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Abstract

For any open hyperbolic Riemann surface X, the Bergman kernel K, the logarithmic ca-
pacity cβ , and the analytic capacity cB satisfy the inequality chain πK ≥ c2

β ≥ c2
B; moreover,

equality holds at a single point between any two of the three quantities if and only if X is
biholomorphic to a disk possibly less a relatively closed polar set. In this paper, we extend
the inequality chain by showing that c2

B ≥ πv−1(X) on planar domains, where v(·) is the
Euclidean volume, and characterize the extremal cases when equality holds at one point.
Similar rigidity theorems concerning the Szegö kernel, the higher-order Bergman kernels, and
the sublevel sets of the Green’s function are also developed. Additionally, we explore rigidity
phenomena related to the multi-dimensional Suita conjecture for domains in Cn, n ≥ 1.

1 Introduction
An open Riemann surface X is said to be (potential-theoretically) hyperbolic if it admits a non-
constant negative subharmonic function, and parabolic if it does not. Consider the on-diagonal
Bergman kernel K(z)|dz|2, the logarithmic capacity cβ(z)|dz|, and the analytic capacity cB(z)|dz|
on X, where z is some local coordinate. These three quantities are invariant under changes of
local coordinates. In 1972, Suita determined a simple relationship between K and cB.

Theorem 1.1 (Suita’s Theorem in [31]). Suppose X is an open hyperbolic Riemann surface. Then

πK(z) ≥ c2
B(z)

and equality holds at some z0 ∈ X if and only if X is biholomorphically equivalent to the unit disk
less a (possibly empty) closed set of inner capacity zero.

A closed set of inner capacity zero is a relatively closed polar set. In the same paper, Suita
conjectured that cβ would satisfy a similar inequality with rigidity as follows.

Suita Conjecture [31]: Suppose X is an open hyperbolic Riemann surface. Then

πK(z) ≥ c2
β(z)

and equality holds at some z0 ∈ X if and only if X is biholomorphically equivalent to the unit disk
less a (possibly empty) closed set of inner capacity zero.

Towards the resolution of the Suita Conjecture, Ohsawa first demonstrated in [25] that the
Suita Conjecture was connected to his Ohsawa-Takegoshi L2 extension theorem, and he proved
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that 750πK ≥ c2
β. By further considering the sharp L2 extension problem, Błocki [5] established

the optimal inequality πK ≥ c2
β for bounded domains in C. Later, Guan and Zhou [19] proved

both the inequality and equality parts of the conjecture for open Riemann surfaces. See also [4]
for a variational approach by Berndtsson and Lempert. Suita’s theorem and the resolution of the
conjecture may be called rigidity theorems as equality at one point between πK and either cβ or
cB determines the surface up to biholomorphism.

It is straightforward to show c2
β ≥ c2

B, so by the works of Błocki, and Guan and Zhou, for any
open hyperbolic Riemann surface it holds that

πK ≥ c2
β ≥ c2

B. (1.1)

The characterization of the equality part for the inequality cβ ≥ cB can be deduced from a result
of Minda [24] on the behavior of cβ(z)|dz| under holomorphic mappings. His result used the sharp
form of the Lindelöf principle. In Appendix A, we provide a more direct proof of the equality
characterization without adopting this principle.

We first restrict our attention to domains in C. Throughout this paper, denote a disk by
D(z0, r) := {z ∈ C : |z − z0| < r} and let D := D(0, 1). For the Euclidean volume v(·), we
use the convention that v−1(Ω) = 0 when v(Ω) = ∞. Following Ahlfors [2], a compact set
E ⊂ C∞ = C ∪ {∞} is said to be a null set of class NB if all bounded holomorphic functions on
C∞ \ E are constants. Compact polar sets are always of class NB.

Theorem 1.2 (Rigidity theorem of cB and cβ). Let Ω ⊂ C be a domain. Then

c2
B(z) ≥ π

v(Ω)
, z ∈ Ω. (1.2)

Moreover, equality holds at some z0 ∈ Ω if and only if either of the following holds true:

1. v(Ω) <∞ and Ω = D(z0,
√
π−1v(Ω)) \ P , where P satisfies

P ∩ D(z0, s) ∈ NB, for all s <
√
π−1v(Ω);

if additionally
c2
β(z0) =

π

v(Ω)
,

then P above is a relatively closed polar set;

2. v(Ω) =∞ and Ω = C \ P where P ∈ NB.

It is worth pointing out that, as demonstrated in Remark 2.6, the equality condition in (1.2)
does not necessarily imply that P is polar. See also Theorem 2.4 and Lemma 2.5 for rigidity
theorems with weaker assumptions than (1.2).

Theorem 1.2 extends the chain of inequalities (1.1) to

πK ≥ c2
β ≥ c2

B ≥
π

v(Ω)
, (1.3)

and essentially gives the equality conditions between πv−1(Ω) and the other quantities in (1.3) for
a hyperbolic domain Ω ⊂ C. As a corollary (see Corollary 3.1), we can reprove the main theorem
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of [14], a rigidity theorem which established the equality conditions of K(z) ≥ v−1(Ω). Moreover,
let K(j), j ∈ N, denote the higher-order Bergman kernels of a domain Ω ⊂ C. Combining Theorem
1.2 with a result of Błocki and Zwonek in [7], we get the inequalities

K(j)(z) ≥ j!(j + 1)!πj

vj+1(Ω)
, z ∈ Ω, j ∈ N,

and the following characterization of their equality conditions.

Corollary 1.3 (Rigidity theorem of higher-order Bergman kernels). Let Ω be a domain in C.
Then for each j ∈ N, there exists a z0 ∈ Ω such that

K(j)(z0) =
j!(j + 1)!πj

vj+1(Ω)

if and only if either of the following holds true:

1. v(Ω) <∞ and Ω = D(z0,
√
π−1v(Ω)) \ P , where P is a relatively closed polar set;

2. v(Ω) =∞ and Ω = C \ P , where P is a closed polar set.

A classical question ( [30, p. 20]) raised by Stein is what are the relations between the Bergman
kernel K and the Szegö kernel S? On any bounded domain in C with Lipschitz boundary (see [3,17]
for the C∞ smooth case and Proposition 3.6 for the Lipschitz case), the Szegö kernel S and the
analytic capacity cB satisfy the identity cB(z) = 2πS(z). Using this and (1.3), we deduce the
following inequality chain, which gives a relation between the on-diagonal Bergman and Szegö
kernels: √

πK(z) ≥ cβ(z) ≥ 2πS(z) ≥
√

π

v(Ω)
≥ 2π

σ(∂Ω)
. (1.4)

Here σ(∂Ω) denotes the arc-length of ∂Ω, and the last inequality in (1.4) is the isoperimetric
inequality. In particular, the inequalities say that K always dominates 4πS2 on Lipschitz domains.
See also [10] and the references therein for results on the comparison of these two kernels. We
characterize the equality conditions in (1.4) as below.

Theorem 1.4 (Rigidity theorem of the Szegö kernel). Suppose Ω ⊂ C is a bounded domain with
Lipschitz boundary. Then,

1. there exists some z0 ∈ Ω such that

2πS(z0) = cβ(z0) or
√
πK(z0)

if and only if Ω is simply connected;

2. there exists some z0 ∈ Ω such that

2πS(z0) =

√
π

v(Ω)
or

2π

σ(∂Ω)
or

1

δ(z0)

if and only if Ω = D(z0,
√
π−1v(Ω)).
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Next, by a monotonicity result of Błocki and Zwonek in [6] concerning the Euclidean volume
of the sublevel sets of the Green’s function, for z ∈ Ω,−∞ < t1 < t2 < 0,

c2
β(z) ≥ πe2t1

v({G(·, z) < t1})
≥ πe2t2

v({G(·, z) < t2})
≥ π

v(Ω)
. (1.5)

See Remark 4.2. Using the isoperimetric inequality and the classical PDE theory on the unique
continuation property for harmonic functions, we obtain the following rigidity theorem which
examines the extremal cases and characterizes domains on which equalities in (1.5) hold.

Theorem 1.5 (Rigidity theorem of sublevel sets of Green’s function). Let Ω be a bounded domain
in C. Then Ω is a disk centered at z0 possibly less a relatively closed polar subset if and only if
either of the following holds true:

1.

c2
β(z0) =

πe2t0

v({G(·, z0) < t0})
for some z0 ∈ Ω, and t0 ∈ (−∞, 0);

2.
πe2t1

v({G(·, z0) < t1})
=

πe2t2

v({G(·, z0) < t2})
for some z0 ∈ Ω, and t1 6= t2 in (−∞, 0);

3.
πe2t0

v({G(·, z0) < t0})
=

π

v(Ω)

for some z0 ∈ Ω, and t0 ∈ (−∞, 0).

At last, we study rigidity properties for bounded domains in Cn, n ≥ 1. Błocki and Zwonek [6]
proved the following multi-dimensional Suita Conjecture concerning the Bergman kernel and
the Azukawa indicatrix: for any pseudoconvex domain Ω ⊂ Cn,

K(z) ≥ v−1(IA(z)).

Here IA denotes the Azukawa indicatrix (see (5.2) for its definition). As the proof relied on
an approximation of the domain by hyperconvex sub-domains, the pseudoconvexity was needed
in [6]. For our final result, by considering the connection between the two involved quantities in
the multi-dimensional Suita Conjecture and the Euclidean distance function δ(z), we derive the
following rigidity theorem without requiring the domains in Cn to be pseudoconvex when n > 1.

Theorem 1.6. Let Ω be a bounded domain in Cn, n ≥ 1. Then for all z ∈ Ω,

v(IA(z)) ≥ πn

n!
δ2n(z), (1.6)

and
K(z) ≤ n!

πnδ2n(z)
. (1.7)

Moreover, either equality holds at some z0 ∈ Ω if and only if Ω is a ball centered at z0.
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As a consequence of (1.7), we may add the distance function δ to the inequality chains (1.3),
(1.4), and (1.5) on bounded domains in C. See Remark 5.2 for more details.

The organization of the paper is as follows. In Sec. 2 we prove a rigidity theorem of cB and cβ,
and as applications, in Sec. 3 we prove rigidity theorems of the Bergman kernels, and new results
on the Szegö kernel on Lipschitz domains. In Sec. 4, we investigate rigidity phenomena for the
logarithmic capacity and the sublevel sets of the Green’s function. In Sec. 5, for bounded domains
in Cn we prove Theorem 1.6. In the appendices, we prove a rigidity phenomenon between cB and
cβ based on a rigidity lemma of the Green’s function, and a stability result of the Szegö kernel on
Lipschitz domains.

2 Rigidity theorem of cB and cβ

Let SH−(X) denote the set of negative subharmonic functions on an open Riemann surface X.
Given z0 ∈ X, let w be a fixed local coordinate in a neighbourhood of z0 such that w(z0) = 0.
The (negative) Green’s function is

G(z, z0) = sup{u(z) : u ∈ SH−(X), lim sup
z→z0

u(z)− log |w(z)| <∞}. (2.1)

An open Riemann surface admits a Green’s function if and only if there is a non-constant, negative
subharmonic function defined on it. The Green’s function is strictly negative on the surface and
harmonic except on the diagonal.

We say that a Borel set P is polar if there is a subharmonic function u 6≡ −∞ defined in a
neighbourhood of P so that P ⊂ {z : u(z) = −∞}. For a domain Ω ⊂ C, a point ζ0 ∈ ∂Ω is
said to be irregular if there is a ζ ∈ Ω such that limz→ζ0 G(z, ζ) 6= 0 and regular otherwise. By
Kellogg’s Theorem, cf. [27, Theorem 4.2.5], the set of irregular boundary points of a domain is
a polar set. The Green’s function on a Riemann surface induces the logarithmic capacity, which
is used prominently (see [27] for its applications) in potential theory. Ahlfors introduced the
analytic capacity for domains [1, 2] in order to study Painlevé’s question: which compact sets E
in the complex plane are removable for the bounded holomorphic functions?

Definition 2.1. Let X be an open hyperbolic Riemann surface. The logarithmic capacity cβ is
defined as

cβ(z0) = lim
z→z0

exp(G(z, z0)− log |w(z)|).

The analytic capacity of a Riemann surface X is defined as

cB(z0) = sup

{∣∣∣∣ ∂f∂w (z0)

∣∣∣∣ : f ∈ Hol(X,D), f(z0) = 0

}
. (2.2)

When we wish to emphasize the surface X, we will use the notations GX and cm;X(·), m =
β or B. If h : X1 → X2 is a biholomorphism, then

cm;X1(z) = |h′(z)|cm;X2(h(z)), m = β or B.

Thus, the logarithmic and analytic capacity are independent of the choice of the local coordinates
and define conformally-invariant metrics cβ(z)|dz| and cB(z)|dz|. For each z0 ∈ X, there exists
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an extremal function f0 for the analytic capacity, unique up to rotation; that is, f0 belongs to the
family described in (2.2) and

∣∣df0
dw

(z0)
∣∣ = cB(z0).

We restrict our attention to domains in C. With this restriction we will be able to examine
the relationship between the domain functions cβ, cB and the Euclidean volume of the domain. In
the literature, the analytic capacity is often defined in terms of compact sets.

Definition 2.2. [17] The analytic capacity γ(E) of a compact subset E ⊂ C is

γ(E) = sup{|g′(∞)| : g ∈ Hol(C∞ \ E,D), g(∞) = 0}

where
g′(∞) = lim

z→∞
z(g(z)− g(∞)).

Notation. In this section, Ω− {z0} will denote the translation of the domain Ω by z0 and

jz0(z) :=
1

z − z0

.

For ease of notation, when z0 = 0, let j = jz0.

The two definitions of the analytic capacities presented in this paper are related as follows.

Lemma 2.3. For any domain Ω ⊂ C, cB(z0) = γ(C∞ \ jz0(Ω)).

Proof. Since j(Ω−{z0}) = jz0(Ω) and cB;Ω(z0) = cB;Ω−{z0}(0), it suffices to prove the lemma when
z0 = 0 ∈ Ω. Let E = C∞ \ j(Ω). Notice that there is a one-to-one correspondence between the
two function sets A := {g ∈ Hol(C∞ \ E,D) : g(∞) = 0} and B := {h ∈ Hol(Ω,D) : h(0) = 0},
as g ◦ j ∈ B whenever g ∈ A, and vice versa. Moreover, (g ◦ j)′(0) = g′(∞). The lemma then
follows directly from the definitions of the two analytic capacities.

The analytic capacity is difficult to compute in general for most domains. It does however
satisfy a lower bound referred to as the Ahlfors-Beurling Inequality (see [2], [17, Theorem 4.6,
Chapter III]). Namely, for any compact set E ⊂ C,

γ2(E) ≥ v(E)

π
. (2.3)

For any z ∈ Ω, letting E in (2.3) be C∞ \ jz(Ω), and combining with Lemma 2.3, we obtain

c2
B(z) ≥ v(C∞ \ jz(Ω))

π
. (2.4)

The following serves as a rigidity theorem concerning (2.4).

Theorem 2.4. Let Ω be a domain in C with v(Ω) <∞. There exists a z0 ∈ Ω such that

c2
B(z0) =

v(C∞ \ jz0(Ω))

π
(2.5)

if and only if Ω = D(z1, r) \ P for some z1 ∈ C, r > 0, where P satisfies

P ∩ D(z1, s) ∈ NB, for all s < r. (2.6)

If additionally

c2
β(z0) =

v(C∞ \ jz0(Ω))

π
, (2.7)

then P above is a relatively closed polar set.
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Proof. If Ω = D(z1, r) \Q, where

Q ∩ D(z1, s) ∈ NB, for all s < r,

then by the classical Schwarz lemma,

cB(z0) =
r

r2 − |z0 − z1|2
. (2.8)

On the other hand, a direct computation gives

v(C∞ \ jz0(D(z1, r))) =
πr2

(r2 − |z0 − z1|2)2
.

Equation (2.5) is proved.
For the other direction, let E = C∞ \ jz0(Ω). Then E is compact, and since v(Ω) < ∞,

v(E) > 0. Define f ∈ O(Ω) ∩ C(Ω) by

f(z) =
1√
πv(E)

∫
E

1

w − 1
z−z0

dv(w).

Then f(z0) = 0 and f ′(z0) =
√
π−1v(E). The Ahlfors-Beurling inequality states that |f(z)| ≤ 1

for all z ∈ C∞. By the maximum modulus theorem, |f(z)| < 1 on Ω. Thus, f is an extremal
function for cB, which implies supz∈Ω |f(z)| = 1. By continuity there exists z2 ∈ ∂Ω such that
|f(z2)| = 1. We observe, after a careful inspection of the proof of the Ahlfors-Beurling inequality,
as given in [27, Lemma 5.3.6], that E must be a union of a closed disk with a closed measure-zero
set. For completeness we resupply the proof since this observation is not stated in the literature,
cf. [2, 17,27]. Indeed, after a rotation and translation of E we may assume that

1 = |f(z2)| = 1√
πv(E)

∫
E

1

w
dv(w). (2.9)

Let D := {w ∈ C : Rew−1 > (2a)−1} be a disk such that v(D) = v(E). Then v(E \D) = v(D \E)
and so ∫

E\D
Re

1

w
dv(w) ≤

∫
E\D

1

2a
dv(w) =

∫
D\E

1

2a
dv(w) ≤

∫
D\E

Re
1

w
dv(w). (2.10)

This implies ∫
E

1

w
dv(w) =

∫
E

Re
1

w
dv(w) =

∫
E∩D

Re
1

w
dv(w) +

∫
E\D

Re
1

w
dv(w)

≤
∫
D∩E

Re
1

w
dv(w) +

∫
D\E

Re
1

w
dv(w)

=

∫
D

Re
1

w
dv(w)

=

∫ π
2

−π
2

∫ 2a cos θ

0

cos θdrdθ = πa =
√
πv(E).

Comparing with (2.9), both inequalities in (2.10) become equalities and thus v(E\D) = v(D\E) =
0. Since E is compact, D ⊂ E. Consequently, Ω = D(z1, r)\P for some z1 ∈ C and r =

√
v(Ω)π−1,

where P is a relatively closed set of measure 0.
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To further show that P satisfies (2.6), consider

h(z) =
r(z − z0)

r2 + z̄0z1 − |z1|2 − (z̄0 − z̄1)z
, z ∈ Ω.

It is not hard to verify that h ∈ Hol(Ω,D), h(z0) = 0 and

h′(z0) =
r

r2 − |z0 − z1|2
.

Thus h is an extremal function for cB at z0, by (2.8). By [20, Theorem 28], the image of the
extremal function satisfies h(Ω) = D \Q where

Q = h(P ), Q ∩ D(0, r) ∈ NB, for all 0 ≤ r < 1.

Thus (2.6) is proved.
If additionally (2.7) holds, then by Theorem A.1, h is a biholomorphism from Ω to D(0, 1) \Q,

where Q is a relatively closed polar set. This implies that P is also a relatively closed polar set.
Conversely if Ω = D(z1, r) \P for a relatively closed polar set P , then a direct computation shows
c2
β(z0) = π−1v(C∞ \ jz0(Ω)). The proof is complete.

The proof of Theorem 2.4 indicates the center of Ω may not necessarily be z0, at which the
equality (2.5) holds. Using the lemma below, we will show that if the stronger equality c2

B(z0) =
πv−1(Ω) holds for v(Ω) < ∞, then in the conclusion of the preceding theorem the center of Ω
must be z0.

Lemma 2.5. Let Ω ⊂ C be a domain with v(Ω) <∞. Then for all z ∈ Ω,

π

v(Ω)
≤ v(C∞ \ jz(Ω))

π
, (2.11)

and equality holds at some z0 ∈ Ω if and only if Ω is a disk centered at z0 less a relatively closed
set of measure zero.

Proof. If B ⊂ C is a set with v(B) = 0, then v(jz0(B)) = 0. With this fact it is straightforward
to verify that equality holds for a disk less a relatively closed set of measure 0. Since v(Ω) =
v(Ω− {z0}) and jz0(Ω) = j(Ω− {z0}), without loss of generality we may suppose z0 = 0. Notice

that for any r > 0, v(rΩ) = r2v(Ω) and

v(C∞ \ j(rΩ)) = v(C∞ \ r−1j(Ω)) = v(r−1(C∞ \ j(Ω))) = r−2v(C∞ \ j(Ω)).

Here for any set B ⊂ C, rB := {rz : z ∈ B}. We may further assume that v(Ω) = π. So the
inequality (2.11) is equivalent to

v(j(C∞ \ Ω)) = v(C∞ \ j(Ω)) ≥ π.

Set
S1 = D \ Ω, S2 = Ω \ D.
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So v(S1) = v(S2). Since C∞ \ Ω = S1 t ((C∞ \ D) \ S2) and j(C∞ \ D) = D,

j(C∞ \ Ω) = j(S1) t (D \ j(S2)),

where t denotes the disjoint union. Noticing j(S2) ⊂ D, we further have

v(j(C∞ \ Ω))− π = v(j(S1)) + v(D)− v(j(S2))− π = v(j(S1))− v(j(S2)).

Applying change of variables formula, one gets

v(j(C∞ \ Ω))− π =

∫
S1

1

|z|4
dv(z)−

∫
S2

1

|z|4
dv(z) ≥

∫
S1

1dv(z)−
∫
S2

1dv(z) = 0. (2.12)

Here we have used the fact that |z| < 1 on S1 and |z| ≥ 1 on S2. This completes the proof of the
inequality part.

If equality holds in (2.11), then the inequality in (2.12) becomes equality and∫
S1

1

|z|4
dv(z) =

∫
S1

1dv(z),

∫
S2

1

|z|4
dv(z) =

∫
S2

1dv(z).

Since |z| < 1 on S1, the first equation implies v(S1) = 0. Thus, v(S2) = 0. By definitions of S1

and S2, we know that Ω is the unit disk centered at 0 less a relatively closed set of measure zero.

Proof of Theorem 1.2 (Rigidity theorem of cB and cβ). If v(Ω) = ∞, then the inequality is
trivial. By [2, p. 107], cB(z0) = 0 if and only if cB ≡ 0, and thus if and only if Ω = C∞ \ P where
P ∈ NB by definition.

We now assume v(Ω) <∞. Equation (1.2) follows from (2.4) and (2.11). If Ω = D(z0,
√
π−1v(Ω))\

Q, where
Q ∩ D(z0, s) ∈ NB, for all s <

√
π−1v(Ω),

then by the classical Schwarz lemma, c2
B(z0) = πv(Ω)−1.

Conversely, if equality holds at z0 ∈ Ω, then

c2
B(z0) =

v(C∞ \ jz0(Ω))

π
=

π

v(Ω)
.

By the equality part of Lemma 2.5, Ω = D(z0,
√
π−1v(Ω)) \ P , where P is a relatively closed set

of measure 0. By the equality part of Theorem 2.4, we further conclude that P ∩ D(z0, s) ∈ NB
for all s <

√
π−1v(Ω). The rest of the theorem follows from the second part of Theorem 2.4.

Remark 2.6. If c2
β(z0) > c2

B(z0) = πv−1(Ω), then P in the preceding theorem may not be polar.
Indeed, let Q be the compact four-corner Cantor set defined in [18]. As shown therein, Q ∈ NB,
but is not polar. Let Ω = D(z0, r) \ Q where z0 and r are chosen such that z0 6∈ Q ⊂ D(z0, r).
Since Q ∈ NB, all bounded holomorphic functions on Ω extend across Q. Thus,

cB;Ω(z0) = cB;D(z0,r)(z0) =

√
π

v(D(z0, r))
=

√
π

v(Ω)
,

where the last equality used the fact that sets of class NB have two-dimensional Lebesgue measure
0.
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3 Applications of the rigidity theorem of cB and cβ

Let Ω be a domain in Cn, n ≥ 1. The Bergman space of a domain Ω is the Hilbert space

A2(Ω) = L2(Ω) ∩ O(Ω)

with L2(Ω)-norm denoted by ‖ · ‖Ω. The Bergman kernel is defined by

K(z) = sup{|f(z)|2 : f ∈ A2(Ω), ‖f‖Ω ≤ 1}, z ∈ Ω.

By considering constant functions in the defining set of the kernel, we get

K(z) ≥ 1

v(Ω)
, z ∈ Ω,

which is sharp when Ω = D(z0, r) \ P , where P is a relatively closed polar set and z = z0.

As an application of Theorem 1.2, we show that this sharp example is in fact the only possible
domain where the equality can be achieved. Corollary 3.1 below, which is the main result of [14],
was originally proved by the first and second named authors using the equality part of the Suita
Conjecture. Here we provide a new proof based on our Theorem 1.2 and Suita’s Theorem.

Corollary 3.1 (Originally proved in [14]). Let Ω ⊂ C be a domain. Then there exists a z0 ∈ Ω
such that

K(z0) =
1

v(Ω)
, (3.1)

if and only if either of the following holds true:

1. v(Ω) < ∞ and Ω = D(z0, r) \ P , where P is a relatively closed polar set and with r2 =
π−1v(Ω).

2. v(Ω) =∞ and Ω = C \ P , where P is a possibly empty, closed polar set.

Proof. First assume v(Ω) <∞. By Suita’s Theorem (Theorem 1.1) and Theorem 1.2,

πK(z0) ≥ c2
B(z0) ≥ π

v(Ω)
= πK(z0).

By the equality part of Theorem 1.2,

Ω = D(z0, r) \ P, P ∩ D(z0, s) ∈ NB, s < r =
√
π−1v(Ω).

The equality part of Suita’s Theorem (Theorem 1.1) implies additionally that P is polar. The
case when v(Ω) =∞ is already known (see [7, Theorem 4]).

Remark 3.2. The case v(Ω) <∞ in the preceding proof used Suita’s Theorem and not the Suita
Conjecture. The proof of Suita’s Theorem, which was proved using Riemann surface theory, is
much simpler than the proof of the Suita Conjecture. Thus, the proof given here is simpler than
the original proof in [14].
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Remark 3.3. After the initial version of the paper, Boas [9] kindly pointed out to us that Corollary
3.1 fails for domains in Cn, n ≥ 2, as indicated by the following examples. Let Ω be a domain in
Cn, n ≥ 2 satisfying (3.1) (for instance, a ball centered at z0), and consider images F (Ω) under
maps of the form F : Cn → Cn defined by

F (z) = (z′, zn + f0(z′)), z′ = (z1, . . . , zn−1), (3.2)

where f0 : Cn−1 → C is any holomorphic function. Such maps are called shears and were consid-
ered extensively by Rosay and Rudin [28]. F is biholomorphic, and the determinant det JCF of
its complex Jacobian is constantly 1. Hence F is volume preserving with v(F (Ω)) = v(Ω). On
the other hand, by the transformation rule of the Bergman kernel, KF (Ω)(F (z0)) = KΩ(z0), so
(3.1) holds for F (Ω) at F (z0). Due to the arbitrariness of f0, a large degree of freedom is afforded
to the geometries of such F (Ω), in stark contrast to the situation in C. Moreover, the domains
Ω that satisfy (3.1) include the bounded complete Reinhardt domains, bounded complete circu-
lar domains, bounded quasi-circular domains containing the origin, and bounded quasi-Reinhardt
domains containing the origin [23], which form a strictly increasing sequence under the set con-
tainment relation in Cn, n ≥ 2. By selecting Ω from one of these classes, we can produce additional
domains F (Ω) satisfying (3.1) that are not biholomorphically equivalent to the ball. Lastly, for
a bounded quasi-Reinhardt Ω containing the origin, by choosing a non-polynomial mapping F in
(3.2) such that F (Ω) is bounded and F(0) = 0, we may get a minimal domain centered at 0 that
is not quasi-Reinhardt (see [12, 23]).

For domains in C, we also have the following more precise estimate on the on-diagonal Bergman
kernel. Recall that given z ∈ Ω, jz = 1

·−z .

Corollary 3.4. Let Ω ⊂ C be a domain with v(Ω) <∞. Then for all z ∈ Ω,

K(z) ≥ v(C∞ \ jz(Ω))

π2
,

and equality holds at some z0 ∈ Ω if and only if Ω is a disk less a relatively closed polar set.

Proof. By Suita’s Theorem (Theorem 1.1), the Ahlfors-Beurling Inequality (2.4), and Theorem
2.4,

πK(z) ≥ c2
B(z) ≥ v(C∞ \ jz(Ω))

π

for z ∈ Ω. The equality part is a consequence of Theorems 1.1 and 2.4.

For j = 1, 2, . . ., let

K(j)(z) = sup{|f (j)(z)|2 : f ∈ A2(Ω), ‖f‖Ω ≤ 1, f (k)(z) = 0, k = 0, . . . , j − 1}

denote the Bergman kernels for higher order derivatives, and set K(0) = K. Błocki and Zwonek [7]
established that for z ∈ Ω ⊂ C,

K(j)(z) ≥ j!(j + 1)!

π
(cβ(z))2j+2, (3.3)

which is sharp for a disk less a relatively closed polar set D(z0, r) \ P with z = z0.

11



Proof of Corollary 1.3 (Rigidity theorem of higher-order Bergman kernels). The case v(Ω) =
∞ is already known, cf. [7, Theorem 4]. For v(Ω) <∞, this follows from (3.3) and Theorem 1.2.

One important property of the analytic capacity cB is that it is distance decreasing with
respect to any given holomorphic map f : X → Y , where X, Y are hyperbolic Riemann surfaces,
cf. [21, Chapter 2]:

f ∗ (cB;Y (z)|dz|) ≤ cB;X(z)|dz|, (3.4)

where f ∗ (cB;Y (z)|dz|) denotes the pull-back to X via f of the analytic capacity on Y .

Remark 3.5. For a hyperbolic Riemann surface X with a local coordinate z, if there exists z0 ∈ X
and a non-constant holomorphic function f : X → D such that

K(z0)|dz|2 =
|df(z0)|2

π(1− |f(z0)|2)2
, (3.5)

then by (1.1) and (3.4), we have√
πK(z0)|dz| ≥ cB;X(z0)|dz| ≥ f ∗ (cB;D(z0)|dz|) =

|df(z0)|
1− |f(z0)|2

.

Without loss of generality, assume that df(z0) > 0. Therefore, (3.5) forces the equality condition
in Theorem 1.1 to hold true, and there exists a biholomorphism h : X → D \ P such that
h(z0) = 0 and ∂h

∂z
(z0) > 0, where P is a relatively closed polar subset. By the transformation rule

of the Bergman kernel,
√
πK(z0) = ∂h

∂z
(z0). Take ϕ(z) := z−f(z0)

1−f(z0)z
∈ Aut(D). Then ϕ ◦ f ◦ h−1

is bounded, so it extends to a holomorphic function F : D → D such that F (0) = 0. Moreover,
F ′(0) =

√
πK(z0)

−1 ·
√
πK(z0)(1 − |f(z0)|2) · (1 − |f(z0)|2)−1 = 1. The Schwarz lemma implies

that F (z) ≡ z on D, so f is in fact biholomorphic. Consequently, the identity (3.5) extends to all
of X, and f is a holomorphic isometry with respect to the Bergman kernel.

In the remaining part of the section, we focus on a bounded domain Ω in C with Lipschitz
boundary. The Hardy space H2(∂Ω) is defined to be the set of holomorphic functions on Ω which
admit a non-tangential boundary limit function and a maximal function on the boundary which
belong to L2(∂Ω). See Appendix B or [22] for more details. Let ‖ · ‖∂Ω denote the L2(∂Ω) norm
and S(·, ·) denote the Szegö kernel. When restricted to the diagonal, it satisfies

S(z, z) := S(z) = sup{|f(z)|2 : f ∈ H2(∂Ω), ‖f‖∂Ω ≤ 1}.

By considering constant functions in the defining set of the kernel, for any z ∈ Ω, we get

S(z) ≥ 1

σ(∂Ω)
,

where σ(∂Ω) denotes the arclength of ∂Ω. The lower bound is sharp for Ω = D(z0, r) and z = z0.
As applications of the Rigidity theorem of cB and cβ, Theorem 1.2, we will show that these are
the only possible domains where the equality can be achieved.
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Let {Ωj}∞j=1 be a family of exhausting subdomains of Ω, and Sj(·, ·) be the corresponding Szegö
kernels. Boas showed in [8, Theorem 2.1] that if in addition Ω has C∞-smooth boundary and is
exhausted by sublevel sets Ωj of its defining function, then for a, z ∈ Ωj,

lim
j→∞

Sj(z, a) = S(z, a).

For a bounded domain Ω ⊂ C with Lipschitz boundary, there are subdomains {Ωj}∞j=1 with C∞
boundary that approximate Ω well uniformly and non-tangentially in the sense of Nečas (see [22, p.
539] or Appendix B for more details). In Proposition B.3, we extend Boas’ stability result of the
Szegö kernel to Lipschitz domains in C with respect to the Nečas approximation.

It is known for a finitely connected domain with C∞ boundary that the analytic capacity
and (on-diagonal) Szegö kernel satisfy the relation cB(z) = 2πS(z). For {Ωj}∞j=1 given above,
as shown by Ahlfors and Beurling [2, Theorem 1], the analytic capacities cj;B and cB of these
domains, respectively, similarly satisfy

lim
j→∞

cj;B(z) = cB(z), z ∈ Ω.

Consequently, we can conclude

Proposition 3.6. If Ω ⊂ C is bounded with Lipschitz boundary, then

cB(z) = 2πS(z), z ∈ Ω. (3.6)

The Rigidity theorem of cB and cβ, Theorem 1.2, together with Proposition 3.6, enables us to
prove the rigidity phenomenon of the Szegö kernel.

Proof of Theorem 1.4 (Rigidity theorem of the Szegö kernel). The equality conditions in Suita’s
Theorem (Theorem 1.1) and in cβ ≥ cB (Theorem A.1) imply that the equality condition in Case
1 holds if and only if Ω is biholomorphic to a disk less a relatively closed polar set. Since Ω is
Lipschitz, it is a regular domain for the Dirichlet problem. Thus, the polar set is empty, cf. [27].

For Case 2, it suffices to prove the ‘only if’ direction. By the Rigidity theorem of cB and cβ
(Theorem 1.2), 2πS(z0) =

√
πv−1(Ω) if and only if

Ω = D(z0, r) \Q, Q ∩ D(z0, s) ∈ NB, for all s < r =
√
π−1v(Ω).

Since Ω has Lipschitz boundary, its boundary has no singleton connected components. Thus
Q = ∅. The equality case 2πS(z0) = 2πσ−1(∂Ω) follows now as well.

By (3.6), 2πS(z0) = δ−1(z0) is equivalent to cB(z0) = δ−1(z0). Let f0 be an extremal function
for cB(z0). By the Schwarz lemma, f0|D(z0,δ(z0)) : D(z0, δ(z0))→ D is extremal for D(z0, δ(z0)), and
thus equals eiθδ−1(z0)(z − z0) for some θ ∈ [0, 2π). Since |f0| < 1, Ω = D(z0, δ(z0)).

Theorem 2.4 combined with Proposition 3.6 also gives another rigidity result concerning the
Szegö kernel below.

Corollary 3.7. Suppose Ω ⊂ C is a bounded domain with Lipschitz boundary. Then for z ∈ Ω,

S2(z) ≥ v(C∞ \ jz(Ω))

4π3
.

Moreover, equality holds at some z0 ∈ Ω if and only if Ω is a disk.
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Remark 3.8. In comparison with (1.4) and Theorem 1.4, concerning the inequality between the
on-diagonal Bergman and Szegö kernels and the equality conditions, we would like to point out
that when the domain is bounded and simply-connected with C∞-boundary,

K(z, a) = 4πS2(z, a), z, a ∈ Ω,

cf. [3, Theorem 25.1].

Remark 3.9. Let f : Ω1 → Ω2 be a holomorphic map, where Ω1,Ω2 ⊂ C are bounded domains
with Lipschitz boundaries. Then, by Proposition 3.6 and (3.4), the Szegö kernel is decreasing with
respect to f , namely

|f ′(z)|SΩ2(f(z)) ≤ SΩ1(z),

and equality holds if f is a biholomorphism.

4 Rigidity of sublevel sets of Green’s function
For a fixed z0 ∈ Ω, let Gz0(·) = G(·, z0) and

Ωt = {z ∈ Ω : Gz0(z) < t}, t ∈ (−∞, 0]

denote the sublevel sets of the Green’s function. The following monotonic property was proved
by Błocki and Zwonek.

Theorem 4.1. [6] Let Ω be a bounded domain in C. Then for any z0 ∈ Ω,

f(t) :=
πe2t

v(Ωt)

is non-increasing in t ∈ (−∞, 0).

Remark 4.2. Note that
lim
t→0−

e2t

v(Ωt)
=

1

v(Ω)
.

As t→ −∞, Ωt is approximable by the set {log (cβ(z0)|z − z0|) < t} (see [4, 6]). This implies

lim
t→−∞

e2t

v(Ωt)
= lim

t→−∞

e2t

v({|z − z0| < etc−1
β (z0)})

=
c2
β(z0)

π
.

This gives the inequalities (1.5) between the logarithmic capacity and the sublevel sets of the
Green’s function.

The next theorem discusses the second inequality in (1.5), which states that either f in Theo-
erem 4.1 is strictly decreasing, or the domain has to be rigid.

Theorem 4.3. Let Ω be a bounded domain in C. If there exist z0 ∈ Ω and t1 < t2 in (−∞, 0)
such that

πe2t1

v(Ωt1)
=

πe2t2

v(Ωt2)
,

then Gz0(z) = log |z − z0|/R for some constant R > 0. Consequently, Ω is a disk centered at z0

with radius R possibly less a relatively closed polar subset.
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Proof. By scaling and translating if necessary, we may assume that z0 = 0 and the diameter of Ω
is 2. By the inequality part of Theorem 4.1, f(t1) = f(t2) implies that there exists a constant C
such that

v(Ωt) = Ce2t,

for t ∈ (t1, t2). Thus
d

dt
v(Ωt) = 2v(Ωt).

Following [6,7], we see from the Cauchy-Schwarz inequality that for almost every t ∈ (−∞, 0),

σ2(∂Ωt) ≤
∫
∂Ωt

1

|∇G0|
dσ

∫
∂Ωt

|∇G0|dσ. (4.1)

Note that due to the harmonicity of G0 away from 0,∫
∂Ωt

|∇G0|dσ =

∫
∂Ωt

∂G0

∂ν
dσ = 2π. (4.2)

On the other hand, by the co-area formula v(Ωt) =
∫ t
−∞

∫
∂Ωs

dσ
|∇G0|ds, which further leads to∫

∂Ωt

1

|∇G0|
dσ =

d

dt
v(Ωt). (4.3)

for almost every t ∈ (−∞, 0). Pick up a point t0 ∈ (t1, t2) such that (4.1-4.3) hold. Then,

σ2(∂Ωt0) ≤ 4πv(Ωt0).

According to the classical isoperimetric inequality (see [11] and the references therein), Ωt0 is
equivalent (two sets E1 and E2 are equivalent if and only if v(E1 ∪ E2 \ E1 ∩ E2) = 0 ) to a
disk centered at a point a ∈ Ω with radius ret0 for some r > 0, and in particular, the involved
Cauchy-Schwarz inequality (4.1) attains the equality. This means 1

|∇G0| is necessarily a constant
multiple of |∇G0|, or equivalently, |∇G0| is a constant on ∂Ωt0 . Combining this with (4.2), one
obtains ∂

∂ν
G0 = |∇G0| = r−1e−t0 on ∂Ωt0 .

Now G0 is harmonic on Ω \ Ωt0 and satisfies the following Cauchy data

G0 = t0,
∂G0

∂ν
=

1

ret0

on some smooth piece in ∂Ωt0 contained in ∂D(a, ret0). As a consequence of the unique continua-
tion property of harmonic functions for local Cauchy data (see [32]), we get G0(z) = log |z−a|

r
on

Ω \Ωt0 , and further on Ω by the uniqueness. Since G0 has a pole 0 and the diameter of Ω is 2, we
see that a = 0 and r = 1, with G0(z) = log |z| on Ω. Then we complete the proof using Lemma
A.2.

In particular, the corollary below follows from Theorem 4.3 directly. Here we provide an alter-
native proof adopting the property of the Bergman kernel, instead of using the unique continuation
property of harmonic functions as in Theorem 4.3.
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Corollary 4.4. Let Ω be a bounded domain in C. Then, there exist z0 ∈ Ω and t0 ∈ (−∞, 0] such
that

c2
β(z0) =

πe2t0

v(Ωt0)
,

if and only if Ω is a disk centered at z0 possibly less a relatively closed polar subset. In particular,

c2
β(z0) =

π

v(Ω)

for some z0 ∈ Ω if and only if Ω is a disk centered at z0 possibly less a relatively closed polar
subset.

Proof. It suffices to prove the necessity. By scaling and translating, we may assume z0 = 0 and
cβ(0) = 1. By the isoperimetric inequality as in the first part of the proof of Theorem 4.3, Ωt is
equivalent to a disk of radius et for almost every t ∈ (−∞, t0). Let t] < t0 be a negatively large
constant such that when t < t], ∂Ωt is smooth. Hence Ωt is precisely a disk of radius et for each
such arbitrarily fixed t. Denote by at the center of Ωt.

We claim that at = 0. To see this, let Kt and ct stand for the corresponding Bergman kernel
and logarithmic capacity of Ωt, respectively. Then for z ∈ Ωt,

Kt(z) =
e2t

π(e2t − |z − at|2)2
.

Since the Green’s function on Ωt with a pole 0 is G0(z)− t, by definition,

ct(0) = exp lim
z→0
{(G0(z)− t)− log |z|} = e−tc(0) = e−t.

Making use of the fact that πKt = c2
t on the disk Ωt, we further have at z = 0 that

e2t

(e2t − |at|2)2
= πKt(0) = c2

t (0) = e−2t.

It immediately tells us that at = 0, so

Ωt = D(0, et), for t < t]. (4.4)

Lastly let ρ(z) := G0(z)− log |z| on Ω. Then Ωt = {z ∈ C : |z| < et

eρ(z)
}, t < 0. Comparing this

with (4.4) for t < t], we have ρ|∂Ωt = 0. Since ρ is harmonic on Ω, ρ ≡ 0 on Ωt. By the uniqueness
again, ρ ≡ 0 on Ω, where G0(z) = log |z|. The proof is complete in view of Lemma A.2.

Proof of Theorem 1.5: The ‘only if’ direction is straightforward. For the ‘if’ direction, Case 2
follows from Theorem 4.3. Case 1 follows from Corollary 4.4, or alternatively, from Theorem 4.3.
Indeed, if Case 1 holds, then by (1.5) we have for all t < t1

πe2t

v(Ωt)
=

πe2t1

v(Ωt1)
.

Case 1 is thus reduced to Theorem 4.3 and so Ω is a disk centered at z0 possibly less a relatively
closed polar subset. Case 3 can be proved similarly from Theorem 4.3.
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5 Rigidity properties of the distance function in Cn

Let Ω be a bounded domain in Cn with C2-boundary. It is known that there exists a constant C
depending only on n such that

K(z) ≤ Cδ−n−1(z)

for all z ∈ Ω; if in addition Ω is pseudoconvex, by [16, 26] there exists a constant CΩ depending
only on Ω such that

K(z) ≥ CΩ

δ2(z)
.

In particular, the Bergman kernel of Bn(z0, r), the ball in Cn centered at z0 with radius r, is given
by

KBn(z0,r)(z) =
n!r2

πn(r2 − |z − z0|2)n+1
. (5.1)

Denote by PSH−(Ω) the space of negative plurisubharmonic functions on Ω. Let Gz(·) be the
pluricomplex Green’s function of Ω with pole z ∈ Ω given by

Gz(w) = sup{u(w) : u ∈ PSH−(Ω), lim sup
ζ→z

u(ζ)− log |ζ − z| <∞}.

The Azukawa indicatrix for z ∈ Ω ⊂ Cn is defined as

IAΩ (z) := {X ∈ Cn : lim sup
ζ→0

(Gz(z + ζX)− log |ζ|) < 0}. (5.2)

Straightforward calculations show IABn(z,r)(z) = Bn(z, r), and when n = 1, IAΩ (z) = D(0, c−1
β;Ω(z)).

Proof of Theorem 1.6. Firstly, we deal with the relation between the Bergman kernel and the
distance function. Let z ∈ Ω be fixed and consider Bn(z, δ(z)). Then Bn(z, δ(z)) ⊂ Ω. By (5.1)
and the monotonic decreasing property of the Bergman kernels with respect to domains,

K(z) ≤ KBn(z,δ(z))(z) ≤ n!

πnδ2n(z)
,

which yields (1.7).
Then we prove the rigidity part in (1.7) and without loss of generality assume equality is

attained at z0 = 0, namely K(0) = n!π−nδ−2n(0). Let f be an extremal holomorphic function on
Ω such that ‖f‖L2(Ω) = 1 and K(0) = |f(0)|2. Then the restriction of f to Ω1 := Bn(0, δ(0)) is
also holomorphic with ‖f‖L2(Ω1) ≤ ‖f‖L2(Ω) = 1. Therefore, the Bergman kernel on the ball Ω1

satisfies

n!

πnδ2n(0)
= KΩ1(0) ≥ |f(0)|2

‖f‖2
L2(Ω1)

≥ |f(0)|2 = K(0) =
n!

πnδ2n(0)
,

which forces both inequalities above to become equalities. In particular,

‖f‖L2(Ω) = 1 = ‖f‖L2(Ω1). (5.3)

This implies Ω = Ω1, i.e., Ω is a ball. In fact, if Ω 6= Ω1, then f = 0 almost everywhere on the
non-empty open set Ω \ Ω1 (of positive Lebesgue measure) by (5.3). By the holomorphicity we
know that f ≡ 0 almost everywhere on Ω, which contradicts the fact that ‖f‖L2(Ω) = 1.
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Secondly, we deal with the relation between the Azukawa indicatrix and the distance function.
Once again, we may suppose z = 0. Since Bn(0, δ(0)) ⊂ Ω,

Bn(0, δ(0)) = IABn(0,δ(0))(0) ⊂ IAΩ (0), (5.4)

which gives the inequality (1.6).
Assume equality in (1.6) holds. Then

v(IAΩ (0) \ Bn(0, δ(0))) = 0. (5.5)

We first claim that for all X ∈ ∂Bn(0, δ(0)),

lim sup
λ→0

G0(λX)− log |λ| ≤ 0. (5.6)

Indeed, if lim supλ→0G0(λX) − log |λ| = ε0 > 0, then for t > 0 sufficiently close to 1− (say
t > e−ε0),

lim sup
λ→0

G0 (λ(tX))− log |λ| = lim sup
λ→0

G0(λtX)− log |λt|+ log t

=

(
lim sup
λt→0

G0 ((λt)X)− log |λt|
)

+ log t

= ε0 + log t > 0.

This would mean tX /∈ IAΩ (0), which contradicts (5.4). The claim is proved. The same argument
also shows that if X ∈ IAΩ (0), then so is tX for all 0 ≤ t ≤ 1.

By (5.6), there is a function f : ∂Bn(0, δ(0))→ [1,∞) such that(
IAΩ (0) ∪ ∂Bn(0, δ(0))

)
\ Bn(0, δ(0)) = {rω : ω ∈ ∂Bn(0, δ(0)), 1 ≤ r ≤ f(ω)}.

Then by (5.5),

0 =

∫
∂Bn(0,δ(0))

∫ f(ω)

1

r2n−1drdσ(ω).

Thus f(ω) = 1 almost everywhere with respect to σ(∂Bn(0, δ(0))). Thus, for almost every X ∈
∂Bn(0, δ(0)),

lim sup
λ→0

G0(λX)− log |λ| = 0. (5.7)

For fixed X ∈ ∂Bn(0, δ(0)) satisfying (5.7), consider u : D(0, 1) \ {0} → R by

u(λ) = G0(λX)− log |λ|.

By (5.7), u extends subharmonically to equal 0 at 0. On the other hand, by the monotonicity of
the pluri-complex Green’s functions,

u(λ) ≤ log

∣∣∣∣ λXδ(0)

∣∣∣∣− log |λ| = 0.

Thus, u ∈ SH−(D(0, 1) \ {0}). By the maximum principle u ≡ 0, or equivalently,

G0(λX) ≡ log

∣∣∣∣ λXδ(0)

∣∣∣∣
18



for almost everyX ∈ ∂Bn(0, δ(0))). SinceG0 < 0 on Ω, there is a (possibly empty) σ(∂Bn(0, δ(0)))-
null set E such that

∂Bn(0, δ(0)) \ E ⊂ ∂Ω.

Since ∂Ω is closed and Bn(0, δ(0)) ⊂ Ω,

∂Ω = ∂Bn(0, δ(0)), Ω = Bn(0, δ(0)).

In the case of pseudoconvex domains, the rigidity result concerning the Azukawa indicatrix
and the distance function follows immediately from the multi-dimensional Suita conjecture and
the first part of our proof of Theorem 1.6. Recently, the first author and Wong [15] used curvature
properties of the Bergman metric to characterize pseudoconvex domains that are biholomorphic
to a ball Bn possibly less a relatively closed pluripolar set.

When n = 1, since IAΩ (z) = D(0, c−1
β;Ω(z)), Theorem 1.6 implies the corollary below. Here we

provide an alternative proof using more elementary methods.

Corollary 5.1. Let Ω be a bounded domain in C. Then for any z ∈ Ω,

δ−1(z) ≥ cβ(z). (5.8)

Moreover, equality in (5.8) holds at some z0 ∈ Ω if and only if Ω is a disk centered at z0.

Proof. For any z ∈ Ω, write the Green’s function as Gz(w) = log |z − w| + ρ(w). Then ρ is
harmonic in Ω and ρ(z) = log cβ(z). For any positive number R < δ(z), we have

1

2π

∫ 2π

0

Gz(z +Reit)dt =
1

2π

∫ 2π

0

logR + ρ(z +Reit)dt.

By the mean value theorem for harmonic functions, 1
2π

∫ 2π

0
ρ(z +Reit)dt = ρ(z) = log cβ(z). Thus

1

2π

∫ 2π

0

Gz(z +Reit)dt = log(Rcβ(z)). (5.9)

Recall that for w ∈ Ω̄ \ {z}, Gz(w) ≤ 0. This implies from (5.9) that

cβ(z) ≤ R−1.

Letting R→ δ(z)−, we obtain (5.8).
Assume cβ(z0) = δ−1(z0) at some point z0 ∈ Ω. Then by (5.9) and the nonpositivity of Gz0 ,

Gz0(w)→ 0− for all w ∈ ∂D(z0, R) as R→ δ(z0)−. The continuity and nonpositivity of Gz0 in Ω
further concludes that this can only happen when ∂Ω coincides with ∂D(z0, δ(z0)).

Remark 5.2. When Ω is a bounded domain in C, Theorem 1.6 reduces to

1

δ2(z)
≥ πK(z)
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for all z ∈ Ω and equality holds at some z0 ∈ Ω if and only if Ω is a disk centered at z0. Combining
this with the previous inequality chains considered in the paper, we know that there exists some
z0 ∈ Ω (and some t0 ≤ 0) such that

1

δ2(z0)
= c2

B(z0) or
πe2t0

v({G(·, z0) < t0})
or

v(C∞ \ jz0(Ω))

π

if and only if Ω is a disk centered at z0.

Appendices

A Rigidity phenomenon between cB and cβ

The aim of this appendix is to prove the following rigidity theorem characterizing the equality
conditions for cB ≤ cβ.

Theorem A.1. For an open hyperbolic Riemann surface X, cβ(z0) = cB(z0) for some z0 ∈ X if
and only if X is biholomorphic to the unit disk D possibly less a relatively closed polar subset P ; in
this case, the extremal functions of the analytic capacity cB(z0) equal ϕ ◦ f , where f : X → D \ P
is a biholomorphism and ϕ ∈ Aut(D) such that ϕ ◦ f(z0) = 0.

Given two Riemann surfaces X and Y with X admitting a Green’s function, Minda in [24,
Theorem 3] proved that if f : X → Y is holomorphic, then

f ∗(cβ;Y (w)|dw|) ≤ cβ;X(ζ)|dζ|.

Moreover, if equality holds at a single point, then f is biholomorphic onto its image and Y \ f(X)
is a closed polar set. Although Minda’s approach does not mention the analytic capacity, it can
be used to deduce Theorem A.1 as follows. For any f ∈ Hol(X,D),

|f ′(z)||dz| ≤ |f ′(z)|
1− |f(z)|2

|dz| = f ∗(cβ;D(z))|dz| ≤ cβ(z)|dz|.

If we suppose cβ(z0) = cB(z0) and set f = f0 to be an extremal function for cB(z0), then
all inequalities above become equalities at z0. By Minda’s result, f0 is a biholomorphism onto
D \ P where P is a relatively closed polar set. Thus, Theorem A.1 is proved. The key ingredient
of Minda’s proof is the “sharp form of the Lindelöf principle” for the Green’s function. In the
following, we shall reprove Theorem A.1 without resorting to this principle.

Let f be a holomorphic function on an open Riemann surface X such that f(X) ⊂ C admits
a Green’s function. Then the Green’s function satisfies a subordination property:

GX(z, z′) ≥ Gf(X)(f(z), f(z′)) (A.1)

for all (z, z′) ∈ X × X. Moreover, if there exists some (z0, z
′
0) ∈ X × X with z0 6= z′0 such that

equality in (A.1) holds, then
GX(z, z′) ≡ Gf(X)(f(z), f(z′)) (A.2)
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for all (z, z′) ∈ X × X and f is injective. See for instance [27, Theorem 4.4.4] for the proof for
planar domains. The cases for Riemann surface can be proved similarly. A consequence of the
property is the following rigidity property Lemma A.2 of the Green’s function. We note that
strengthened forms of the subordination property and Lemma A.2 were proved in [24, Theorem
1] by Minda using the Lindelöf principle for the Green’s function.

Lemma A.2 (Rigidity lemma of the Green’s function). On an open Riemann surface X, the
Green’s function with a pole z0 ∈ X is

G(z, z0) = log |f(z)|

for some holomorphic function f on X if and only if f is a biholomorphism from X to the unit
disk possibly less a relatively closed polar subset such that f(z0) = 0.

Proof. Since GX(z, z0) < 0 for z ∈ X, f(X) ⊂ D. The image f(X) admits a Green’s function
because f(X) is bounded. Also, observe that f(z0) = 0. Applying the subordination property
(A.1) to f and the identity map, we get

log |f(z)| = GX(z, z0) ≥ Gf(X)(f(z), 0) ≥ GD(f(z), 0) = log |f(z)|.

By the subordination property (A.2), f is injective and Gf(X)(ζ, 0) = log |ζ| for ζ ∈ f(X). Let
η ∈ ∂f(X) ∩ D and ζn(∈ f(X))→ η. Since

lim
n→∞

Gf(X)(ζn, 0) = lim
n→∞

log |ζn| = log |η| < 0,

η is an irregular boundary point. By Kellogg’s Theorem, cf. [27, Theorem 4.2.5], P = ∂f(X)∩D is
a relatively closed polar set in D. Suppose z0 ∈ D\f(X). Then for some ε > 0, f(X) ⊂ D\D(z0, ε).
Let k be the harmonic function defined on the latter set with Dirichlet boundary data

k(z) =

{
0, z ∈ ∂D
− log(|z0|+ ε), z ∈ ∂D(z0, ε).

Since Gf(X)(z, 0) ≤ Gf(X)(z, 0) + k(z) and Gf(X)(z, 0) + k(z) is in the defining set of (2.1) for the
domain f(X), we have arrived at a contradiction unless D \ f(X) is empty. Thus, D = f(X)t P,
where t denotes the disjoint union. The proof of the theorem is complete.

In [19, Theorem 3.1, p. 1196] of the equality part of the Suita conjecture, Guan and Zhou
showed that if πK(z0) = c2

β(z0), then by their optimal L2 extension theorem, expG(z, z0) = |g(z)|,
for some holomorphic function g on Ω. By proving further c2

β(z0) = c2
B(z0) if expG(z, z0) = |g(z)|,

they were able to apply Suita’s Theorem (Theorem 1.1) to yield that X is biholomorphic to a disk
less a relatively closed polar set.

In fact, Lemma A.2 says that |g(z)| = expG(z, z0) if and only if the surface is biholomorphic
to a disk less a relatively closed polar set. Consequently, one does not need to involve the analytic
capacity or Suita’s Theorem to prove the equality part of the Suita conjecture as in [19]. See
also [13] for related work.

Next, by relying more explicitly on the analytic capacity, we shall give a proof of Theorem A.1
by making use of Lemma A.2 and following an idea of Guan and Zhou in [19, Lemma 4.25].
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Proof of Theorem A.1. If X is biholomorphic to a disk less a relatively closed polar set, then
cβ ≡ cB, since the polar part is negligible.

Conversely, write Gz0(z) for G(z, z0), and let u(z) := log(|f0(z)|) for z ∈ X, where f0 is an
extremal function of the analytic capacity at z0. Since |f0| < 1 on X, u ∈ SH−(X). By definition
of the Green’s function, we further see that u−Gz0 ∈ SH−(X). We will show that u−Gz0|z=z0 = 0.
In the local coordinate w(z) of X near z0, limz→z0 log |f0(z)|−log |w(z)| = log |df0

dw
(z0)| = log cB(z0)

by definition of f0. Thus for z ∈ X near z0,

u(z)−Gz0(z) = (log(|f0(z)|)− log |w(z)|)− (Gz0(z)− log |w(z)|)→ log cB(z0)− log cβ(z0) = 0.

As a consequence of the maximum principle of subharmonic functions, we have

Gz0(z) = log(|f0(z)|).

By Lemma A.2, f0 is a biholomorphism from X to the unit disk less a relatively closed polar set,
with f0(z0) = 0.

To complete the second part of the theorem, let f : X → D\P be any biholomorphism, and let
ϕ(z) := z−f(z0)

1−f(z0)z
∈ Aut(D). Then, F := ϕ ◦ f : X → D \ ϕ(P ) is also a biholomorphism such that

F (z0) = 0, and Gz0 = log |F | by Lemma A.2. We will show that F is an extremal function for
cB(z0). For any h ∈ Hol(X,D) with h(z0) = 0 and h′(z0) 6= 0, we have that log |h| ∈ SH−(X). By
the definition of the Green’s function, log |h| ≤ Gz0 = log |F | and so |h′(z0)| ≤ |F ′(z0)|. Therefore,

cB(z0) = |F ′(z0)|,

which means F is extremal.

It is known (see [29, VII.5H]) that if X is a regular region of connectivity greater than or equal
to 2, then

cβ(z) > cB(z), for all z ∈ X. (A.3)

Theorem A.1 says that (A.3) in fact holds for any hyperbolic Riemann surface X which is not
biholomorphic to a disk possibly less a relatively closed polar subset.

B Stability of the Szegö kernel on Lipschitz domains
The Szegö projection and its kernel on planar domains with Lipschitz boundaries were studied
extensively by Lanzani [22]. One of the key steps in extending results from smoothly bounded
domains to those with Lipschitz boundaries is by approximating the bounded Lipschitz domain Ω
by smoothly bounded subdomains in the sense of Nečas (see [22, Theorem 2.3]).

Theorem B.1. [22] Let Ω ⊂ C be a bounded domain with Lipschitz boundary. Then there exists
a sequence of subdomains {Ωj}∞j=1 with C∞ smooth boundaries such that

1. There is a sequence of Lipschitz homeomorphisms Λj : ∂Ω → ∂Ωj such that Λj(P ) ∈ Γ(P )
(see Definition B.2) and limj→∞ Λj(P ) = P .
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2. There exists functions ωj : ∂Ω → (0,∞) that are uniformly bounded away from 0 and ∞,
converge to 1 almost everywhere and∫

∂Ω

h(Λj(w))ωj(w)dσ(w) =

∫
∂Ωj

h(ζ)dσj(ζ)

for any h ∈ L1(∂Ωj).

3. The unit tangent vector Tj for ∂Ωj and the unit tangent vector T for ∂Ω satisfy that
Tj(Λj(·))→ T (·) almost everywhere on ∂Ω.

If Ω has C∞ boundary with a defining function ρ and Szegö kernel S, define the sublevel sets
of the defining function for small ε > 0

Ωε = {z ∈ Ω : ρ(z) < −ε},

and consider the Szegö kernels Sε(·, ·) of these respective domains. In the proof of Theorem 2.1
of [8], Boas showed that for a, z ∈ Ωε,

lim
ε→0+

Sε(z, a) = S(z, a).

The purpose of this section is to extend this stability result of the Szegö kernel to Lipschitz
domains in C with respect to the Nečas approximation. We begin by giving notations along the
lines of [22].

Definition B.2. 1. For λ > 0, P ∈ ∂Ω, the non-tangential approach region to P is

Γ(P ) = {ζ : |ζ − P | ≤ (1 + λ)dist(ζ, ∂Ω)}

2. For a function f defined on a Lipschitz domain, the non-tangential limit f+ and non-
tangential maximal function f ∗, if they exist, are defined respectively as

f ∗(P ) = sup
w∈Γ(P )

|f(w)|, f+(P ) = lim
w→P
w∈Γ(P )

f(w), P ∈ ∂Ω.

3. The Hardy space of a bounded domain Ω with Lipschitz boundary is

H2(∂Ω) = {f+ : f ∈ O(Ω), f ∗ ∈ L2(∂Ω)}.

A useful characterization of the Szegö kernel for our purposes is

S(z, a) =
f(z)

‖f+‖2
∂Ω

, (B.1)

where f is the unique function with minimal L2(∂Ω)-norm among all functions in H2(∂Ω) with
f(a) = 1. Using Theorem B.1 we can adapt the proof of Boas [8, Theorem 2.1].

Proposition B.3. Let Ω be a bounded domain with Lipschitz boundary and S(·, ·) be its Szegö
kernel. Let {Ωj}∞j=1 be a sequence of subdomains as in Theorem B.1. Denote by {Sj(·, ·)} the
corresponding Szegö kernels for these domains. Then for each a, z ∈ Ω,

lim
j→∞

Sj(z, a)→ S(z, a).
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Proof. Let {fj} and f be the extremal functions for the domains {Ωj}∞j=1 and Ω as in (B.1). Since
|f ◦ Λj|2ωj ≤ C|f ∗|2 ∈ L1(∂Ω),

‖f+
j ‖2

∂Ωj
≤ ‖f‖2

∂Ωj
= ‖(f ◦ Λj)ω

1
2
j ‖2

∂Ω ≤M <∞ (B.2)

for some constant M , and by the dominated convergence theorem

lim
j→∞
‖(f ◦ Λj)ω

1
2
j ‖2

∂Ω = ‖f+‖2
∂Ω. (B.3)

By (B.2), on each Ωk, {fj}j≥k is a normal family. After passing to a subsequence, there exists an
F ∈ O(Ω) such that fj → F uniformly on compact subsets. Necessarily this implies F (a) = 1.

By (B.2), after passing to a subsequence (f+
j ◦Λj)ω

1/2
j converges weakly to f∞ in L2(∂Ω). Let

C denote the Cauchy transform. We claim that

F (z) = C(f∞)(z)

(
:=

1

2πi

∫
∂Ω

f∞(w)

w − z
dw ∈ H2(∂Ω)

)
.

In fact for any fixed z ∈ Ωj,

|fj(z)− C(f∞)(z)| =

∣∣∣∣∣
∫
∂Ω

f+
j (Λj(w))Tj(Λj(w))ωj(w)

Λj(w)− z
dσ −

∫
∂Ω

f∞(w)T (w)

w − z
dσ

∣∣∣∣∣
≤
∫
∂Ω

|f+
j (Λj(w))ω

1
2
j (w)|

∣∣∣∣∣∣Tj(Λj(w))ω
1
2
j (w)

Λj(w)− z
− T (w)

w − z

∣∣∣∣∣∣ dσ
+

∣∣∣∣∫
∂Ω

(
f+
j (Λj(w))ω

1
2
j (w)− f∞(w)

) T (w)

w − z
dσ

∣∣∣∣ := A+B.

Since T (w)
w−z ∈ L

∞(∂Ω) and (f+
j ◦ Λj)ω

1
2
j converges weakly to f∞ in L2(∂Ω), we have B → 0. For

A, notice that by Theorem B.1 and the dominated convergence theorem, Tj(Λj(w))ω
1
2
j (w)

Λj(w)−z converges

to T (w)
w−z in L2(∂Ω) norm. Making use of Hölder inequality and the uniform boundedness of ‖(f+

j ◦
Λj)ω

1/2
j ‖∂Ω, we get

A ≤ ‖(f+
j ◦ Λj)ω

1
2
j ‖∂Ω

∥∥∥∥∥∥Tj(Λj(w))ω
1
2
j (w)

Λj(w)− z
− T (w)

w − z

∥∥∥∥∥∥
∂Ω

→ 0.

Hence fj → Cf∞ pointwisely, and so F = C(f∞).

Using the fact that {TG : G ∈ H2(∂Ω)} = H2(∂Ω)⊥, we will show that f∞ ∈ H2(∂Ω),
cf. [22, Theorem 5.1], [3, Theorem 4.3]. Since 〈f+

j , TjG〉∂Ωj = 0,

|〈f∞, TG〉|

= |〈f∞ − (f+
j ◦ Λj)ω

1
2
j , TG〉∂Ω

+

∫
∂Ω

f+
j (Λj)(w))ω

1
2
j (w)T (w)G(w)− (f+

j (Λj)(w))Tj(Λj(w))G(Λj(w))ωj(w)dσ(w)|

≤ |〈f∞ − (f+
j ◦ Λj)ω

1
2
j , TG〉∂Ω|+M

1
2

(∫
∂Ω

|T (w)G(w)− Tj(Λj(w))G(Λj(w))ω
1
2
j (w)|2dσ(w)

) 1
2
.
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The first term above approaches 0 as j approaches ∞ by weak-convergence. The integrand
in the second term is dominated by C|G∗|2 for some constant C. By the dominated convergence
theorem, the integral approaches 0 as well. Thus, f∞ ∈ H2(∂Ω). Since the Cauchy transform is a
projection onto H2(∂Ω), f∞ = F+ on ∂Ω. In particular (f+

j ◦ Λj)ωj
1
2 converges weakly to F+ in

L2(∂Ω) as well. Hence

‖F+‖2
∂Ω ≤ lim inf

j→∞
‖(fj ◦ Λj)ω

1
2
j ‖2

∂Ω = lim inf
j→∞

‖f+
j ‖2

∂Ωj

≤ lim sup
j→∞

‖f+
j ‖2

∂Ωj
≤ lim sup

j→∞
‖f‖2

∂Ωj
= ‖f+‖2

∂Ω. (B.4)

Here the first inequality uses the weakly sequentially lower semicontinuity for the L2(∂Ω) norm,
the third inequality applies (B.2) and the last equality uses (B.3). Since f is unique, F = f on Ω,
and all inequalities in (B.4) become equalities. In particular, fj converges pointwisely to f on Ω
and ‖f+

j ‖∂Ωj → ‖f+‖∂Ω by (B.4). By (B.1), Sj(z, a)→ S(z, a).
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