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ABSTRACT. We prove a high order Schwarz-Pick lemma for mappings between
unit balls in complex spaces in terms of the Bergman metric. From this lemma,
Schwarz-Pick estimates for partial derivatives of arbitrary order of mappings

are deduced.
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1. INTRODUCTION

Let B,, be the unit ball in the complex space C™ of dimension n. The unit disk in

the complex plane is denoted by D. For z = (21, -+ ,2,) and 2/ = (21,--- , 2],) € C",
denote (z,2') = 212} + -+ -+ 2,7, and |z| = (2, 2)/2.

A multi-index o = (aq,- - ,ay) of dimension n consists of n non-negative in-
tegers a;, 1 < j < n, the degree of a multi-index « is the sum |a| = iaj,

j=1
and we denote a! = aq!---a,!l. For z = (21,--+,2,) € C" and a multi-index
a = (ag, - ,ay), let 2¢ = ﬁzjaf. A holomorphic function f on B, can be
j=1
expressed by f(z) = Y an2z®. For two multi-indexes @ = (a1, , ) and v =
a

(v1,+++ ,0p), let v =o', .-+ v2n. Note that U?J =1ifv; =a; =0. Let Qp

be the class of all holomorphic mappings f from B, into B,,. For f € Q, ,, if
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f = (fla"' 7fm)7 f](z) = Za’j,aza for .] = 1a ,m, we denote f(Z) = Zaazaa
a a

where aq = (@105 , Gm,0)-

For f € €41, the classical Schwarz-Pick lemma says that

(2] 1
= [f)F = 1=

holds for z € D. Recently, the above inequality has been generalized to the deriva-
tives of arbitrary order by some authors [MSZ, Zh, DP]. The best result was proved
in [DP]. It was proved that

AN k!

1-7E = O e (1)

holds for f € Q4,1, k > 1 and z € D. The equality in (1.1) may be attained if z = 0,
and the equality statement has been established. If K > 1 and 2z # 0, (1.1) is a
strict inequality.

Chen and Liu [ChL] generalized (1.1) by proving the following Schwarz-Pick
estimate for partial derivatives of arbitrary order of a function f € €, ;:

’ o' f(2)

021V1...0z,

_ "+2 z
<M a0

holds for any z € B,, and multi-index v = (vq,- -+ ,v,) # 0.

On the unit ball B,,, the Bergman metric H, (3, 5) may be defined by

— |22 2 2
H.(B,8) = 4 |Z|(1)|_ﬁ|Z;)L<ﬁ’Z>| for z€B,, 3€C"

Commonly, there is a factor (n 4+ 1)/2 in the definition of the Bergman metric. In
spite of ambiguity, we use the same notation for Bergman metrics in unit balls of

different dimensions. This metric is invariant under the automorphism group of
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B,,. For f € €, », the Schwarz-Pick lemma is formulated in terms of the Bergman

metric (see [C]):
Hy)(f'(2)8, f'(2)B) < H.(8,8) for z€B,, feC" (1.3)

Here, f/(z) is the Jacobian matrix of the mapping f at the point z, i.e., f/(z) =
(Of; (z)/azk)lgjgm’lgkgn, and we identify a point in complex space with a column
matrix (column vector) so that f’(z)8 is the product of two matrixes. (1.3) is
precise, the equality holds for mappings in the automorphism group of B,, if m = n.

The purpose of this paper is to generalize (1.3) to the high order Fréchet deriva-
tives of mappings in Q,, ,, as was done in [DP] for the classical Schwarz-Pick lemma.
For f € Qnm, k > 1, z € B, the Fréchet derivative of f at z of order k is defined
by

Kok
Di(f,2.8)= Y agmﬁa’

|| =k
where # € C,. Dip(f,2,1) = f®)(2) when n = m = 1. With this notation, our

main result is expressed as follows:

Theorem: Let f € Q,, ,,. Then, fork>1, z € B, and 3 € C", we have

Hf(z)(Dk(faZ7ﬁ)7 Dk(f7za/8))

2 (8, 2)]
=N <1 T PIBE + {5, 2)P)

2(k—1)
1/2) (H.(3,8)F.  (14)

(1.4) coincides with (1.1) or (1.3) if n = m = 1 or k = 1 respectively. Note that

the factor preceding (H. (83, 3))" is increasing with |(3, z)| from 0 to |z|.
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As a consequence, we deduce from (1.4) a Schwarz-Pick estimate for partial

derivatives of a mapping f € Qy mn:

o £ (2) i o | M) |
|<83 f(z)> 1= P | gt
o] L 1P
< | ol-1. L= 1P .
= T v (]' + |Z|) (1 IR |Z|2)|’U‘ (]‘ 5)
holds for any multi-index v = (v1,---,v,) # 0 and z € B,. In particular, if
f € Q, 1, we have
ol f(z) [v]l”! 1—[f(2)]?
(1 lol=1, — 120 1.
ke | < I e LS (16)

The equalities in (1.5) and (1.6) may be attained if z = 0 and the equality statement

is given. (1.6) is much better than (1.2) since the factor (n-s;l|3\1—1)"+2 is canceled,

vl < |v]!l and /|v[l*T/v? < nl*l/2 (the equality holds if and only if v; = --- = v,,).
For radial and normal partial derivatives, we have estimates more precise than

(1.5) and (1.6). For f € 9,1, we prove that

[lo]l! 1-|f(z)?
SV e TRy (L.7)

holds for any multi-index v = (v1,- -+ ,v,) # 0 and z = (21,0,---,0) € B,,, where

‘ " f(2)

v v
0z - 0zn"

w(z) = (1 +|2))"I=1 if v; = |v|, and p(z) is the sum of terms c;|z| with j < v in
(1+[z)lI=n
2. SOME LEMMAS
The following results are known [R]. For a point @ in a unit ball, let

(2) = a— Pyz—+/1—a|?Quz
SDG«Z - 1—<Z7a> )
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where P,z = (z,a)a/(a,a), Quz = z — P,z. Note that Py(z) = 0. Then, ¢, is

injective and maps the unit ball onto itself,

©a(0) =a, @a(a) =0, @, = ()0(;17

and
©,(0) = —(1 = |a*)P. — (1 = |a]*)/*Qq,

, 1 1
= - P, - a:
Pl = T e T Ty

Lemma 1. If f(2) =Y an2z® € Qp m, then

> laal?|#*] <1 (2.1)
«
holds for B € 0B,,. Further,
Y aa?- o <1 (2.2)
= |’U|‘O‘|
holds for any multi-index v = (v1,--- ,v;) # 0. As a consequence, we have
) < 2L 2.3)
v = U,U .

Further, if v; # 0 for j = 1,--- ,n, then the equality in (2.8) holds only if a, =0

for a £ w.
Proof. Let 8= (01, ,0n) € OB, be fixed. For 0 < ¢ < 1, we have

1 27 2 , )
1> (27-‘-)n/ / |f(oBre, - oB,e')
0 0

2d0y - - - db,,

1 m 27 21 . 4
= (271—)“ Z/O ...A |fj(0'ﬁ1€7«917... ?Uﬁnelen)‘Qdel"'dGn
j=1

m
=22 laga ot NP 5P = 3 laa P P P
ij=1 « «
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Letting 0 — 1 gives (2.1). Thus, for given v = (v1,--- ,v,) # 0, letting §; =

Vvj/lv] for j=1,---  nin (2.1), we obtain (2.2). The lemma is proved. O

In the above proof, in order to get the best estimate (2.3) for a,, we deduce
(2.2) by choosing 8; = \/W in (2.1), since the maximum grggﬁ(n|ﬂv| = \/‘le% is
attained when 3; = \/W forj=1,---,n.

Lemma 2. If f(2) =Y anz® € Qp m, then

2
0

YD aap?| <1 (2.4)
k=0 ||a|=k
holds for B € 0B,,.
Proof. For 3 € 0B, let
hA) =F(BN =D | D aaB™ | N, XeD.
k=0 \|a|=k
Then, h(D) € B,,. Using (2.1), we obtain (2.4). The lemma is proved. O

Lemma 3. Let k > 2 be a positive integer and f(2) = ¢, (b2*) + g(z) for = € D,

where a € B,,, b € IB,,, and

k—1 oo

g(z) = Z Z ank+jz"k+j

j=1n=0

is a holomorphic mapping of D into C™. If |f(2)| <1 for z € D, then g(z) = 0.

Proof. Since |g(2)| < 1+ |pq(bz¥)| < 2, by Lemma 1, we have

k—1 oo

S lankss* <4

j=1n=0

Thus, for j =1,2,--- ,k — 1, every component of the mapping

o0
9; (z) = Z ankJernkJrj

n=0
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is in the Hardy class H? and, consequently, for almost every ¢ € 0D, the radial
limit Zl:rré g;(2) exists for all j. Let ¢ be such a point and A = ¢,(b¢*). Obviously,
A € OB,,. Denote w = >™/*_ For [ =1,--- ,k, we have
k—1
lim f(w'2) = pa(b¢") + ;;igégjw 2) =X+ jzlw“ lim g;(2),

and, since f(D) C B,

k—1

1+Zw hmgj( z),\)| <
j=1

<1

lirré f(w'2)

Forl=1,---,k, let
k—1
A= WY (lim g;(z), \).
= X ()

Then, |1+ A;| <1 and, consequently, Re4; <0 for [ =1,--- , k. However,

k—1 k—1k—1
ZA; ZZw hnég] JA)
1=1 =1 j=1 S
k—1 k— k—1
-3 (0,0 32 = - St 012 = -
j=1 =1 j=1

Thus, ReAy = 0. Noting that |1 + Ag| < 1 we conclude that Ay =0, i.e.,

k—1
(lim =0.
Z )
j=1
Thus,
2
2
1> hrn = A+ hm =1+ lim g;(z)| =1+ |lim g(z
e Z 19,(2 ;Hggy( ) lim g(2)

This shows that the radial limit of every component of g(z) is equal to 0 at almost

every ¢ € OD. According the general theory of HP spaces, we conclude that g(z) =

O

0. The lemma is proved.
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3. THE PARTIAL DERIVATIVES AT THE ORIGIN

Theorem 1. Let f(z) =Y an2® € Qym. Then,

2 2

< > B, ao> + (1 =laol”) | Y aaB*| < (1—laol*)*. (3.1)

|l =k o=k

holds for k > 1 and 8 € 0B,,.

Proof. Let k > 1 and § € 9B,, be given. If ap = 0, (3.1) is a consequence of (2.4).

Now, assume that ag # 0. Let

—_

- zk: 2l7rz/k:
k =1

Then, h(z) € Q. m, h(0) = ap, and
=ag+ Z Z e
m=11a|=
Let ¢ = @q, © h. Obviously, ¢ € Q,, ,,, and ¢(0) = 0. We have

1
Cf)(z):m a0/|a0| Z Z (ImCLo

m=1 |a\

o0

—v/1 = |ap|? Z Z aa2® + /1 — |ag|2(ao/|aol?) Z aa,a0>z°‘
m= 1|a‘ mk m=1 a:
o Y (e
), ao) TP oF e
m=1|a|=mk

(oo}
aa7a0 ao
= 1 — |ap|?a )zo‘ + caz.
—aE of*aa > :
1 |a0| o=k <1+\/ \2 m=2 |a|=mk

Thus, using (2.4), we obtain

2

1 (aa %, ao)ao
+ /1 = lao|?an” <1
(1 —Jaol?)? |az_:k (1 + V1= laol?
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A simple calculation gives

2

aa B ao ag
+ /1 —Jagl?aaB”
|Zk <1 V1= laof?

<Z\o¢|:;~C aaf%, a0>ao
= + A/ 1 — a0|2 E aaﬁa
14 /1 —ao|? | o=k

2
= KZ‘“':k%ﬁ : a0>‘ 2|a0|2 +(1=lao*) | Y aa®
(1 + m) ok

2
2y/1 = laol? ‘<Z|a\:k aaﬁo‘,a0>‘
+

1 — |apl|?
2 2
= < Z a'aﬂaa CLO> +(1 - |a0|2) Z aaﬁa
|a|=k |a|=k
This shows (3.1). The theorem is proved. O
Theorem 2. Let f(z) =Y an2® € Qym. Then,
vl
v
[{aw, ao)|® + (1 = laol) |au|” < %(1 — laol*). (3-2)

holds for any multi-index v # 0. Further, if the equality holds for some v =

(v1,--+ ,vn) withv; #0 for j=1,---,n, then

ay,z’

1 + (av,a0)z"

T—[ao|?

f(z) =ao+ =ap+a,z’ +---. (3.3)

Conversely, if v # 0, ag € B, and a, € C™ satisfy the equality in (5.2), then the

mapping f expressed by (3.3) belongs to Uy m,.

Proof. Let v = (v1,--- ,v,) # 0 be given and k = |v|. As in the proof of the above

theorem, consider h and ¢. Let

1 (ay, ag)ag
by = — ++/1—Jaol?ay | .
1 — Jaol? <1+ laol

1 — faol|?
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Using Lemma 1 to the function ¢, by (2.3), we have |b,|?v?/|v|I’l < 1 and

2
vl
v
< P20 g2

_ {av,a0)a0 T TJao%a
1+y1—|a |2 !
The same calculation as in the proof of the above theorem gives

2
= [{av, ao)|* + (1 = lao|*) a,|*.

<av7a0>a0 1_ |a0|2a/
Lo yi-laoP | “

This shows (3.2).

Now, let the equality in (3.2) holds for some v = (v1,---,v,) with v; # 0
for j = 1,---,n. If ap = 0, then |a,|>v”/|v|I"l = 1, the equality in (2.3) holds
and, consequently, f(z) = a,z". This shows (3.3). In the case ay # 0, we have

|by|?v? /|v|!*! = 1. Then, the same reasoning shows ¢(z) = b,z" and, consequently,

by,a by, a0
ag — <|a ‘;))0,02 — /1= lag|? (bvz” - %aoz )

h(z) = Qa, (bs2") = 1= (b, ag)z" (3.4)
Note that
_ <a’ua a0>
<bva a0> - 1_ |a0|2- (35)

Replacing (b, ap) in (3.4) by (3.5), by a straightforward calculation, we obtain

a2
1+ (ay,a0)z? °

T—[ao|?

h(z) = a0+

If k =1, f(2) = h(z) and (3.3) is true. In the case k > 2, we have f(z) =

©Vao (by2?) + g(2) with

k—1

oo
= g anz®.

1 m=0 |a :mk;J,»J

<.
Il
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Let 0 < 60y, ---,0, <27 be fixed. For A € D, define

) = F (VN VIl e i/ V)

N P TR Ry
|U‘|v\
e

o0
i(a1014Fanby) | mk+j
+. Z Z ‘aae Nz A .

Using Lemma 3 to i, we have

pmJ(ela T 70n) = Z Ao Uaei(a101+---+an9n) =0

loe|=mk+j
for j =1,---,k—1and m = 0,1,---. Note that the above equality holds for
arbitrary 61, - -, 6,. Thus, for any multi-index o/ with |o/| = mk+j,1 < j < k-1,

m > 0, we have

1
(2m)"

Aoy VU =

27 27
/0 /0 OOl 00 (g 0,)dfy - df, = 0.

It is proved that a, = 0 for any multi-index a with || = mk +j, 1 < j <k —1,
m > 0. Then we obtain f(z) = h(z) and (3.3) is proved again. The last conclusion

of the theorem is easy to verify. The theorem is proved. (|

Remark 1. Define

1
f(2) = a1,021 + ang =z + gzg, for z = (z1,22) € Bs.

It is easy to verify that f € Qg ;1. Let v = (1,0). We have ag = 0,a, = 1. v,ag, and
a, satisfy the equality in (3.2), but f(z) is not expressed by (3.3). This example
shows that the condition v; # 0 for j = 1,--- ,n in the second part of the above

theorem cannot be omitted.
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Corollary 1. Let f(z) =" anz® € Q. Then, for any multi-index v # 0,
(03

|a ‘ < |’U|"U|
v >

1 —ao|?

ifm>2; and

‘Ul‘v|
la,| < \/ 7(1 — laol?)

if m =1 or, more general, A\ag + Aaa, =0 with A\, Ay € C.

4. THE SCHWARZ-PICK LEMMA OF HIGH ORDER

First we consider mappings from the unit disk into a unit ball B,,,. The following
theorem is the special case that n = 1 of our general Schwarz-Pick lemma of high

order.

Theorem 3. Let f € Q4 ,,. Then,
(A, SR+ (- PP < [SEEEEPa -] @

holds for k > 1 and z € D.

Proof. Let £ € D and a positive integer k£ be fixed. We consider g = f o ¢ € 1 s,

where
E—2
z) = —.
pe(2) e
Let g(z) = Y ¢zt with ¢, = (1, ,¢my) for I =1,2,---. Then ¢y = f(£) and,
=0
by (3.2) for n =1,
{er, co)? + (1 = |eo]*)|er]* < (1 — Jeol)? (4.2)

holds for [ > 1.



It is easy to verify that
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d (e (2)7) 0, <3
ol | Cye e
a-er eygene L2
Let
o CWET k1)
DGR
Since f = g o ¢, we have
k
) = ¢4,
j=1
and, using (4.2) and the Schwarz inequality,
(PP, N+ (1= 1FOPIF PO
2 2

k

= > Ajec0)| + (1= leol?) ZCJ

Jj=1

IN

i Mw i Mw

< (1—Jeol?) (Z|A|

On the other hand,

k k k
Z [Ajl[{es, co)|* + (1 = |eof?) Z 1D 1A [e;
i=1 j=1 =1

IA IZIA | (Kegs o) + (1 = feol*)|e; )

2

k
zz: 1—|§|2

k
<k—1'|§\’~ o
2 G =1 = @ e D

J:1

This shows (4.1). The theorem is proved.

Corollary 2. Let f € Qq .

1F® ()] <

Then, for k> 1 and z € D,

K- f(2)1)!?
(1 —z[)*

(L4 =)™

13
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and

k(L — |f(2)?)
(1= 2*)*

if Mf(2) + Ao f®)(2) = 0 with A\, Xy € C.

11® ()] < (1+ |2

Remark 2. In [DP], the authors proved that (1.1) is asymptotically sharp in the
sense that for any two points z,w € D, there exists a holomorphic function f, ,, on

D, such that f, ., (2) = w, f,.,(D) CD, and

N 16 I (e el ) e
w=0D (1 — [fzw(2)[?) (1 —|z|2)*

holds for any positive integer k. In the same way, we can construct examples of
mappings to show (4.1) is also asymptotically sharp. For fixed points £ € D \ {0},

argé =6, and w € By, \ {0}, let b= —(1 — |w|?)/|w]|, and define

w |w] -

w(2) = bz +b blw|?23
9u(2) = 1= s = W0+ b2 bl 4 P ),

and

fuw(2) = guw (_e_wf__;> .

Then, f,(§) = w, and

—e— k011 — v 1 1\ elk—v
9 (e) = == [P Z‘w'v,l i

|w|<1 —[€?) T
1EUE), Fuw @)+ (1 = fu OISO 1P ©P
(1= [fu(©)])2 EAGEE

2
k! |w]"~( —1)'\£|’“ !
(1—|§|2 Z 1;—1 —v)! )
Thus,

i 9O, Fu )P + (1= @) ©OF
w—OB,, (1 - |fw(€)|2)2

(B et Y (R LY
i (ﬂ—sw; o) = (et - 0)
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Now, we are ready to prove our main result.

Theorem 4. Let f € Qy, . Then,

Hf(Z)(Dk(f7Zaﬁ)7 Dk(fazaﬁ))

(8, 2)]
(=128 + (8, 2)|?)

- (1 N )2(“) (H.(3.5)"  (43)
>~ 1/2 z b N

holds for k > 1, 8 € C™\ {0} and z € B,,. Further, in the case n < m, the equality

in (4.3) holds for k =1, some z = £ € B, and any 0 € C, i.e.,
Hye)(f'(€)B, f/(€)B) = He(B, 8) (4.4)

holds for any 8 € C", if and if F'(0) = ¢y o (f(£)) " (§) ¢, (0) satisfies F’(O)TF’(O) =

1, where I is the identity matriz of n X n, and

_ 18, FO FOC-9)
f(Z)—f(§)+(1|§|2+ T ) FOGE-9. @)

Proof. Let k> 1, 8= (f1, - ,0n) € C"\ {0} and & = (&1, -+ ,&n) € B, be given.

First assume that 8 € 0B,,. We consider the disk

A={CeC:[E+(BP = &1+ Bill* + - + & + Bul[” < 1}

To make the equation of A clearer, let U be a unitary matrix such that U8 =
(1,0,---,0)T. Denote U = n = (n1,--+,m,)". Here we identify a point in C"

with a column matrix of n x 1. Since

1€+ B2 =UE+CANP = m + P+l + -+l

we have

A={CeCt|n +¢P<1—|ml* -~ |nl*}.
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2\1/2

Thus, if we set 0 = (1 — [p2|?> — -+ — |nn]?)Y/2, v = 03, and

(=ow—m, z=Lw)=E+wy—mp,

g(w) = f(L(w)) is a holomorphic mapping from D into B,,.

Using (4.1) to the mapping ¢ and the point w = w’ =1, /0, we have

k(1 — |g(w)?)

(g™ (@), (@ + (1= [g()P) g™ (@) < (1= W) (1+ o'
Note that g(w') = f(§), [nl = [§], m = (£, 8) and
0% = 1—[nf’ +|ml* =1~ [¢* + (8,6,
|w/|: ‘<67£>| 1_|w/|2:17‘§|2.

o2

(1= []> + 183, €) 1)1/

By the chain rule,

Kl Okf(6) k! oFf(€)
(k) IS a k YIS e
Z ol 0z7" - 323‘” Z ol Ozt - 0zp™ p.

Thus,

2 2

KOoRfE) kU0 FE) La
<Z e =L f(£)> +A=11ON| X Ggm g

la|=k |a|=k

1 ¢+ 1(8,6)171" 18, €)] 20
(1 [€P)? H”(Hﬂww,ww) |

< kL= P |
(4.3) is proved for z = £ and any (§ € dB,,. For a general 3, we may consider 3/|3],
since (4.3) is homogeneous for 3. (4.3) is proved completely.

Now assume that n < m and (4.4) holds for any g € C". Consider F' = @) o

f o pe. By the invariance of the Bergman metric, Ho(F'(0)5, F'(0)3) = Ho(5, 8),

e., |[F'(0)3] = |B], holds for any 8 € C™. This shows that the m x n-matrix
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F’(0) satisfies F'(0) F’(0) = I, where I is the identity matrix of n x n. Note that

F'(0) = <p’f(€)(f(§))f’(§)<pf§(0). Thus, for z € B,,, F(z) = F'(0)z and
£(2) = o110 (10 ) €k O0)pe(2)) (4.6)

Using the formulas for ¢, at the beginning of Section 2, we have

POl = LD <(5§§ 9,

o) (FENS(©)ee(0)pe(2)

f(&)+

S el s ((1—(1—|f( OPIE F1(E)—¢)

| (=9
1=(z8 [FEOPA =[P ’

1= [f(©P)2

/ / / . (1 B |£‘ ) (5) (5)(2 B 5)

NFrL 5 —
Prio (o (O ©9:0)9e(2) = T _)Jz(j)@{ A 6. @

(4.5) follows from (4.6), (4.7) and (4.8). Conversely, if A = ¢’ (f(£))f"(§)¥e(0)

satisfies 4' A = I and (4.5) holds, then
1) = 2500 (0 O 2t 0)9e(2))
and, by the invariance of the Bergman metric,

Hye)(f'(6)B, f'(€)B) = Hye)(#6)(0) Ap ()8, ¢y () (0) Ape () 8)

= Ho(Ag((€)B, Ape(6)B) = [Ape (§)BI* = |0 ()8l

= Ho(¢¢(€)8, ¢ (§)B) = He(B, )

holds for any 3 € C™. The theorem is proved. O
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5. SCHWARZ-PICK ESTIMATES FOR DERIVATIVES OF ANY ORDER

On the basis of Theorem 4, we can deduce an estimate for partial derivatives of

arbitrary order of mappings in 2y, .

Theorem 5. Let f €y, ,,. Then,

2 2

v f(z) o | OVf(2)
(oL s +a-rem |5t
o] o 1= F@P ]
< ! vimh. . .
< e (1)
holds for any multi-index v = (v, ,vn) # 0 and z € B,. In particular, if

f€Qna, then (5.1) becomes

o f(2)

0zy" -+ Ozp"

[0l —f(2)]?
< \/Tv!(lJrIZI)”"1 : (11||J;(|z§||v (52)

Proof. Let v = (v1,---,v,) # 0 and £ € B,, be given, and k = |v|. By (4.3),

2 2

k ok f(e)  v* 2 k ok f(&)  v® 2
9.0 Aan 1- A <45
|<|Z_ o 32 07 o] f(£)> +(1-|F(©)1?) |az_k 5 g ]|
where
o 1=
A=F! e
B L
Define
_1 KOO s _1 Kl 0*f(9) a
9(z) = a <|‘;ka2’ ) f(f)> = Aa|_k<a!M7 f(€)>2 )
_ L. 2\1/2 k! O f(6) @
he) = 50~ 1F©OP) vty -

and ¢ = (g,h). Using (2.2) to ¢, which is a holomorphic mapping from B,, into

2
v¥ 9
. < .
) |,U||a| - 4

B,,, and satisfies |¢(2)|? < 1 for z € B,,, we have

= ((H 0

|a|=k

2

k
- lrep |22

al 9z0 -+ Ozp
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In particular,

2

AR 2[B! 0" () [l 2
(g 2o, 10)] + - 110P [ gt o] < s
This shows (5.1) and the theorem is proved. O

Theorem 6. Let f € Q,, ,,. Then,
o f(2) i NSO
_T JE) 1 _ _g JE)
]<M S, (z)> (=0 | gt g
< ™ (2) - L)l ) (5.3)
- v P (1 _ |Z|2)(v1+|v|)/2 :
holds for any multi-index v = (v1,--- ,v,) # 0 and z = (21,0,---,0) € B, where

w(z) = (L+ [2))VI=Y if vy = |v|, and p(2) is the sum of terms c;|z|9 with j < vy in

(1 + [2)I=1. In particular, if f € Qn.1, then (5.8) becomes

[l L )P
SV ) TR (5.4)

Proof. Let v = (vy, -+ ,v,) Z0and £ = (&1, -+ ,&,) € By, be given. v; = |v], (5.3)

o f(2)

0z]" -+ Ozn"

follows from (5.1). Now assume that v; < |v|. Let k = |v| and

9(z) = floe(2) = Y caz™
o
Then, ¢o = f(£) and, by (3.2),
[(Cas €o)” + (1= |eof*) |eal® < @*(1 —leol*)? (5.5)
holds for any multi-index « # 0. Thus, we have

F(2) = g(pe(2)) = Y carpe(2)”,

where

— —1E12)1/2, —£]2)1/24,
W):<a Q- [62) 22 (-leP) )

1—Elz1’ 1—512’1 ’ 1—5121
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For a multi-index «, denote o = (a1, @) with o = (ag, - - -

SHAOYU DAI, HUAIHUI CHEN AND YIFEI PAN

, ). Then, it is easy

to see that
0, o £
O (pe()) o
92yt - 0z z—g_ 0, o £V, ap > vy
(=petil@e-e vl(k=1)! _
(I—JE2) 1 +1vD72 (o1—a1) (ar =101 o' =0, 0< g <uy

Thus, letting

( )j-‘r\v/ (5)1}1 -J

vl(k —1)!

Aj =

we have

9" f(2)

0z{' -+ Ozp"

(1= [g[2) ot loD/2 (v = )G — L+ [0V

v1
= Ajcju,
=

z=¢

and, by the Schwarz inequality and (5.5),

o (2) ’ NS 2
|<MZ§: f(§)> + Q=) mzzg
v 2 2
=D Ajlejrco)| + (1~ leol) ZA Ci
=0

IZIA e, o) +

JZO

o]

U’U

\al‘

(1—lcol?)

v V1
—leol®) D141 Y 1A lle ol
j=0 j=0

Z\AI

Here, we use the obvious inequality < (I o if a; <wj for j=1,---,n. Note
that
v1
ol L
A
jz::o' 1= T Epye Z (01— )G — L+ ]!
v! o~ (k—1)l[¢)
~ TR £ Z 00k~ 1~ 1)

(5.3) is proved. (5.4) follows from (5.3) directly and the proof is complete.
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Remark 3. Let a multi-index v = (vq,--- ,v,), £ = (£1,0,---,0) € B, andw € C

be fixed. Define

glz) = LV
1 —awy/|v|l?l fovze

and f = gowe. Then, g€ Qy1, f € Qi f(§) =w, and
9(z) =w — (1= |w*)y/|v|l" ooz —w(1 — [w]?) (o]l /0°) 22 = -+,

el e 9 (e (2))”
N VY (1= wf) 0zt - Dz

for z € B,,

o f(2)

0z{" -+ Ozp"

a=¢

it ol 1-[f(OP
R N e DT

2=t

= (-1

This shows that the estimate (5.4) is precise up to a constant less than 2/VI=1,

Remark 4. If vy = |[v| =k, (5.4) becomes

1-|f(x)

lakf(Z) (5.5)

k
0z

(5.5) is also a consequence of (5.2). For given £ = (£,0,---,0) € B, \ {0} and
w € C\ {0}, let § = arg{ — argw and defined

w + e_wzl

m fOI” ZZ(Z1,-~-,Zn)€Bn,

9(z) =
and f = gope. Then, g€ Qy1, f € Qpa, f(§) =w, and
9(z) =w+ (1 —|w]?)e 2z —w(1 - [w[*)e 2] + W*(1 — Jw|*)e 2] + - -

Thus, for any positive integer k, we have

I g i I (((@—zl)j)

o ~ dzf \(1-&21)9 /1,

le— 310579~ 15

LR = ) = (k= 1)
a 1—\§|kz — DIk — j)!

J=1 G
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k

RN = Jw)fEFw k—1) IwV el
(1= [€[?)FfuwleF Z (G — DIk —j)!
kN1 — kw
SR

and, consequently,

; lakf(Z)/asz:g’ RN+ Jg)Rt
wotn 1—[fOF (1L— )

This shows that (5.5) is asymptotically sharp.
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