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Abstract. The purpose of this paper is to organize some results on the local geometry of
CR singular real-analytic manifolds that are images of CR manifolds via a CR map that is
a diffeomorphism onto its image. We find a necessary (sufficient in dimension 2) condition
for the diffeomorphism to extend to a finite holomorphic map. The multiplicity of this map
is a biholomorphic invariant that is precisely the Moser invariant of the image when it is a
Bishop surface with vanishing Bishop invariant. In higher dimensions, we study Levi-flat
CR singular images and we prove that the set of CR singular points must be large, and in
the case of codimension 2, necessarily Levi-flat or complex. We also show that there exist
real-analytic CR functions on such images that satisfy the tangential CR conditions at the
singular points, yet fail to extend to holomorphic functions in a neighborhood. We provide
many examples to illustrate the phenomena that arise.

1. Introduction

Let M be a smooth real submanifold in Cn, n ≥ 2. Given p ∈ M , let T 0,1
p M denote the

CR tangent space to M at p, i.e., the subspace of antiholomorphic vectors in CTpCn that are
also tangent to M . M is called a CR submanifold when the function φ(p) = dimC T

0,1
p M is

constant. In this paper, we focus on submanifolds for which φ has jump discontinuities. We
call such an M a CR singular submanifold and call those points where φ is discontinuous
CR singular points of M . A CR singular submanifold is necessarily of real codimension
at least 2. A two-dimensional CR singular submanifold in C2 already has a rich structure
and the biholomorphic equivalence problem in this situation has been extensively studied by
many authors, for example [4,8,12,13,17,18]. If M is real-analytic,then a local real-analytic
parametrization from R2 onto M gives rise to a holomorphic map from C2 to C2 whose
restriction to R2 is a diffeomorphism onto M . This observation motivates us to consider the
general situation in which a CR singular submanifold of Cn is diffeomorphic to a generic
submanifold of Cn of the same codimension via a CR map.

To be specific, let N ⊂ Cn be a generic real-analytic CR manifold. That is, N is a locally
minimally embedded CR submanifold. Let f : N → Cn be a real-analytic CR map such that
f is a diffeomorphism onto its image M = f(N), which is CR singular at some point p ∈M ,
and suppose that M is generic at some point. We call such an M a CR singular image.
Since N is real-analytic, f extends to a holomorphic map F from a neighborhood of N in
Cn into a neighborhood of M in Cn. If the map F does not have constant rank at a point,
the image of that point is a CR singular point of M (see Lemma 4.2). This observation was
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also made in [7], where the images of CR submanifolds under finite holomorphic maps were
studied. We consider the following questions regarding a CR singular image M :

(i) What can be said about the holomorphic extension F of the map f? In particular,
when is F a finite map?

(ii) What is the structure of the set of CR singular points of M?
(iii) Does every real-analytic CR function (appropriately defined) on M extend to a neigh-

borhood of M in Cn?

In Section 3, we first consider a real-analytic submafold M of real dimension n in Cn

with one-dimensional complex tangent at a point. Any such M is an image of a totally
real N under a CR map that is a diffeomorphism onto M . In special coordinates for M we
can write the map f in a rather explicit form. We then provide a necessary and sufficient
condition for f to extend to a finite holomorphic map F , in terms of the defining equation
of M . In this case, the multiplicity of F is a biholomorphic invariant. In two dimensions,
this invariant is closely related to the Moser invariant (see [17]) of M when it is a Bishop
surface with elliptic complex tangent, or the lowest order invariants studied in [10] by Harris.
Furthermore, by invoking a theorem of Moser [17], we can show that the only Bishop surface
in C2 that cannot be realized as an image of R2 ⊂ C2 via a finite holomorphic map is the
surface M0 := {w = |z|2} (Theorem 3.3). When dimRM > n, we are able to provide an
explicit example of a CR singular manifold M which is not an image of a generic submanifold
of the same codimension (see Example 5.5). However, when M is a singular image, we prove
that an analogous condition is necessary for the extended map to be finite, and that the
multiplicity remains a biholomorphic invariant (see Section 2).

We then study a CR singular image M that contains complex subvarieties of positive
dimension. The main result along these lines (Theorem 4.1) shows that if M is a CR
singular image with a CR singular set S, and M contains a complex subvariety L of complex
dimension j that intersects S, then S∩L is a complex subvariety of (complex) dimension j or
j − 1. Furthermore, if M contains a continuous family of complex varieties Lt of dimension
j and L0 ∩ S is of dimension j − 1, then Lt ∩ S is nonempty for all t near 0.

We apply these ideas in Theorem 5.1 to characterize the CR singular set of a Levi-flat
CR singular image. We construct several examples illustrating the different possibilities for
the CR structure of the set of CR singular points. A corollary to our theorem shows that a
Levi-flat CR singular image necessarily has a CR singular set of large dimension, depending
on the generic CR dimension of the singular image. When the codimension is 2, we obtain
that the CR singular set is necessarily Levi-flat or complex. One of the primary motivations
for studying CR singular Levi-flat manifolds is to understand the singularities of non-smooth
Levi-flat varieties in general. For example, it has been proved by the first author [16] that
the singular locus of a singular Levi-flat hypersurface is Levi-flat or complex. The next step
in this program would be to find a Levi-flat stratification, for which we need to understand
the CR singular set that may arise in higher codimension flat submanifolds.

We next attempt to find a convenient set of coordinates for a nowhere minimal CR singular
image M along the lines of the standard result, Theorem 6.1, for CR manifolds. In particular,
a generic submanifold N has coordinates in which some of the equations are of the form
Imw′ = 0, where {w′ = s} ∩ N give the CR orbits of N . The theorem does not generalize
directly, but when M is a CR singular image under a finite holomorphic map, we obtain
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a partial analogue, namely that M is contained in the intersection of singular Levi-flat
hypersurfaces.

In Section 7, we consider the extension of real-analytic CR functions defined on a CR
singular image M . When M is generic at every point, then all real-analytic CR functions
on M extend to holomorphic functions on a neighborhood of M in Cn. In contrast, we show
that if M is a CR singular image, then there exists a real-analytic function satisfying all
tangential CR conditions, yet fails to extend to a holomorphic function on a neighborhood
of M . This result is closely related to an earlier result [9] in which the author provided a
necessary and sufficient condition for a CR function on the generic part of M to extend past
a CR singular point.

The authors would like to acknowledge Peter Ebenfelt for many conversations on this and
related subjects and for advice and guidance over the years.

2. Preliminaries

In this section we will recall some basic notations and results that will be needed in the
rest of the paper. We refer to [3] for more details. Let M be a smooth real submanifold of
real codimension d in Cn. Then at every point p ∈ M , there is a neighborhood U of p and
d real-valued smooth functions r1, . . . , rd defined on U such that

M ∩ U = {z ∈ Cn : rk(z, z̄) = 0, k = 1, 2, . . . , d}, (1)

where dr1 ∧ dr2 ∧ · · · ∧ drd does not vanish on U . For any point p ∈M , we denote by T 0,1
p M

the subspace in T 0,1
p Cn that annihilates rk for k = 1, 2, . . . , d. Thus, we see that

dimC T
0,1
p M = n− rankC

(
∂rj
∂z̄k

(p, p̄)

)
j,k

. (2)

If dimC T
0,1
q M is constant for all q near p and equals n− d, then we say that M is generic at

p. In this paper, we shall assume that M is connected and generic at some point and thus

the matrix
(
∂rj
∂z̄k

)
j,k

is of generic full rank. If further we denote by S the set of CR singular

points of M , then

S =

{
z ∈M : rankC

(
∂rj
∂z̄k

)
j,k

≤ d− 1

}
. (3)

The set of CR singular points S is a proper subvariety of M and M \ S is generic at all
points.

Remark 2.1. We note that when M ⊂ Cn is a CR singular submanifold such that there
exists a subbundle V ⊂ C ⊗ TM such that Vq = T 0,1

q M ⊂ T 0,1
q Cn for all q ∈ M \ S, then

(M,V) becomes an abstract real-analytic CR manifold. Hence, (M,V) is locally integrable
(see [3, Theorem 2.1.11]). Therefore, for every p ∈M we obtain a generic N ⊂ Cn and a real-
analytic CR map f : N → Cn such that f is a diffeomorphism onto an open neighbourhood
of p in M . We shall call such pair (N, f) (or simply N) a resolution of CR singularity of M
near p. The converse is also true; if there exists a resolution of CR singularity of M near
p, then the CR bundle on M \ S extends to a subbundle of C⊗R TM in a neighborhood of
p on M . The resolution of CR singularity N , if exists, is unique, modulo a biholomorphic
equivalence (Proposition 2.3).
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Let N ⊂ Cn be a real-analytic generic submanifold and f : N → Cn a real-analytic CR
map that is a diffeomorphism onto its image M = f(N). By the real-analyticity, the map
f extends to a holomorphic map F in a neighborhood of N in Cn. One of the questions we
are interested in is whether F a finite holomorphic map. For p ∈ Cn we denote by Op the
ring of germs of holomorphic functions at p.

Definition 2.2. A germ of a holomorphic map F = (F1, . . . , Fn) defined in a neighborhood
of p ∈ Cn is said to be finite at p if the ideal I(F ) generated by F1, . . . , Fn in Op is of finite
codimension, that is, if dimCOp/I(F ) is finite. This number, denoted by multp(F ), is called
the multiplicity of F at p.

Equivalently, a holomorphic map defined as above is finite if and only if the germ of the
complex analytic variety F−1

(
F (p)

)
is an isolated point (cf. [1]). In this case, for any q close

enough to F (p), the number of preimages #F−1(q) is finite and always less than or equal to
multp(F ). The equality holds for generic points in a neighborhood of F (p).

Proposition 2.3. Let M, M̃ ⊂ Cn be connected CR singular real-analytic submanifolds
that are generic at some point and ϕ a biholomorphic map of a neighbourhood of M to

a neighbourhood of M̃ such that ϕ(M) = M̃ . Let N, Ñ ⊂ Cn be generic real-analytic
submanifolds, F be a holomorphic map from a neighborhood of N to a neighborhood of M ,

and F̃ be holomorphic map from a neighborhood of Ñ to a neighborhood of M̃ , such that

F |N and F̃ |Ñ and are diffeomorphisms onto M and M̃ respectively. Then N and Ñ are
biholomorphically equivalent.

Furthermore, for any point p ∈M , multp(F ) is a local biholomorphic invariant of M (i.e.,
does not depend on N and F ).

Proof. Write f = F |N and f̃ = F̃ |Ñ . We have the following commutative diagram

N
f−−−→ M

f̃−1◦ϕ◦f

y yϕ|M
Ñ

f̃−−−→ M̃.

(4)

Let S be the set of CR singular points of M , and hence ϕ(S) the set of CR singular points

of M̃ . As M̃ is generic outside ϕ(S) and the Jacobian of F̃ does not vanish on M̃ \ ϕ(S),

then f̃−1 is a CR map on M̃ \ ϕ(S). The map f̃−1 ◦ ϕ ◦ f is a diffeomorphism that is a CR
map outside of f−1(S), which is nowhere dense in N . It is, therefore, a real-analytic CR

diffeomorphism of the generic submanifolds N and Ñ , and so it extends to a biholomorphism
of a neighbourhood. By uniqueness of the extension of CR maps from generic submanifolds,

the diagram still commutes after we extend. Hence, the extensions F and F̃ have the same
multiplicity. �

If M is a real-analytic submanifold of codimension d = 2 in Cn, then dimC T
0,1
p M = n− 1

at a CR singular point p ∈ M . Thus we can find a linear change of coordinates such that
the new coordinates Z = (z, w) ∈ Cn−1 × C vanishes at p and M is given by one complex
equation:

w = ρ(z, z̄), (5)

where ρ vanishes to order at least 2 at 0.
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Proposition 2.4. Suppose M ⊂ Cn is a CR singular real-analytic submanifold of codimen-
sion 2 near zero, defined by w = ρ(z, z̄), where ρ vanishes to order at least 2 at 0. Suppose
that N is a real-analytic generic submanifold of Cn and F a holomorphic map of a neigh-
borhood of N into Cn such that F |N : N → Cn is a diffeomorphism onto M . If ρ(0, z̄) ≡ 0,
then F cannot be a finite map.

Proof. Write F = (F ′, Fn). Let N be given by normal coordinates (see [3, Proposition
4.2.12])

ω = r(ζ, ζ̄, ω̄), (6)

where (ζ, ω) ∈ Cn−2 × C2, and r is a C2-valued holomorphic function satisfying r(ζ, 0, ω̄) =
r(0, ζ̄, ω̄) = ω̄. Then for (ζ, ω) ∈ N we have

Fn(ζ, ω) = ρ
(
F ′(ζ, ω), F̄ ′(ζ̄ , ω̄)

)
. (7)

By plugging in the defining equation of N as ω̄ = r̄(ζ̄ , ζ, ω), we get

Fn(ζ, ω) = ρ
(
F ′(ζ, ω), F̄ ′(ζ̄ , r̄(ζ̄ , ζ, ω))

)
(8)

holds near 0. In particular (8) holds when ζ̄ = 0. Using the fact that in normal coordinates
r̄(0, ζ̄, ω) ≡ ω we get

Fn(ζ, ω) = ρ
(
F ′(ζ, ω), F̄ ′(0, r̄(0, ζ, ω))

)
= ρ
(
F ′(ζ, ω), F̄ ′(0, ω)

)
. (9)

So F cannot be finite if ρ(0, z̄) ≡ 0, as in that case Fn is in the ideal generated by components
of F ′. �

Remark 2.5. We conclude this section by a remark that the existence of a finite holomorphic
map F and a generic submanifold N such that F restricted to N is a diffeomorphism onto
M = F (N) implies that the set of CR singular points on M is contained in a proper complex
subvariety of Cn. This fact follows from Lemma 4.2, which shows that the inverse image of
the CR singular points is contained in the set where the Jacobian of F vanishes, and from
Remmert proper map theorem.

3. Images under finite maps of totally real submanifolds

Let M be a real-analytic submanifold of real dimension n in Cn. Assume that M is totally
real at a generic point and has CR singularities along S ⊂ M . Suppose that p ∈ S and
dimC T

0,1
p M = 1. Then, after a change of coordinates, we can assume that p = 0 and M can

be defined by the following equations

zn = ρ(z1, z̄1, x
′),

yα = rα(z1, z̄1, x
′), α = 2, . . . , n− 1.

(10)

Here, z = (z1, . . . , zn) are the coordinates in Cn, z′ = (z2, . . . , zn−1) (when n = 2, z′ is
omitted) and zj = xj + iyj. The functions ρ and rα have no linear terms, and rα are real-
valued. By making another change of coordinates, we can eliminate the harmonic terms in
rα to obtain

rα(0, z̄, 0) = 0. (11)

The case when p is a nondegenerate CR singularity of M (i.e., ρ vanishes to order exactly
2 at 0) has been studied from a different view point (see, e.g., [4, 11, 14]). Here we make no
such assumption.
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Proposition 3.1. Let M ⊂ Cn be a real-analytic submanifold of real dimension n, with a
complex tangent at 0, defined by equations (10). Then the following are equivalent

(i) There is a totally real submanifold N of dimension n in Cn and a germ of a finite
holomorphic map F : (Cn, 0)→ (Cn, 0) such that F |N is diffeomorphic onto M = F (N)
(as germs at 0).

(ii) ρ(0, z̄1, 0) 6≡ 0.

Furthermore, if (ii) holds, then

ρ(0, z̄1, 0) = cz̄k1 +O(z̄k+1
1 ), c 6= 0, (12)

with k = mult0(F ).

Proof. We can assume that N = Rn ⊂ Cn. Consider the map f = (f1, f
′, fn) : Rn → Cn

given by

f1(t1, t
′, tn) = t1 + itn, (13)

fα(t1, t
′, tn) = tα + irα(t1 + itn, t1 − itn, t′), (14)

fn(t1, t
′, tn) = ρ(t1 + itn, t1 − itn, t′). (15)

Then clearly, f is a diffeomorphism from a neighborhood of 0 in Rn onto M . Furthermore,
f extends to a holomorphic map F from a neighborhood of 0 in Cn. Thus, by abuse of
notation, we also denote the coordinates in Cn by t. Let VF be the germ of F−1(0) at 0.

(i) ⇒ (ii): Assume that ρ(0, z̄, 0) ≡ 0. By making use of the fact that rα(0, z̄, 0) ≡ 0, one
can check that

{(t1, t′, tn) ∈ Cn : t1 = −itn, t′ = 0} ⊂ VF . (16)

Thus VF has positive dimension, and so F is not finite at 0.

(ii) ⇒ (i): Assume that (ii) holds. Let (t1, t
′, tn) ∈ VF . From (13) we have t1 = −i tn.

Substitute into (14) and (15) we get

tα + i rα(0, 2t1, t
′) = 0 (17)

ρ(0, 2t1, t
′) = 0. (18)

As rα has no linear terms, by implicit function theorem, we can see that (17) has unique
solution. Furthermore, since rα has no harmonic terms, the unique solution must be t′ = 0.

Substituting t′ = 0 into (18), we get

ρ
(
0, 2t1, 0

)
= 0. (19)

Using (12) we get

2kc tk1 +O(tk+1) = 0. (20)

We then deduce that t1 = tn = 0. Hence, VF = {0} is isolated and thus F is finite.

Finally, let z̃ = (z̃1, z̃
′, z̃′n) be a point close enough to 0. We will show that for generic

q, in a small neighborhood of 0 there are k solutions to the equation F (t) = z̃. Indeed, if
F (t) = z̃ then

t1 + itn = z̃1, (21)

tα + i rα(t1 + itn, t1 − itn, t′) = z̃α, (22)

ρ(t1 + itn, t1 − itn, t′) = z̃n. (23)
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From (21) we have

t1 = −i tn + z̃1. (24)

Substitute (24) into (22) we get

tα + i rα(z̃1, 2t1 − z̃1, t
′) = z̃α. (25)

For z̃ close enough to 0, the implicit function theorem applied to (25) gives unique solution
t′ = ϕ(t1, z̃1). Substitute this into (23) we get

ρ(z̃1, 2t1 − z̃1, ϕ(t1, z̃1)) = z̃n. (26)

From (11) we have that ϕ(t1, 0) ≡ 0. Thus, (26) is a small pertubation of (20) depending
on the size of |z̃|. Thus, there is a neighborhood U of 0 such that for generic z̃ close enough
to 0, the equation (26) has exactly k solutions in U for t1, by Rouché theorem. Therefore
F−1(z̃) consists of k distinct points near 0, and hence mult0(F ) = k. �

In two dimensions, we get further results along this line of reasoning. Let M be a real-
analytic surface (i.e., a 2-dimensional real submanifold) in C2 and p ∈ M . If p is a CR
singular point of M , then we can find a change of coordinates such that p = 0 and M is
given by w = ρ(z, z̄), where ρ vanishes to order at least 2 at 0. A Bishop surface is a surface
where ρ vanishes exactly to order 2 at the origin.

As in Theorem 3.1, we see that the condition ρ(0, z̄) 6≡ 0, says precisely when M is the
image of R2 under a finite map. Let us first show that this condition is also an invariant
under formal invertible transformations.

Lemma 3.2. Let M and M ′ be a CR singular real-analytic surfaces in C2 near 0 given by
w = ρ(z, z̄) and w′ = ρ′(z′, z̄′) and F a formal invertible transformation that sends M into
M ′. Then ρ(0, z) ≡ 0 if and only if ρ′(0, z̄′) ≡ 0.

Proof. Assume that F = (F1, F2). Since F preserves the origin and the complex tangent
plane at the origin,

F1(z, w) = az + bw + ϕ(z, w), F2(z, w) = cw + ψ(z, w), (27)

where ac 6= 0 and ϕ(z, w) = O(2), ψ(z, w) = O(2). Thus

cw + ψ(z, w) = ρ′
(
F1(z, w), b̄z̄ + b̄w̄ + ϕ̄(z̄, w̄)

)
, when w = ρ(z, z̄). (28)

Therefore,

cρ(z, z̄) + ψ
(
z, ρ(z, z̄)

)
= ρ′

(
F1

(
z, ρ(z, z̄)

)
, āz̄ + b̄ρ̄(z̄, z) + ϕ

(
z, ρ(z, z̄)

))
. (29)

Now assume that ρ(0, z̄) ≡ 0. Put z = 0

0 = ρ′
(
0, āz̄

)
. (30)

Since a 6= 0 we deduce that ρ′(0, z̄) ≡ 0. �

We conclude this section by the following theorem that completely analyzes the situation
in n = 2.

Theorem 3.3. Let (M, 0) be a germ of a CR singular real-analytic surface at 0 in C2.
Assume that M is defined near 0 by w = ρ(z, z̄), where ρ vanishes to order at least 2 at 0.
Then the following are equivalent:
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(i) There is a germ of a totally real, real-analytic surface (N, 0) in C2 and a finite holo-
morphic map F : (C2, 0)→ (C2, 0) such that F |N is diffeomorphic onto M = F (N) (as
germs at 0).

(ii) ρ(0, z̄) 6≡ 0.

In addition, if M is a Bishop surface then (i) and (ii) are equivalent to the following: M
is not (locally) biholomorphically equivalent to M0 := {w = |z|2}. If the Bishop invariant
γ 6= 0 then mult0(F ) = 2. Otherwise, s = mult0(F ) is the Moser invariant of M .

Proof. The equivalence of (i) and (ii) follows from Theorem 3.1.

Now suppose that M is a Bishop surface given by w = ρ(z, z̄). After a biholomorphic
change of coordinates, we can write

ρ(z, z̄) = |z|2 + γ(z2 + z̄2) +O(|z|3), (31)

where 0 ≤ γ ≤ ∞ is the Bishop invariant [4]. When γ =∞ the equation (31) is understood
as ρ(z, z̄) = z2 + z̄2 +O(|z|3).

Suppose that (i) or (ii) holds, then from Lemma 3.2 we see that M is not equivalent to
M0 := {w = |z|2}. Conversely, assume that M is not equivalent to M0. Then either γ 6= 0
and hence (ii) holds, or γ = 0. In the latter case, by the work of Moser [17], after a formal
change of coordinates, M can be brought to a “pseudo-normal” form

w = |z|2 + zs + z̄s +
∑

i+j≥s+1

aijz
iz̄j. (32)

Here, 0 ≤ s ≤ ∞ is the Moser invariant. Assume for contradiction that (ii) does not hold.
Then ρ(0, z̄) ≡ 0. Notice that the property ρ(0, z̄) ≡ 0 is preserved under formal transforma-
tions carried in [17], by Lemma 3.2, we deduce that s =∞ and so M is formally equivalent
to M0. By [17], M is biholomorphically equivalent to M0. We obtain a contradiction.

Finally, if γ 6= 0 then from (31) we see that ρ(0, z̄) = γz̄2 +O(z̄3) and hence mult0(F ) = 2.
Otherwise, from (32), we have ρ(0, z̄) = z̄s + O(z̄s+1) and thus mult0(F ) = s is the Moser
invariant of M . �

4. Images containing a family of discs

The following theorem is one of the main tools to study CR singular submanifolds con-
taining complex subvarieties developed in this paper.

Theorem 4.1. Let N ⊂ Cn be a connected generic real-analytic submanifold and let f : N →
Cn be a real-analytic CR map that is a diffeomorphism onto its image, M = f(N). Let
S ⊂M be the CR singular set of M and suppose that M is generic at some point.

(i) If L ⊂ M is a complex subvariety of dimension j, then S ∩ L is either empty or a
complex subvariety of L of dimension j − 1 or j.

(ii) Let A : [0, ε) × ∆ → M be a family of analytic discs such that A(0, 0) = p ∈ S. If
A(0,∆) \ S is nonempty, then there exists an ε′ > 0 such that A(t,∆) ∩ S 6= ∅ for all
0 ≤ t < ε′.

(iii) If M contains a continuous one real dimensional family of complex manifolds of complex
dimension j, and if S intersects one of the manifolds, then S must be of real dimension
at least 2j − 1.
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By a one-dimensional family of analytic discs we mean a map

A : I ×∆→ Cn, (33)

where I ⊂ R is an interval, ∆ ⊂ C is the unit disc, A is a continuous function such that
z 7→ A(t, z) is nonconstant and holomorphic in ∆ for every t ∈ I.

In essence, part (i) says that if M contains a complex variety, the intersection of this
variety with S must be large (and complex). Part (ii) of the theorem says that if there exists
a one-dimensional family of complex varieties in M , and S intersects one of them properly,
then it must intersect all of them. Part (iii) puts the two parts together.

In the proof of Theorem 4.1, we need the following lemma.

Lemma 4.2. Let N ⊂ Cn be a connected generic submanifold and let F : Cn → Cn be a
holomorphic map such that f = F |N is a diffeomorphism onto its image, M = f(N). If d is
the real codimension of N , then for p ∈ N we have

dimC T
1,0
p M = 2n− d− rankC

[
∂Fi
∂zj

(p)

]
. (34)

In particular, let S ⊂ M be the CR singular set of M , and suppose that M is a generic
submanifold at some point. Then

f−1(S) = {z ∈ Cn : JF (z) = 0} ∩N. (35)

Here JF (z) = det
[
∂Fi

∂zj
(z)
]

denotes the holomorphic Jacobian of F .

Proof. Let p ∈ N and q = F (p) ∈M . We denote by J the complex structure in Cn as usual.
Since N is generic,

TpN + JTpN = TpCn. (36)

On the other hand, since F is holomorphic, we have F∗◦J = J ′◦F∗. Furthermore, F∗(TpN) =
TqM because F |N is diffeomorphism. Therefore,

F∗(TpCn) = F∗(TpN + JTpN) = F∗(TpN) + F∗(JTpN) = TqM + JTqM. (37)

Consequently,

rankR F∗|p = dimR F∗(TpCn)

= dimR(TqM + JTqM)

= dimR TqM + dimR JTqM − dimR(TqM ∩ JTqM).

(38)

Since F is holomorphic, the real rank rankR F∗|p equals to 2 rankC

[
∂Fi

∂zj
(p)
]

(twice the rank

of the complex Jacobian matrix of F ). Hence

2 rankC

[
∂Fi
∂zj

(p)

]
= 2(2n− d)− 2 dimC T

1,0
q M. (39)

In other words,

dimC T
0,1
q M = 2n− d− rankC

[
∂Fi
∂zj

(p)

]
. (40)

The second part of the lemma now follows at once. �
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Lemma 4.3. Let N ⊂ Cn be a connected generic real-analytic submanifold and let f : N →
Cn be a CR map that is a real-analytic diffeomorphism onto its image, M = f(N). Let S be
the CR singular set of M and suppose that M is generic at some point. If p ∈ S, then there
is a neighborhood U of p in M and a real-analytic function u on U that is CR on U \ S that
does not extend to a holomorphic function past p.

Proof. Let q = f−1(p) ∈ N and let F be the unique holomorphic extension of f to some
neighborhood of N in Cn. Then by Lemma 4.2, F has degenerate rank at q. Assume for
contradiction that for all neighborhoods U of p, every real-analytic function g on U that is
CR on U \ S extends to a holomorphic function past p. We claim that the homomorphism

F ∗ : Op → Oq, F ∗(g) = g ◦ F (41)

is surjective, where Op and Oq are the rings of germs holomorphic functions at p and q. For
if h is a holomorphic function in a neighborhood V of q in Cn

t , we consider the function
u = (h|N) ◦ f−1. Clearly, u is a real-analytic function on U that is CR on U \ S, where
U = f(V ∩N). By assumption u extends past p to an element û ∈ Op. It is straightforward
to verify that F ∗(û) = h on M \ S near p. By the genericity of M at points in M \ S, we
obtain that F ∗(û) = h as germs near p and hence, the claim follows. In particular, there
are germs of holomorphic functions gj at p, such that the coordinate functions tj = gj ◦ F .
Let G = (g1, . . . , gj), then G is a germ of a holomorphic map satisfying G ◦ F = Id. This is
impossible since F has degenerate rank at q. �

We also need the following result of Diederich and Fornæss [6, claim in section 6].

Lemma 4.4 (Diederich-Fornæss). Let U ⊂ Cn be an open set and let S ⊂ U be a real-
analytic subvariety. For every p ∈ S, there exists a neighborhood U ′ of p such that for every
q ∈ U ′ and every germ of a complex variety (V, q) ⊂ (S, q), there exists a (closed) complex
subvariety W ⊂ U ′ such that (V, q) ⊂ (W, q) and such that W ⊂ S ∩ U ′.

The lemma has the following useful corollary.

Corollary 4.5. Let U ⊂ Cn be an open set and let X ⊂ U be a real-analytic subvariety.
Suppose that there exists an open dense set E ⊂ X such that for every p ∈ E there exists a
neighborhood U ′ of p such that X ∩U ′ is a complex manifold. Then X is a complex analytic
subvariety of U .

Proof of Theorem 4.1. Let us begin with (i). First look at the inverse image f−1(L). This set
is a real subvariety of N , though we cannot immediately conclude that f−1(L) is a complex
variety.

Let F be the unique holomorphic extension of f to a neighborhood of N . Near points of
N \ f−1(S), the map F is locally biholomorphic, by Lemma 4.2. Hence, f−1(L) \ f−1(S) is
a complex analytic variety.

If f−1(L) \ f−1(S) is empty, then we are finished as L ⊂ S. Let us assume that L is
irreducible. As f is a diffeomorphism, f−1(L) is also an irreducible subvariety. So suppose
that f−1(L)\f−1(S) is nonempty, and therefore an open dense subset of f−1(L). By applying
Corollary 4.5 we obtain that f−1(L) must be a complex variety. As F−1(S) is defined by a
single holomorphic function JF and furthermore, it follows from (35) that

f−1(L ∩ S) = f−1(L) ∩ f−1(S) = f−1(L) ∩ F−1(S), (42)
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then E := f−1(L ∩ S) must be a complex subvariety of dimension j − 1 (or empty). As
L∩S is a real-analytic subvariety, we can invoke Corollary 4.5 again to conclude that L∩S
is complex variety as follows. If p ∈ L ∩ S is a regular point and q = f−1(p) ∈ E then q is a
regular point of E as f is a diffeomorphism. Furthermore, E is a complex manifold near q,
i.e., TqE = T cqE. Here, T cqE := TqE ∩ J(TqE) is the complex tangent space at q of E. Thus,
as f is a CR map and diffeomorphism,

Tp(L ∩ S) = f∗(TqE) = f∗(T
c
qE) ⊂ T cp (L ∩ S). (43)

Consequently, Tp(L∩ S) = T cp (L∩ S). Therefore, L∩ S is a complex manifold near p. Since
the regular part of L ∩ S is dense, L ∩ S is a complex manifold near all points on an open
dense subset of L ∩ S and hence L ∩ S is complex variety.

Let us now move to (ii). As S ∩ A(0,∆) is a nonempty proper subset, we know it is a
proper complex subvariety by (i). Without loss of generality we can rescale A such that
S ∩A(0,∆) = {p}. Suppose for contradiction that S ∩A(t,∆) is empty for all 0 < t ≤ ε′, in
other words, A(t,∆) ⊂M \S for all 0 < t ≤ ε′ for some ε′ > 0. Then by the Kontinuitätssatz
(see, e.g., [19, page 190]) any holomorphic function defined on a neighborhood of M \ S
extends to a neighborhood of A(0,∆) (and hence past p). In view of Lemma 4.3, we obtain
a contradiction.

(iii) follows as a consequence of (i) and (ii). �

5. Levi-flats

In this section we study CR singular, Levi-flat submanifolds in Cn. Unlike in two dimen-
sions, a codimension 2, CR submanifold in C3 or larger must have nontrivial CR geometry.
The simplest case is the Levi-flat. A CR manifold is said to be Levi-flat if the Levi-form
vanishes identically. Equivalently, for each p ∈M , there is a neighborhood U of p such that
M ∩ U is foliated by complex manifolds whose leaves Lc satisfy TqLc = TqM ∩ J(TqM) for
all q ∈M ∩ V and all c. This foliation is unique, it is simply the foliation by CR orbits.

In the real-analytic case, a generic Levi-flat submanifold of codimension d is locally bi-
holomorphic to the submanifold defined by

Im z1 = 0, Im z2 = 0, . . . , Im zd = 0, (44)

that is, a submanifold locally equivalent to Rd ×Cn−d. The situation is different if we allow
a CR singularity. The fact that there are infinitely many different CR singular Levi-flat
submanifolds not locally biholomorphically equivalent is already evident from the theory of
Bishop surfaces in C2 (see Section 3).

We apply the result in the previous section to study CR singular Levi-flats that are images
of a neighborhood of Rd × Cn−d under a CR diffeomorphism. We show that in dimension
3 and higher, unlike in 2 dimensions, there exist Levi-flats that are not images of a CR
submanifold. First, let us study the CR singular set of an image of N = Rd ×Cn−d. In this
case, the Levi foliation on N gives rise to a real-analytic foliation L on M that coincides with
the Levi-foliation on M \ S. Moreover, it is readily seen that the leaves of L are complex
submanifolds (even near points in S) and thus M is also foliated by complex manifolds. We
call a “leaf” of M a leaf of this foliation.
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Theorem 5.1. Let n ≥ 3, n > d ≥ 2. Let U ⊂ Rd × Cn−d be a connected open set and let
f : U → Cn be a real-analytic CR map that is a diffeomorphism onto its image, M = f(U).
Let S ⊂M be the CR singular set of M and suppose that M is generic at some point.

(i) If (x, ξ) are the coordinates in Rd ×Cn−d, then the set f−1(S) is locally the zero set of
a real-analytic function that is holomorphic in ξ.

(ii) If L is a leaf of M , then S∩L is either empty or a complex analytic variety of dimension
n− d or n− d− 1 .

(iii) If S ∩ L is of dimension n − d − 1, then S must intersect all the leaves in some
neighborhood of L.

In particular, the theorem says that the CR singularity cannot be isolated if M is an image
of Rd × Cn−d. In fact, the CR singularity cannot be a real one-dimensional curve either. It
cannot be a curve inside a leaf L as it is a complex variety when intersected with L. When
it is a point, S must intersect all leaves nearby, and there is at least a 2-dimensional family
of leaves of M . That is, the singular set is always 2 or more dimensional.

For example when n = 3, d = 2, it is possible that the singular set is either 2 or 3
dimensional. We show below that where it is CR it must be Levi-flat in the following sense.
If we include complex manifolds among Levi-flat manifolds we can say that a CR submanifold
K (not necessarily a generic submanifold) is Levi-flat if near every p ∈ K there exist local
coordinates z such that K is defined by

Im z1 = Im z2 = · · · = Im zj = 0 (45)

zj+1 = zj+2 = · · · = zj+k = 0. (46)

for some j and k, where we interpret j = 0 and k = 0 appropriately. This definition includes
complex manifolds (j = 0) and generic Levi-flats (k = 0), although we generally call complex
submanifolds complex rather than Levi-flat.

Corollary 5.2. Let n ≥ 3, n > d ≥ 2. Let U ⊂ Rd × Cn−d be a connected open set and let
f : U → Cn be a real-analytic CR map that is a diffeomorphism onto its image, M = f(U).
Let S ⊂M be the CR singular set of M and suppose that M is generic at some point. If S
is nonempty, then it is of real dimension at least 2(n− d). Furthermore, near points where
f−1(S) is a CR submanifold, it is Levi-flat or complex.

Proof. Suppose p ∈ S and L is the leaf passing through p. From Theorem 5.1, L ∩ S is a
complex variety of complex dimension n − d or n − d − 1 near p. If L ∩ S is of dimension
(n − d) near p, then we are done. Otherwise, using Theorem 5.1 again, we have that S
intersects a d-parameter family of leaves near p. Therefore, the real dimension of S near p
is 2(n− d− 1) + d ≥ 2(n− d).

Let (x, ξ) be our parameters in U as in the theorem, then f−1(S) is given by a real-analytic
function that is holomorphic in ξ. In other words, f−1(S) is a subvariety that is a Levi-flat
submanifold at all regular points where it is CR. To see this fact, it is enough to look at a
generic point of f−1(S). �

The fact that f−1(S) is Levi-flat does not imply that S must be Levi-flat. This is precisely
because the complex Jacobian of the holomorphic extension F of f vanishes on f−1(S). In
fact, as the examples in Section 8 suggest, the CR structure of f−1(S) and S may be quite
different. In particular CR dimension of S may be strictly greater than the CR dimension
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of f−1(S). What we can say for sure is that through each point, S must contain complex
varieties of complex dimension at least n − d − 1. Using Theorem 4.1, we can obtain the
following information on the CR structure of S.

Corollary 5.3. Let M be as above and let p be a generic point of S (in particular, S is
CR near p). Suppose L is the leaf on M through p, that is, an image of the leaf of the
Levi-foliation through f−1(p) and let E = S ∩ L.

(i) The following table lists all the possibilities for the CR structure of S near p when the
codimension is d = 2 (DNO means ‘Does not occur’).

aaaaaaaaa
dimR(S)

CRdim(S)
n− 3 n− 2

2n− 4
S is Levi-flat

dimCE = n− 3

S is complex
dimCE = n− 2 or

dimCE = n− 3

2n− 3 DNO
S is Levi-flat

dimCE = n− 2

(ii) The following table lists all the possibilities for the CR structure of S near p when the
codimension is d = 3 († marks the case when it is not known if S must necessarily be
Levi-flat).

aaaaaaaaa
dimR(S)

CRdim(S)
n− 4 n− 3 n− 2

2n− 6 DNO
S is complex

dimCE = n− 3
DNO

2n− 5
S is Levi-flat

dimCE = n− 4

S is Levi-flat
dimCE = n− 3

dimCE = n− 4 †
DNO

2n− 4 DNO
S is Levi-flat

dimCE = n− 3
S is complex

dimCE = n− 3

We see that when codimension d = 2, then S must be Levi-flat or complex, and in fact
we understand precisely the CR structure of S at a generic point. Also given the examples
in Section 8, all the possibilities for d = 2 actually occur.

When d = 3 there is one case where we cannot decide if S is Levi-flat or not using
Theorem 4.1.

Proof. Note that as p is generic, we can assume that S is a CR submanifold near p and p
can be chosen such that dimC S ∩ Lq is constant on q ∈ S. Here, Lq is the leaf through q.

Let us start with d = 2. Let us first note that the dimension of S must be greater than
or equal to 2(n − d) = 2n − 4, so the possibilities are 2n − 4 and 2n − 3. Since S ∩ L is
contained in S, the CR dimension of S must be greater than or equal to that of S∩L. Hence
it is either n − 3 or n − 2. If CRdimS = n − 3, then dimC S ∩ L = n − 3 of course and so
S must be Levi-flat. By Theorem 4.1, S intersects all leaves near L and hence must have
real dimension 2(n − 3) + 2 = 2n − 4 as there is a 2-dimensional family of leaves and the
intersection with each of them is of real dimension 2n− 6.
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So now consider CRdim(S) = n − 2. If dimS = 2n − 4, then S must be complex.
Both dimC S ∩ L = n − 3 and n − 2 are possible. When dimS = 2n − 3, then necessarily
dimC S ∩ L = n− 2 by the above argument, and so S is Levi-flat.

The case d = 3 follows similarly. In this case we have 2(n−d) = 2n−6 ≤ dimS ≤ 2n−4,
and CRdimS ≥ n − 4 as dimC S ∩ L ≥ n − 4. Similarly, when dimC S ∩ L = n − 4, then
dimS = 2(n− 4) + 3 = 2n− 5. The table fills in similarly as above.

The only case when we do not know if S is flat or not is when dimC S ∩ L = n − 4 and
the CR dimension of S is n− 3. �

Proof of Theorem 5.1. Let us suppose that f(0) = 0 and 0 ∈ S for simplicity in the following
arguments.

Let us begin with (i). Suppose we have a real-analytic CR map f(x, ξ) from U onto
M , where x ∈ Rd and ξ ∈ Cn−d. It follows that f is holomorphic in ξ. As in the proof
of Lemma 4.2, the map f extends to a holomorphic maps F (z, ξ) defined in an open set

Û ⊂ Cd × Cn−d by simply replacing the real variable x by a complex variable z. F sends
U , as a generic submanifold of Cn defined by z = z̄ in Û , diffeomorphically onto M . By
Lemma 4.2,

f−1(S) = {(z, ξ) ∈ Û : JF (z, ξ) = 0} ∩ {z = z̄}. (47)

Thus, in (x, ξ)-coordinates, f−1(S) is given by the vanishing of the function JF (x, ξ) on U ,
where JF (x, ξ) is real-analytic in x and holomorphic in ξ.

For the proof of (ii), let L be a leaf on M . Since the leaves of M is parametrized by
f(x, ξ), where x is regarded as a parameter, L is a complex manifold of dimension n − d.
The conclusion of (ii) then follows from Theorem 4.1.

Let us now prove (iii). Fix p ∈ S and take a leaf L of M through p, and suppose f(0) = p.
Suppose that S ∩L is (n− d− 1)-dimensional. Take a one-dimensional curve x : [0, ε)→ Rd

such that the leaves of M given by Lt = f({x(t)} × Cn−d ∩ U) do not intersect S for all
t > 0. We find the family of disks A : [0, ε) → ∆ such that A(0,∆) \ S 6= ∅ (as S ∩ L is
n − d − 1 dimensional), and A(t,∆) ⊂ Lt. We can apply Theorem 4.1 to show that S ∩ Lt
is nonempty. As the curve x was arbitrary, we are done. �

Let us prove a general proposition about identifying the CR singular set for codimension
two submanifolds. It is particularly useful for computing examples.

Proposition 5.4. Let w = ρ(z, z̄) define a CR singular manifold M of in coordinates
(z, w) ∈ Cn−1 × C, where ρ is real-analytic such that ρ = 0 and dρ = 0 at the origin.
Then, the CR singularity S is defined precisely by

S = {(z, w) ∈ Cn : ρz̄k(z, z̄) = 0 for k = 1, . . . , n− 1}. (48)

Proof. Suppose M ⊂ Cn−1 × C = {Z = (z, w)} is a real-analytic CR singular submanifold
of codimension 2 given by

M = {Z = (z, w) ∈ Cn : w = ρ(z, z̄)}. (49)

We can take r1 = Re(w − ρ) and r2 = Im(w − ρ) to be real-valued defining equation for M .
As explained in Section 1, the CR singular set S is then determined by those points in M

where the matrix
(
∂rj
∂Z̄k

)
j,k

is of rank at most one. By a straightforward computation, we
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can see that
S = {(z, w) ∈ Cn : ρz̄k(z, z̄) = 0 for k = 1, . . . , n− 1}. (50)

The proof is complete. �

We conclude this section by the following example of a Levi-flat codimension two subman-
ifold M of Cn−1

z × Cw (n ≥ 3) whose CR singular set is isolated. Such a manifold is then
not an diffeomorphic image of a codimension two generic submanifold on Cn under CR map.
This conclusion follows by Theorem 5.1.

Example 5.5. Let M be given by

w = Re(z2
1 + z2

2 + · · ·+ z2
n−1). (51)

The CR singular set of M is the origin, by Proposition 5.4. Furthermore, M \{0} is Levi-flat.
Assume that there exist a generic codimension two submanifold N ⊂ Cn and an analytic
CR map f : N → M that is diffeomorphism onto M . Then N \ f−1(S) is Levi-flat and so
is N . From Theorem 5.1 we obtain that S is of dimension at least n − 2 ≥ 1. This is a
contradiction.

The manifold M is the intersection of two nonsingular Levi-flat hypersurfaces, One defined
by Imw = 0, and the other by Rew = Re(z2

1 + · · ·+z2
n−1). Further, the manifold M contains

the singular complex analytic set {z2
1 + z2

2 + · · ·+ z2
n−1 = 0, w = 0} through the origin.

6. Singular coordinates for nowhere minimal finite images

We would like to find at least a partial analogue for CR singular manifolds of the following
standard result for CR manifolds. If M is a CR submanifold, and p ∈M then the CR orbit
Orbp is the germ of the smallest CR submanifold of M of the same CR dimension as M
through p. For a real-analytic M , the CR orbit exists and is unique by a theorem of Nagano
(see [3]). Near a generic point where the orbit is of maximal possible dimension in M , the
CR orbits give a real-analytic foliation of M . The following theorem gives a way to describe
this foliation.

Theorem 6.1 (see [2]). Let M ⊂ Cn be a generic real-analytic nowhere minimal submanifold
of real codimension d, and let p ∈M . Suppose that all the CR orbits are of real codimension
j in M . Then there are local holomorphic coordinates (z, w′, w′′) ∈ Ck × Cd−j × Cj = Cn,
vanishing at p, such that near p, M is defined by

Imw′ = ϕ(z, z̄,Rew′,Rew′′), (52)

Imw′′ = 0, (53)

where ϕ is a real valued real-analytic function with ϕ(z, 0, s′, s′′) ≡ 0. Moreover, the local
CR orbit of the point (z, w′, w′′) = (0, 0, s′′), for s′′ ∈ Rj, is given by

Imw′ = ϕ(z, z̄,Rew′, s′′), (54)

w′′ = s′′. (55)

For convenience, we will call a subvariety of codimension one a hypervariety. For a real
hypervariety H ⊂ Cn let H∗ denote the set of points near which H is a real-analytic nonsin-
gular hypersurface. We say H is a Levi-flat hypervariety if H∗ is Levi-flat. The subvariety
defined by

Imw′′j = 0 (56)
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is a Levi-flat hypervariety (in this case, it is nonsingular). We cannot find coordinates as
in Theorem 6.1 for a CR singular manifold, but we can at least find Levi-flat hypervarieties
that play the role of {Imw′′j = 0}. We should note that not every Levi-flat hypervariety is
of the form Imh = 0 for some holomorphic function h (see [5]).

Theorem 6.2. Let N ⊂ Cn be a real-analytic generic connected submanifold and let f : N →
Cn be a real-analytic CR map that is a diffeomorphism onto its image, M = f(N). Suppose
that f extends to a finite holomorphic map F from a neighborhood of N to a neighborhood of
M . Suppose that all the CR orbits of N are of real codimension j in N , and p ∈M is such
that M is CR singular at p. Then there exists a neighborhood U of p and j distinct Levi-flat
hypervarieties H1, H2, . . . , Hj such that dimRH1 ∩ · · · ∩Hj = 2n− j and

M ⊂ H1 ∩ · · · ∩Hj. (57)

Furthermore, if Orbq is a germ of a CR orbit of N at q ∈ N , Then there exists an n − j
dimensional germ of a complex variety

(
L, f(q)

)
with

(
L, f(q)

)
⊂
(
Hk, f(q)

)
for all k =

1, . . . , j and as germs
f(Orbq) ⊂

(
L, f(q)

)
. (58)

In particular, if N is Levi-flat then we can find Levi-flat hypervarieties H1, . . . , Hj such
that M is one of the components of H1 ∩ · · · ∩Hj.

Proof. Suppose that q ∈ N is such that F (q) = p. Let V, U be connected open subsets of Cn,
q ∈ V and p = F (q) ∈ U and F (V ) = U , and as F is finite we can assume that F is proper
onto U . Let us assume that V is the domain of F , that N is closed in V and furthermore
that the N is defined in V using coordinates of Theorem 6.1 (the coordinates are defined in
all of V ).

Fix a nonzero vector v ∈ Rj. Take the variety {Im〈w′′, v〉 = 0} and let us push it forward
by F . The image need not necessarily be a real-analytic subvariety. We claim, however,
that as F is finite, then F ({Im〈w′′, v〉 = 0}) is contained in a real-analytic subvariety of
codimension one. To show the claim we complexify F and {Im〈w′′, v〉 = 0}, push the set
forward using the Remmert proper map theorem, and then restrict back to the diagonal.

As F is proper, then the function F(ζ, ξ) =
(
F (ζ), F̄ (ξ)

)
is a proper map of V × V ∗

to U × U∗ where V ∗ = {ξ : ξ̄ ∈ V }. So as {Im〈w′′, v〉 = 0} complexifies to a complex
submanifold H ⊂ V × V ∗, then as F is proper, F(H) is an irreducible complex subvariety
of U × U∗. Let (ζ ′, ξ′) denote the coordinates in U × U∗ and πζ′ the projection onto the ζ ′

coordinates. Let H denote the set πζ′
(
F(H) ∩ {ζ ′ = ξ′}

)
. The defining equation for F(H)

defines H once we plug in ζ ′ for ξ′. Therefore H is an irreducible real subvariety of U and
M ⊂ H. A holomorphic function that is not identically zero cannot vanish identically on
the maximally totally real set {ζ ′ = ξ′}, and hence H must be a proper subvariety of U .
By construction, F ({Im〈w′′, v〉 = 0}) ⊂ H. Therefore, the subvariety H must be of real
codimension one as F is finite.

Since {Im〈w′′, v〉 = 0} is a real Levi-flat hypersurface and F is a local biholomorphism
outside of a complex subvariety, we see that H must be Levi-flat at some point. By a lemma
of Burns and Gong (see [5] or [15]) then as H is irreducible, it is Levi-flat at all smooth
points of top dimension, and hence Levi-flat by definition.

Suppose we have taken k linearly independent vectors v1, . . . , vk such that the correspond-
ing H1, . . . , Hk have an intersection that is of real codimension k. Suppose that k < j. We
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have
H1 ∩ · · · ∩Hk = πζ′

(
F(H1) ∩ · · · ∩ F(Hk) ∩ {ζ ′ = ξ′}

)
. (59)

Let
V = F−1

(
F(H1) ∩ · · · ∩ F(Hk)

)
. (60)

The variety V has codimension k. Let us treat (z, w′, w′′) and (z̄, w̄′, w̄′′) as different variables

If V = H1 ∩ · · · ∩ Hk, then pick any vector vector v ∈ Rj linearly independent from
v1, . . . , vk, and let H be defined by {〈w′′, v〉 − 〈w′′, v〉 = 0}. Then the intersection V ∩
F−1

(
F(H)

)
is of codimension k + 1. It now follows that F(H1) ∩ · · · ∩ F(Hk) ∩ F(H) is of

codimension k+ 1. And hence if H = πζ′
(
F(H)∩{ζ ′ = ξ′}

)
, then H1∩ · · ·∩Hk ∩H has real

codimension k+1. This claim follows because if H1∩· · ·∩Hk∩H has codimension k, it would
have some point where it is a smooth real codimension k manifold. The complexification at
that point would have to be a complex codimension k manifold, and we know that is not
true.

In case V has other components, then let C be any irreducible component of V that is
not contained in H1 ∩ · · · ∩ Hk. Let us treat (z, w′, w′′) and (z̄, w̄′, w̄′′) as different variables
as usual. Note that X = F−1

(
F({w′′ = w̄′′})

)
is of dimension 2n − j as F is finite.

Furthermore X ⊂ V . There must exist a point x = (z0, w
′
0, w

′′
0 , z̄0, w̄

′
0, w̄

′′
0) ∈ C where x /∈ X .

Hence F−1
(
F(x)

)
/∈ X . In particular, F−1

(
F(x)

)
∩ {w′′ = w̄′′} is the empty set. We can

pick a vector v ∈ Rj linearly independent from v1, . . . , vk, such that the set H defined by
{〈w′′, v〉 − 〈w′′, v〉 = 0} does not contain any point of F−1

(
F(x)

)
and so the intersection

V ∩ F−1
(
F(H)

)
is of codimension k + 1. We then proceed as above.

Hence we can find j distinct Levi-flat hypervarieties H1, H2, . . . , Hj such that dimR(H1 ∩
· · · ∩Hj) = 2n− j and M ⊂ H1 ∩ · · · ∩Hj.

To find L, we push forward the complex variety {w′′ = s′′} by F , which is finite. �

Remark 6.3. Theorem 6.1 also generalizes to some extent to certain CR manifolds at points
where the dimension of the CR orbits is not constant and hence where the CR orbits do not
form a foliation. At such singular points it is not always true that such N lie inside Levi-flat
hypervarieties, despite all CR orbits being of positive codimension. See [15] for more on
these matters.

7. Failure of extensions of real-analytic CR functions

In this section, we focus our attention on functions satisfying the pointwise Cauchy-
Riemann conditions on a CR singular image with a nonempty CR singular set S. We shall
show for each p ∈ S, there exists a real-analytic function on a neighborhood of p in M sat-
isfying all the pointwise Cauchy-Riemann conditions that does not extend to a holomorphic
function at p. This result generalizes Lemma 4.3.

Theorem 7.1. Let M ⊂ Cn be a connected real-analytic CR singular submanifold such that
there are a real-analytic generic submanifold N ⊂ Cn and a real-analytic CR map f : N → Cn

that is a diffeomorphism onto M = f(N). Let S be the nonempty CR singular set of M and
suppose that M is generic at some point. For any p ∈ S, then there exists a neighborhood U
of p and a real-analytic function u on U∩M such that it satisfies Lu|q = 0 for any q ∈ U∩M
and any L ∈ T (0,1)

q M , but does not extend to a holomorphic function on any neighborhood of
p in Cn.
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Proof. Let F be the unique holomorphic extension of f near f−1(p) in Cn. Let θ = JF
and ϕ = θ2 ◦ f−1. Then ϕ is a real-analytic function on f(V ∩ N). We claim that ϕ

satisfies all CR condition on M . Indeed, for any point q ∈ M near p, let L ∈ T (0,1)
q M . If

q ∈ S, then q′ := f−1(q) ∈ f−1(S) ⊂ {θ = 0} and hence θ(q′) = 0. If q ∈ M \ S, then

Xq′ := (f−1)∗L ∈ T (0,1)
q′ N and thus Xq′(θ)(q

′) = 0. Therefore for all q ∈ U ∩M , we have

(Lϕ)(q) = L(θ2 ◦ f−1)(q) = ((f−1)∗L)θ2
(
f−1(q)

)
= Xq′θ

2(q′) = 2θ(q′)
(
Xq′θ

)
(q′) = 0. (61)

Therefore, the claim follows.

If ϕ does not extend to a holomorphic function in a neighborhood of p in Cn, then we
are done. Otherwise, suppose that ϕ extends to a neighborhood. Notice that ϕ ≡ 0 on S.
Without loss of generality we can assume further that ϕ is radical.

On the other hand, by Lemma 4.3, we can find a real-analytic function u on a neighborhood
U of p in M such that u is CR on U \ S and u does not extend holomorphically near p. By
construction, uϕ and u2ϕ restricted to U are both CR functions on M ∩U . We claim that at
least one of the two functions uϕ and u2ϕ does not extend holomorphically past p. Indeed,
assume for a contradiction that v1 and v2 are holomorphic functions on a neighborhood of
p in Cn whose restrictions to M are uϕ and u2ϕ, respectively. Observe that the following
equalities hold on U .

v2
1 = u2ϕ2 = v2ϕ. (62)

Since M is generic at all points on M \S, v2
1 and v2ϕ are holomorphic, we deduce from (62)

that v2
1 = v2ϕ in a neighborhood of p in Cn. In other words, we have the following equality

in the ring Op.
v2

1 = v2ϕ. (63)

Note that the ring Op is a unique factorization domain and ϕ is radical. From (63) we
obtain that v1 divides v2 and hence v2

v1
is holomorphic near p. Consequently, u extends to

the holomorphic function v2
v1

on a neighborhood of p. We obtain a contradiction. �

8. Examples

We start this section by the following proposition, which is helpful in constructing exam-
ples.

Proposition 8.1. Let w = ρ(z, z̄) define a connected CR singular manifold M near the
origin in coordinates (z, w) ∈ C2 × C, where ρ is real-analytic and such that ρ = 0 and
dρ = 0 at the origin. If ρz̄1 ≡ 0, then M is Levi-flat at CR points, and furthermore, the set
S of CR singularities is given by M ∩ {(z, w) : ρz̄2(z) = 0}.

Furthermore, for each point p ∈M , there exists a neighborhood U such that U ∩M is the
image under a real-analytic CR diffeomorphism of an open subset of R2 × C.

Note that if w = ρ(z, z̄) and ρz̄1 ≡ 0, we could also get that M is a complex manifold, but
in this case M is not CR singular.

Proof. If ρz̄2 ≡ 0 then ρ is holomorphic and hence M is complex analytic. Otherwise, ρz̄2 6≡ 0
and therefore, from Proposition 5.4, we see that

S = M ∩ {(z, w) : ρz̄2(z, z̄) = 0}. (64)
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Hence, S ⊂M is a proper real subvarieties and M \ S is generic. To see that M \ S is Levi-
flat, observe that in a neighborhood of p 6∈ S, M \S is foliated by family of one-dimensional
complex submanifolds defined by Lt = {(z, w) : w = ρ(z1, t, 0, t̄)} with complex parameter t.
Let a local map f : R2 × C→M be given by

f : (x, y, ξ) 7→
(
ξ, x+ iy, ρ(ξ, x+ iy, 0, x− iy)

)
. (65)

The CR structure on R2×C is given by ∂/∂ξ̄ and so clearly f is CR map. Since ρ does not
depend on z̄1, it follows that f sends R2×C into M . The fact that f is local diffeomorphism
is immediate. �

Using the proposition we can easily create many examples showing that the CR singular
set of a Levi-flat manifold that is an image of a CR diffeomorphisms can have any possible
CR structure allowed by Corollary 5.2.

Example 8.2. We can obtain a 3-dimensional CR singularity by simply taking a parabolic
CR singular Bishop surface in 2 dimensions and considering it in 3 dimensions. For example,

w = |z2|2 +
z̄2

2

2
. (66)

The manifold is the image of R2×C by the construction of Proposition 8.1. The CR singular
set is the set {Re z2 = 0} ∩M , hence 3 real dimensional.

The submanifold is contained in the nonsingular Levi-flat hypersurface defined by Imw =

− Im
z22
2

.

Example 8.3. Next, let us consider

w = z1z̄
2
2 . (67)

The manifold is the image of R2×C by the construction of Proposition 8.1. The CR singular
set is the set ({z1 = 0} ∪ {z2 = 0}) ∩M , that is a union of two 2-dimensional sets, both of
which are complex analytic. Note that the set {z1 = 0} ∩M is a complex analytic set that
is an image of a totally real submanifold of R2 × C under the map of Proposition 8.1. We
therefore have a complex analytic set that is a subset of M while not being an image of one
of the leaves of the Levi-foliation of R2 × C.

Example 8.4. Consider

w = z1z̄2 −
z̄2

2

2
. (68)

Again the manifold is the image of R2×C. The CR singular set S is the set {z1 = z̄2} ∩M ,
which is a totally real set; to see this fact simply substitute z̄2 = z1 in the defining equation
for M to find that S is the intersection of {z1 = z̄2} with a complex manifold.

Example 8.5. Consider

w = z1z̄2 −
z2z̄

2
2

2
. (69)

The CR singular set S is the set {z1 = |z2|2} ∩M , which is a CR singular submanifold.

Example 8.6. While we have mostly concerned ourselves with flat manifolds, there is noth-
ing particularly special about flat manifolds. Even a finite-type manifold can map to a CR



20 JIŘÍ LEBL, ANDRÉ MINOR, RAVI SHROFF, DUONG SON, AND YUAN ZHANG

singular manifold. The following example was given in [7, Example 1.6]. Let M ⊂ C3 be
given by

M = {(z, w1, w2) ∈ C3 : Imw1 =
|z|2

2
, Imw2 =

|z|4

2
} (70)

is taken to the CR singular

{(z1, z2, w) ∈ C3 : w = (z̄2 + i|z1|2 + |z1|4)
2} (71)

via the finite holomorphic map

(z, w1, w2) 7→
(
z, w1 + iw2, (w1 − iw2)2). (72)

The map is a diffeomorphism onto its image when restricted to M .
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