

Dβ
xΓ(x− y)

(
f(y)− T xk (f)(y)

)
dy

−
k+2∑
j=2

Dβ(j)′( ∑
|µ|=j−2

Dµf(x)

µ!
IΩ(β(j−1), µ, β(j) − β(j−1))(x)

)
.

(12)

Here T xk (f) is the k-th order power series expansion of f at x.

Proof of Proposition 4.3: The proposition is proved by induction on k. When k = 0, the
theorem reduces to the case in [GT]. Fix x ∈ Ω and assume (12) is true for k = k0 ≥ 0, i.e.,
for any f ∈ Ck0,α and β with |β| = k0 + 2,

DβNΩ(f)(x) =

∫
Ω

Dβ
xΓ(x− y)

(
f(y)− T xk0(f)(y)

)
dy

−
k0+2∑
j=2

Dβ(j)′( ∑
|µ|=j−2

Dµf(x)

µ!
IΩ(β(j−1), µ, β(j) − β(j−1))(x)

)
.

(13)

We want to show for any β with |β| = k0 + 3 and f ∈ Ck0+1,α,

DβNΩ(f)(x) =

∫
Ω

Dβ
xΓ(x− y)

(
f(y)− T xk0+1(f)(y)

)
dy

−
k0+3∑
j=2

Dβ(j)′( ∑
|µ|=j−2

Dµf(x)

µ!
IΩ(β(j−1), µ, β(j) − β(j−1))(x)

)
.

(14)

Without loss of generality, assume Dβ = ∂1D
β(k0+2)

with |β(k0+2)| = k0 + 2. Choose positive

11



ε ≤ dist{x,∂Ω}
2

and let

vε(x) :=

∫
Ω

Dβ(k0+2)

x Γ(x− y)ηε(x− y)
(
f(y)− T xk0(f)(y)

)
dy

−
k0+2∑
j=2

Dβ(k0+2)−β(j)( ∑
|µ|=j−2

Dµf(x)

µ!
IΩ(β(j−1), µ, β(j) − β(j−1))(x)

)
,

where ηε(x − y) = η( |x−y|
ε

) with η some smooth increasing function such that η(t) = 0 when

t ≤ 1 and η(t) = 1 when t ≥ 2. When ε → 0, vε(x) → Dβ(k0+2)NΩ(f)(x) for all x ∈ Ω by
induction.

Now compute

∂1vε(x) =−
∫

Ω

∂1

(
Dβ(k0+2)

x Γ(x− y)ηε(x− y)
)(
f(y)− T xk0(f)(y)

)
dy

+

∫
Ω

Dβ(k0+2)

x Γ(x− y)ηε(x− y)∂x1
(
f(y)− T xk0(f)(y)

)
dy

− ∂1

[ k0+2∑
j=2

Dβ(k0+2)−β(j)( ∑
|µ|=j−2

Dµf(x)

µ!
IΩ(β(j−1), µ, β(j) − β(j−1))(x)

)]
=A+B −

k0+2∑
j=2

Dβ(j)′( ∑
|µ|=j−2

Dµf(x)

µ!
IΩ(β(j−1), µ, β(j) − β(j−1))(x)

)
.

(15)

Here A := −
∫

Ω
∂1

(
Dβ(k0+2)

x Γ(x − y)ηε(x − y)
)(
f(y) − T xk0(f)(y)

)
dy and B :=

∫
Ω
Dβ(k0+2)

x Γ(x −
y)ηε(x− y)∂x1

(
f(y)− T xk0(f)(y)

)
dy. We will show as ε→ 0,

A+B →
∫

Ω′
Dβ
xΓ(x− y)

(
f(y)− T xk0+1(f)(y)

)
dy

−
∑

|µ|=k0+1

Dµf(x)

µ!
IΩ′(β

(k0+2), µ, β(k0+3) − β(k0+2))(x).
(16)

Then (15) gives

∂1vε(x)→
∫

Ω

Dβ
xΓ(x− y)

(
f(y)− T xk0+1(f)(y)

)
dy

−
k0+3∑
j=2

Dβ(j)′( ∑
|µ|=j−2

Dµf(x)

µ!
IΩ(β(j−1), µ, β(j) − β(j−1))(x)

)
.

and (14) is concluded.
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To prove (16), firstly

A =−
∫

Ω

∂1

(
Dβ(k0+2)

x Γ(x− y)ηε(x− y)
)(
f(y)− T xk0+1(f)(y)

)
dy

−
∑

|µ|=k0+1

Dµf(x)

µ!

∫
Ω

∂1

(
Dβ(k0+2)

x Γ(x− y)ηε(x− y)
)
(y − x)µdy.

Applying Stokes’ Theorem to the second term of the above expression, we then have

A =−
∫

Ω

∂1

(
Dβ(k0+2)

x Γ(x− y)ηε(x− y)
)(
f(y)− T xk0+1(f)(y)

)
dy

−
∑

|µ|=k0+1

Dµf(x)

µ!

∫
∂Ω

Dβ(k0+2)

x Γ(x− y)ηε(x− y)(y − x)µν1dσy

+
∑

|µ|=k0+1

Dµf(x)

µ!

∫
Ω

Dβ(k0+2)

x Γ(x− y)ηε(x− y)∂1(y − x)µdy.

On the other hand,

B =−
∫

Ω

Dβ(k0+2)

x Γ(x− y)ηε(x− y)∂x1
(
T xk0(f)(y)

)
dy.

Therefore,

A+B =−
∫

Ω

∂1

(
Dβ(k0+2)

x Γ(x− y)ηε(x− y)
)(
f(y)− T xk0+1(f)(y)

)
dy

−
∑

|µ|=k0+1

Dµf(x)

µ!

∫
∂Ω

Dβ(k0+2)

x Γ(x− y)ηε(x− y)(y − x)µν1dσy

+

∫
Ω

Dβ(k0+2)

x Γ(x− y)ηε(x− y)
[ ∑
|µ|=k0+1

Dµf(x)

µ!
∂1(y − x)µ − ∂x1

(
T xk0(f)(y)

)]
dy

=I + II + III.

As ε→ 0,

I →
∫

Ω

Dβ
xΓ(x− y)

(
f(y)− T xk0+1(f)(y)

)
dy

II →−
∑

|µ|=k0+1

Dµf(x)

µ!

∫
∂Ω

Dβ(k0+2)

x Γ(x− y)(y − x)µν1dσy

= −
∑

|µ|=k0+1

Dµf(x)

µ!
IΩ(β(k0+2), µ, 1)(x).

(17)
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For III, notice T xk0(f)(y) =
∑
|µ|≤k0

Dµf(x)(y−x)µ

µ!
, so

∂x1
(
T xk0(f)(y)

)
=
∑
|µ|≤k0

∂1D
µf(x)(y − x)µ

µ!
+
∑
|µ|≤k0

Dµf(x)∂x1(y − x)µ

µ!
.

One also observes the following identities:∑
|µ|≤k0

∂1D
µf(x)(y − x)µ

µ!
=

∑
|µ|=k0+1

Dµf(x)

µ!
∂1(y − x)µ +

∑
|µ|≤k0−1

∂1D
µf(x)(y − x)µ

µ!
,

∑
|µ|≤k0

Dµf(x)∂x1(y − x)µ

µ!
=−

∑
|µ|≤k0−1

∂1D
µf(x)(y − x)µ

µ!
.

Hence ∑
|µ|=k0+1

Dµf(x)

µ!
∂1(y − x)µ − ∂x1

(
T xk0(f)(y)

)
= 0,

and
III = 0. (18)

Combining (17) and (18), (16) is thus proved.

Restricting on BR, the higher order derivative formula of the Newtonian potential can be
simplified in a fashion that the global Hölder estimates can be achieved as in the next section.
The approach is motivated by the following global formula and estimate for the second order
derivative of the Newtonian potential in [Fr].

Theorem 4.4. [Fr] Let f ∈ Cα(BR). Then for any x ∈ BR,

∂i∂jN (f)(x) =

∫
BR

∂xi∂xjΓ(x− y)(f(y)− f(x))dy − δij
n
f(x).

Moreover, for all f ∈ Cα(BR),
‖ N (f) ‖(2)

α ≤ C ‖ f ‖α .

When n = 2, [Pan1] derived the derivative formula making use of complex analysis for the
higher order derivatives of the Newtonian potential. In light of Theorem 4.4, we shall state the
following higher order derivative formula of the Newtonian potential on BR when n ≥ 3.

Theorem 4.5. Let f ∈ Ck,α(BR). Let β be a multi-index with |β| = k + 2 and {β(j)} a
continuously increasing nesting of length k + 2 for β. Then DβN (f)(x) exists for x ∈ BR.
Moreover,

DβN (f) =

∫
BR

Dβ
· Γ(·− y)

(
f(y)−T ·k(f)(y)

)
dy−

k+2∑
j=2

∑
|µ|=j−2

C(β(j−1), µ, β(j) − β(j−1))

µ!
Dµ+β(j)′

f.

(19)
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Here β(j)′ is the dual of β(j) with respect to β, and C(β(j−1), µ, β(j) − β(j−1)) is some constant
dependent only on (β(j−1), µ, β(j) − β(j−1)).

Since on the right hand side of (19), the order |µ+ β(j)′ | for each term in the summation is
equal to k by definition, Theorem 1.2 follows from Theorem 4.5.

Proof of Theorem 4.5: k = 0 is given by Theorem 4.4. When k > 0, for any multi-indices β
and µ with |β| = |µ|+ 1, one has for x ∈ BR by Corollary 3.1,

IBR(β, µ, j)(x) =

∫
∂BR

Dβ
xΓ(x− y)(y − x)µνjdσy

=
1

R

∫
∂BR

Dβ
xΓ(x− y)(y − x)µyjdσy

≡C(β, µ, j)

with C(β, µ, j) some constant dependent only on (β, µ, j). In particular, C(β, µ, j) is indepen-
dent of R. Letting Ω = BR in Proposition 4.3, one obtains (19).

5 Ck,α estimate of the Newtonian potential on BR

To simplify the notations, we first define the following operators.

Definition 5.1. Given a multi-index β with |β| = k + 2, k ≥ 0, the operator Nβ : Ck,α(BR)→
C(BR) is defined by

Nβ(f)(x) :=

∫
BR

Dβ
xΓ(x− y)

(
f(y)− T xk (f)(y)

)
dy,

for f ∈ Ck,α(BR) and x ∈ BR, where T xk (f)(·) is the k-th order power series expansion of f at
x.

Definition 5.2. Given multi-indices β and β′ with |β| = k + 2, k ≥ 0 and Dβ = ∂jD
β′, the

operator Sβ : Ck,α(BR)→ C(BR) is defined by

Sβ(f)(x) :=

∫
∂BR

Dβ′

x Γ(x− y)
(
f(y)− T xk (f)(y)

)
νjdσy

for f ∈ Ck,α(BR) and x ∈ BR. Here T xk (f)(y) is the k-th order power series expansion of f at
x, dσy is the surface area element of ∂BR with the unit outer normal (ν1, . . . , νn).

Since |β′| = k+1, Sβ(f) differs from Dβ′(
∫
∂BR

Γ(·−y)f(y)νjdσy) by a constant independent
of R due to Corollary 3.1.
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Definition 5.3. Given a multi-indices β with |β| = k+2, k ≥ 0 and f ∈ Ck,α(BR), the operator
Tβ : Ck,α(BR)→ Cα(BR) is defined by

Tβ(f) :=
k+2∑
j=2

∑
|µ|=j−2

C(β(j−1), µ, β(j) − β(j−1))

µ!
Dµ+β(j)′

f.

Theorem 1.2 can thus be rewritten as

DβN (f) = Nβ(f)− Tβ(f) (20)

for any f ∈ Ck,α(BR).

5.1 An induction formula for DβN
We shall first prove an induction formula for the higher order derivative formula of the Newto-
nian potential.

Lemma 5.4. Let f ∈ Ck,α(BR). let β, β′ be two multi-indices with |β| = k+2 and Dβ = ∂jD
β′.

We have in BR,
Nβ(f) = Nβ′(∂jf)− Sβ(f).

Proof of Lemma 5.4: Making use of Stokes’ Theorem and Corollary 3.1, we get for x ∈ BR,

Nβ(f)(x) = lim
ε→0

∫
BR−Bε(x)

Dβ
xΓ(x− y)

(
f(y)− T xk (f)(y)

)
dy

= lim
ε→0

∫
BR−Bε(x)

Dβ′

x Γ(x− y)∂j
(
f(y)− T xk (f)(y)

)
dy

− lim
ε→0

∫
BR−Bε(x)

∂j

(
Dβ′

x Γ(x− y)
(
f(y)− T xk (f)(y)

))
dy

= lim
ε→0

∫
BR−Bε(x)

Dβ′

x Γ(x− y)
(
∂jf(y)− T xk−1(∂jf)(y)

)
dy

−
∫
∂BR

Dβ′

x Γ(x− y)
(
f(y)− T xk (f)(y)

)
νjdσy

+ lim
ε→0

∫
∂Bε(x)

Dβ′

x Γ(x− y)
(
f(y)− T xk (f)(y)

)
νjdσy

Since the third term in the last identity of the above expression is 0, the formula is thus proved.

Proposition 5.5. Let f ∈ Ck,α(BR) and let β, β′ be two multi-indices with |β| = k + 2 and
Dβ = ∂jD

β′. We have
DβN (f) = Nβ′(∂jf)− Sβ(f)− Tβ(f).
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5.2 Estimates of Sβ
We start by proving the following preparation lemma.

Lemma 5.6. For any x ∈ B1, 0 < α < 1,∫
|y|=1

1

|x− y|n−α
dσy ≤ C(1− |x|)α−1.

Proof of Lemma 5.6: Assume x = (r, 0, . . . , 0) after rotation if necessary. One can assume
in addition that r ≥ 1

2
.

Choose spherical coordinates y1 = cos θ1, y2 = sin θ1 cos θ2, . . . , yn = sin θ1 sin θ2 · · · sin θn−1,
where 0 ≤ θi ≤ π for 1 ≤ i ≤ n − 2, 0 ≤ θn−1 ≤ 2π and denote by ∂Bn−1

1 the unit sphere in
Rn−1. We have,∫

|y|=1

1

|x− y|n−α
dσy =

∫ π

0

sinn−2 θ1

[(cos θ1 − r)2 + sin2 θ1]
n−α
2

dθ1

∫
∂Bn−1

1

dσz

=C

∫ π

0

sinn−2 θ

[1− 2r cos θ + r2]
n−α
2

dθ

=C

∫ π

0

sinn−2 θ

[(1− r)2 + 4r sin2 θ
2
]
n−α
2

dθ

≤C(

∫ 1−r

0

sinn−2 θ

(1− r)n−α
dθ +

∫ π

1−r

sinn−2 θ

(2
√
r sin θ

2
)n−α

dθ)

=A+B,

where A := C
∫ 1−r

0
sinn−2 θ

(1−r)n−αdθ and B := C
∫ π

1−r
sinn−2 θ

(2
√
r sin θ

2
)n−α

dθ.

For A, since sin θ ≤ θ when θ > 0,

A ≤ C

(1− r)n−α

∫ 1−r

0

θn−2dθ =
C

(1− r)n−α
(1− r)n−1 = C(1− r)α−1.

For B, making use of sin θ ≥ Cθ when 0 ≤ θ ≤ π
2

and the assumption r ≥ 1
2
, we get

B ≤ C

∫ π

1−r

sinn−2 θ
2

(sin θ
2
)n−α

dθ = C

∫ π

1−r
sinα−2 θ

2
dθ ≤ C

∫ π

1−r

(θ
2

)α−2
dθ ≤ C(1−r)α−1+C ≤ C(1−r)α−1.

The lemma is thus concluded.

The following lemma in Appendix 6.2a [NW] is quoted without proof.

Lemma 5.7. [NW] If z and z′ are two points of the open unit disk in C, and γ is the shorter
segment of the circle through z and z′ and orthogonal to the unit circle, then∫

γ

|dw|
(1− ww̄)1−α ≤

2

1− α
|z − z′|α

for 0 < α < 1.
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We are now in a position to show Sβ is a bounded operator from Ck,α(BR) into Cα(BR).

Lemma 5.8. let β be a multi-index with |β| = k + 2. The operator Sβ sends Ck,α(BR) into
Cα(BR). Moreover, for any f ∈ Ck,α(BR),

‖ Sβ(f) ‖α≤ C ‖ f ‖(k)
α .

Proof of Lemma 5.8: Write g(y) := f(y)− T xk (f)(y).
(i) The estimate for ‖ Sβ(f) ‖. Indeed, by Lemma 2.1, for x ∈ BR,

|
∫
∂BR

Dβ′

x Γ(x− y)g(y)νjdσy| ≤C ‖ f ‖(k)
α R−α

∫
∂BR

|y − x|2−n−k−1|y − x|k+αdσy

=C ‖ f ‖(k)
α R−α

∫
∂BR

|y − x|1−n+αdσy

=C ‖ f ‖(k)
α

∫
∂B1

|y − x

R
|1−n+αdσy

≤C ‖ f ‖(k)
α .

(ii) Given x, x′ ∈ BR, we estimate |Sβ(f)(x)−Sβ(f)(x′)|. Assume without loss of generality
that x, x′ lie on the plane {y3 = · · · = yn = 0} and write x = Rz, x′ = Rz′ with z, z′ ∈ B1.
Then

Sβ(f)(x)− Sβ(f)(x′) =

∫
∂BR

(
Dβ′

x Γ(x− y)−Dβ′

x Γ(x′ − y)
)
g(y)νjdσy

=R−k
∫
∂B1

(
Dβ′

z Γ(z − y)−Dβ′

z′ Γ(z′ − y)
)
g(Ry)νjdσy.

Let γ(t) = (γ1(t), γ2(t), 0, . . . , 0) : [0, 1]→ {y3 = · · · = yn = 0} ∼= C be a parametrization of
the shorter segment of the circle through z and z′ and orthogonal to the unit circle in C with
γ(0) = z′, γ(1) = z. We then have

Sβ(f)(x)− Sβ(f)(x′) =R−k
∫
∂B1

∫ 1

0

d

dt

(
Dβ′

γ Γ(γ(t)− y)
)
dtg(Ry)νjdσy

=R−k
∫ 1

0

2∑
k=1

γ′k(t)dt

∫
∂B1

(
∂γkD

β′

γ Γ(γ(t)− y)
)
g(Ry)νjdσy.

Making use of Corollary 3.1, we have for any 0 ≤ t ≤ 1,∫
∂B1

(
∂γkD

β′

γ Γ(γ(t)− y)
)
g(Ry)νjdσy =

∫
∂B1

(
∂γkD

β′

γ Γ(γ(t)− y)
)(
g(Ry)− TRγ(t)

k (g)(Ry)
)
νjdσy,
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where T
Rγ(t)
k (g)(·) is the k-th order power series expansion of g at Rγ(t). Furthermore, by

Lemma 2.1,

|g(Ry)− TRγ(t)
k (g)(Ry)| ≤ C|Ry −Rγ(t)|k+α

∑
|µ|=k

Hα[Dµg]

= CRk+α|y − γ(t)|k+α
∑
|µ|=k

Hα[Dµf ].

Therefore,

|Sβ(f)(x)− Sβ(f)(x′)|

≤C
( ∑
|µ|=k

Hα[Dµf ]
)
R−k

∫ 1

0

2∑
k=1

|γ′k(t)|dt
∫
∂B1

|γ(t)− y|2−n−k−2Rk+α|y − γ(t)|k+αdσy

≤C
( ∑
|µ|=k

Hα[Dµf ]
)
Rα

∫ 1

0

2∑
k=1

|γ′k(t)|dt
∫
∂B1

|γ(t)− y|−n+αdσy.

Applying Lemma 5.6 to
∫
∂B1
|γ(t)− y|−n+αdσy in the last expression, we have

|Sβ(f)(x)− Sβ(f)(x′)| ≤C
( ∑
|µ|=k

Hα[Dµf ]
)
Rα

∫ 1

0

2∑
k=1

|γ′k(t)|
(1− |γ(t)|)1−αdt

≤C
( ∑
|µ|=k

Hα[Dµf ]
)
Rα

∫ 1

0

|γ′(t)|dt
(1− |γ(t)|2)1−α

=C
( ∑
|µ|=k

Hα[Dµf ]
)
Rα

∫
γ

|dw|
(1− ww̄)1−α .

Hence by Lemma 5.7,

|Sβ(f)(x)− Sβ(f)(x′)| ≤ C
( ∑
|µ|=k

Hα[Dµf ]
)
Rα|z − z′|α = C

( ∑
|µ|=k

Hα[Dµf ]
)
|x− x′|α.

Namely,

Hα[Sβ(f)] ≤ C
( ∑
|µ|=k

Hα[Dµf ]
)
.

We finally have shown, combining (i) and (ii),

‖ Sβ(f) ‖α≤ C ‖ f ‖(k)
α .

Remark 5.9. In the proof of Lemma 5.8(ii) when carrying out the Hölder norm for Sβ, the
estimate in Lemma 5.7 would fail if the curve γ is chosen to be the straight line connecting z
and z instead of the geodesic as in [NW].
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5.3 Estimate on DβN
Applying Lemma 5.4 and Lemma 5.8 inductively, we eventually obtain the following formula
and estimate.

Theorem 5.10. For any f ∈ Ck,α(BR), N (f) ∈ Ck+2,α(BR). Moreover, given a multi-index β
with |β| = k + 2, let {β(j)} be a continuously increasing nesting for β of length k + 2 and β(j)′

be the dual of β(j) with respect to β for 2 ≤ j ≤ k + 2, and f ∈ Ck,α(BR), we have

DβN (f) = Nβ(2)(Dβ(2)′

f)−
k+2∑
j=3

Sβ(j)(Dβ(j)′

f)− Tβ(f),

in BR with
‖ N (f) ‖(k+2)

α ≤ C ‖ f ‖(k)
α .

Proof of Theorem 5.10: By Lemma 5.5 together with (20),

DβN (f) = Nβ(k+1)(Dβ(k+1)′

f)− Sβ(k+2)(f)− Tβ(f)

= Nβ(k)(Dβ(k)′

f)− Sβ(k+1)(Dβ(k+1)′

f)− Sβ(k+2)(f)− Tβ(f)

= · · ·

= Nβ(2)(Dβ(2)′

f)−
k+2∑
j=3

Sβ(j)(Dβ(j)′

f)− Tβ(f)

= Dβ(2)N (Dβ(2)′

f)−
k+2∑
j=3

Sβ(j)(Dβ(j)′

f)− Tβ(f)− Tβ(2)(Dβ(2)′

f)

Hence for any f ∈ Ck,α(BR),

‖ N (f) ‖(k+2)
α : = sup

|β|=k+2

‖ DβN (f) ‖α

≤ C sup
|β|=k+2

[
‖ Dβ(2)N (Dβ(2)′

f) ‖α +
k+2∑
j=3

‖ Sβ(j)(Dβ(j)′

f) ‖α + ‖ f ‖(k)
α

]
.

Since |β(j)| = j and |β(j)′| = k + 2− j from definition, by Theorem 4.4 and Lemma 5.8, we get

‖ N (f) ‖(k+2)
α ≤ C sup

|β|=k+2

[
‖ N (Dβ(2)′

f) ‖(2)
α +

k+2∑
j=3

‖ Dβ(j)′

f ‖(j−2)
α + ‖ f ‖(k)

α

]
≤ C sup

|β|=k+2

[
‖ Dβ(2)′

f ‖α + ‖ f ‖(k+2−j+j−2)
α + ‖ f ‖(k)

α

]
≤ C ‖ f ‖(k)

α .

Proof of Theorem 1.3: The theorem is a direct consequence of Theorem 5.10.
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6 Construction of the contraction map

Recall that the nonlinear system under investigation is given by

4mu(x) = a(x, u,∇u, . . . ,∇2mu).

Assume a ∈ C2 in the above system first. For any vector-valued function f ∈ (C2m,α
0 (BR))N ,

introduce ω(1)(f) := (ω
(1)
1 (f), . . . , ω

(1)
N (f)) with

ω
(1)
j (f)(x) =

∫
BR

Γ(x− y)aj(y, f(y),∇f(y), . . . ,∇2mf(y))dy

for 1 ≤ j ≤ N in BR. According to Theorem 5.10, ω(1)(f) ∈ (C2,α(BR))N and

‖ ω(1)
j (f) ‖(2)

α ≤ C ‖ aj(·, f, . . . ,∇2mf) ‖α .

ω(l)(f) = (ω
(l)
1 (f), . . . , ω

(l)
N (f)) are inductively defined for 1 ≤ l ≤ m as follows. For each

1 ≤ j ≤ N and x ∈ BR,
ω

(l)
j (f)(x) := N (ω

(l−1)
j (f))(x).

Note that, in terms of the Newtonian potential,

ω
(l)
j (f) = N l

(
aj(·, f, . . . ,∇2mf)

)
.

Therefore, by Theorem 5.10, ω(l)(f) ∈ (C2l,α(BR))N and

‖ ω(l)
j (f) ‖(2l)

α ≤‖ aj(·, f, . . . ,∇2mf) ‖α . (21)

Next, define θ(f) := (θ1(f), . . . , θN(f)) from ω(m)(f) by truncating degree less than 2m
terms and part of the degree 2m terms in its power series expansion at 0. Precisely speaking,
for 1 ≤ j ≤ N and x ∈ BR,

θj(f)(x) = ω
(m)
j (f)(x)− T2m−1(ω

(m)
j (f))(x)−

∑
β∈Λ

Dβ(ω
(m)
j (f))(0)

β!
xβ, (22)

where T2m−1(ω
(m)
j (f)) is the (2m− 1)-th power series expansion of ω

(m)
j (f) at 0, Λ = {β : |β| =

2m, and at least one of βj is odd for 1 ≤ j ≤ n}.
From the construction, it is immediate to see that for any f ∈ (C2m,α

0 (BR))N , ω(m)(f) ∈
(C2m,α(BR))N and so θ(f) ∈ (C2m,α

0 (BR))N . Moreover,4mθ(f)(x) = a(x, f(x),∇f(x), . . . ,∇2mf(x))
when x ∈ BR.

Recall (C2m,α
0 (BR), ‖ · ‖(2m)

α ) is a Banach space. We now have constructed an operator
between two Banach spaces as follows.

θ : (C2m,α
0 (BR))N → (C2m,α

0 (BR))N
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with the corresponding norm

‖ f ‖(2m)
α = max

1≤j≤N
‖ fj ‖(2m)

α .

The ball of radius γ in (C2m,α
0 (BR))N is denoted by

B(R, γ) := {f ∈ C2m,α
0 (BR))N :‖ f ‖(2m)

α < γ}.

On the other hand, recall a function u ∈ C2k is called k-harmonic if 4ku = 0. Given
h = (h1, . . . , hN) with hj any homogeneous m-harmonic polynomial of degree 2m and for any
f ∈ (C2m,α

0 (BR))N , consider
θh(f) = h+ θ(f).

Then θh(f) ∈ (C2m,α
0 (BR))N , 4mθh(f)(x) = 4mθ(f)(x) = a(x, f(x),∇f(x), . . . ,∇2mf(x)) in

BR while part of 2m jets Dβθh(f)(0) with β ∈ Λ coincide with those of the given parameter h.
We will seek the solutions to (1) by making use of the fixed point theorem. Indeed, we first

show there exists γ > 0 and R > 0, such that θ : B(R, γ) → B(R, γ
2
) and θ is a contraction

map. We then pick some nontrivial h as above with h ∈ B(R, γ
2
) and consider the corresponding

operator θh. Consequently, θh : B(R, γ)→ B(R, γ) and is a contraction map. As an application
of the fixed point theorem, there exists some u ∈ (C2m,α

0 (BR))N such that θh(u) = u. This
u clearly satisfies 4mu = 4mθh(u) = a(·, u,∇u, . . . ,∇2mu) in BR. To obtain infinitely many
solutions, one only needs to notice there are infinitely many choices for such an h. For instance,
one can pick h(x) = cxβ with β ∈ Λ and c any nonzero small constant. Each such different
input h results in a different solution out of the fixed point theorem from the construction.

Remark 6.1. Since the solution u is of vanishing order precisely 2m from the construction, u
is not a trivial solution.

We divide our proof into two steps. In each step, we shall use Theorem 5.10.

6.1 Estimate of ‖ θ(f)− θ(g) ‖(2m)
α

First, we note from (22) that for 1 ≤ j ≤ N , for any f, g ∈ B(R, γ),

‖ θj(f)− θj(g) ‖(2m)
α ≤ ‖ ω(m)

j (f)− ω(m)
j (g) ‖(2m)

α + ‖ ∇2m(ω
(m)
j (f)− ω(m)

j (g)) ‖

≤2 ‖ ω(m)
j (f)− ω(m)

j (g) ‖(2m)
α

=2 ‖ N (ω
(m−1)
j (f))−N (ω

(m−1)
j (g)) ‖(2m)

α

=2 ‖ N
(
ω

(m−1)
j (f)− ω(m−1)

j (g)
)
‖(2m)
α

=2 ‖ Nm
(
aj(·, f(·),∇f(·), . . . ,∇2mf(·))− aj(·, g(·),∇g(·), . . . ,∇2mg(·))

)
‖(2m)
α .

Making use of Theorem 5.10 into the above expression, we have then

‖ θj(f)− θj(g) ‖(2m)
α ≤C ‖ aj(·, f(·),∇f(·), . . . ,∇2mf(·))− aj(·, g(·),∇g(·), . . . ,∇2mg(·)) ‖α .

(23)
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We next proceed to prove an estimate of (23). Note that due to Lemma 2.2, when f ∈
B(R, γ), then ‖ ∇jf ‖≤ CR2m−jγ for 0 ≤ j ≤ 2m. Therefore, the variables (p−1, p0, p1, . . . , p2m)
of the vector-valued function a takes value in E := {p−1 ∈ BR, pj ∈ BCR2m−jγ, 0 ≤ j ≤ 2m}
when u ∈ B(R, γ).

Denote byAj := supE |∇pja|, Qjk := sup
{ |∇pja(p−1,...,pk−1,pk,pk+1,··· ,p2m)−∇pja(p−1,...,pk−1,p

′
k,pk+1,...,p2m)|

|pk−p′k|α
:

(p−1, . . . , pk−1, pk, pk+1, · · · , p2m), (p−1, . . . , pk−1, p
′
k, pk+1, · · · , p2m) ∈ E, pk 6= p′k

}
and Lj :=

supE(∇2
pjp2m

a) with −1 ≤ j ≤ 2m. Therefore, for −1 ≤ j, k ≤ 2m,

Aj ≤ C ‖ ∇pja ‖C0(E)≤ C ‖ a ‖C1,α(E),

Qjk ≤ C ‖ a ‖C1,α(E),

Lj ≤ C ‖ ∇p2ma ‖C1(E)≤ C ‖ a ‖C2(E) .

(24)

Here ‖ a ‖C1,α(E)=‖ a ‖C1 +Hα[∇a].

Lemma 6.2. For any f, g ∈ B(R, γ), if a ∈ C2,

‖ a(·, f(·),∇f(·), . . . ,∇2mf(·))− a(·, g(·),∇g(·), . . . ,∇2mg(·)) ‖α≤ δ(R, γ) ‖ f − g ‖(2m)
α ,

where

δ(R, γ) = C
2m∑
j=0

R2m−j(Aj +Rα(Qj(−1) +
2m−1∑
k=0

QjkR
(2m−k−1)αγα) + γLj

)
. (25)

Moreover, if a is independent of p2m, then when a ∈ C1,α,

δ(R, γ) = C
2m−1∑
j=0

R2m−j(Aj +Rα(Qj(−1) +
2m−1∑
k=0

QjkR
(2m−k−1)αγα)

)
. (26)

The proof of Lemma 6.2 is similar to that of Lemma 4.3 in [Pan2]. For the completeness of
the paper, we provide with a sketch of the proof as follows.

Proof of Lemma 6.2: For simplicity of notation, we shall skip the dots in f(·) and g(·).

‖ a(·, f,∇f, . . . ,∇2mf)− a(·, g,∇g, . . . ,∇2mg) ‖α

= ‖
∫ 1

0

d

dt
a(·, tf + (1− t)g,∇(tf + (1− t)g), . . . ,∇2m(tf + (1− t)g))dt ‖α

≤
2m∑
j=0

‖ Atj · ∇j(f − g) ‖α

≤
2m∑
j=0

‖ Atj ‖α‖ f − g ‖(j)
α .
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Here Atj(·) :=
∫ 1

0
∇pja(·, tf + (1 − t)g,∇(tf + (1 − t)g), . . . ,∇2m(tf + (1 − t)g))dt. If a is

independent of p2m, then the summation in the above expression runs over 1 through 2m − 1
instead of 2m.

Making use of Lemma 2.2 together with the fact that f, g ∈ B(R, γ), we obtain

‖ a(·, f,∇f, . . . ,∇2mf)− a(·, g,∇g, . . . ,∇2mg) ‖α≤ C
2m∑
j=0

R2m−j ‖ Atj ‖α‖ f − g ‖(2m)
α . (27)

Next, we shall estimate ‖ Atj ‖α. Indeed, ‖ Atj ‖≤ Aj by definition. To show its Hölder

estimates, we denote tf + (1 − t)g by f̃ t, or even simpler but without confusion, by f̃ . Then

f̃ ∈ B(R, γ) and hence ‖ f̃ ‖(2m)
α ≤ γ. For x, x′ ∈ BR, by an elementary triangle inequality

argument,

|Atj(x)−Atj(x′)|

≤C
(
Qj(−1)|x− x′|α +

2m−1∑
k=0

Qjk|∇k(f̃(x)− f̃(x′))|α + Lj|∇2m(f̃(x)− f̃(x′))|
)

≤C
(
Qj(−1)|x− x′|α +

2m−1∑
k=0

Qjk(‖ ∇k+1f̃ ‖ |x− x′|)α + LjR
−α ‖ f̃ ‖(2m)

α |x− x′|α
)

≤C
(
Qj(−1)|x− x′|α +

2m−1∑
k=0

QjkR
(2m−k−1)α(‖ f̃ ‖(2m)

α )α|x− x′|α + LjR
−α ‖ f̃ ‖(2m)

α |x− x′|α
)
.

We note that if a is independent of p2m, then Lj term does not show up in the expression and
hence C2 regularity of a is not needed due to the above estimates. We conclude that

‖ Atj ‖α≤ C
(
Aj +Rα(Qj(−1) +

2m−1∑
k=0

QjkR
(2m−k−1)αγα) + γLj

)
. (28)

The lemma follows consequently by combining (28) and (27).

We then have obtained from (23), by using Lemma 6.2 that

‖ θ(f)− θ(g) ‖(2m)
α ≤ δ(R, r) ‖ f − g ‖(2m)

α , (29)

with δ(R, γ) given in (25) or (26).

6.2 Estimate of ‖ θ(f) ‖(2m)
α

Similarly, for f ∈ B(R, γ), 1 ≤ j ≤ N ,

‖ θj(f) ‖(2m)
α ≤ ‖ ω(m)

j (f) ‖(2m)
α + ‖ ∇2m(ω

(m)
j (f)) ‖

≤2 ‖ ω(m)
j (f) ‖(2m)

α

=2 ‖ Nm
(
aj(·, f(·),∇f(·), . . . ,∇2mf(·))

)
‖(2m)
α

≤C ‖ aj(·, f(·),∇f(·), . . . ,∇2mf(·)) ‖α .

(30)
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The following lemma leads to an estimate of (30) for the purpose of a contraction map.

Lemma 6.3. For any f ∈ B(R, γ), if a ∈ C2,

‖ a(·, f(·),∇f(·), . . . ,∇2mf(·)) ‖α≤ η(R, r),

where

η(R, γ) = |a(0)|+ C

(
R
(
A−1 +Rα(Q(−1)(−1) +

2m−1∑
k=0

Q(−1)kR
(2m−k−1)αγα + γL−1)

)
+ γδ(R, γ)

)
(31)

with δ(R, γ) given in (25).
Moreover, if a is independent of p2m, then when a ∈ C1,α,

η(R, γ) = |a(0)|+ C

(
R
(
A−1 +Rα(Q(−1)(−1) +

2m−1∑
k=0

Q(−1)kR
(2m−k−1)αγα)

)
+ γδ(R, γ)

)
. (32)

with δ(R, γ) given in (26).

Proof of Lemma 6.3: The proof is similar to that of Lemma 6.2. Indeed, for −1 ≤ j ≤ 2m,
write Bj(·) := Btj(·) =

∫ 1

0
∇pja(t·, tf, t∇f, . . . , t∇2mf)dt, then

‖ a(·, f,∇f, . . . ,∇2mf) ‖α

= ‖ a(0) +

∫ 1

0

d

dt
a(t·, tf, t∇f, . . . , t∇2mf)dt ‖α

≤|a(0)|+ ‖ B−1 · x ‖α +
2m∑
j=0

‖ Bj · ∇jf ‖α

≤|a(0)|+ C
(
R ‖ B−1 ‖α +

2m∑
j=0

‖ Bj ‖α‖ f ‖(j)
α

)
≤|a(0)|+ C

(
R ‖ B−1 ‖α +

2m∑
j=0

R2m−j ‖ Bj ‖α‖ f ‖(2m)
α

)
.

If a is independent of p2m, the summation in the above expression runs over 1 through 2m− 1
instead. On the other hand, using exactly the same argument as in the estimate of ‖ Atj ‖α in
Lemma 6.2, we have for −1 ≤ j ≤ 2m, ‖ Bj ‖≤ Aj, and

‖ Bj ‖α≤ C
(
Aj +Rα(Qj(−1) +

2m−1∑
k=0

QjkR
(2m−k−1)αγα) + γLj

)
.
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As before, when a is independent of p2m, Lj term does not show up in the above inequality.
The proof of the lemma is thus complete.

Combining Lemma 6.3 and (30), we have

‖ θ(f) ‖(2m)
α ≤ η(R, γ), (33)

with η(R, γ) given in (31) or in (32).

7 Proof of Theorem 1.4 - 1.6

We first prove a slightly more general result following [Pan2].

Theorem 7.1. Let a ∈ C2 and a(0) = 0. There is a constant δ(< 1) depending only on n,N
and α, such that when

|∇p2ma(0)|+ |∇2
p2mp2m

a(0)| ≤ δ,

the system (1) has infinitely many solutions in C2m,α of vanishing order 2m at the origin in
some small neighborhood.

Proof of Theorem 7.1: Our goal is to show θ sends B(R, γ) into B(R, γ
2
) for some positive

R and γ and is a contraction map between B(R, γ). In other words, we show there exist γ > 0
and R > 0 such that for any f, g ∈ B(R, γ),

‖ θ(f)− θ(g) ‖(2m)
α ≤ c ‖ f − g ‖(2m)

α with c < 1

and
‖ θ(f) ‖(2m)

α <
γ

2
.

From (29) and (33), it boils down to show there exist γ > 0 and R > 0 such that

δ(R, γ) ≤ c < 1

η(R, γ) <
γ

2
.

(34)

Denote by τ := |∇p2ma(0)|+ |∇2
p2mp2m

a(0)|, use εγ(R) to represent a constant converging to
0 as R → 0 for each fixed γ, and ε(R + γ) to represent a constant converging to 0 as both R
and γ go to 0. Then by continuity of a,

A2m ≤ τ + ε(R + γ), L2m ≤ τ + ε(R + γ).

(25) and (31) can hence be written as

δ(R, γ) = Caτ(1 + γ) + εγ(R) + ε(R + γ), (35)

η(R, γ) = Cγδ(R, γ) + εγ(R). (36)
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with Ca dependent on ‖ a ‖C2(E).
First, for each γ, choose R0 such that εγ(R) ≤ γ

4
when R ≤ R0 in (36). (35) and (36) will

suffice if we can choose γ and R small enough so that δ(R, γ) ≤ c := min{ 1
4Cγ

, 1
2
} < 1. Indeed,

by choosing γ(≤ 1) and R small, we can make εγ(R) + ε(R + γ) < c
2

in (35) and hence

δ(R, γ) < 2Caτ +
c

2
.

When τ ≤ c
8Ca

, we thus have (34) holds.
Now recall Λ = {β : |β| = 2m, and at least one of βj is odd for 1 ≤ j ≤ n}. For R

and γ chosen as above, Pick h(x) = bxβ with β ∈ Λ, and make b > 0 small enough such

that ‖ h ‖(2m)
α < γ

2
and hence h ∈ B(R, γ

2
). Consider the operator θh(f) := h + θ(f). Then

θh : B(R, γ)→ B(R, γ) forms a contraction map from the construction. By fixed point theorem
for Banach spaces, there is some u ∈ B(R, γ) such that θh(u) = u. u thus solves the system (1)
in the class C2m,α and is of vanishing order 2m by the construction.

Remark 7.2. None of the solutions constructed in the proof of Theorem 7.1 is radially symmet-
ric. This means, even if the system (1) can be reduced into an ODE system with respect to the
radial variable r = |x|, there exist infinitely many non-radial solutions. Indeed, if the solution
u(x) = u(r) ∈ C2m,α

0 , then near 0, u(r) = er2m + o(|r|2m) for some constant e. In particular,
Dβu(0) = 0 for all β ∈ Λ. This apparently can not happen because from the construction,
h(x) = bxβ0 with some β0 ∈ Λ and Dβ0u(0) = Dβ0h(0) 6= 0.

Proof of Theorem 1.5: Theorem 1.5 is a consequence of Theorem 7.1 and Remark 7.2.

Proof of Theorem 1.4: When cj = 0, 0 ≤ j ≤ 2m−1 and a is independent of p2m, A2m, Q(2m)j

and Lj(−1 ≤ j ≤ 2m) are all 0 and so (29) and (33) becomes

δ(R, γ) ≤ εγ(R),

η(R, γ) ≤ |a(0)|+ εγ(R).

Here we only need C1,α regularity for a from the estimates (26) and (32). Now we choose some
positive γ0 so that γ0 > 4|a(0)|. Consequently, we choose R sufficiently small so εγ0(R) ≤ c :=
min{1

2
, γ0

4
} < 1. Hence

δ(R, γ0) ≤ c < 1;

η(R, γ0) <
γ0

2
.

Applying the same strategy as in the proof of Theorem 7.1, we can find a solution u ∈ B(R, γ0)
to the ODE system (2) which is not radially symmetric.
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For general given jets cβ’s with multi-indices β, we write T2m−1(x) :=
∑2m−1

j=0
cβ
β!
xβ. Consider

the new system

4mũ(x) = a(x, ũ+ T2m−1(x),∇(ũ+ T2m−1(x)), . . . ,∇2m−1(ũ+ T2m−1(x));

Dβũ(0) = 0, 0 ≤ |β| ≤ 2m− 1.

This is a system with all the initial values equal to 0. We then obtain some solution ũ in the
class of C2m,α in some small neighborhood of 0. Then u = ũ + T2m−1 solves the system (2)
in the class of C2m,α in some small neighborhood of 0. Apparently, the solution obtained in
this way is of vanishing order at most 2m. Moreover, u is not radially symmetric since ũ is not.

Proof of Theorem 1.6: Since a is independent of x and a(0) = 0, A−1, Q(−1)j, Qj(−1) and
L−1 are 0 and hence in (31),

η(R, γ) ≤ Cγδ(R, γ).

In order to prove Theorem 1.6, we need to show for any fixed R > 0, there exists some γ0 > 0
such that

δ(R, γ0) < 1;

η(R, γ0) <
γ0

2
,

which is equivalent to showing

δ(R, γ0) ≤ c := min{1

2
,

1

2C
} < 1. (37)

Indeed, since ∇a(0) = 0, we have for 0 ≤ j ≤ 2m,

Aj ≤ C ‖ ∇pja ‖C1(E) R
2m−jγ ≤ C ‖ a ‖C2(E) R

2m−jγ.

Furthermore, for 0 ≤ j, k ≤ 2m,

Qjk ≤ C ‖ ∇pja ‖C1(E) (R2m−kγ)1−α ≤ C ‖ a ‖C2(E) (R2m−kγ)1−α,

Lj ≤ C ‖ ∇pja ‖C1(E)≤ C ‖ a ‖C2(E) .

Therefore, (25) can be simplified as

δ(R, γ) = εR(γ),

where εR(γ) represents some function converging to 0 as γ goes to 0 for each fixed R > 0. (37)
is thus true and the proof of Theorem 1.6 is complete.
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8 Remark and examples

Although the existence domain of solutions in Theorem 1.6 can be made arbitrarily large,
the neighborhood in Theorem 1.4 where the solutions exist is necessarily small in general, as
indicated by the following example of Osserman [Os].

Remark 8.1. Consider the system in Rn (n ≥ 3) with prescribed 1-jet:

4u = |u|
n+2
n−2 ;

u(0) = c0;

∇u(0) = c1.

Theorem 1.4 applies to obtain some C2,α solution over a small neighborhood of 0, say, {x ∈ Rn :
|x| < R}. On the other hand, by a result of [Os], if the solution exists in {x ∈ Rn : |x| < R}
and c0 > 0, then R ≤ nu(0)−

2
n−2 = nc

− 2
n−2

0 . Consequently, R → 0 as c0 → +∞. This does
not contradict with Theorem 1.6 though, since the solutions constructed in Theorem 1.6 are of
vanishing order 2m ≥ 2 and hence c0 = 0.

As a matter of fact, a large class of the systems fit into one or more of the three solvability
theorems. In particular, we establish the solvability of the following systems.

Example 8.2. For any p > 1 and any given R > 0, the system

4mu = ±|u|p

has infinitely many C2m,α non-radial solutions over {x ∈ Rn : |x| < R}, as a consequence of
Theorem 1.6. Here α = min{1− ε, p− 1} with ε any arbitrarily small positive number. Those
solutions are necessarily smooth after a standard bootstrap argument.

The following system has been well studied in the literature and our solvability results suit
it as well.

Example 8.3. Let H ∈ C3 and H ′(0) = 0. Consider the system

4u = ∇
(
H(u)

)
.

According to Theorem 1.6, for any R > 0, the above system has infinitely many non-radial
solutions in C2,α({x ∈ Rn : |x| < R}) for any 0 < α < 1.

Indeed, a straightforward computation shows in the above example that a(u,∇u) = ∇
(
H(u)

)
= H ′(u)∇u, ∇p0

(
a(u,∇u)

)
= H ′′(u)∇u and ∇p1

(
a(u,∇u)

)
= H ′(u) and hence the system sat-

isfies a ∈ C2 and a(0) = ∇a(0) = 0. By Theorem 1.6, for any R > 0, there exist infinitely many
solutions in the class of C2,α({x ∈ Rn : |x| < R}) and none of them is radially symmetric.

One similarly can obtain solvability for the following m-th order Poisson type system.
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Example 8.4. Let H ∈ C3 and H ′(0) = 0. Then for any R > 0,

4mu = ∇
(
H(u,∇u, . . . ,∇2m−2u)

)
has infinitely many non-radial smooth solutions in C2m,α({x ∈ Rn : |x| < R}) for any 0 < α < 1.

To see the solvability of the above example, a similar computation shows

a(u,∇u, . . . ,∇2m−1u) = ∇
(
H(u,∇u, . . . ,∇2m−2u)

)
=

2m−2∑
j=0

∇jH(u,∇u, . . . ,∇2m−2u)∇j+1u,

where ∇jH is the derivative of H with respect to ∇ju variable. Furthermore,

∇p0

(
a(u,∇u, . . . ,∇2m−1u)

)
=

2m−2∑
j=0

∇j∇0H(u,∇u, . . . ,∇2m−2u)∇j+1u

and for k ≥ 1,

∇pk

(
a(u,∇u, . . . ,∇2m−1u)

)
=∇pk

( 2m−2∑
j=0

∇jH(u,∇u, . . . ,∇2m−2u)∇j+1u
)

=
∑

0≤j,k≤2m−2

∇j∇kH(u,∇u, . . . ,∇2m−2u)∇j+1u

+∇k−1H(u,∇u, . . . ,∇2m−2u).

Hence a ∈ C2 and a(0) = ∇a(0) = 0. By Theorem 1.6, for any R > 0, there exist infinitely
many solutions in the class of C2,α({x ∈ Rn : |x| < R}) and none of them is radially symmetric.

Appendix: Computation of IB1(0, 0, 1)

We will compute IB1(0, 0, 1)(x) :=
∫
∂B1

Γ(x − y)ν1dσy for x ∈ B1. The constant cn in Γ is
omitted here for simplicity.

Write x = U · [a, 0, . . . , 0]t, where U = (uij)1≤i,j≤n is some unitary matrix and a = |x|, and
then make a change of coordinates by letting y = U · ỹ in the expression of IB1(0, 0, 1). We
then get

IB1(0, 0, 1) :=

∫
∂B1

∑
0≤j≤n u1j ỹj√

(a− ỹ1)2 + ỹ2
2 + · · ·+ ỹ2

n

n−2dσỹ

=u11

∫
∂B1

y1√
(a− y1)2 + y2

2 + · · ·+ y2
n

n−2dσy

+
∑

2≤j≤n

u1j

∫
∂B1

yj√
(a− y1)2 + y2

2 + · · ·+ y2
n

n−2dσy
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Since
yj√

(a−y1)2+y22+···+y2n
n−2 is odd with respect to yj when j ≥ 2,

∫
∂B1

yj√
(a− y1)2 + y2

2 + · · ·+ y2
n

n−2dσy = 0

when j ≥ 2 and hence

IB1(0, 0, 1) := u11

∫
∂B1

y1√
(a− y1)2 + y2

2 + · · ·+ y2
n

n−2dσy.

Next, rewrite the above integral in terms of the spherical coordinates, then we obtain

IB1(0, 0, 1) =ωn−1u11

∫ π
2

−π
2

sin t cosn−2 t√
(a− sin t)2 + cos2 t

n−2dt

=ωn−1u11

∫ 1

−1

u(1− u2)
n−3
2

(1− 2au+ a2)
n−2
2

du

(38)

Here ωn−1 is the surface area of the unit sphere in Rn−1.
In order to compute (38), we make use of Gegenbauer polynomials. Recall for each fixed ρ,

the Gegenbauer polynomials are {C(ρ)
n (x)} in [−1, 1] ⊂ R satisfying

1

(1− 2xt+ t2)ρ
=
∞∑
n=0

C(ρ)
n (x)tn

in (−1, 1). In particular,

C
(ρ)
0 (x) = 1,

C
(ρ)
1 (x) = 2ρx,

C(ρ)
n (x) =

1

n
[2x(n+ ρ− 1)C

(ρ)
n−1(x)− (n+ 2ρ− 2)C

(ρ)
n−2(x)].

Moreover, {C(ρ)
n (x)} are orthogonal polynomials on the interval [-1,1] with respect to the weight

function (1− x2)ρ−
1
2 . In other words,∫ 1

−1

C(ρ)
n (x)C(ρ)

m (x)(1− x2)ρ−
1
2dx = 0,m 6= n,∫ 1

−1

[C(ρ)
n (x)]2(1− x2)ρ−

1
2dx =

π21−2ρΓ(n+ 2ρ)

n!(n+ ρ)Γ(ρ)2
.
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Letting ρ = n−2
2

, then 1

(1−2au+a2)
n−2
2

=
∑∞

n=0C
(ρ)
n (u)an and u =

C
(ρ)
1 (u)

2ρ
. (38) can hence be

written as

IB1(0, 0, 1) =ωn−1u11

∫ 1

−1

∞∑
n=0

C(ρ)
n (u)an · C

(ρ)
1 (u)

2ρ
(1− u2)ρ−

1
2du

=ωn−1u11

∫ 1

−1

C
(ρ)
1 (u)a · C

(ρ)
1 (u)

2ρ
(1− u2)ρ−

1
2du

=ωn−1u11
a

2ρ

π21−2ρΓ(1 + 2ρ)

(1 + ρ)Γ(ρ)2

=
4π

n
2

nΓ(n−2
2

)
x1.

Making use of the same approach as the above, one can practically compute IBR(β, µ, j)
for all (β, µ, j).
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