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Abstract

It is a classical problem in algebraic geometry to characterize the algebraic subvari-
ety by using the Gauss map. In this note, we study the analogous phenomenon in CR
geometry. In particular, under some assumptions, we show that a CR map between
spheres is totally geodesic if and only if the CR Gauss map of the image is degenerate.

1 Introduction

Denote by CPn the complex projective space, and denote by G(k, n) the Grassmannian of
CPk’s in CPn. Let V be a complex analytic subvariety in CPn and Vsm its smooth points.
The Gauss map of V ⊂ CPn is defined by γ : Vsm → G(k, n), which sends each smooth
point x ∈ Vsm to the projective tangent space Tx(V ). γ is said to be degenerate if its generic
fibers have positive dimensional components. Otherwise, γ is called non-degenerate. In
Cartan’s moving frame theory, the Gauss map has wide geometric applications in Euclidean
and projective geometries. For example, one can obtain rigidity results from the degeneracy
of the Gauss maps. In fact, the study of subvarieties of complex projective spaces, tori and
hyperbolic space forms with degenerate Gauss maps are classical works due to Griffiths-
Harris [GH], Ran [R] and Hwang [Hw]. The interested readers are referred to [IL] for more
recent progress on subvarieties of complex projective spaces with degenerate Gauss maps.

The Gauss map is also closely related to the second fundamental form as the latter may be
interpreted as the derivative of the Gauss map. In CR geometry, the CR second fundamental
form appeared in the fundamental work of Chern-Moser [CM] and Webster [W1], as well as
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the work of Ebenfelt-Huang-Zaitsev [EHZ] in the study of the classification and rigidity of CR
submanifolds. One of the central problems in CR geometry is the classification of smooth CR
maps between spheres. This problem has been extensively studied and important progresses
have been made by many authors in recent years (cf. [W2, Fa86, Hu99, Ha05, HJX06,
DL, HJY14, Eb] and references therein). If the CR second fundamental form vanishes, S.
Ji and the second author showed that the smooth immersed strongly pseudoconvex real
hypersurface in a sphere ∂Bn must be linear [JY]. Cheng-Ji later relaxed the condition to
the vanishing of the difference of the second fundamental form and CR second fundamental
form and proved the linearity under some codimension restriction [CJ]. However, in CR
geometry, the Gauss map is not fully understood. One can define the Gauss map for any
C1 immersed CR submanifold in ∂BN as the sphere ∂BN may be embedded into CPN (The
detailed formulation of the CR Gauss map is given in the last paragraph of the next section).
The following interesting question is formulated in [CJL]: Let V ⊂ ∂BN be an immersed
spherical CR submanifold. Is it true that the CR Gauss map γ is degenerate if and only if
V is the image of a linear embedding F : ∂Bn → ∂BN? In [CJL], Cheng-Ji-Liu answered
the question in the following two cases: (1) dimRV = 3, N = 3; (2) V = F (∂B2) and
F : ∂B2 → ∂BN is the restriction of a rational holomorphic map with deg(F ) = 2.

We next state our main results, in which the terminology will be defined in the next
section.

Theorem 1.1. Let F : ∂Bn → ∂BN be a C3-smooth CR map with geometric rank κ0 ≤ n−2.
Assume that one of the following conditions hold:

(1) the degeneracy rank ≤ 2,
(2) the third degeneracy rank ≥ 3, and the third degeneracy dimension

d3 6=
κ0
6

(
3(κ0 + 3)n− (κ0 + 1)(2κ0 + 1)

)
.

Then the CR Gauss map of F (∂Bn) in ∂BN is degenerate if and only if F is a totally geodesic
embedding.

As an immediate consequence, we obtain

Theorem 1.2. Let F : ∂Bn → ∂BN be a C3-smooth CR map with geometric rank κ0 ≤ n−2.
Suppose that N < 1

2
(κ0 + 1)(κ0 + 2)n − 1

6
κ0(κ0 + 1)(2κ0 + 1). Then the CR Gauss map of

F (∂Bn) in ∂BN is degenerate if and only if F is a totally geodesic embedding.

2 Notations and Preliminaries

In this section, we start by recalling some notations and properties associated to the proper
holomorphic maps between balls, which were established in [Hu99][Hu03] and [HJX06]. Next,
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we define the CR Gauss maps of these maps and reduce the condition on the CR Gauss
maps to a proper form, following the lines of [Hw] and [CJL].

Let ∂Bn be the sphere in Cn and write ∂Hn := {(z, w) ∈ Cn−1 × C : Im(w) = |z|2} for
the Heisenberg group. By the Cayley transformation

ρn : Hn → Bn, ρn(z, w) =

(
2z

1− iw
,

1 + iw

1− iw

)
(2.1)

we can identify a CR map F from ∂Bn into ∂BN with ∂ρ−1N ◦ F ◦ ∂ρn, which is a CR map
from ∂Hn into ∂HN .

Parameterize ∂Hn by (z, z, u) through the map (z, z, u) → (z, u + i|z|2). For a non-
negative integer m and a function h(z, z, u) defined over a small ball U of 0 in ∂Hn, we

say h(z, z, u) = owt(m) if h(tz,tz,t2u)
|t|m → 0 uniformly for (z, u) on any compact subset of U as

t(∈ R)→ 0. For a holomorphic function (or map) H(z, w), we write

H(z, w) =
∞∑

k,l=0

H(k,l)(z)wl =
∞∑

i1··· ,in−1,l=0

H(i1I1+···+in−1In−1+lIn)zi11 · · · z
in−1

n−1w
l.

Here H(k,l)(z) is a polynomial of degree k in z.

Let F = (f, φ, g) = (f̃ , g) = (f1, · · · , fn−1, φ1, · · · , φN−n, g) be a non-constant C2-smooth
CR map from ∂Hn into ∂HN with F (0) = 0. For each p = (z0, w0) ∈M close to 0, we write
σ0
p ∈ Aut(Hn) for the map sending (z, w) to (z + z0, w + w0 + 2i〈z, z0〉) and τFp ∈ Aut(HN)

by defining

τFp (z∗, w∗) = (z∗ − f̃(z0, w0), w
∗ − g(z0, w0)− 2i〈z∗, f̃(z0, w0)〉).

Then F is equivalent to
Fp = τFp ◦ F ◦ σ0

p = (fp, φp, gp). (2.2)

Notice that F0 = F and Fp(0) = 0. Let

El(p) = (
∂f̃p
∂zl

)
∣∣
0

=
(∂fp,1
∂zl

, · · · , ∂fp,n−1
∂zl

,
∂φp,1
∂zl

, · · · , ∂φp,N−n
∂zl

)∣∣
0

= Ll(f̃)(p),

Ew(p) = (
∂f̃p
∂w

)
∣∣
0

=
(∂fp,1
∂w

, · · · , ∂fp,n−1
∂w

,
∂φp,1
∂w

, · · · , ∂φp,N−n
∂w

)∣∣
0

= T (f̃)(p).

(2.3)

Then the rank of {E1(p), · · · , En−1(p)} is n − 1. Write λ(p) = g′w(p) − 2i〈f̃ ′w(p), f̃(p)〉 =

|Lj(f̃)|2. We can choose vectors Cl(p) for 1 ≤ l ≤ N − n such that

A(p) =
( Et

1(p)√
λ(p)

, · · · , E
t
1(p)√
λ(p)

, Ct
1(p), · · · , Ct

N−n(p)
)

(2.4)
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is a unitary matrix. Define

F ∗p = (f̃ ∗p , g
∗
p) =

1√
λ(p)

Fp ·

(
At(p) 0

0 1√
λ(p)

)
. (2.5)

Then F ∗p has the following form:

f ∗j = zj + ajw +O(|(z, w)|2),
φ∗j = bjw +O(|(z, w)|2),
g∗ = w + dw2 +O(|zw|) + o(|(z, w)|2).

(2.6)

Write a = (a1, · · · , an−1, b1, bN−n), b = (b1, · · · , bN−n) and define F ∗∗p by

f̃ ∗∗p =
1

q∗(z, w)

(
f̃ ∗p (z, w)− ag∗p(z, w)

)
, g̃∗∗p =

1

q∗(z, w)
g∗p. (2.7)

Here we have set

q∗(z, w) = 1 + 2iaf̃ ∗p + (r − i|a|2)g∗p(z, w), r =
1

2
Re
(∂2g∗p
∂w2

(0)
)
. (2.8)

F ∗∗p has the following normalization, which is fundamentally important for the under-
standing of the geometric properties of F .

Lemma 2.1 (Lemma 5.3, [Hu99]). Let F be a C2-smooth CR map from ∂Hn into ∂HN ,
2 ≤ n ≤ N . For each p ∈ ∂Hn, there is an automorphism τ ∗∗p ∈ Aut0(HN) such that
F ∗∗p := τ ∗∗p ◦ Fp satisfies the following normalization:

f ∗∗p = z +
i

2
a∗∗(1)p (z)w + owt(3), φ∗∗p = φ∗∗p

(2)(z) + owt(2), g∗∗p = w + owt(4), with

〈z, a∗∗(1)p (z)〉|z|2 = |φ∗∗p
(2)(z)|2.

Write A(p) = −2i(
∂2(f∗∗p )l
∂zj∂w

|0)1≤j,l≤(n−1) in the above lemma. In [Hu03], Huang defined

the geometric rank of F at p, denoted by RkF (p), to be the rank of the (n − 1) × (n − 1)
matrix A(p). Now we can define the geometric rank of F to be κ0(F ) = maxp∈∂HnRkF (p).
For a C2 smooth CR map F from ∂Bn into ∂BN , the geometric rank of the map F is defined
by the map ρ−1N ◦ F ◦ ρn. By [Hu03], κ0(F ) depends only on the equivalence class of F and

κ0(F ) ≤ n− 2 when N < n(n+1)
2

.
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Let F ∗∗∗p be defined as follows:

F ∗∗∗P =
(
f ∗∗p (zU,w)U−1, φ∗∗p (zU,w)U∗, g∗∗p (zU,w)

)
. (2.9)

When κ0 ≤ n− 2, F ∗∗∗p satisfies the following normalizations:

fj = zj + i
2
µjzjw + owt(3) for j ≤ κ0,

fj = zj + owt(3) for κ0 < j ≤ n− 1,

φjk = µjkzjzk +
n−1∑
h=1

eh,jkzhw + djkw
2 +O(|(z, w)|3) for (j, k) ∈ S0,

φjk =
n−1∑
h=1

eh,jkzhw + djkw
2 +O(|(z, w)|3) for (j, k) ∈ S1,

g = w + owt(4).

(2.10)

Here, for 1 ≤ κ0 ≤ n− 2, we write S = S0 ∪S1, the index set for all components of φ, where
S0 = {(j, l) : 1 ≤ j ≤ κ0, 1 ≤ l ≤ n − 1, j ≤ l} and S1 = {(j, l) : j = κ0 + 1, κ0 + 1 ≤ l ≤
N − n− (2n−κ0−1)κ0

2
}. Also, µjl =

√
µj + µl for j < l ≤ κ0; and µjl =

√
µj if j ≤ κ0 < l or

if j = l ≤ κ0.
Let τ ∈ Aut0(Hn) and σ ∈ Aut0(Hn) be given by

σ(z, w) =
(z − cw,w)

q(z, w)
, τ(z∗, w∗) =

(z∗ + (c, 0)w∗, w∗)

q∗(z∗, w∗)
(2.11)

with

q(z, w) = 1 + 2i〈c, z〉 − i|c|2w,
q∗(z∗, w∗) = 1− 2i〈c, z∗〉 − i|c|2w∗,
c = (c1, · · · , cn−1).

(2.12)

Then by suitably choosing cj for 1 ≤ j ≤ κ0, we can make F ∗∗∗∗p = τ ◦ F ∗∗∗P ◦ σ still have

the form (2.10). Furthermore, we can make
∂2fj
∂w2 (0) = 0 for 1 ≤ j ≤ κ0. In [HJX06], the

authors proved the following normalization theorem for maps with geometric rank bounded
by n− 2, though only part of it is needed later:

Theorem 2.2. Suppose that F is a rational proper holomorphic map from Hn into HN ,
which has geometric rank 1 ≤ κ0 ≤ n − 2 with F (0) = 0. Then there are σ ∈ Aut(Hn)
and τ ∈ Aut(HN) such that τ ◦ F ◦ σ takes the following form, which is still denoted by
F = (f, φ, g) for convenience of notation:
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fl =
∑κ0

j=1 zjf
∗
lj(z, w), l ≤ κ0,

fj = zj, κ0 + 1 ≤ j ≤ n− 1,
φlk = µlkzlzk +

∑κ0
j=1 zjφ

∗
lkj, (l, k) ∈ S0,

φlk =
∑κ0

j=1 zjφ
∗
lkj = Owt(3), (l, k) ∈ S1,

g = w,

f ∗lj(z, w) = δjl +
iδjl µl
2
w + b

(1)
lj (z)w +Owt(4), 1 ≤ l ≤ κ0, µl > 0,

φ∗lkj(z, w) = Owt(2), (l, k) ∈ S1.

(2.13)

Here, for 1 ≤ κ0 ≤ n− 2, we write S = S0∪S1, the index set for all components of φ, where
S0 = {(j, l) : 1 ≤ j ≤ κ0, 1 ≤ l ≤ n − 1, j ≤ l} and S1 = {(j, l) : j = κ0 + 1, κ0 + 1 ≤ l ≤
N − n− (2n−κ0−1)κ0

2
}. Also, µjl =

√
µj + µl for j < l ≤ κ0; and µjl =

√
µj if j ≤ κ0 < l or

if j = l ≤ κ0.

For later use, we will also set

φ(1,1)(z) =

κ0∑
j=1

ejzj with ej ∈ C](S), φ
(1,1)
kl (z) =

κ0∑
j=1

ej,klzj with (k, l) ∈ S.

Next we define the degeneracy rank for any smooth CR map F from ∂Hn to ∂HN , which
is an invariant integer introduced by Lamel [Lam01](see also [EHZ] and [Eb13]. In fact, the
degeneracy rank is defined for more general maps).

For any point p ∈ ∂Hn, we define an increasing sequence of linear subspaces Ek(p) ⊂ CN

for F ,
Ek(p) = spanC{Lαρ̂Z ◦ F (p) | |α| ≤ k} (2.14)

where Lα = Lα1 ...Lαn−1 , α = (α1, ..., αn−1), |α| = |α1| + ... + |αn−1|, Lj = ∂
∂zj

+ 2izj
∂
∂w

,

ρ̂(Z,Z) is the defining function of the real hypersurface ∂HN , and ρ̂Z := ∂ρ̂ is the complex
gradient of ρ. Note that {Lj}1≤j≤n−1 form a basis of tangent vector fields of (1, 0) along
∂Hn.

We define d1(p) := 0 and

dk(p) := dimC Ek(p)/E1(p). (2.15)

Then we have a sequence of dimensions d1(p) = 0 ≤ d2(p) ≤ d3(p) ≤ ... ≤ dk(p) ≤ ....
Notice that the dimensions dj(p) is lower semi-continuous. By moving p to a nearby point
p0 if necessary, we may assume that all dl(p) are locally constant near p0 and

d2(p) < d3(p) < ... < dl0(p) = dl0+1(p) = .... (2.16)
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for some l0 with 1 ≤ l0 ≤ N − n + 1. In other words, there exists an open subset U of
∂Hn on which all dl(p) are locally constant near p0 and (2.16) holds. By [EHZ], we may
call l0 the degeneracy rank of F , and dl0 the degeneracy dimension of F . These definitions
depend on the open subset U . By minimizing l0 among all such open sets, we can define
degeneracy rank l0 of F as an invariant. we also call dj(p) for j ∈ [2, l0] the j-th degeneracy
dimension. The dimensions dj(p) j = 1, · · · , l0 can be interpreted as ranks of the CR second
fundamental form of f and its covariant derivatives. The interested reader is referred to
[Eb13, Section 2] for more details.

We end this section by recalling the CR Gauss map formulated in [CJL]. Let F :
∂Hn → ∂HN be a rational CR map. Write F (z, w) = (f(z, w), φ(z, w), g(z, w)) and set
Lj = ∂

∂zj
+ 2izj

∂
∂w

for 1 ≤ j ≤ n− 1. Since F is a CR map, we have Ljf = Ljφ = Ljg = 0.

Thus the matrix 
L1f L1g L1φ

...
...

...
Ln−1f Ln−1g Ln−1φ
Tf Tg Tφ

 (2.17)

represents an element in the Grassmanian G(n,N), which is Gauss map associate to the
map. By an action of a non-singular n× n matrix, the element is equivalent to the unique
matrix representation (In×n G), where In×n is the unit matrix and

G(z, w) =


L1f L1g
...

...
Ln−1f Ln−1g
Tf Tg


−1

·


L1φ1 · · · L1φN−n

...
...

...
Ln−1φ1 · · · Ln−1φN−n
Tφ1 · · · TφN−n

 (z, w). (2.18)

The CR Gauss map of the image F (∂Hn) is defined by γ : p→ G(p) for any p ∈ ∂Hn.

3 Reduction of the degeneracy of the CR Gauss map

In this section, we will reduce the CR Gauss map condition to a proper form, which is crucial
to the proof of our main theorems.

Theorem 3.1. Let F : ∂Hn → ∂HN be a C2 CR immersion, the geometric rank of F at 0
is κ0 ∈ [1, n− 1] which is maximal. We further suppose that F has the normal form (2.13).
Then for any fixed p = (z0, w0) ∈ ∂Hn near the origin, the CR Gauss map equation γ(z, w) =
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γ(z0, w0), for (z, w) close to (z0, w0), expressed in terms of F ∗∗∗∗p , takes the following form

∂φ∗∗∗∗p

∂zj
= O(|(z, w)|2),

∂φ∗∗∗∗p

∂w
= O(|(z, w)|2). (3.1)

For any fixed p = (z0, w0) ∈ ∂Hn near the origin, set z̃ = z+ z0 and w̃ = w+w0 + 2iz0z.
We also write

P (z, w) =


L1f L1g
...

...
Ln−1f Ln−1g
Tf Tg

 (z̃, w̃), Q(z, w) =


L1φ
...
Ln−1φ
Tφ

 (z̃, w̃). (3.2)

Then CR Gauss map equation γ(z, w) = γ(z0, w0) is equivalent to

Q(z, w) = P (z, w)P−1(0)Q(0). (3.3)

Next we express the system (3.3) in terms of F ∗∗∗∗p introduced in the preceding section
through the following 5 steps.

Step I. Express the CR Gauss map equation in terms of Fp
By the construction of Huang in §2 of [Hu03], Fp defined by (2.2) takes the following

form:

f̃p(z, w) = f̃(z̃, w̃)− f̃(z0, w0),

gp(z, w) = g(z̃, w̃)− g(z0, w0)− 2if̃(z0, w0)f̃(z̃, w̃).
(3.4)

A direct computation shows that

∂f̃p
∂zj

(z, w) =
( ∂f̃
∂zj

+ 2iz0j
∂f̃

∂w

)
(z̃, w̃),

T f̃p(z, w) = (T f̃)(z̃, w̃),

(Tgp)(z, w) = (Tg)(z̃, w̃)− 2if̃(z0, w0)
(
T f̃
)
(z̃, w̃).

(3.5)

Hence we infer (
Lj f̃

)
(z̃, w̃) = Lj f̃p(z, w), (T f̃)(z̃, w̃) = T f̃p(z, w),

(Tg)(z̃, w̃) = Tgp(z, w) + 2if̃(z0, w0)T f̃p(z, w).
(3.6)
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Applying T to these equations, we can further get(
TLj f̃

)
(z̃, w̃) = TLj f̃p(z, w), (T 2f̃)(z̃, w̃) = T 2f̃p(z, w),

(T 2g)(z̃, w̃) = T 2gp(z, w) + 2if̃(z0, w0)T
2f̃p(z, w).

(3.7)

By (3.4) and (3.6), we obtain

∂gp
∂zj

(z, w) =
( ∂g
∂zj

+ 2iz0j
∂g

∂w
− 2if̃(z0, w0)

( ∂f̃
∂zj

+ 2iz0j
∂f̃

∂w

))
(z̃, w̃)

=(Ljg)(z̃, w̃)− 2izj(Tg)(z̃, w̃)− 2if̃(z0, w0)
(
Lj f̃p(z, w)− 2izjT f̃(z̃, w̃)

)
=(Ljg)(z̃, w̃)− 2izjTgp(z, w)− 2if̃(z0, w0)Lj f̃p(z, w).

(3.8)

Thus

(Ljg)(z̃, w̃) =Ljgp(z, w) + 2if̃(z0, w0)Lj f̃p(z, w). (3.9)

Applying T on this equation, we further get

(TLjg)(z̃, w̃) =TLjgp(z, w) + 2if̃(z0, w0)TLj f̃p(z, w). (3.10)

Write

Pp(z, w) =


L1fp(z, w) L1gp(z, w) + 2if̃(z0, w0)L1f̃p(z, w)

...
...

Ln−1fp(z, w) Ln−1gp(z, w) + 2if̃(z0, w0)Ln−1f̃p(z, w)

Tfp(z, w) Tgp(z, w) + 2if̃(z0, w0)T f̃p(z, w)

 ,

Qp(z, w) =


L1φp(z, w)

...
Ln−1φp(z, w)
Tφp(z, w)

 .

(3.11)

By (3.6), (3.9) and (3.11), (3.3) has the form

Qp(z, w) = Pp(z, w)P−1p (0)Qp(0). (3.12)
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Step II. Express the CR Gauss map equation in terms of F ∗p
Recall that F ∗p is defined by

F ∗p (z, w) =
1√
λ(p)

Fp(z, w)

(
At(p) 0

0 1√
λ(p)

)
. (3.13)

Rewrite it as F ∗p (z, w) = (fp gp φp)(z, w) ·M(p), then M(p) takes the following form: M1 0 M2

0 1
λ(p)

0

M3 0 M4

 . (3.14)

Write

M̂(p) =

 M1 −2i
λ
f t(z0, w0) M2

0 1
λ

0

M3 −2i
λ
φt(z0, w0) M4

 . (3.15)

Since M(p) is independent of (z, w), we have(
Ljf

∗
p Ljg

∗
p Ljφ

∗
p

)
(z, w)

=
(
Ljfp Ljgp Ljφp

)
(z, w) ·M(p)

=
(
Ljfp Ljgp + 2if̃(z0, w0)Lj f̃p Ljφp

)
(z, w) · M̂(p).

(3.16)

Similarly, we get(
Tf ∗p Tg∗p Tφ∗p

)
(z, w) =

(
Tfp Tgp + 2if̃(z0, w0)T f̃p Tφp

)
(z, w) · M̂(p). (3.17)

Set

P ∗p (z, w) =


L1f

∗
p (z, w) L1g

∗
p(z, w)

...
...

Ln−1f
∗
p (z, w) Ln−1g

∗
p(z, w)

Tf ∗p(z, w) (Tg∗p)(z, w)

 , Q∗p(z, w) =


L1φ

∗
p(z, w)
...

Ln−1φ
∗
p(z, w)

Tφ∗p(z, w)

 . (3.18)

Consider the n×N matrix (P ∗p Q
∗
p)(z, w). From (3.11), (3.12) and (3.18), we yield

(P ∗p Q
∗
p)(z, w) =(Pp Qp)(z, w) · M̂(p)

=
(
Pp(z, w) Pp(z, w)P−1p (0)Qp(0)

)
· M̂(p)

=Pp(z, w)P−1p (0) ·
(
Pp(0) Qp(0)

)
· M̂(p)

=Pp(z, w)P−1p (0) ·
(
P ∗p (0) Q∗p(0)

)
.

(3.19)

10



Hence we know

P ∗p (z, w) = Pp(z, w)P−1p (0)P ∗p (0), Q∗p(z, w) = Pp(z, w)P−1p (0)Q∗p(0), (3.20)

from which we deduce

Q∗p(z, w) = P ∗p (z, w)
(
P ∗p (0)

)−1
Q∗p(0). (3.21)

By the normalization properties of F ∗p , we know

P ∗p (0) =

(
I 0
a 1

)
, Q∗p(0) =

(
0
b

)
.

Here we have set a = (a1, · · · , an−1) and b = (b1, · · · , bN−n), where aj and bk are defined by
(2.6). Hence (3.21) takes the form

L1φ
∗
p(z, w)
...

Ln−1φ
∗
p(z, w)

Tφ∗p(z, w)

 = P ∗p (z, w)

(
0
b

)
=


L1g

∗
p(z, w)
...

Ln−1g
∗
p(z, w)

Tg∗p(z, w)

 b. (3.22)

Step III. Express the CR Gauss map equation in terms of F ∗∗p
We further express this system in terms of F ∗∗p , which is defined as follows:

f̃ ∗∗p =
1

q∗(z, w)

(
f̃ ∗p (z, w)− ag∗p(z, w)

)
, g̃∗∗p =

1

q∗(z, w)
g∗p. (3.23)

Here we have set

q∗(z, w) = 1 + 2icf̃ ∗p + (r − i|c|2)g∗p(z, w), c =
∂f̃ ∗p
∂w

(0) = (a, b), r =
1

2
Re
(∂2g∗p
∂w2

(0)
)
. (3.24)

Write q∗∗(z, w) = 1
q∗(z,w)

, then (3.23) and (3.24) give

q∗∗(z, w) = 1− 2ic
f̃ ∗p
q∗

(z, w)− (r − i|c|2)
g∗p
q∗

(z, w)

= 1− 2icf ∗∗p (z, w)− (r + i|c|2)g∗∗p (z, w).

Together with (3.23), we know

f̃ ∗p =
1

q∗∗(z, w)

(
f̃ ∗∗p (z, w) + cg∗∗p (z, w)

)
, g∗p =

1

q∗∗(z, w)
g∗∗p . (3.25)
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Applying Lj and T to (3.25), we yield

Ljφ
∗
p =

1

(q∗∗(z, w))2
(
Lj(φ

∗∗
p + bg∗∗p )q∗∗ − (φ∗∗p + bg∗∗p )Ljq

∗∗),
Tφ∗p =

1

(q∗∗(z, w))2
(
T (φ∗∗p + bg∗∗p )q∗∗ − (φ∗∗p + bg∗∗p )Tq∗∗

)
,

Ljg
∗
p =

1

(q∗∗(z, w))2
(
Ljg

∗∗
p q
∗∗ − g∗∗p Ljq∗∗

)
,

T g∗p =
1

(q∗∗(z, w))2
(
Tg∗∗p q

∗∗ − g∗∗p Tq∗∗
)
.

Substituting these equations into (3.22), we get

Lj(φ
∗∗
p + bg∗∗p )q∗∗ − (φ∗∗p + bg∗∗p )Ljq

∗∗ = b
(
Ljg

∗∗
p q
∗∗ − g∗∗p Ljq∗∗

)
,

T (φ∗∗p + bg∗∗p )q∗∗ − (φ∗∗p + bg∗∗p )Tq∗∗ = b
(
Tg∗∗p q

∗∗ − g∗∗p Tq∗∗
)
.

A quick simplification gives

Ljφ
∗∗
p q
∗∗ − φ∗∗p Ljq∗∗ = 0, Tφ∗∗p q

∗∗ − φ∗∗p Tq∗∗ = 0. (3.26)

Notice that φ∗∗p = O(|(z, w)|2) and q∗∗p = 1 +O(|(z, w)|). Hence (3.26) takes the form

∂

∂zj
φ∗∗p = O(|(z, w)|2), ∂

∂w
φ∗∗p = O(|(z, w)|2). (3.27)

Step IV. Express the CR Gauss map equation in terms of F ∗∗∗p

We express the system (3.27) in terms of the map F ∗∗∗P defined by (2.9). (3.27) takes the
following form:(∂φ∗∗∗p

∂zj

)(
zU,w

)
= O(|(z, w)|2),

(∂φ∗∗∗p
∂w

)(
zU,w

)
= O(|(z, w)|2). (3.28)

Step V. Express the CR Gauss map equation in terms of F ∗∗∗∗p

Let τ ∈ Aut0(Hn) and σ ∈ Aut0(HN) be given by (2.11) so that F ∗∗∗∗p = τ ◦ F ∗∗∗p ◦ σ.
Then

φ∗∗∗∗p (z, w) = φ∗∗∗p
(
σ(z, w)

)
+O(|(z, w)|3),

σ(z, w) = (z − cw,w) +O(|(z, w)|2).
(3.29)

Hence (3.28) takes the following form:

∂φ∗∗∗∗p

∂zj
= O(|(z, w)|2),

∂φ∗∗∗∗p

∂w
= O(|(z, w)|2). (3.30)

This finishes the proof of the theorem.
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4 Some normalization properties

In this section, we will derive some properties for proper holomorphic maps between balls
that will be essential for the proof of our main theorems.

Let F : ∂Hn → ∂HN be a rational CR immersion. Assume the geometric rank κ0 of F
at 0 is maximal with κ0 ∈ [1, n − 2]. We also suppose that F has the following expansion
near 0: 

fj = zj + i
2
µjzjw + djw

2 +O(|(z, w)|3) for j ≤ κ0,

fj = zj + djw
2 +O(|(z, w)|3) for κ0 < j ≤ n− 1,

φjk = µjkzjzk +
n−1∑
h=1

eh,jkzhw + djkw
2 +O(|(z, w)|3) for (j, k) ∈ S0,

φjk =
n−1∑
h=1

eh,jkzhw + djkw
2 +O(|(z, w)|3) for (j, k) ∈ S1,

g = w +O(|(z, w)|3).

(4.1)

Let τ ∈ Aut0(Hn) and σ ∈ Aut0(Hn) be given by (2.11).

Lemma 4.1. Let F̂ = (f̂ , φ̂, g) := τ ◦ F ◦ σ, where τ and σ are given in (2.11), then F̂ has
the following expansion:

f̂j = zj + i
2
µjzjw + (dj − i

2
µjcj)w

2 +O(|(z, w)|3) for j ≤ κ0,

f̂j = zj + djw
2 +O(|(z, w)|3) for κ0 < j ≤ n− 1,

φ̂jk = µjk(zj − cjw)(zk − ckw) +
n−1∑
h=1

eh,jk(zh − chw)w + djkw
2

+O(|(z, w)|3) for (j, k) ∈ S0,

φ̂jk =
n−1∑
h=1

eh,jk(zh − chw)w + djkw
2 +O(|(z, w)|3) for (j, k) ∈ S1,

ĝ = w +O(|(z, w)|3).

(4.2)

Proof. A direct computation from (2.11) shows that

σ(z, w) =
((

(zj − cjw
)
·
(
1− 2i〈c, z〉+ i|c|2w)

)
1≤j≤n−1, w

(
1− 2i〈c, z〉+ i|c|2w

))
+O(|(z, w)|3).

(4.3)

For 1 ≤ j ≤ κ0 and κ0 + 1 ≤ k ≤ n− 1, we have

fj ◦ σ(z, w) =
(
zj − cjw

)
·
(
1− 2i〈c, z〉+ i|c|2w

)
+
i

2
µj(zj − cjw)w

+ djw
2 +O(|(z, w)|3),

fk ◦ σ(z, w) =
(
zk − ckw

)
·
(
1− 2i〈c, z〉+ i|c|2w

)
+ dkw

2 +O(|(z, w)|3).

(4.4)

13



Similarly, for (j, l) ∈ S0 and (j′, l′) ∈ S1, we get

φjl ◦ σ(z, w) = µjl(zj − cjw)(zl − clw) +
n−1∑
h=1

eh,jl(zh − chw)w + djlw
2 +O(|(z, w)|3),

φj′l′ ◦ σ(z, w) =
n−1∑
h=1

eh,j′l′(zh − chw)w + dj′l′w
2 +O(|(z, w)|3),

g ◦ σ(z, w) = w
(
1− 2i〈c, z〉+ i|c|2w

)
+O(|(z, w)|3).

(4.5)

Hence for 1 ≤ j ≤ κ0 and κ0 + 1 ≤ k ≤ n− 1, we get

fj ◦ σ(z, w) + cjg ◦ σ(z, w) =zj ·
(
1− 2i〈c, z〉+ i|c|2w

)
+
i

2
µj(zj − cjw)w

+ djw
2 +O(|(z, w)|3),

fk ◦ σ(z, w) + ckg ◦ σ(z, w) =zk ·
(
1− 2i〈c, z〉+ i|c|2w

)
+ dkw

2 +O(|(z, w)|3).

(4.6)

Substituting the formulas above into (2.11), we yield for 1 ≤ j ≤ κ0 that

f̂j =
(
zj ·
(
1− 2i〈c, z〉+ i|c|2w

)
+
i

2
µj(zj − cjw)w + djw

2
)

·
(
1 + 2i〈c, z − cw〉+ i|c|2w

)
+O(|(z, w)|3)

=zj +
i

2
µjzjw + (dj −

i

2
µjcj)w

2 +O(|(z, w)|3).

(4.7)

Similarly, we obtain for κ0 + 1 ≤ k ≤ n− 1 that

f̂k =zk + dkw
2 +O(|(z, w)|3). (4.8)

For φ, we have

φ̂jl =µjl(zj − cjw)(zl − clw) +

κ0∑
h=1

eh,jl(zh − chw)w

+ djlw
2 +O(|(z, w)|3) for (j, l) ∈ S0,

φ̂jl =

κ0∑
h=1

eh,jl(zh − chw)w + djlw
2 +O(|(z, w)|3) for (j, l) ∈ S1.

(4.9)

For g, we have

ĝ =w
(
1− 2i〈c, z〉+ i|c|2w

)
· (1 + 2i〈c, z − cw〉+ i|c|2w

)
+O(|(z, w)|3)

=w +O(|(z, w)|3).
(4.10)

The proof of Lemma 4.1 is complete.
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As a consequence of the lemma, we can further normalize the map (2.13) such that

e1,1α = 0 for α > κ0. (4.11)

Indeed, if we choose cj = 0 for 1 ≤ j ≤ κ0, then

φ̂
(Ij+In)
jα = ej,jα −

√
µjcαfor 1 ≤ j ≤ κ0 < α ≤ n− 1.

Thus we can choose cα for κ0 + 1 ≤ α ≤ n− 1 such that φ̂
(I1+In)
1α = 0 with κ0 < α ≤ n− 1.

By [HJX06], the map has the following form:

f
(∗∗∗∗)
p,j = zj + i

2
µp,jzjw +O(|(z, w)|3) for j ≤ κ0,

f
(∗∗∗∗)
p,j = zj for κ0 < j ≤ n− 1,

φ
(∗∗∗∗)
p,jk = µp,jkzjzk +

κ0∑
h=1

eph,jkzhw +O(|(z, w)|3) for (j, k) ∈ S0,

φ
(∗∗∗∗)
p,jk =

n−1∑
h=1

eph,jkzhw +O(|(z, w)|3) for (j, k) ∈ S1,

g
(∗∗∗∗)
p = w.

(4.12)

Here ep1,1α = 0 for κ0 + 1 ≤ α ≤ n− 1. Write

Φ∗∗∗∗(1,1)p =
( κ0∑
h=1

eph,jk
)
(j,k)∈S .

Next, we recall some relations derived by analyzing the Chern-Moser equation. The
following relations are obtained in [HJY14] for the geometric rank equal to two case, which
in fact holds true independent of the geometric rank and the codimension of the maps.

As in [HJY14], write ξj(z) = ej · Φ(2,0)
0 (z). From [HJY14, (3.5)], we know

zf (2,1)(z) = −(z1, ..., zκ0) · ξ(z). (4.13)

By a similar argument as in [HJY14, (4.3)], we obtain

φ(1,2) ∈ Span{e1, · · · , eκ0}. (4.14)

From [HJY14, (4.10)], we know

2Re
(
zf (1,2)(z)

)
+ |f (1,1)(z)|2 + |φ(1,1)(z)|2 = 0. (4.15)

With these preparations, we arrive at the following main theorem of this section.
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Theorem 4.2. Let F : ∂Hn → ∂HN be a CR immersion as in Theorem 1.1. For generic p
around 0, the associated vector Φ

∗∗∗∗(1,1)
p (z) 6≡ 0.

Proof. By Theorem 2.2, we can suppose that near 0, the expansion has the form (2.13).

Since Φ
∗∗∗∗(1,1)
p (z) is a smooth function with respect to p and Φ

∗∗∗∗(1,1)
0 (z) = Φ(1,1)(z) by

notation, it suffices to prove Φ(1,1)(z) 6= 0. Assume by contradiction that Φ(1,1)(z) ≡ 0. By
our notation, this implies e = ξ = 0. From (4.13) and (4.14), we know

f (2,1) = φ(1,2) = 0. (4.16)

Next we would like to give some asymptotic properties of the coefficients F ∗∗∗∗p . For
1 ≤ j ≤ κ0, we have

Ej(p) =
(∂f̃p
∂zj

)∣∣
0

= Lj(f̃)(p) =
(
(
∂

∂zj
+ 2iz0j

∂

∂w
)f̃
)
(p)

:=
(
E

[0]
j (p), E

[1]
j (p), · · · , E[k0+1]

j (p)
)
.

(4.17)

Here we have set

E
[0]
j (p) = Lj(f)(p) ∈ Cn−1,

E
[k]
j (p) =

(
Lj(φkk)(p), Lj(φk(k+1))(p), · · · , Lj(φk(n−1))(p)

)
∈ Cn−k.

Then

E
[0]
j (p) =

(
(
∂

∂zj
+ 2iz0j

∂

∂w
)f
)
(p)

=
(

0, · · · , 0, 1 +
i

2
µju0 (j-th position), 0, · · · , 0

)
+O(2).

(4.18)

and

E
[k]
j (p) =


(0, · · · , 0, µkjz0k, 0, · · · , 0) +O(2), k < j,
(2µkkz0k, µk(k+1)z0(k+1), · · · , µk(n−1)z0(n−1)) +O(2), k = j,
O(2), k > j.

(4.19)

By the definition of Cij (see [Hu99, p.17]), the asymptotic expansion of Ej(p) given in
(4.18) and (4.19), we can suppose that Cjk has the following form

Cjk =
(
o(1), · · · , o(1), 1 + o(1), 0, · · · , 0

)
,
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where 1 + o(1) is in the position corresponding to that of φjk in f̃ . Since A defined by (2.4)
is unitary, we can use the implicit function theory to get that

Cjk =


(0, · · · , 0,−µjkz0k, 0, · · · , 0,−µjkz0j, 0, · · · , 0, 1, 0, · · · , 0) +O(2) j < k, j ≤ κ0,
(0, · · · , 0,−2µjjz0j, 0, · · · , 0, 1, 0, · · · , 0) +O(2) j = k,
(0, · · · , 0, 1, 0, · · · , 0) +O(2) j = κ0 + 1,

(4.20)
From (3.7) and f (2,1)(z) ≡ 0, we know for 1 ≤ j ≤ κ0 the following

f
(1,1)
p,j =

n−1∑
k=1

LkTfj(p)zk =
i

2
µjzj +

κ0∑
k=1

2f
(Ik+2In)
j u0zk +O(|(z0, u0)|2)z. (4.21)

For κ0 + 1 ≤ j ≤ n− 1, we have

f
(1,1)
p,j =

n−1∑
k=1

LkTfj(p)zk = 0. (4.22)

For 1 ≤ j ≤ n− 1, we have

f
(0,2)
p,j =

1

2
T 2fp,j(0) =

1

2
T 2fj(p) =

κ0∑
k=1

f
(Ik+2In)
j z0k +O(|(z0, u0)|2). (4.23)

From (3.7), we know

LjTφp(0) =
∂2

∂zj∂w
φ(p) + 2iz0j

∂2

∂w2
φ(p), T 2φp(0) =

1

2

∂2

∂w2
φ(p). (4.24)

Thus we get

φ
(1,1)
p,jl =

κ0∑
k=1

2φ
(2Ik+In)
jl z0kzk +

n−1∑
k 6=h,k,h=1

φ
(Ih+Ik+In)
jl z0hzk +O(|(z0, u0)|2)z (4.25)

and

φ
(0,2)
p,jl =φ

(1,2)
jl (z0) +O(|(z0, u0)|2) = O(|(z0, u0)|2). (4.26)

Here the last equality follows from (4.16). From (3.10), we know

g(1,1)p =
∑(

LjTg(p)− 2if̃(p) · LjT f̃(p)
)
zj = O(|(z0, u0)|)z,

g(0,2)p = O(|(z0, u0)|).
(4.27)
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Notice that λ(p) = 1 +O(2), thus for 1 ≤ j ≤ κ0,

φ
∗(1,1)
p,jj =

( 1√
λ(p)

f̃p · Ct
jj

)(1,1)
=f

(1,1)
p,j · (−2µjjz0j) + φ

(1,1)
p,jj +O(|(z0, u0)|2)z

=− iµjµjjz0jzj +

κ0∑
k=1

2φ
(2Ik+In)
jj z0kzk +

n−1∑
k 6=h,k,h=1

φ
(Ih+Ik+In)
jj z0hzk

+O(|(z0, u0)|2)z.

(4.28)

Similarly, we have

f
∗(0,2)
p,j =

( 1

λ(p)
f̃p · Et

j

)(0,2)
=

κ0∑
k=1

f
(Ik+2In)
j z0k +O(|(z0, u0)|2),

φ
∗(0,2)
p,jj =O(|(z0, u0)|2).

(4.29)

Note that

a, r = o(1), U = I + o(1), U∗ = I + o(1), φ
∗(1,1)
p,jk = o(1), f

∗(0,2)
p,j = o(1), φ

∗(0,2)
p,jk = o(1).

A straightforward computation shows that

φ
∗∗∗(1,1)
p,jj =− iµjµjjz0jzj +

κ0∑
k=1

2φ
(2Ik+In)
jj z0kzk +

n−1∑
k 6=h,k,h=1

φ
(Ih+Ik+In)
jj z0hzk

+O(|(z0, u0)|2)z,

f
∗∗∗(0,2)
p,j =

κ0∑
k=1

f
(Ik+2In)
j z0k +O(|(z0, u0)|2),

φ
∗∗∗(0,2)
p,jj =O(|(z0, u0)|2).

(4.30)

By Lemma 4.1, to make f
∗∗∗∗(0,2)
p = 0, we need to choose cj for 1 ≤ j ≤ κ0 such that

cj = − 2i

µj
f
∗∗∗(0,2)
p,j = − 2i

µj

κ0∑
k=1

f
(Ik+2In)
j z0k +O(|(z0, u0)|2). (4.31)

From Lemma 4.1 and (4.30), we know

φ
∗∗∗∗(1,1)
p,jj (z) =− iµjµjjz0jzj +

κ0∑
k=1

2φ
(2Ik+In)
jj z0kzk +

n−1∑
k 6=h,k,h=1

φ
(Ih+Ik+In)
jj z0hzk

− 2
√
µjcjzj +O(|(z0, u0)|2)z.

(4.32)
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Thus the coefficients of zk term in φ
∗∗∗∗(1,1)
p,jj (z) is the following:

Ij(z0, u0) :=− iµjµjjz0j + 2φ
(2Ij+In)
jj z0j +

n−1∑
k 6=j,k=1

φ
(Ik+Ij+In)
jj z0k +

4i
√
µj

κ0∑
k=1

f
(Ik+2In)
j z0k

+O(|(z0, u0)|2),

Ik(z0, u0) :=2φ
(2Ik+In)
jj z0k +

∑
h6=k

φ
(Ih+Ik+In)
jj z0h +O(|(z0, u0)|2) for k 6= j.

(4.33)

If φ
∗∗∗∗(1,1)
p,jj (z) ≡ 0 in a neighborhood of 0, then Ih(z0, u0) ≡ 0 in a a neighborhood of 0 for

1 ≤ h ≤ n − 1. From Ik(z0, u0) ≡ 0 for k 6= j, we know φ
(Ik+Ih+In)
jj = 0 for k 6= j and

1 ≤ j ≤ n− 1. From Ij(z0, u0) ≡ 0, we get

f
(Ik+2In)
j = 0 for k 6= j,

− iµjµjj + 2φ
(2Ij+In)
jj +

4i
√
µj
f
(Ij+2In)
j = 0.

(4.34)

Thus

φ
∗∗∗(1,1)
p,jj =

(
− iµjµjj + 2φ

(2Ij+In)
jj

)
z0jzj,

cj = − 2i

µj
f
(Ij+2In)
j z0j +O(|(z0, u0)|2).

(4.35)

For the pair (j, l) satisfying 1 ≤ j ≤ l ≤ κ0, by the asymptotic expansion of Cjl, we get

φ
∗(1,1)
p,jl =

( 1√
λ(p)

f̃p · Ct
jl

)(1,1)
=f

(1,1)
p,j · (−µjlz0l) + f

(1,1)
p,l · (−µjlz0j) + φ

(1,1)
p,jl +O(|(z0, u0)|2)z

=− i

2
µjµjlz0lzj −

i

2
µlµjlz0jzl +

κ0∑
k=1

2φ
(2Ik+In)
jl z0kzk

+
n−1∑

k 6=h,k,h=1

φ
(Ih+Ik+In)
jl z0hzk +O(|(z0, u0)|2)z.

(4.36)
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We further know

φ
∗∗∗∗(1,1)
p,jl (z) =− i

2
µjµjlz0lzj −

i

2
µlµjlz0jzl +

κ0∑
k=1

2φ
(2Ik+In)
jl z0kzk

+
n−1∑

k 6=h,k,h=1

φ
(Ih+Ik+In)
jl z0hzk − µjlclzj − µjlcjzl +O(|(z0, u0)|2)z.

(4.37)

By comparing the coefficients of zk term in φ
∗∗∗∗(1,1)
p,jl (z), we obtain

φ
(Ih+Ik+In)
jl = 0 for h < l, (h, k) 6= (j, j), (j, l), (l, j), (l, l).

− i

2
µjµjlz0l + 2φ

(2Ij+In)
jl z0j +

n−1∑
h6=j,h=1

φ
(Ij+Ih+In)
jl z0h − µjlcl = 0,

− i

2
µlµjlz0j + 2φ

(2Il+In)
jl z0l +

n−1∑
h6=l,h=1

φ
(Il+Ih+In)
jl z0h − µjlcj = 0.

(4.38)

By the formula for cj in (4.35), we know φ
(Ik+Ih+In)
jl = 0 for (k, h) 6= (j, l), (l, j) and

− i

2
µjµjl + φ

(Ij+Il+In)
jl +

2iµjl
µl

f
(Il+2In)
l = 0,

− i

2
µlµjl + φ

(Ij+Il+In)
jl +

2iµjl
µj

f
(Ij+2In)
j = 0.

(4.39)

Eliminating φ
(Ij+Il+In)
jl in the above system, we get

i

2
µj +

2i

µj
f
(Ij+2In)
j =

i

2
µl +

2i

µl
f
(Il+2In)
l . (4.40)

Write

Ai = f
(Ii+2In)
i , Bi = φ

(2Ii+In)
ii . (4.41)

Then by (4.34) and (4.40),

− iµjµjj + 2Bj +
4i
√
µj
Aj = 0.

i

2
µj +

2i

µj
Aj =

i

2
µl +

2i

µl
Al.

(4.42)
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From (4.39), we get

φ
(Ij+Il+In)
jl =

i

2
µjµjl −

2iµjl
µl

Al. (4.43)

By the asymptotic expansion of Cjα for 1 ≤ j ≤ κ0 < α ≤ n− 1, we get

φ
∗(1,1)
p,jα =

( 1√
λ(p)

f̃p · Ct
jα

)(1,1)
=f

(1,1)
p,j · (−µjαz0α) + φ

(1,1)
p,jα +O(|(z0, u0)|2)z

=− i

2
µjµjαz0αzj +

κ0∑
k=1

2φ
(2Ik+In)
jα z0kzk

+
n−1∑

k 6=h,k,h=1

φ
(Ih+Ik+In)
jα z0hzk +O(|(z0, u0)|2)z.

(4.44)

We further know

φ
∗∗∗∗(1,1)
p,jα (z) =− i

2
µjµjαz0αzj +

κ0∑
k=1

2φ
(2Ik+In)
jα z0kzk

+
n−1∑

k 6=h,k,h=1

φ
(Ih+Ik+In)
jα z0hzk − µjαcαzj − µjαcjzα +O(|(z0, u0)|2)z.

(4.45)

By comparing the coefficients of zk term in φ
∗∗∗∗(1,1)
p,jα (z), we obtain

φ
(Ih+Ik+In)
jα = 0 for (h, k) 6= (j, j), (j, α), (α, j).

− i

2
µjµjαz0α + 2φ

(2Ij+In)
jα z0j +

n−1∑
h6=j,h=1

φ
(Ij+Ih+In)
jα z0h − µjαcα = 0,

n−1∑
h6=α,h=1

φ
(Iα+Ih+In)
jα z0h − µjαcj = 0.

(4.46)

By the formula for cj, we know φ
(Ih+Ik+In)
jα = 0 for (h, k) 6= (j, α), (α, j) and

− i

2
µjµjαz0α + φ

(Ij+Iα+In)
jα z0α = µjαcα,

φ
(Ij+Iα+In)
jα − µjαcj = 0.

(4.47)
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Hence

φ
(Ij+Iα+In)
jα = µjα(− 2i

µ1

)f
(Ij+2In)
j = − 2i

√
µj
Aj. (4.48)

By considering φ
∗∗∗∗(1,1)
p,αβ (z) for (α, β) ∈ S1, we know φ

(2,1)
αβ = 0.

Furthermore, by [HJY,(4.10)], we have

2Re
(
zf (1,2)(z)

)
+ |f (1,1)(z)|2 + |φ(1,1)(z)|2 = 0.

Making use of (2.13), (4.34) and (4.41), we get

f
(1,1)
j = − i

2
µjzj, f

(1,2)
j = Ajzj for 1 ≤ j ≤ κ0,

f
(1,1)
k = f

(1,2)
k = φ(1,1) = 0 for κ0 + 1 ≤ j ≤ n− 1.

Substituting these relations back to (4), we obtain Re(Aj) = −µ2j
8

. Combining this with
the latter equation of (4.42), and collecting the imaginary part of its both sizes, we further
obtain µj = µk. Together with (4.42), we yield Aj = Ak and Bj = Bk.

On the other hand, by [HJY,(4.17)], we know

2
(
− 2zf (1,2)(z)|z|2 + iΦ

(2,0)
0 (z) · Φ(2,1)

0 (z)
)
|z|2 + |φ(3,0)(z)|2 = 0. (4.49)

Substituting into this equation, we get

− 4

κ0∑
j=1

Aj|zj|2|z|4 + 2i
{ ∑

1≤j≤κ0

µjjz2j ·Bjz
2
j +

∑
1≤j<k≤κ0

µjkzjzk · (
i

2
µjµjk −

2iµjk
µk

Ak)zjzk

+
∑

1≤j≤κ0<α≤n−1

µjαzjzα · (−
2i
√
µj
Aj)zjzα

}
|z|2 + |Φ(3,0)

1 (z)|2 = 0.

(4.50)

After a direct simplification, we obtain:

|Φ(3,0)
1 (z)|2 = (

∑
1≤j≤κ0

µj|zj|2)2|z|2. (4.51)

This means that (Φ
(3,0)
1 (z)) is a vector of dimension 1

2
κ0(κ0+1)(n−κ0)+ 1

6
κ0(κ0+1)(κ0+2).

Hence the third degeneracy dimension is

n+ (n− 1) + · · ·+ (n− κ0) +
1

2
κ0(κ0 + 1)(n− κ0) +

1

6
κ0(κ0 + 1)(κ0 + 2)

=
κ0
6

(
3(κ0 + 3)n− (κ0 + 1)(2κ0 + 1)

)
.

(4.52)
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5 Proof of the main theorems

With (3.1) and Theorem 4.2 at our disposal, we are now in a position to prove our main
theorems.

Proof of Theorem 1.1. We prove Theorem 1.1 by absurdity. Suppose that the geometric
rank of the map is κ0 ∈ [1, n−2] and the map satisfies the degeneracy rank or the degeneracy
dimension conditions. We will prove that the CR Gauss map of the map F must be non-
degenerate. WriteM = {p ∈ ∂Bn : RkF (p) = κ0}. It will suffice to show the non-degeneracy
of the Gauss map for p0 ∈M. This is because, if so, dimRγ(M) = 2n−1 while dimRγ(∂Bn\
M) ≤ dimR∂Bn \ M ≤ 2n − 2, which would be non-generic. Due to Theorem 2.2 and
Theorem 4.2, we also suppose at p0 ∈ M, F has the form (4.12) and has the additional

condition φ
∗∗∗∗(1,1)
p0 6≡ 0. Without loss of generality, we suppose that p0 = 0.

For every p close to 0, write

∂φ
∗∗∗∗(2)
p,kl

∂zj
=

n−1∑
h=1

Γ
[h]
j,kl(p)zh + Γ

[n]
j,kl(p)w +O(2),

Tφ∗∗∗∗(2)p =
n−1∑
h=1

Γ
[h]
n,kl(p)zh + Γ

[n]
j,kl(p)w +O(2).

(5.1)

Denote by Υ(p) the following n(N − n)× n matrix

Υ(p) =
(
Γ
[1]
j,kl(p) Γ

[2]
j,kl(p) · · · Γ

[n]
j,kl(p)

)
1≤j≤n,(k,l)∈S . (5.2)

By our normalization properties, we know, for 1 ≤ j ≤ κ0 and κ0 + 1 ≤ α ≤ n − 1, the
following

∂

∂z1
φ
(2)
1α = µ1αzα,

∂

∂zα
φ
(2)
jα = µjαzj. (5.3)

If ej,kl 6= 0, then ∂
∂zj
φ
(2)
kl =

n−1∑
h=1

λhzh + τw for some τ 6= 0. Hence we must have Υ(0) is of

rank n. Notice that Υ(p) = Υ(0) + o(1), hence when p is sufficiently close to 0, Υ(p) is also
of rank n.

By the implicit function theorem, there is a small neighborhood U of 0, such that for
every point p ∈ U , (3.3) has only one solution in some neighborhood V . Choose U1 ⊂ U
sufficiently small such that the solutions are contained in V1 which is also very small and
(z + ẑ, w + ŵ + 2iẑz) ∈ U ∩ V for (ẑ, ŵ) ∈ U1 and (z, w) ∈ V1. Then for generic point
(z0, w0) ∈ U1, (3.3) has only one solution (z, w) with (z̃, w̃) ∈ U , which means that the CR
Gauss map is non-degenerate.
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Proof of Theorem 1.2. Since there are n functions in the mapping containing linear terms,
we have

d3 ≤ N − n < 1

2
(κ0 + 1)(κ0 + 2)n− 1

6
κ0(κ0 + 1)(2κ0 + 1)− n

=
κ0
6

(
3(κ0 + 3)n− (κ0 + 1)(2κ0 + 1)

)
.

Namely, the condition in (2) of Theorem 1.1 holds true and the proof of Theorem 1.2 follows
directly.
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