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Abstract

In this paper, we give a geometric condition for a CR map, which sends a CR non-
umbilical Levi non-degenerate hypersurface in Cn+1 into the hyperquadric in Cn+2 with
the same signature, to be CR transversal.

1 Introduction

The study of CR transversality (or the Hopf lemma property) has found applications in under-
standing the regularity and rigidity phenomena for CR mappings in the recent development of
several complex variables. Generally speaking, the CR transversality problem asks if a CR map
sending a piece of hypersurface into another one is either totally degenerate (namely mapping
an open subset of the source space into the target hypersurface) or has a non-vanishing normal
derivative (which in many situations is equivalent to the local immersion property of the map).
When the hypersurfaces are pseudoconvex, the classical Hopf lemma is applicable. However,
the situation in the non-pseudoconvex case is much more subtle. When the hypersurfaces are
sitting in the same complex space, there has been much work done along these lines. Here, we
only refer the reader to the work of Pinchuk [Pi], Fornaess [Fo], Baouendi-Rothschild ([BR]),
Ebenfelt-Rothschild [ER] for smooth CR mappings and Huang [Hu2] even for multiple-valued
holomorphic maps (holomorphic correspondences), as well as many references quoted in ([BR]
[ER] [Hu2]).

The study in the non-pseudoconvex case with higher codimensions started with the work of
Baouendi-Huang [BH], where the CR transversality is obtained for CR mappings sending a piece
of hyperquadric into another hyperquadric with the same signature. In the work of Baouendi-
Ebenfelt-Rothschild [BER2], it is proved in a very general setting that the transversality holds at
least along the complements of proper real analytic subsets which may be different for different
maps under consideration. (See also a recent preprint [ES], which further generalizes the work
of [BER2] in some settings). However, except in the case dealt in Baouendi-Huang [BH], it is
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an open question to understand under what circumstances the CR transverality in the higher
co-dimensions holds everywhere along the source manifold. For instance, the following easily
stated conjecture is open:

Conjecture: Let M1 ⊂ Cn+1 and M2 ⊂ CN+1 be two (connected) Levi non-degenerate real
analytic hypersurfaces with the same signature ℓ > 0. Let F be a smooth CR map sending M1

into M2. Then either F is a local immersion along M1 or F sends an open neighborhood U of
M1 in Cn+1 into M2.

In an earlier paper of the authors [HZ], we demonstrated that many mapping properties are
related to the behavior of the Chern-Moser-Weyl tensors of the hypersurfaces along the Levi
cone. In this paper, we show that these CR invariants, together with the work of Meylan-Mir-
Zaitsev [MMZ] on the convergence of (non-degenerate) formal maps into hyperquadrics, can
also be used to work on the CR transversality problem. Our method is quite different from
what is used in the previously related work.

We next set up some notation to state precisely our main result. Given two CR hypersurfaces
M ⊂ Cn+1, M̃ ⊂ CN+1 and a smooth CR map F : M → M̃ , F is said to be CR transversal at
p ∈ M if

T
(1,0)
F (p) M̃ + F∗(T

(1,0)
p Cn+1) = T

(1,0)
F (p)C

N+1,

where T
(1,0)
p Cn+1 and T

(1,0)
F (p) M̃ denote the tangent spaces of type (1, 0) for Cn+1 and M̃ at p and

F (p), respectively. Note according to the above definition, that a CR map is CR transversal
at p ∈ M is equivalent to the nonvanishing of the derivative of its normal component at p
along the normal direction. (See [BER2], for example.) Notice also that when both M and
M̃ are strongly pseudoconvex, any non-constant smooth CR map between them is always CR
transversal by an application of the classical Hopf lemma.

Now, let Mℓ be a Levi non-degenerate smooth hypersurface of signature ℓ > 0. Let p ∈ M .
After a holomorphic change of coordinates, we may assume that p = 0 and Mℓ near p = 0 is
defined by an equation of the form:

Mℓ :=
{
(z, w) ∈ Cn × C : ρ = −ℑw −

ℓ∑
j=1

|zj|2 +
n∑

j=ℓ+1

|zj|2 + o(3) = 0
}
, (1)

When the terms with degree three or higher in the defining equation for Mℓ can be made to be
zero, we get the hyperquadric Hn+1

ℓ with signature ℓ. Namely, we have

Hn+1
ℓ :=

{
(z, w) ∈ Cn × C : ρ = −ℑw −

ℓ∑
j=1

|zj|2 +
n∑

j=ℓ+1

|zj|2 = 0
}
.

We always assume that ℓ ≤ n/2 to make ℓ an invariant. We say 0 ∈ Mℓ is a CR umbilical
point if the Chern-Moser-Weyl curvature tensor vanishes at p = 0. (See [CM] or [HZ]). Namely,
if 0 is CR umbilical, then there is a holomorphic change of coordinates such that in the new
coordinates, we can make ρ = −ℑw −

∑ℓ
j=1 |zj|2 +

∑n
j=ℓ+1 |zj|2 + o(4).
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We now state the following main theorem of this paper:

Theorem 1.1. Let Mℓ be a smooth Levi non-degenerate hypersurface of signature ℓ in Cn+1,
n ≥ 2. Assume that 0 ∈ Mℓ is not CR umbilical. If F is a holomorphic map defined in a small
neighborhood U of 0 ∈ Cn+1 such that F (Mℓ ∩ U) ⊂ H

(n+1)+1
ℓ , then either F is CR transversal

to Mℓ at 0, or F (U) ⊂ H
(n+1)+1
ℓ .

It might be interesting to notice that usually, to apply the classical Hopf lemma, the sign
condition is imposed on the degree two terms in the defining functions of the target manifolds;
while the sign condition here is imposed on the fourth order degree terms (along the Levi-cone
direction) for the defining functions of the source manifolds.

The rest of the paper is organized as follows: In section 2 and section 3, we set up more
notation and give some background materials. We then prove some preliminary lemmas. In
section 4, we give the proof of the main Theorem 1.1.

2 Background materials

Let Mℓ be a germ at 0 of a smooth Levi non-degenerate hypersurface in Cn+1 given in (1). By
an easy part of the Chern-Moser normal form theory, after a holomorphic change of coordinates,
Mℓ near the origin is expressed as:

Mℓ =
{
(z, w) ∈ Cn × C : ℑw = |z|2ℓ +

1

4
S(z) + o(4)

}
. (2)

Here for any n-tuples a and b, ⟨a, b̄⟩ℓ := −
∑ℓ

j=1 aj b̄j +
∑n

j=ℓ+1 aj b̄j and |a|2ℓ = ⟨a, ā⟩ℓ, S(z) :=∑
1≤α,β,γ,δ≤n sαβ̄γδ̄zαz̄βzγ z̄δ is a homogeneous polynomial of bi-degree (2,2) satisfying

sαβ̄γδ̄ = sγβ̄αδ̄ = sγδ̄αβ̄, sαβ̄γδ̄ = sβᾱδγ̄,

−
ℓ∑

α=1

sαᾱγδ̄ +
n∑

α=ℓ+1

sαᾱγδ̄ = 0.

S is called the Chern-Moser-Weyl curvature function of Mℓ at 0. If S ≡ 0, then 0 is said to be
a CR umbilical point.

For a holomorphic function h(z, w), we use h(k1,k2) to denote the sum of homogeneous terms
in its Taylor expansion at 0 whose degrees with respect to z and w are k1 and k2, respectively.
Assign 1 to be the weight of z and 2 to be that of w. On the other hand, we denote by h(k)

the sum of homogeneous terms of weighted degree k in the Taylor expansion of h and write
owt(k) for terms of weighted degree larger than k. To simplify our notation, we also preassign
the coefficient of h with negative degrees to be 0.

Now let M̃ be another germ at 0 of a smooth Levi-nondegenerate hypersurface in CN+1

given by

M̃ℓ =
{
(z̃, w̃) ∈ CN × C : ℑw̃ = |z̃|2ℓ +

1

4
S̃(z̃) + o(4)

}
. (3)
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let F be a smooth CR map sending (Mℓ, 0) into (M̃ℓ, 0). Write

F := (f, ϕ, g) = (f1, . . . , fn, ϕ1, . . . , ϕN−n, g). (4)

Assume that F is CR transversal at 0. Then, as in [§2, BH], we can write

z̃ = f̃(z, w) = (f1(z, w), . . . , fN(z, w)) = λzU + a⃗w +O(|(z, w)|2)
w̃ = g(z, w) = σλ2w +O(|(z, w)|2).

(5)

Here U can be extended to an N ×N matrix Ũ ∈ SU(N, ℓ) (namely ⟨XŨ, Y Ũ⟩ℓ = ⟨X, Y ⟩ℓ for
any X, Y ∈ CN), a⃗ ∈ CN and λ > 0, σ = ±1 with σ = 1 for ℓ < n

2
. When σ = −1, by consider-

ing F ◦ τn/2 instead of F , where τn
2
(z1, . . . , zn

2
, zn

2
+1, . . . , zn, w) = (zn

2
+1, . . . , zn, z1, . . . , zn

2
,−w),

we can make σ = 1. Hence, we will assume in what follows that σ = 1.
A result of [HZ] states that the Chern-Moser-Weyl curvature tensor decreases in the null

space of the Levi-form by CR embeddings if n
2
> ℓ > 0. When ℓ = n

2
, by choosing an appropriate

contact form for the Chern-Moser-Weyl tensor, the same phenomenon also holds. Moreover, as
in [HZ], F can be normalized as follows:

Proposition 2.1. ([HZ]) Let Mℓ and M̃ℓ be defined by (2) and (3), respectively, and let F be
a smooth CR map sending Mℓ into M̃ℓ given by (4) and (5) with σ = 1. Then after composing
F from the left by some automorphism T ∈ Aut0(H

N+1
ℓ ) preserving the origin, the following

holds:

F ♯ = (f ♯, ϕ♯, g♯) := T ◦ F, with

f ♯(z, w) = z +
i

2
a(1,0)(z)w + owt(3),

ϕ♯(z, w) = ϕ(2,0)(z) + owt(2),

g♯(z, w) = w + owt(4),

and

⟨a(1,0)(z), z̄⟩ℓ|z|2ℓ = |ϕ(2,0)(z)|2 + 1

4
(S(z)− λ−2S̃(λ(z, 0)Ũ)).

In particular, the automorphism T is given by

T (z̃, w̃) =
(λ−1(z̃ − λ−2a⃗w̃)Ũ−1, λ−2w̃)

q(z̃, w̃)

with r0 = 1
2
ℜ{g′′

ww(0)}, q(z̃, w̃) = 1 + 2i⟨z̃, λ−2a⃗⟩ℓ + λ−4(r0 − i|⃗a|2ℓ)w̃. Moreover, F ♯ sends Mℓ

into M̃ ♯ := T (M̃ℓ) given by

M̃ ♯ = {(z̃♯, w̃♯) ∈ CN+1 : ℑw̃♯ = |z̃♯|2ℓ +
1

4
S̃♯(z̃♯) +R(z̃♯, z̃♯,ℜw̃♯)

}
with S̃♯(z♯) = λ−2S̃(λz♯Ũ) and R(z̃♯, z̃♯,ℜw̃♯) = o(4) .
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3 Two preliminary lemmas

In this section, we give two lemmas, which will be used in the proof of the main Theorem.
For any polynomial h(z, z̄), denote by ∥h∥ the maximum absolute value of all coefficients of

terms in h.

Lemma 3.1. (1). Let X(z, z̄) and Y (z, z̄) be two polynomials such that X(z, z̄) = Y (z, z̄)|z|2ℓ .
Then ∥Y ∥ is bounded by a constant depending only on ∥X∥ and the degree of X.

(2). Let h(z) be a homogeneous holomorphic polynomial of degree d in z ∈ Cn. If |h(z)| ≤
c|z|d on {|z|2ℓ = 0}, then ∥h∥ ≤ C for some C depending only on c and d.

Proof of Lemma 3.1: (1). Suppose not. Then there is a sequence of polynomials {Xj, Yj}
with Xj = Yj|z|2ℓ such that ∥Yj∥ = 1, deg(Xj), deg(Yj) are bounded by a fixed constant but
∥Xj∥ → 0. By passing to a subsequence, we can assume that Xj → 0, Yj → Y with ∥Y ∥ = 1
and 0 = Y |z|2ℓ . It then follows that Y ≡ 0. This is a contradiction.

(2). For any point z0 ∈ Cn with |z0|2ℓ ̸= 0, suppose without loss of generality that∑ℓ
j=1 |z0j |2 >

∑n
j=ℓ+1 |z0j |2. Consider the closed subset given by P := {z ∈ Cn : zj =

z0j , 1 ≤ j ≤ ℓ,
∑n

j=ℓ+1 |zj|2 ≤
∑ℓ

j=1 |z0j |2}. Then ∂P ⊂ {|z|2ℓ = 0} and z0 ∈ P . Hence,

|h(z0)| ≤ supz∈∂P |h(z)| ≤ c supz∈{{|z|2ℓ=0}∩P} |z|d ≤ 2d/2c|z0|d by the maximum principle. There-

fore ∥h∥ ≤ C for some C only depending on c and d.

Lemma 3.2. Let f1 and f2 be two homogeneous holomorphic polynomials of degree d and degree
2, respectively. Assume ∥f2∥ ≥ c and

f1(z)f2(z̄) = H(z, z̄) mod (|z|2ℓ), (6)

for some homogeneous polynomial H of degree d + 2 with ∥H∥ ≤ c′. Then ∥f1∥ ≤ C for some
C depending only on c, c′ and d.

Proof of Lemma 3.2: Without loss of generality, we assume that ∥f2∥ = 1 and thus c′ is
replaced by c′/c.

First, we assume that the absolute value of the coefficient of the term z2l in f2 is greater
than or equal to 1

16
. For simplicity of notation, assume l = 1. Complexifying (6), we get

f1(z)f2(χ) = H(z, χ) mod (⟨z, χ⟩ℓ).

Write z = (z1, z
′) ∈ C× Cn−1, χ = (χ1, χ

′) ∈ C× Cn−1 and u := ⟨z, χ⟩ℓ. Letting χ1 = 1, then

we have z1 = ⟨z′, χ′⟩ℓ−1 − u and the above equation becomes

f1
(
⟨z′, χ′⟩ℓ−1 − u, z′

)
f2(1, χ

′) = H
(
⟨z′, χ′⟩ℓ−1 − u, z′, 1, χ′) mod (u).
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Letting u = 0 in the above expression, we get

f1
(
⟨z′, χ′⟩ℓ−1, z

′)f2(1, χ′) = H
(
⟨z′, χ′⟩ℓ−1, z

′, 1, χ′) =: H̃(z′, χ′)

for some polynomial H̃ with coefficients bounded depending only on c, c′. On the other hand,
by the assumption on f2, there exists some small number ϵ > 0, depending only on c and c′,
such that |f2(1, χ′)| ≥ 1

32
as |χ′| ≤ ϵ. Therefore, the above equation implies |f1

(
⟨z′, χ′⟩ℓ−1, z

′)|
is bounded by some constant depending only on c, c′, d when |χ′| ≤ ϵ and |z′| ≤ 1. Now write
h(χ′, z′) : = f1

(
⟨z′, χ′⟩ℓ−1, z

′). Applying the Cauchy estimates to h, we get ∥h∥ is bounded by
some constant depending only on c, c′ and d. By tracing the coefficients of f1(z1, z

′) via those
of h, we obtain the boundedness of ∥f1∥ by some constant depending only on c, c′ and d.

Next, suppose that the coefficient of z21 in f1 has absolute value less than 1
16
. By making a

linear change of coordinates which preserves the quadric form −
∑ℓ

j=1 |zj|2 +
∑n

j=ℓ+1 |zj|2, we
can always make the coefficient of the term z2l for some l in f2 to have absolute value bigger
than 1

16
(after normalizing ∥f2∥ = 1) and thus reduce the situation to what we did above.

Indeed, suppose that the absolute value of the coefficients of z2k, 1 ≤ k ≤ n are all less than
1
16

and that of zjzl is 1 instead. Suppose that j, l ≤ ℓ or j, l > ℓ. Applying coordinates change:
zj =

1√
2
(z′j + z′l), zl =

1√
2
(z′l − z′j) and zk = z′k for k ̸= j, l, we then see that the absolute value of

the coefficients of both (z′l)
2 and (z′j)

2 in f2 are greater than or equal to 1
4
and ∥f2∥ ≤ 2 in the

new coordinate system. Hence, when we normalize ∥f2∥ = 1, we see the coefficient of (z′j)
2 has

absolute value at least 1
16
. Suppose that j ≤ ℓ and l > ℓ. We can then define zj =

√
2z′j − z′l,

zl = z′j −
√
2z′l, and zk = z′k for k ̸= j, l. In the new coordinate system, ∥f2∥ ≤ 3 but the

coefficient of (z′j)
2 has absolute value at least 1

4
. We are thus similarly done in this case too.

Remark 3.3. With a similar argument, one sees that Lemma 3.2 still holds when f2 has degree
k ≥ 2. In this setting C depends only on c, c′, d and k.

4 Proof of the Main Theorem

We give a proof of our theorem in this section, which is also partially based on the re-scaling
method.

Proof of Theorem 1.1: Seeking a contradiction, suppose that F neither is CR transversal
to Mℓ at 0 nor sends U into Hn+2

ℓ . Since the set of points where the CR-transversality holds for
F forms an open dense subset in Mℓ by a result in [BER2], we can pick a sequence {pj} ∈ Mℓ

such that {pj} approaches 0 and F is CR transversal at pj with j ≥ 1. Write qj := F (pj).
Now at each pj, applying the normalization process to F as mentioned in Proposition 2.1 (with
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N = n+ 1), we have the following:

F ♯
pj

= (f ♯
pj
, ϕ♯

pj
, g♯pj) = (f1

♯
pj
, . . . , fn

♯
pj
, ϕ♯

pj
, g♯pj) := Tpj ◦ τF (pj) ◦ F ◦ σpj , where

f ♯
pj
(z, w) = z +

i

2
a(1,0)pj

(z)w + owt(3),

ϕ♯
pj
(z, w) = ϕ(2,0)

pj
(z) + owt(2),

g♯pj(z, w) = w + owt(4),

(7)

with the CR version of the Gauss-Codazzi equation

⟨a(1,0)pj
(z), z̄⟩ℓ|z|2ℓ = |ϕ(2,0)

pj
(z)|2 + 1

4
Spj(z). (8)

Here τF (pj) is the translation of Hn+2
ℓ sending F (pj) to 0, σpj is a biholomorphic map sending

0 to pj and σ−1
pj
(Mℓ) is in the normal form up to the 4th order. We can make σpj to depend

smoothly on pj. Also, write Spj for the resulting Chern-Moser-Weyl curvature function of Mℓ

at pj. By making use of the fact that F is not CR transversal at 0, we get that limj→∞ λpj = 0
for λpj defined in (5) with F replaced by τF (pj) ◦F ◦ σpj . Now at each point pj, F

♯
pj

given in (7)

sends σ−1
pj
(Mℓ) into Hn+2

ℓ . We then have for (z, u) ≈ 0,

−ℑg♯pj(z, u+ i(|z|2ℓ + owt(3))) + |f ♯
pj
(z, u+ i(|z|2ℓ + owt(3)))|2ℓ+

+ |ϕ♯
pj
(z, u+ i(|z|2ℓ + owt(3)))|2 = 0,

(9)

Here (z, u + i(|z|2ℓ + owt(3))) is a local parametrization of σ−1
pj
(Mℓ) near 0. Due to the smooth

dependence of σpj with respect to pj, the error term owt(3) depends smoothly on pj.
In the sequel, for simplicity of notation, we will drop ♯ and write Fpj for F ♯

pj
. We will

also abuse our notation and use C1, C2 or C to denote positive constants independent of p
and use H(·) to denote a (real analytic) polynomial function with ∥H∥ bounded by a constant
independent of p. All these quantities may be different in different contexts. We will divide
our proofs in several steps:

Step 1: We prove in this step the estimate: C2 ≤ ∥ϕ(2,0)
pj ∥ ≤ C1.

Assume that |Spj(z)| ≤ c1|z|4 for some positive number c1 independent of pj. Restricting
the Gauss equation (8) on the Levi-cone {|z|2ℓ = 0}, we have

4|ϕ(2,0)
pj

(z)|2 = −Spj(z). (10)

Since {Spj}∞j=1 is uniformly bounded, this then forces ϕ
(2,0)
pj to be uniformly bounded on {|z|2ℓ =

0} for all pj’s. By Lemma 3.1, ∥ϕ(2,0)
pj ∥ ≤ C1. It also follows that ∥a(1,0)pj ∥ ≤ C1. On the

other hand, since 0 ∈ Mℓ is not CR umbilical, S0 ̸≡ 0. Since S0 is not divisible by |z|2ℓ , we
have sup{|z|2ℓ=0}∩{|z|2=1} |S0(z)| > c for some c > 0. By the smoothness of S in terms of pj,
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sup{|z|2ℓ=0}∩{|z|2=1} |Spj(z)| > c
2
for all pj after passing to a subsequence. It therefore follows

from (10) that sup{|z|2ℓ=0}∩{|z|2=1} |ϕ
(2,0)
pj (z)| >

√
c
2
and hence ∥ϕ(2,0)

pj ∥ ≥ C2.

Step 2: For each fixed k ≥ 1, we next claim that there exists some positive number C such
that

∥ϕ(k)
p (·, 1)∥ ≤ C, (11)

∥f (k+1)
p (·, 1)∥ ≤ C, (12)

∥g(k+2)
p (·, 1)∥ ≤ C (13)

for any p ∈ {pj}∞j=1. Here for a holomorphic function h(z, w), we define h(k)(z, 1) :=
(
h(k)(z, w)

)
|w=1.

The easy case with k = 1 or 2 is already done in Step 1 and (7). Now assume (11), (12)

and (13) hold for k ≤ 2m − 1 and k ≤ 2m (m ≥ 1). Namely, assume that ∥g(r)p ∥0≤r≤2m+2,

∥f (r)
p ∥0≤r≤2m+1 and ∥ϕ(r)

p ∥0≤r≤2m are bounded by some constant independent of p. We need to
show inductively that (11), (12) and (13) also hold for k = 2m+ 1 and k = 2m+ 2.

Collect terms of weighted degree k+2 in the Taylor expansion of (9). We have the following:

−ℑg(k+2)
p (z, u+ i|z|2ℓ) + 2ℜ⟨f (k+1)

p (z, u+ i|z|2ℓ), z̄⟩2ℓ + 2ℜϕ(k)
p (z, u+ i|z|2ℓ) · ϕ

(2,0)
p (z)

= H(g(r)p |0≤r≤k+1, f
(r)
p |0≤r≤k, ϕ

(r)
p |0≤r≤k−1).

(14)

Case 1: k = 2m+ 1.
Collecting terms in (14) of degree 1 in z and degree m+ 1 in u, we obtain

− 1

2i
g(1,m+1)
p (z, 1)um+1 + ⟨z, f (0,m+1)

p (z, 1)⟩ℓum+1 = H(z, z̄)um+1. (15)

Collecting terms in (14) of degree 2 in z, degree 1 in z̄ and degree m in u, we obtain

− 1

2i
(m+ 1)g(1,m+1)

p (z, 1)um(i|z|2ℓ) + (m+ 1)⟨z, f (0,m+1)
p (z, 1)i|z|2ℓ⟩ℓu

m

+ ⟨f (2,m)
p (z, 1)um, z̄⟩ℓ + ϕ(2,0)

p (z) · ϕ(1,m)
p (z, 1)um = H(z, z̄)um.

(16)

Collecting terms in (14) of degree 3 in z, degree 2 in z̄ and degree m− 1 in u, we obtain

− 1

2i
C2

m+1g
(1,m+1)
p (z, 1)um−1(i|z|2ℓ)2 + C2

m+1⟨z, f
(0,m+1)
p (z, 1)(i|z|2ℓ)2⟩ℓu

m−1

+m⟨f (2,m)
p (z, 1)(i|z|2ℓ)um−1, z̄⟩ℓ +mϕ(2,0)

p (z) · ϕ(1,m)
p (z, 1)i|z|2ℓu

m−1

+ ϕ
(2,0)
p (z) · ϕ(3,m−1)

p (z, 1)um−1 = H(z, z̄)um−1.

(17)

Restricting (17) on {|z|2ℓ = 0} and applying Lemma 3.2, we get

∥ϕ(3,m−1)
p (·, 1)∥ ≤ C. (18)
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Combining (18), (15) and (17) and applying Lemma 3.1, we get

⟨f (2,m)
p (z, 1)(i|z|2ℓ), z̄⟩ℓ = −ϕ(2,0)

p (z) · ϕ(1,m)
p (z, 1)i|z|2ℓ +H(z, z̄),

or equivalently

⟨f (2,m)
p (z, 1), z̄⟩ℓ = ϕ(2,0)

p (z) · ϕ(1,m)
p (z, 1) +H(z, z̄). (19)

Substituting (19) into (16), we have after simplification

− 1

2i
(m+ 1)g(1,m+1)

p (z, 1)(i|z|2ℓ) + (m+ 1)⟨z, f (0,m+1)
p (z, 1)i|z|2ℓ⟩ℓ

+ 2ϕ(2,0)
p (z) · ϕ(1,m)

p (z, 1) = H(z, z̄).

(20)

Restricting (20) on {|z|2ℓ = 0} and applying Lemma 3.2 again, we get

∥ϕ(1,m)
p (·, 1)∥ ≤ C. (21)

Hence from (19), we get
∥f (2,m)

p (·, 1)∥ ≤ C.

Plug (21) into (20), we then have after simplification together with Lemma 3.1,

− 1

2i
g(1,m+1)
p (z, 1)− ⟨z, f (0,m+1)

p (z, 1)⟩ℓ = H(z, z̄). (22)

Combining (22) and (15), we get

∥g(1,m+1)
p (·, 1)∥ ≤ C,

∥f (0,m+1)
p (·, 1)∥ ≤ C.

Next, to estimate ∥g(2m+3−2r,r)
p (·, 1)∥, ∥f (2m+4−2r,r−1)

p (·, 1)∥ and ∥ϕ(2m+5−2r,r−2)
p (·, 1)∥ (0 ≤ r ≤

m), we first collect terms in (14) of degree 2m+ 3− 2r(≥ 3) in z and degree r in u to get

∥g(2m+3−2r,r)
p (·, 1)∥ ≤ C. (23)

(Notice that by convention, the coefficients of terms with negative degrees are defined to be 0).
Collecting terms in (14) of degree 2m+ 4− 2r(≥ 4) in z, degree 1 in z̄ and degree r − 1 in

u, we obtain

− 1

2i
rg(2m+3−2r,r)

p (z, 1)ur−1(i|z|2ℓ) + ⟨f (2m+4−2r,r−1)
p (z, 1)ur−1, z̄⟩ℓ = H(z, z̄)ur−1.

Substituting (23) into the above, we have

∥f (2m+4−2r,r−1)
p (·, 1)∥ ≤ C.
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Collecting terms in (14) of degree 2m + 5− 2r(≥ 5) in z, degree 2 in z̄ and degree r − 2 in u,
we obtain

− 1

2i
C2

r g
(2m+3−2r,r)
p (z, 1)ur−2(i|z|2ℓ)2 + (r − 1)⟨f (2m+4−2r,r−1)

p (z, 1)(i|z|2ℓur−2, z̄⟩ℓ

+ ϕ(2m+5−2r,r−2)
p (z, 1)ur−2 · ϕ(2,0)

p (z) = H(z, z̄)ur−2.

Substituting (23) and (4) into the above, we have

∥ϕ(2m+5−2r,r−2)
p (·, 1)∥ ≤ C.

Case 2: k = 2m+ 2.
Collecting terms in (14) of degree m+ 2 in u, we get

− 1

2i

(
g(0,m+2)
p (z, 1)− g(0,m+2)(z, 1)

)
um+2 = H(z, z̄)um+2

We thus have
∥ℑg(0,m+2)

p (·, 1)∥ ≤ C. (24)

Collecting terms in (14) of degree 1 in z, degree 1 in z̄ and degree m+ 1 in u, we have

− m+ 2

2i

(
g(0,m+2)
p (z, 1)(i|z|2ℓ)− g(0,m+2)(z, 1)(i|z|2ℓ)

)
um+1 + 2ℜ⟨f (1,m+1)

p (z, 1), z̄⟩ℓum+1

= H(z, z̄)um+1.

We thus get

i(m+ 2)ℜg(0,m+2)
p (z, 1)(i|z|2ℓ) + 2ℜ⟨f (1,m+1)

p (z, 1), z̄⟩ℓ = H(z, z̄). (25)

Collect terms in (14) of degree 2 in z, degree 2 in z̄ and degree m in u, we have

− 1

2i
C2

m+2

(
g(0,m+2)
p (z, 1)− g(0,m+2)(z, 1)

)
(i|z|2ℓ)2um + 2(m+ 1)ℜ⟨f (1,m+1)

p (z, 1)(i|z|2ℓ), z̄⟩ℓum

+ 2ℜ
(
ϕ(2,m)
p (z, 1)um · ϕ(2,0)

p (z)

)
= H(z, z̄)um,

or equivallently

− C2
m+2ℑg(0,m+2)

p (z, 1)(i|z|2ℓ)2 + 2(m+ 1)iℑ⟨f (1,m+1)
p (z, 1), z̄⟩ℓ(i|z|2ℓ)

+ 2ℜ
(
ϕ(2,m)
p (z, 1) · ϕ(2,0)

p (z)

)
= H(z, z̄).

(26)
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Collecting terms in (14) of degree 3 in z, degree 3 in z̄ and degree m− 1 in u, we have

− 1

2i
C3

m+2

(
g(0,m+2)
p (z, 1)(i|z|2ℓ)3 − g(0,m+2)(z, 1)(i|z|2ℓ)3

)
um−1

+ 2C2
m+1ℜ⟨f (1,m+1)

p (z, 1)(i|z|2ℓ)2, z̄⟩ℓum−1

+ 2mℜ
(
ϕ(2,m)
p (z, 1)(i|z|2ℓ)um−1 · ϕ(2,0)

p (z)

)
= H(z, z̄)um−1,

or equivallently

iC3
m+2ℜg(0,m+2)

p (z, 1)(i|z|2ℓ)2 + 2C2
m+1ℜ⟨f (1,m+1)

p (z, 1), z̄⟩ℓ(i|z|2ℓ)

+ 2miℑ
(
ϕ(2,m)
p (z, 1) · ϕ(2,0)

p (z)

)
= H(z, z̄).

(27)

Dividing (27) by m and adding it to (26), we have

ϕ(2,m)
p (z, 1) · ϕ(2,0)

p (z) = H(z, z̄) mod (|z|2ℓ)

By Lemma 3.2, we get
∥ϕ(2,m)

p (·, 1)∥ ≤ C. (28)

Combining (28) with (26) and (27), we have after simplification the following:

− C2
m+2ℑg(0,m+2)

p (z, 1)(i|z|2ℓ) + 2(m+ 1)iℑ⟨f (1,m+1)
p (z, 1), z̄⟩ℓ = H(z, z̄),

iC3
m+2ℜg(0,m+2)

p (z, 1)(i|z|2ℓ) + 2C2
m+1ℜ⟨f (1,m+1)

p (z, 1), z̄⟩ℓ = H(z, z̄).
(29)

Combining (29) with (24) and (25), we get

∥ℜg(0,m+2)
p (·, 1)∥ ≤ C,

⟨f (1,m+1)
p (z, 1), z̄⟩ℓ = H(z, z̄).

Therefore together with (24) again, we obtain

∥g(0,m+2)
p (·, 1)∥ ≤ C, ∥f (1,m+1)

p (·, 1)∥ ≤ C.

To estimate ∥g(2,m+1)
p (·, 1)∥, ∥f (3,m)

p (·, 1)∥, ∥ϕ(0,m+1)
p (·, 1)∥ and ∥ϕ(4,m−1)

p (·, 1)∥, we collect terms
in (14) of degree 2 in z and degree m+ 1 in u to obtain

− 1

2i
g(2,m+1)
p (z, 1)um+1 + ϕ(2,0)

p (z) · ϕ(0,m+1)
p (z, 1)um+1 = H(z, z̄)um+1. (30)

Collecting terms in (14) of degree 3 in z, degree 1 in z̄ and degree m in u, we obtain

− m+ 1

2i
g(2,m+1)
p (z, 1)um(i|z|2ℓ) + (m+ 1)ϕ(2,0)

p (z) · ϕ(0,m+1)
p (z, 1)i|z|2ℓu

m

+ ⟨f (3,m)
p (z, 1)um, z̄⟩ℓ = H(z, z̄)um.

(31)
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Collecting terms in (14) of degree 4 in z, degree 2 in z̄ and degree m− 1 in u, we obtain

− 1

2i
C2

m+1g
(2,m+1)
p (z, 1)um−1(i|z|2ℓ)2 + C2

m+1ϕ
(2,0)
p (z) · ϕ(0,m+1)

p (z, 1)(i|z|2ℓ)2u
m−1

+m⟨f (3,m)
p (z, 1)(i|z|2ℓ)um−1, z̄⟩ℓ + ϕ(4,m−1)

p (z, 1)um−1 · ϕ(2,0)
p (z) = H(z, z̄)um−1.

(32)

Restricting (32) on {|z|2ℓ = 0} and applying Lemma 3.2, we get

∥ϕ(4,m−1)
p (·, 1)∥ ≤ C. (33)

Therefore substituting (33) to (32) and applying Lemma 3.1, we have

C2
m+1(i|z|2ℓ)

(
− 1

2i
g(2,m+1)
p (z, 1)+ ϕ(2,0)

p (z) · ϕ(0,m+1)
p (z, 1)

)
+m⟨f (3,m)

p (z, 1), z̄⟩ℓ = H(z, z̄). (34)

Substituting (30) into (34), we get

∥f (3,m)
p (·, 1)∥ ≤ C.

Then (31) gives

− 1

2i
g(2,m+1)
p (z, 1)− ϕ(2,0)

p (z) · ϕ(0,m+1)
p (z, 1) = H(z, z̄). (35)

(35) and (30) together give

∥g(2,m+1)
p (·, 1)∥ ≤ C,

∥ϕ(0,m+1)
p (·, 1)∥ ≤ C.

For general ∥g(2m+4−2r,r)
p (·, 1)∥, ∥f (2m+5−2r,r−1)

p (·, 1)∥, ∥ϕ(2m+6−2r,r−2)
p (·, 1)∥ (0 ≤ r ≤ m), we

collect terms in (14) of degree 2m+ 4− 2r(≥ 4) in z and degree r in u and get

∥g(2m+4−2r,r)
p (·, 1)∥ ≤ C. (36)

Collecting terms in (14) of degree 2m + 5− 2r(≥ 5) in z, degree 1 in z̄ and degree r − 1 in u,
then we obtain

− 1

2i
rg(2m+4−2r,r)

p (z, 1)ur−1(i|z|2ℓ) + ⟨f (2m+5−2r,r−1)
p (z, 1)ur−1, z̄⟩ℓ = H(z, z̄).

Substituting (36) into the above, we have

∥f (2m+5−2r,r−1)
p (·, 1)∥ ≤ C. (37)

Collecting terms in (14) of degree 2m + 6 − 2r in z, degree 2 in z̄ and degree r − 2 in u, we
obtain

− 1

2i
C2

r g
(2m+4−2r,r)
p (z, 1)ur−2(i|z|2ℓ)2 + (r − 1)⟨f (2m+5−2r,r−1)

p (z, 1)(i|z|2ℓur−2, z̄⟩ℓ

+ ϕ(2m+6−2r,r−2)
p (z, 1)ur−2 · ϕ(2,0)

p (z) = H(z, z̄).

12



Substituting (36) and (37) into the above, we have

∥ϕ(2m+6−2r,r−2)
p (·, 1)∥ ≤ C.

This completes the induction.

Step 3: We have now shown that for each fixed k, {∥F (k)
pj ∥}∞j=1 is bounded by some constant

independent of j. In particular, since {∥F (2)
pj ∥}∞j=1 is bounded, we can find a subsequence

{p(2)j }∞j=1 of {pj}∞j=1 such that {F (2)

p
(2)
j

}∞j=1 converges on compacta as j → ∞. Similarly, we find

inductively sequences {p(k)j }∞j=1 ⊂ {p(k−1)
j }∞j=1 such that {F (k)

pj(k)
}∞j=1 converges. Pick the diagonal

subsequence {p(j)j }∞j=1 and denote it still as {pj}∞j=1. Then for each k, {F (k)
pj }∞j=1 converges as

j → ∞, say, to F ∗(k). Write the nontrivial formal map F ∗(= (f ∗, ϕ∗, g∗)) :=
∑

k F
∗(k). By the

way these maps were constructed, it is clear that F ∗ satisfies the following normalization:

f ∗(z, w) = z + terms with weighted degree higher than 2,

ϕ∗(z, w) = terms with degree higher than 1, (ϕ∗)(2,0) ̸= 0,

g∗(z, w) = w + terms with weighted degree higher than 4.

Now F ∗ is a formal map sending Mℓ into H
n+2
ℓ . According to a result of Meylan-Mir-Zaitsev

[MMZ], the formal map F ∗ is indeed convergent. Hence, F ∗ is a holomorphic map over Mℓ.
Therefore, F ∗ gives a CR immersion from Mℓ into Hn+2

ℓ . On the other hand, since any two
CR transversal maps between a Levi-nondegenerate hypersurface and a hyperquadric of the
same signature differ only by an automorphism of the hyperquadric (see [EHZ1]) provided the
codimension is less than n

2
, we have a certain automorphism T of Hn+2

ℓ such that near pj ≈ 0,
and hence at all points in Mℓ near the origin, it holds that:

F = T ◦ F ∗.

Since T extends to an automorphism of the projective space Pn+1 and T (0) = 0, F must be
CR transversal at 0. This is a contradiction. Our proof is complete.
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