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Abstract

Let Ω be a product domain in Cn, n ≥ 2, where each slice has smooth boundary. We
observe that the canonical solution operator for the ∂̄ equation on Ω is bounded in W k,p(Ω),
k ∈ Z+, 1 < p < ∞. This Sobolev regularity is sharp in view of Kerzman-type examples.

1 Introduction

Let Ω be a bounded pseudoconvex domain in Cn, n ≥ 1. According to Hörmander’s L2 theory,
given a ∂̄-closed (0, 1) form f ∈ L2(Ω), there exists a unique L2 function that is perpendicular to
ker(∂̄) and solves

∂̄u = f in Ω.

This solution is called the canonical solution (of the ∂̄ equation). The L2-Sobolev regularity of
the canonical solutions has been investigated through Kohn’s ∂̄-Neumann approach for domains
with nice regularity and geometry, such as convexity and/or finite type conditions.

The goal of the note is to give the Lp-Sobolev estimate of the canonical solutions on product
domains. Here a product domain Ω in Cn is a Cartesian product D1×· · ·×Dn of bounded planar
domains Dj, j = 1, . . . , n. In particular, Dj need not be simply-connected. Then Ω is (weakly)
pseudoconvex with at most Lipschitz boundary. The Lp regularity of the canonical solutions on
product domains was already thoroughly understood through works of [5–7, 12, 13, 23, 26] and
the references therein. In the Sobolev category, combined efforts in [3, 11, 21, 24] have given the
existence of a bounded solution operator of ∂̄ sending W k+n−2,p(Ω) into W k,p(Ω), k ∈ Z+, 1 < p <
∞. Here W k,p(Ω) is the Sobolev space consisting of functions whose weak derivatives on Ω up to
order k exist and belong to Lp(Ω). The main theorem is stated as follows.

Theorem 1.1. Let Ω := D1×· · ·×Dn ⊂ Cn, n ≥ 2, where each Dj is a bounded domain in C with
smooth boundary, j = 1, . . . , n. Given a ∂̄-closed (0, 1) form f ∈ W k,p(Ω), k ∈ Z+, 1 < p < ∞,
the canonical solution Tf of ∂̄u = f on Ω is in W k,p(Ω). Moreover, there exists a constant C
dependent only on Ω, k and p such that

∥Tf∥Wk,p(Ω) ≤ C∥f∥Wk,p(Ω).

The proof of Theorem 1.1 is essentially an observation on a representation formula of the
canonical solutions by Chakrabarti-Shaw [3] and Li [13], according to which it boils down to
the Sobolev estimates of the Bergman projection and canonical solution operators on planar
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domains. The Lp boundedness of the Bergman projection has been widely studied in several
complex variables. See [15–17, 19, 25], etc. on some types of domains with sufficient smoothness
and nice geometry. It is worth pointing out that the Bergman projection may fail to be Lp bounded
over the full range (1,∞) of p on certain domains, such as those with rather rough boundaries like
the Hartogs triangle ( [2, 4], etc.). With an application of Spencer’s formula on planar domains,
the Sobolev estimates of the Bergman projection and canonical solution operators are simply a
consequence of a result of Jerison and Kenig in [10]. In Example 1, a datum f on the bidisc is
constructed, such that f ∈ W k,q for all 1 < q < p, yet ∂̄u = f has no W k,p solutions. This example
indicates that the ∂̄ problem does not gain Sobolev regularity on product domains in general, and
thus the estimate in Theorem 1.1 is sharp.

Acknowledgement: The author thanks Professor Song-Ying Li for helpful comments, and John
Treuer for pointing out a few typos. She also thanks the anonymous referee for providing valuable
suggestions.

2 Bergman projection and canonical solutions on planar

domains

Let D be a bounded domain in C whose boundary bD is smooth, and g be the Green’s function
on D. In other words, at a fixed pole w ∈ D,

g(z, w) := − 1

2π
sup

{
u(z) : u ∈ SH−(D) and lim sup

ζ→w
(u(ζ)− log |ζ − w|) < ∞

}
, z ∈ D,

where SH−(D) is the collection of negative subharmonic functions on D. It is known ( [9] etc.)
that g is symmetric on the two variables z and w. Moreover, there exists a harmonic function hw

on D with hw = 1
2π

ln | · −w| on bD such that

g(·, w) = − 1

2π
ln | · −w|+ hw in D. (2.1)

In particular, hw ∈ C∞(D) and

g(z, w) = g(w, z) = 0, z ∈ bD. (2.2)

Given f ∈ Lp(D), 1 < p < ∞, define

Gf := −4

∫
D

g(·, w)f(w)dνw in D. (2.3)

Here dν is the Lebesgue measure on C. Then Gf is the solution to the Dirichlet problem{
∆u = 4f, in D;

u = 0, on bD.
(2.4)

Denote by Lp
α(D), α ∈ R the (fractional) Sobolev space following the notation in [10, pp. 162]

of Jerison and Kenig. By [10, Theorem 0.3], G is a bounded operator sending Lp
α−2(D) into

Lp
α(D), 1 < p < ∞, α > 1

p
. In particular, if f ∈ W k−1,p(D), k ∈ Z+ ∪ {0}, 1 < p < ∞, then

∥Gf∥Wk+1,p(D) ≲ ∥f∥Wk−1,p(D). (2.5)
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Here and throughout the rest of the paper, we say two quantities a and b to satisfy a ≲ b if there
exists a constant C dependent only possibly on the underlying domain, k and p such that a ≤ Cb.

The Bergman projection operator P on a domain Ω is the orthogonal projection of L2(Ω)
onto the Bergman space A2(Ω), the space of L2 holomorphic functions on Ω. Since A2(Ω) is a
reproducing kernel Hilbert space, there exists a function k : Ω × Ω → C, called the Bergman
kernel, such that for all f ∈ L2(Ω),

Pf =

∫
Ω

k(·, w)f(w)dνw in Ω.

On a smooth planar domain D, the Bergman kernel k is related to the Green’s function g by

k(z, w) = −4∂z∂w̄g(z, w), z ̸= w ∈ D. (2.6)

See [22, pp 180]. Clearly, k(·, w) ∈ C∞(D̄) by (2.1).
If D is simply-connected, the Sobolev boundedness of the Bergman projection P can be ob-

tained by applying the known Sobolev regularity on the unit disc and the Riemann mapping
theorem. On general smooth planar domains, Lanzani and Stein suggested an approach to esti-
mate P briefly in [14]. For completeness and convenience of the reader, the detail of their approach
to the Sobolev regularity of P is provided below.

Theorem 2.1. Let D ⊂ C be a bounded domain with C∞ boundary. Then the Bergman projection
P is (or, extends as) a bounded operator on W k,p(D), k ∈ Z+ ∪{0}, 1 < p < ∞. Namely, for any
f ∈ W k,p(D),

∥Pf∥Wk,p(D) ≲ ∥f∥Wk,p(D).

Proof. We shall need the following Spencer’s formula: for any f ∈ C∞(D̄),

Pf + ∂G∂̄f = f in D, (2.7)

where G is defined in (2.3), and for simplification with an abuse of notation, the ∂ and ∂̄ operators
here and in the rest of the section represent the corresponding complex vector fields. The proof of
(2.7) can be found, for instance, in [22, pp. 73-75]. Employing a standard density argument and
the estimate (2.5) for G, we can extend P = I − ∂G∂̄ as a continuous operator on W k,p(D), k ∈
Z+ ∪ {0}, 1 < p < ∞.

By (2.5) the (extended) operator P satisfies for all f ∈ W k,p(D),

∥Pf∥Wk,p(D) ≲∥f∥Wk,p(D) +
∥∥G∂̄f

∥∥
Wk+1,p(D)

≲ ∥f∥Wk,p(D) +
∥∥∂̄f∥∥

Wk−1,p(D)
≲ ∥f∥Wk,p(D).

This completes the proof of the theorem.

Given f ∈ Lp(D), 1 < p < ∞, define

Tf := ∂Gf

(
= −4∂

∫
D

g(·, w)f(w)dνw
)

in D. (2.8)

We shall show below that T is the canonical solution operator of ∂̄ on D and improves the Sobolev
regularity by order one.
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Theorem 2.2. Let D be a bounded domain in C with smooth boundary. For each k ∈ Z+∪{0}, 1 <
p < ∞, T defined in (2.8) is the canonical solution operator of ∂̄ on D, and is a bounded operator
sending W k,p(D) into W k+1,p(D). Namely, for any f ∈ W k,p(D),

∥Tf∥Wk+1,p(D) ≲ ∥f∥Wk,p(D).

Proof. First for f ∈ L2(D), Tf ∈ L2(D) following (2.5). Moreover, by (2.4) one has ∂̄T f =
∂̄∂Gf = f on D. Furthermore, for any h ∈ A2(D),

⟨Tf, h⟩ = ⟨T ∂̄Tf, h⟩ = ⟨Tf − PTf, h⟩ = ⟨Tf − PTf, Ph⟩ = ⟨PTf − PTf, h⟩ = 0,

implying Tf ⊥ A2(Ω). Here in the first equality we used the fact that ∂̄T f = f on D; in the
second equality we used (2.7) with f replaced by Tf ; in the third equality we used the fact that
Ph = h when h ∈ A2(D); in the fourth equality we used the projection properties of P , i.e.,
P ∗ = P = P 2. Thus T is the canonical solution operator of ∂̄ on D. The Sobolev regularity of T
follows immediately from (2.5) and (2.8).

Remark 2.3. a). We can further make use of Theorem 2.2 and the Sobolev embedding theorem
to conclude that the canonical solution operator T sends W k,∞(D) into Ck,α(D) for all 0 < α < 1
with

∥Tf∥Ck,α(D) ≤ C∥f∥Wk,∞(D),

where C depends only on D, k and α. In particular, this inequality improves a supnorm estimate
in [1].
b). Another well-known solution operator T̃ of ∂̄ on D is given in terms of the universal Cauchy
kernel as follows.

T̃ f := − 1

π

∫
D

f(w)

w − ·
dνw in D.

It was proved by Prats in [18] that T̃ enjoys a similar Sobolev regularity as T (see also [20] for a
much simpler proof using Caldrón-Zygmund’s classical singular integral theory):

∥T̃ f∥Wk+1,p(D) ≲ ∥f∥Wk,p(D).

3 Canonical solutions on product domains

Let Ω := D1 × · · · × Dn ⊂ Cn, n ≥ 2, where each Dj is a bounded planar domain with smooth
boundary. Denote by Pj the Bergman projection operator of Dj, j = 1, . . . , n. Then the Bergman
projection P of Ω satisfies

P = P1 · · ·Pn. (3.1)

Let Tj be the canonical solution operator on Dj defined in (2.8), with D replaced by Dj,
j = 1, . . . , n. Given a ∂̄-closed (0, 1) form f =

∑n
j=1 fjdz̄j ∈ Lp(Ω), it was shown in [3, Lemma 4.4]

and [13, Theorem 2.5] (or, through a repeated application of (2.7) together with the ∂̄-closedness
of f) that

Tf = T1f1 + T2P1f2 + · · ·+ TnP1 · · ·Pn−1fn (3.2)

is the canonical solution to ∂̄u = f on Ω. Note that when j ̸= k, the two operators Pj and Tk

(or Pk) commute on Lp(Ω) due to Fubini’s theorem. The following proposition gives the Sobolev
boundedness of Tj and Pj on Ω.
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Proposition 3.1. Let Ω := D1 × · · · × Dn ⊂ Cn, where each Dj is a bounded domain in C
with smooth boundary, j = 1, . . . n. Then Tj and Pj are bounded operators in W k,p(Ω), k ∈
Z+ ∪ {0}, 1 < p < ∞. Namely, for all f ∈ W k,p(Ω),

∥Tjf∥Wk,p(Ω) ≲ ∥f∥Wk,p(Ω); ∥Pjf∥Wk,p(Ω) ≲ ∥f∥Wk,p(Ω).

Proof. For simplicity yet without loss of generality, assume j = 1 and n = 2. Denote by ∇j

the gradient in the zj variable. Since ∂̄1T1 = id and ∂̄1P1 = 0, we only need to prove for all
k1, k2 ∈ Z+ ∪ {0}, k1 + k2 = k,

∥∂k1
1 T1∇k2

2 f∥Lp(Ω) ≲ ∥f∥Wk,p(Ω); ∥∂k1
1 P1∇k2

2 f∥Lp(Ω) ≲ ∥f∥Wk,p(Ω).

In fact, making use of Theorem 2.2 and Fubini’s theorem,

∥∂k1
1 T1∇k2

2 f∥pLp(Ω) =

∫
D2

∥∥∂k1
1 T1

(
∇k2

2 f
)
(·, w2)

∥∥p

Lp(D1)
dνw2

≲
k1∑

m1=0

∫
D2

∥∥∇m1
1 ∇k2

2 f(·, w2)
∥∥p

Lp(D1)
dνw2 ≲ ∥f∥p

Wk,p(Ω)
.

The estimate for P1 is done similarly with an application of Theorem 2.1.

In particular, the proposition states that Tj does not lose Sobolev regularity. This estimate
of Tj is also the best that one can expect when n ≥ 2. This is because Tj only improves the
regularity in the zj direction and has no smoothing effect on the rest of the variables.

Proof of Theorem 1.1: The proof to Theorem 1.1 is a direct consequence of Proposition 3.1 and
(3.2).

Proposition 3.1 and (3.1) also immediately give the following Sobolev regularity of the Bergman
projection operator P on general product domains. We mention that the Sobolev regularity of P
on the polydisc was due to [8, 11].

Theorem 3.2. Let Ω := D1 × · · · × Dn ⊂ Cn, n ≥ 1, where each Dj is a bounded domain in
C with smooth boundary, j = 1, . . . , n. The Bergman projection P is (or, extends as) a bounded
operator in W k,p(Ω), k ∈ Z+ ∪ {0}, 1 < p < ∞. Namely, for any f ∈ W k,p(Ω),

∥Pf∥Wk,p(Ω) ≲ ∥f∥Wk,p(Ω).

Denote by △2 the bidisc in C2. The following Kerzman-type example demonstrates that the
∂̄ problem in general does not improve the Sobolev regularity. In this sense the Sobolev estimate
of the canonical solution operator in Theorem 1.1 is sharp.

Example 1. For each k ∈ Z+ ∪{0} and 1 < p < ∞, consider f = (z2 − 1)k−
2
pdz̄1 on △2 if p ̸= 2,

or f = (z2 − 1)k−1 log(z2 − 1)dz̄1 on △2 if p = 2, 1
2
π < arg(z2 − 1) < 3

2
π. Then f ∈ W k,q(△2) for

all 1 < q < p, and is ∂̄-closed on △2. However, there does not exist a solution u ∈ W k,p(△2) to
∂̄u = f on △2.
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Proof. One can directly verify that f ∈ W k,q(△2) for all 1 < q < p and is ∂̄-closed on △2. Suppose

there exists some u ∈ W k,p(△2) satisfying ∂̄u = f on △2. Then u = (z2−1)k−
2
p z̄1+h ∈ W k,p(△2)

for some holomorphic function h on △2. For each (r, z2) ∈ U := (0, 1)×△ ⊂ R3, consider

v(r, z2) :=

∫
|z1|=r

u(z1, z2)dz1.

By Fubini’s theorem and Hölder’s inequality,

∥∂k
2v∥

p
Lp(U) =

∫
U

∣∣∣∣∫
|z1|=r

∂k
2u(z1, z2)dz1

∣∣∣∣p dνz2dr = ∫
|z2|<1

∫ 1

0

∣∣∣∣r ∫ 2π

0

|∂k
2u(re

iθ, z2)|dθ
∣∣∣∣p drdνz2

≲
∫
|z2|<1

∫ 1

0

∫ 2π

0

|∂k
2u(re

iθ, z2)|pdθrdrdνz2 ≤ ∥u∥p
Wk,p(△2)

< ∞.

Thus ∂k
2v ∈ Lp(U).

On the other hand, by Cauchy’s theorem, for each (r, z2) ∈ U ,

∂k
2v(r, z2) = Ck,p

∫
|z1|=r

(z2 − 1)−
2
p z̄1dz1 = Ck,p(z2 − 1)−

2
p

∫
|z1|=r

r2

z1
dz1 = 2πCk,pr

2i(z2 − 1)−
2
p

for some non-zero constant Ck,p depending only on k and p. However, r2(z2− 1)−
2
p /∈ Lp(U). This

is a contradiction!
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