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holomorphic function f of a Hilbert ball into the right half-plane is obtained.

Keywords complex Hilbert ball, high order Schwarz-Pick lemma

MSC(2000): 32A10, 32F45

Citation: Dai S Y, Chen H H, Pan Y F. The high order Schwarz-Pick lemma on complex Hilbert balls. Sci China

Math, 2010, 53, doi: 10.1007/s11425-010-0119-2

1 Introduction

For a complex Hilbert space X , B = {z ∈ X : ∥z∥ < 1} is called the unit ball in X . The unit disk in the

complex plane ℂ is denoted by D, and the unit ball in the complex space ℂn of dimension n is denoted by

Bn. For z = (z1, . . . , zn) and z′ = (z′1, . . . , z
′
n) ∈ ℂn, denote ⟨z, z′⟩ = z1z

′
1 + ⋅ ⋅ ⋅+ znz

′
n and ∣z∣ = ⟨z, z⟩1/2.

Let X,Y be two complex Hilbert spaces, U be an open subset of X , and f be a continuous mapping of

U into Y . We say that f is a holomorphic mapping if for any z ∈ U , there is a bounded linear operator

Df(z) of X into Y such that

lim
�∈X, ∥�∥→0

∥f(z + �)− f(z)−Df(z) ⋅ �∥
∥�∥ = 0,

where ∥ ⋅ ∥ denotes the norm of the appropriate space, and Df(z) ⋅ � denotes the evaluation of Df(z) on

� ∈ X . Df(z) is called the Fréchet derivative of f at z, and Df(z) ⋅ � is called the Fréchet derivative

of f at z in the direction �. Furthermore, for a non-negative integer k, the k-th-order Fréchet derivative

of a holomorphic mapping f at z ∈ U and its evaluation on (�1, . . . , �k), �j ∈ X , 1 ⩽ j ⩽ k, have been

defined and denoted by Dkf(z) and Dkf(z) ⋅ (�1, . . . , �k) respectively. The norm of Dkf(z) is defined as

∥Dkf(z)∥ = sup{∥Dkf(z) ⋅ (�1, . . . , �k)∥ ∣ ∥�1∥ = ⋅ ⋅ ⋅ = ∥�k∥ = 1}.

∗Corresponding author



2 DAI ShaoYu et al. Sci China Math

In addition, Dkf(z) ⋅ (�, . . . , �) is simply denoted by Dkf(z) ⋅ �k, where � ∈ X .

For a multi-index v = (v1, . . . , vn) with non-negative integers v1, . . . , vn, denote ∣v∣ = v1 + ⋅ ⋅ ⋅+ vn and

zv = zv11 ⋅ ⋅ ⋅ zvnn for z = (z1, . . . , zn) ∈ ℂ
n. Under these notations, if f is holomorphic, X = ℂ

n, Y = ℂ
m,

we have

Dkf(z) ⋅ �k =
∑

∣v∣=k

k!

v!

∂kf(z)

∂zv11 ⋅ ⋅ ⋅ ∂zvnn
�v, z ∈ U, � ∈ ℂ

n. (1.1)

In particular, if X = Y = ℂ, then

Dkf(z) ⋅ �k = f (k)(z)�k, z ∈ U ⊂ ℂ, � ∈ ℂ.

The Taylor formula for a holomorphic mapping f of D into a complex Hilbert space Y says that

f(z) = f(0) +

∞∑

k=1

Dkf(0) ⋅ zk
k!

, z ∈ D.

In this paper, by B and B̃ we denote the unit balls in complex Hilbert spaces X and Y respectively, by

Ω
B,B̃ we denote the class of all holomorphic mappings f from B into B̃, and by ΦB, we denote the class

of all holomorphic functions f defined on B such that Re{f(z)} > 0 for z ∈ B.

For f ∈ ΩD,D, the classical Schwarz-Pick lemma says that

∣f ′(z)∣
1− ∣f(z)∣2 ⩽

1

1− ∣z∣2 , z ∈ D.

This has been generalized to the derivatives of arbitrary order [4, 5, 7]. The best result, proved in [3], is

∣f (k)(z)∣
1− ∣f(z)∣2 ⩽ (1 + ∣z∣)k−1 ⋅ k!

(1 − ∣z∣2)k z ∈ D, k ⩾ 1. (1.2)

Chen and Liu [2] generalized (1.2) by proving the following Schwarz-Pick estimate for partial derivatives

of arbitrary order of a function f ∈ ΩBn,D:

∣∣∣∣
∂∣v∣f(z)

∂z1v1 ⋅ ⋅ ⋅ ∂znvn

∣∣∣∣ ⩽ n
∣v∣
2 ∣v∣!

(
n+ ∣v∣ − 1

n− 1

)n+2
1− ∣f(z)∣2
(1− ∣z∣2)∣v∣ (1 + ∣z∣)∣v∣−1 (1.3)

holds for any z ∈ Bn and multi-index v = (v1, . . . , vn) ∕= 0.

Recently, the authors obtained a high order Schwarz-Pick lemma [3] for f ∈ ΩBn,Bm
, which is formulated

by the Bergman metric. On the unit ball Bn, the Bergman metric Hz(�, �) may be defined by

Hz(�, �) =
(1− ∣z∣2)∣�∣2 + ∣⟨�, z⟩∣2

(1− ∣z∣2)2 for z ∈ Bn, � ∈ ℂ
n.

Commonly, there is a factor (n+ 1)/2 in the definition of the Bergman metric. In spite of ambiguity, we

use the same notation for Bergman metrics in unit balls of different dimensions. With this notation, the

main result in [3] is expressed as follows:

Theorem: Let f ∈ ΩBn,Bm
. Then, for k ⩾ 1, z ∈ Bn and � ∈ ℂ

n ∖ {0}, we have

Hf(z)(D
kf(z) ⋅ �k, Dkf(z) ⋅ �k) ⩽ (k!)2p(z, �)2(k−1)Hz(�, �)

k, (1.4)

where

p(z, �) = 1 +
∣⟨�, z⟩∣

((1− ∣z∣2)∣�∣2 + ∣⟨�, z⟩∣2)1/2 for z ∈ B
n, � ∈ ℂ

n ∖ {0}.

(1.4) coincides with (1.2) if n = m = 1. As a consequence, the authors deduced from (1.4) a Schwarz-Pick

estimate for partial derivatives of a function f ∈ ΩBn,D:

∣∣∣∣
∂∣v∣f(z)

∂zv11 ⋅ ⋅ ⋅∂zvnn

∣∣∣∣ ⩽
√

∣v∣∣v∣
vv

v!(1 + ∣z∣)∣v∣−1 ⋅ 1− ∣f(z)∣2
(1− ∣z∣2)∣v∣ . (1.5)



DAI ShaoYu et al. Sci China Math 3

Note that (1.5) is much better than (1.3).

The purpose of this paper is to generalize (1.4) to Fréchet derivatives of mappings in Ω
B,B̃. For a

Hilbert ball B, we define

Hz(�, �) =
(1− ∥z∥2)∥�∥2 + ∣⟨�, z⟩∣2

(1− ∥z∥2)2 for z ∈ B, � ∈ X,

which may be called the Bergman metric on B. Then, we prove that (1.4) is true also for mappings in

Ω
B,B̃. This is reformulated as follows.

Theorem 1.1. If f ∈ Ω
B,B̃, then

Hf(z)(D
kf(z) ⋅ �k, Dkf(z) ⋅ �k) ⩽ (k!)2p(z, �)2(k−1)(Hz(�, �))

k (1.6)

holds for k ⩾ 1, z ∈ B and � ∈ X ∖ {0}, where

p(z, �) = 1 +
∣⟨�, z⟩∣

((1 − ∥z∣∣2)∥�∥2 + ∣⟨�, z⟩∣2)1/2 for z ∈ B, � ∈ X ∖ {0}.

In addition, for ' ∈ ΦD, Dai and Pan [4] have proved

∣'(k)(z)∣ ⩽ 2k!Re{'(z)}
(1− ∣z∣2)k (1 + ∣z∣)k−1. (1.7)

Using this estimate and the same method as in the proof of Theorem 1.1, we obtain the following result,

which generalizes (1.7) to the Fréchet derivatives of functions in ΦB.

Theorem 1.2. If f ∈ ΦB, then

∣Dkf(z) ⋅ �k∣ ⩽ 2k!Re{f(z)}p(z, �)k−1Hz(�, �)
k/2 (1.8)

holds for k ⩾ 1, z ∈ B and � ∈ X ∖ {0}, where p(z, �) is defined as in Theorem 1.1.

From Theorems 1.1 and 1.2, we obtain the following estimates of ∥Dkf(z)∥ for Ω
B,B̃ and ΦB.

Theorem 1.3. If f ∈ Ω
B,B̃, then

∥Dkf(z)∥ ⩽ kk
√
1− ∥f(z)∥2 (1 + ∥z∥)k−1

(1− ∥z∥2)k

holds for k ⩾ 1 and z ∈ B.

Theorem 1.4. If f ∈ ΦB, then

∥Dkf(z)∥ ⩽ 2kkRe{f(z)} (1 + ∥z∥)k−1

(1− ∥z∥2)k

holds for k ⩾ 1 and z ∈ B.

2 The Schwarz-Pick estimate for ΩD,B

In this section, we prove Theorem 1.1 for the special case f ∈ ΩD,B. On the basis of this, Theorem 1.1

will be proved in the next section.

For a ∈ B, by 'a we denote the holomorphic mapping of B onto itself, such that 'a(a) = 0 and

'a = '−1
a . It is known [6] that

'a(z) =
1

1− ⟨z, a⟩

(
a− ⟨z, a⟩a

1 +
√
1− ∥a∥2

−
√
1− ∥a∥2z

)
.
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If a = 0, then 'a(z) = −z; If a ∕= 0, then 'a(z) is just

'a(z) =
1

1− ⟨z, a⟩

[
a− ⟨z, a⟩

∥a∥2 a−
√
1− ∥a∥2

(
z − ⟨z, a⟩

∥a∥2 a
)]

. (2.1)

Lemma 2.1. If f ∈ ΩD,B, then

∞∑

k=0

∥∥∥∥
Dkf(0) ⋅ zk

k!

∥∥∥∥
2

< 1, z ∈ D.

Proof. Let z ∈ D be fixed. We have f(zei�) =
∑∞

k=0 e
ik� Dkf(0)⋅zk

k! by the Taylor formula, where the

first term under the summation is understood as f(0). Then,

1 >
1

2�

∫ 2�

0

∥∥f(zei�)
∥∥2 d� =

1

2�

∫ 2�

0

〈
f(zei�), f(zei�)

〉
d�

=
1

2�

∑

k,j

〈
Dkf(0) ⋅ zk

k!
,
Djf(0) ⋅ zj

j!

〉∫ 2�

0

ei(k−j)�d�

=

∞∑

k=0

∥∥∥∥
1

k!
Dkf(0) ⋅ zk

∥∥∥∥
2

.

The lemma is proved. □

Lemma 2.2. If f ∈ ΩD,B, then

∣∣∣∣
〈
Dkf(0) ⋅ 1k

k!
, f(0)

〉∣∣∣∣
2

+ (1− ∥f(0)∥2)
∥∥∥∥
Dkf(0) ⋅ 1k

k!

∥∥∥∥
2

⩽ (1− ∥f(0)∥2)2. (2.2)

Proof. Denote ak = Dkf(0)⋅1k

k! , then f(z) =
∑∞

k=0 akz
k. Note that a0 = f(0).

If a0 = 0, (2.2) is just Lemma 2.1. Now, assume that a0 ∕= 0. Let a positive integer k be fixed,

! = e2�i/k and ℎ(z) = 1
k

∑k
l=1 f(!

lz). Then, ℎ(z) ∈ ΩD,B, ℎ(0) = a0, and

ℎ(z) = a0 +
∞∑

n=1

Dnkf(0) ⋅ znk
(nk)!

= a0 +
∞∑

n=1

ankz
nk.

Let � = 'a0
∘ ℎ. Obviously, � ∈ ΩD,B, and �(0) = 0. By (2.1), we have

�(z) =
1

1− ⟨ℎ(z), a0⟩

(
−(a0/∥a0∥2)

∞∑

n=1

⟨ank, a0⟩znk

−
√
1− ∥a0∥2

∞∑

n=1

ankz
nk +

√
1− ∥a0∥2(a0/∥a0∥2)

∞∑

n=1

⟨ank, a0⟩znk
)

= − 1

1− ∥a0∥2 −
∞∑
n=1

⟨ank, a0⟩znk

(
∞∑

n=1

⟨ank, a0⟩a0znk
1 +

√
1− ∥a0∥2

+
√
1− ∥a0∥2

∞∑

n=1

ankz
nk

)

= − 1

1− ∥a0∥2

(
⟨ak, a0⟩a0

1 +
√
1− ∥a0∥2

+
√
1− ∥a0∥2ak

)
zk +

∞∑

m=2

cmkz
mk

= bzk +
∞∑

m=2

cmkz
mk.
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Note that b = Dk�(0)⋅1k

k! . Thus, using Lemma 2.1, we obtain

1 ⩾ ∥b∥2 = 1

(1− ∥a0∥2)2
∥∥∥∥

⟨ak, a0⟩a0
1 +

√
1− ∥a0∥2

+
√
1− ∥a0∥2ak

∥∥∥∥
2

=
1

(1− ∥a0∥2)2
( ∣⟨ak, a0⟩∣2∥a0∥2
(1 +

√
1− ∥a0∥2)2

+ (1− ∥a0∥2)∥ak∥2 +
2
√
1− ∥a0∥2∣⟨ak, a0⟩∣2

1 +
√
1− ∥a0∥2

)

=
1

(1− ∥a0∥2)2
(
∣⟨ak, a0⟩∣2 + (1− ∥a0∥2)∥ak∥2

)
.

This shows (2.2). □

Theorem 2.1. If f(z) ∈ ΩD,B, then

∣⟨Dkf(z) ⋅ 1k, f(z)⟩∣2 + (1 − ∥f(z)∥2)∥Dkf(z) ⋅ 1k∥2 ⩽

[
k!(1− ∥f(z)∥2)

(1− ∣z∣2)k (1 + ∣z∣)k−1

]2
(2.3)

holds for k ⩾ 1 and z ∈ D.

Proof. Let � ∈ D and a positive integer k be fixed. We consider g = f ∘ '� ∈ ΩD,B, where

'�(z) =
� − z

1− �z
.

For g,

g(z) =

∞∑

n=0

Dng(0) ⋅ zn
n!

=

∞∑

n=0

Dng(0) ⋅ 1n
n!

zn.

Denote cn = Dng(0)⋅1n

n! , then g(z) =
∞∑

n=0
cnz

n. By Lemma 2.2,

∣⟨cn, c0⟩∣2 + (1 − ∥c0∥2)∥cn∥2 ⩽ (1 − ∥c0∥2)2 (2.4)

holds for n ⩾ 1.

It is easy to verify that

dn('�(z)
j)

dzn

∣∣∣∣
z=�

=

⎧
⎨
⎩

0, n < j;

(−1)j(�̄)n−j

(1− ∣�∣2)n
n!(n− 1)!

(n− j)!(j − 1)!
, n ⩾ j.

Let

Aj =
(−1)j�

k−j

(1− ∣�∣2)k
k!(k − 1)!

(k − j)!(j − 1)!
.

Since f = g ∘ '�, we have

Dkf(�) ⋅ 1k =

k∑

j=1

cjAj ,

and, using (2.4) and the Schwarz inequality,

∣⟨Dkf(�) ⋅ 1k, f(�)⟩∣2 + (1 − ∥f(�)∥2)∥Dkf(�) ⋅ 1k∥2

=

∣∣∣∣
k∑

j=1

Aj⟨cj , c0⟩
∣∣∣∣
2

+ (1− ∥c0∥2)
∥∥∥∥

k∑

j=1

cjAj

∥∥∥∥
2

⩽

k∑

j=1

∣Aj ∣
k∑

j=1

∣Aj ∣∣⟨cj , c0⟩∣2 + (1− ∥c0∥2)
k∑

j=1

∣Aj ∣
k∑

j=1

∣Aj ∣∥cj∥2

=

k∑

j=1

∣Aj ∣
k∑

j=1

∣Aj ∣
(
∣⟨cj , c0⟩∣2 + (1− ∥c0∥2)∥cj∥2

)

⩽ (1− ∥c0∥2)2
( k∑

j=1

∣Aj ∣
)2

.
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On the other hand,

k∑

j=1

∣Aj ∣ =
k!

(1− ∣�∣2)k
k∑

j=1

(k − 1)!∣�∣k−j

(k − j)!(j − 1)!
=

k!

(1− ∣�∣2)k (1 + ∣�∣)k−1.

(2.3) is proved. □

3 The proofs of the theorems

To prove Theorem 1.1, besides Theorem 2.1, the following lemmas are needed.

Lemma 3.1. Let B be the unit ball in the Hilbert space X, for given p, q ∈ B with q ∕= p, let

L(z) = p+ z(q − p) for z ∈ ℂ. Then,

L(Dcp,q,rp,q ) ⊂ B, L(∂Dcp,q,rp,q ) ⊂ ∂B,

where

Dcp,q,rp,q = {z ∣ z ∈ ℂ, ∣z − cp,q∣ < rp,q},

cp,q = −⟨p, q − p⟩
∥q − p∥2 , rp,q =

√
1− ∥p∥2
∥q − p∥2 +

∣∣∣∣
⟨p, q − p⟩
∥q − p∥2

∣∣∣∣
2

.

Proof. For z ∈ ℂ, if

∥L(z)∥ = ∥p+ z(q − p)∥2 < 1,

then

∥p∥2 + 2Re(z̄⟨p, q − p⟩) + ∣z∣2∥q − p∥2 < 1,

and, consequently, ∣∣∣∣z +
⟨p, q − p⟩
∥q − p∥2

∣∣∣∣
2

<
1− ∥p∥2
∥q − p∥2 +

∣∣∣∣
⟨p, q − p⟩
∥q − p∥2

∣∣∣∣
2

.

The converse is also true. This shows the lemma. □

Lemma 3.2 [1]. Let G,E, F be Banach spaces, U be an open subset of G, A be a bounded linear

operator of G to E, f : A(U) −→ F be r times differentiable. Then,

Di(f ∘A)(v) ⋅ (g1, . . . , gi) = Dif(Av) ⋅ (Ag1, . . . , Agi)

exists for all i ⩽ r, where v ∈ U and g1, . . . , gi ∈ G.

Lemma 3.3. Let g : Dz0,� −→ B be a holomorphic mapping, where Dz0,� = {z ∈ ℂ : ∣z − z0∣ < �}.
Then

∣⟨Dkg(z) ⋅ 1k, g(z)⟩∣2 + (1− ∥g(z)∥2)∥Dkg(z) ⋅ 1k∥2 ⩽

[
k!(1 − ∥g(z)∥2)�(� + ∣z − z0∣)k−1

(�2 − ∣z − z0∣2)k
]2

.

Proof. Let '(z) = g(�z + z0) for z ∈ D. Using Theorem 2.1, we have

∣⟨Dk'(z) ⋅ 1k, '(z)⟩∣2 + (1− ∥'(z)∥2)∥Dk'(z) ⋅ 1k∥2 ⩽

[
k!(1− ∥'(z)∥2)

(1− ∣z∣2)k (1 + ∣z∣)k−1

]2
. (3.1)

By Lemma 3.2, for � ∈ Dz0,�,

�kDkg(�) ⋅ 1k = Dkg(�) ⋅ �k = Dk'

(
� − z0

�

)
⋅ 1k.

Letting z = �−z0
� in (3.1), we obtain

∣⟨Dkg(�) ⋅ 1k, g(�)⟩∣2 + (1− ∥g(�)∥2)∥Dkg(�) ⋅ 1k∥2 ⩽

[
k!(1− ∥g(�)∥2)�(� + ∣� − z0∣)k−1

(�2 − ∣� − z0∣2)k
]2

.
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The lemma is proved. □

Proof of Theorem 1.1. For a given p ∈ B, let q ∈ B with q ∕= p. Let g(z) = f(L(z)) for z ∈ Dcp,q,rp,q ,

where Dcp,q,rp,q is defined in Lemma 3.1 and L(z) = p+ z(q − p). Using Lemma 3.3 to z = 0, we have

∣⟨Dkg(0) ⋅ 1k, g(0)⟩∣2 + (1− ∥g(0)∥2)∥Dkg(0) ⋅ 1k∥2

⩽

[
k!(1− ∥g(0)∥2)rp,q(rp,q + ∣cp,q∣)k−1

(r2p,q − ∣cp,q∣2)k
]2

.

Note g(0) = f(p) and, by Lemma 3.2,

Dkg(0) ⋅ 1k = Dkf(p) ⋅ (q − p)k,

rp,q(rp,q + ∣Cp,q∣)k−1

(r2p,q − ∣Cp,q∣2)k
=

√
Aq−p

(√
Aq−p + ∣⟨p, q − p⟩∣

)k−1

(1 − ∥p∥2)k ,

where

Aq−p = (1− ∥p∥2)∥q − p∥2 + ∣⟨p, q − p⟩∣2.
So, we have

∣⟨Dkf(p) ⋅ �k, f(p)⟩∣2 + (1− ∥f(p)∥2)∥Dkf(p) ⋅ �k∥2

⩽

[
k!(1− ∥f(p)∥2)

√
A(

√
A+ ∣⟨p, �⟩∣)k−1

(1 − ∥p∥2)k
]2
,

where � = (q − p)/∥q − p∥, and A = 1− ∥p∥2 + ∣⟨p, �⟩∣2 . A simple calculation gives

√
A(

√
A+ ∣⟨p, �⟩∣)k−1

(1− ∥p∥2)k =

(
1 +

∣⟨p, �⟩∣√
(1 − ∥p∥2)∥�∥2 + ∣⟨p, �⟩∣2

)k−1(√
(1− ∥p∥2)∥�∥2 + ∣⟨p, �⟩∣2

1− ∥p∥2
)k

=

(
1 +

∣⟨p, �⟩∣
[(1 − ∥p∥2)∥�∥2 + ∣⟨p, �⟩∣2]1/2 )

k−1(Hp(�, �)

)k/2

.

Since � may be an arbitrary unit vector, this shows (1.6) for any � ∈ B and � ∈ ∂B. (1.6) is homogeneous

with respect to �, so (1.6) holds for � ∈ X ∖ {0} also. Theorem 1.1 is proved.

The proof of Theorem 1.2 is almost the same as that of Theorem 1.1. The only change is that the use

of Theorem 2.1 is replaced by that of (1.7).

To prove Theorem 1.3, we need the following lemma.

Lemma 3.4 [1]. Let E,F be Banach spaces, A be a continuous symmetric k-multilinear map from

E × ⋅ ⋅ ⋅ × E to F . The norm of A is defined as

∥A∥ = sup{∥A(e1, . . . , ek)∥ ∣ ∥e1∥ = ⋅ ⋅ ⋅ = ∥ek∥ = 1}.

Then

∥A∥ ⩽ (kk/k!) sup{∥A(e, . . . , e)∥ ∣ ∥e∥ = 1}.

Proof of Theorem 1.3. It is easy to see that

Hf(z)(D
kf(z) ⋅ �k, Dkf(z) ⋅ �k) ⩾

∥Dkf(z) ⋅ �k∥2
1− ∥f(z)∥2 .

So by Theorem 1.1,
∥Dkf(z) ⋅ �k∥2
1− ∥f(z)∥2 ⩽ (k!)2p(z, �)2(k−1)(Hz(�, �))

k (3.2)

holds for k ⩾ 1, z ∈ B and � ∈ X ∖ {0}, where p(z, �) is defined as in Theorem 1.1. Note that

Hz(�, �) ⩽
∥�∥2

(1− ∥z∣∣2)2 ,
∣⟨z, �⟩∣

[(1− ∥z∥2)∥�∥2 + ∣⟨z, �⟩∣2]1/2 ⩽ ∥z∥. (3.3)
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Then by (3.2) we have

∥Dkf(z) ⋅ �k∥ ⩽ k!
√
1− ∥f(z)∥2 (1 + ∥z∥)k−1

(1− ∥z∥2)k ∥�∥k.

Thus

sup{∥Dkf(z) ⋅ �k∥ ∣ ∥�∥ = 1} ⩽ k!
√
1− ∥f(z)∥2 (1 + ∥z∥)k−1

(1− ∥z∥2)k .

By Lemma 3.4, Theorem 1.3 is proved.

The proof of Theorem 1.4 is almost the same as that of Theorem 1.3. The only change is that the use

of (3.2) is replaced by that of (1.8).

4 Corollaries

Note that (3.3). Thus, from Theorems 1.1 and 1.2, we have the following corollaries.

Corollary 4.1. If f ∈ ΩB,D, then

∣Dkf(z) ⋅ �k∣ ⩽ k!(1 − ∣f(z)∣2) (1 + ∥z∥)k−1

(1 − ∥z∥2)k ∥�∥k

holds for k ⩾ 1, z ∈ B and � ∈ X.

Corollary 4.2. If f ∈ ΩB,Bm
, then

∣⟨Dkf(z) ⋅ �k, f(z)⟩∣2 + (1− ∣f(z)∣2)∣Dkf(z) ⋅ �k∣2 ⩽

[
k!(1− ∣f(z)∣2) (1 + ∥z∥)k−1

(1− ∥z∥2)k ∥�∥k
]2

holds for k ⩾ 1, z ∈ B and � ∈ X.

Corollary 4.3. If f ∈ ΦB, then

∣Dkf(z) ⋅ �k∣ ⩽ 2k!Re{f(z)} (1 + ∥z∥)k−1

(1 − ∥z∥2)k ∥�∥k

holds for k ⩾ 1, z ∈ B and � ∈ X.

Corollary 4.4. Let f ∈ ΦBn
, then

∣∣∣∣
∂∣v∣f(z)

∂zv11 ⋅ ⋅ ⋅ ∂zvnn

∣∣∣∣ ⩽ v!

√
∣v∣∣v∣
vv

2Re{f(z)}
(1− ∣z∣2)∣v∣ (1 + ∣z∣)∣v∣−1 (4.1)

holds for any multi-index v ∕= 0.

Proof. Let f ∈ ΦBn
, z ∈ Bn and a multi-index v ∕= 0 be given. Denote k = ∣v∣. By Corollary 4.3 and

(1.1), ∣∣∣∣
∑

∣v∣=k

k!

v!

∂kf(z)

∂zv11 ⋅ ⋅ ⋅ ∂zvnn
�v

∣∣∣∣ ⩽ 2k!Re{f(z)} (1 + ∣z∣)k−1

(1 − ∣z∣2)k ∣�∣k

holds for � ∈ ℂn. In particular,

∣∣∣∣
∑

∣v∣=k

k!

v!

∂kf(z)

∂zv11 ⋅ ⋅ ⋅ ∂zvnn
�v

∣∣∣∣ < 2k!Re{f(z)} (1 + ∣z∣)k−1

(1− ∣z∣2)k

holds for � ∈ Bn. Let

A = 2k!Re{f(z)} (1 + ∣z∣)k−1

(1− ∣z∣2)k , g(�) =
1

A

∑

∣v∣=k

k!

v!

∂kf(z)

∂zv11 ⋅ ⋅ ⋅∂zvnn
�v.
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Since g(�) ∈ ΩBn,D, using (1.5), we have

∣∣∣∣
∂∣v∣g(0)

∂�v1
1 ⋅ ⋅ ⋅∂�vn

n

∣∣∣∣ ⩽ v!

√
∣v∣∣v∣
vv

(1 − ∣g(0)∣2).

Note that g(0) = 0, and
∂∣v∣g(0)

∂�v1
1 ⋅ ⋅ ⋅ ∂�vn

n
=

k!

A
⋅ ∂kf(z)

∂zv11 ⋅ ⋅ ⋅∂zvnn
.

(4.1) follows and the corollary is proved. □

From Theorems 1.3 and 1.4, we have the following corollaries.

Corollary 4.5. If f ∈ Ω
B,B̃, then ∥Dkf(0)∥ ⩽ kk

√
1− ∥f(0)∥2 ⩽ kk holds for k ⩾ 1.

Corollary 4.6. If f ∈ ΦB, then ∥Dkf(0)∥ ⩽ 2kkRe{f(z)} holds for k ⩾ 1.
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