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Abstract. We provide a new and simple proof to the result in our study of Berezin’s operator
calculus [17] that the mth order Bergman metric (Bm∂v)(z) is a constant multiple of {(B1∂v)(z)}m
on the unit ball, where (B1∂v)(z) is the classical Bergman metric. Based on the reproducing-kernel
theory, an approximation approach is developed to treat (Bm∂v)(z) on the unit ball and Cn in a
uniform way. Secondly, we discuss the interplay between our analysis in Berezin’s operator calculus
and the higher order Schwarz-Pick lemma in [10]. As a consequence, the mth order Carathéodory-
Reiffen metric (Cm∂v)(z) is shown to be a constant multiple of {(C1∂v)(z)}m also on the unit ball,
where (C1∂v)(z) is the classical infinitesimal Carathéodory-Reiffen metric.

1. Introduction

Let Ω be a domain in Cn and H a Hilbert space of holomorphic functions on Ω. H is called a
holomorphic Hilbert space if the evaluation functional at each point z ∈ Ω is continuous on H ([1]).
In this case, there is a unique function Kz ∈ H such that f(z) = 〈f,Kz〉 for every f ∈ H. The
function K(w, z) = Kz(w) on Ω× Ω is called the reproducing kernel of H and holomorphic in the
first variable and conjugate holomorphic in the second one. We will assume throughout the paper
that ‖Kz‖2 = K(z, z) > 0 for all z ∈ Ω, and the set P of holomorphic polynomials is included in
H.

For a fixed point a ∈ Ω, let V =
∑n

j=1 vj(z) ∂
∂zj

=
∑n

j=1 vj(z)∂j be a nonzero holomorphic vector

field on Ω with v′js holomorphic, and for m ≥ 1 define

Sm(V, a) = {f ∈ H : ‖f‖ ≤ 1, (V jf)(a) = 0, j = 0, 1, · · · ,m− 1} (1)

where V 0 = I the identity operator. We denote by S0(V, a) = {f ∈ H : ‖f‖ ≤ 1} the closed
unit ball of H. It is clear that Sm(V, a) is nonempty since it contains functions of the form
c(z − a)α = c

∏n
j=1(zj − aj)αj with |α| =

∑n
j=1 αj ≥ m, where c = ‖(z − a)α‖−1. Let

(RmV )(a) = sup
f∈Sm(V,a)

|(V mf)(a)|2, (2)

and write

{(BmV )(a)}2 = K(a, a)−1(RmV )(a). (3)

It is standard that (R0V )(a) = K(a, a) and (B0V )(a) = 1 ([14]).
Note that for m ≥ 1, the iteration V m of a holomorphic vector field V =

∑n
j=1 vj(z)∂j can

be considered as a holomorphic differential operator of the form V m =
∑m
|α|=0 fα(z)∂α for some

holomorphic functions fα’s on Ω. For fixed a ∈ Ω and each m ≥ 1, the linear functional V m
a : f →

(V mf)(a) defined on H is bounded by Cauchy Estimates and the fact that the norm of f ∈ H
dominates its supremum norm over any compact set by the reproducing property f(z) = 〈f,Kz〉.
So there exists a unique element KVm,a ∈ H such that

(V mf)(a) = 〈f,KVm,a〉 (4)

and

KVm,a(z) = 〈KVm,a, Kz〉 = 〈Kz, KVm,a〉 = (V mKz)(a).
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For fixed vector field V , we write ea,j(z) = KV j ,a(z) for j = 0, 1, · · · ,m. In turn, (1) and (2) can
be rewritten as

Sm(V, a) = {f ∈ S0(V, a) : 〈f, ea,j〉 = 0, j = 0, 1, · · · ,m− 1}

and

(RmV )(a) = sup
f∈Sm(V,a)

|〈f, ea,m〉|2. (5)

Let Ha,m be the closed subspace spanned by {ea,j}m−1
j=0 and PH⊥

a,m
be the orthogonal projection

onto H⊥a,m, the orthogonal complement space of Ha,m in H. Then (RmV )(a) is exactly the square

of the operator norm of the linear functional V m
a restricted to H ⊥

a,m by (2), and

(RmV )(a) = ‖PH⊥
a,m
ea,m‖2 (6)

by (5) in the point of view of Hilbert space geometry. We remark that it is convenient to view Bm

in (3) as a mapping that associates a holomorphic vector field with a function on Ω.
Now suppose that H1 on Ω1 and H2 on Ω2 are two holomorphic Hilbert spaces normed by
‖f‖2

H1
=
∫

Ω1
|f(z)|2dµ1(z) and ‖g‖2

H2
=
∫

Ω2
|g(w)|2dµ2(w), where dµ1 and dµ2 are positive Borel

measures on Ω1 and Ω2 respectively. Let ψ be a biholomorphic mapping of Ω1 onto Ω2 and assume
that there is a nonvanishing holomorphic function jψ on Ω1 such that

µ2(ψ(N)) =

∫
N

|jψ(z)|2dµ1(z) (7)

for each Borel subset N of Ω1. Then the change of variable formula (7) implies that the operator

(Uψf)(z) = (f ◦ ψ)(z)jψ(z) (8)

is an isometry of H2 onto H1, which in turn gives rise to

K(Ω1)(z, w) = K(Ω2)(ψ(z), ψ(w))jψ(z)jψ(w). (9)

Consequently, using the unitary operator Uψ in (8) and the identity (9), as in the proof of Propo-
sition 3.1 in [17], it is easy to show that for such ψ, Bm enjoys the transformation property as
follows:

(BmV )(Ω1)(z) = (Bmψ∗(V ))(Ω2)(ψ(z)), (10)

where ψ∗(V ) is the push-forward of the vector field V under ψ.
In particular, we specialize the vector field V to be the constant vector field ∂v =

∑n
j=1 vj∂j

with v = (v1, · · · , vn) ∈ Cn\{0}. In this case, we write ej(·) = ea,j(·) = K∂jv ,a
(·) = (∂̄jvK)(·, a) =

(∂̄jvKa)(·) if no confusion arises. Then the set {ej}mj=0 is linearly independent in H since the set
of holomorphic polynomials P ⊂ H by our assumption. An application of the Gram-Schmidt
orthogonalization process gives an orthonormal basis {ϕi}mi=0 for Ha,m+1, where ([4])

ϕ0 = J
− 1

2
0 e0,

ϕi = {Ji−1Ji}−
1
2

∣∣∣∣∣∣
〈e0, e0〉 · · · 〈e0, ei−1〉 e0

...
. . .

...
...

〈ei, e0〉 · · · 〈ei, ei−1〉 ei

∣∣∣∣∣∣
for i = 1, . . . ,m, and

Ji = Ji(∂v, a) =

∣∣∣∣∣∣
〈e0, e0〉 · · · 〈e0, ei〉

...
. . .

...
〈ei, e0〉 · · · 〈ei, ei〉

∣∣∣∣∣∣
is the determinant of the Gram-matrix of the system {ej}ij=0 for i = 0, 1, . . . ,m.
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Note that Ji > 0 due to the linear independence of {ej}ij=0 (see [4]) for i = 0, 1, . . . ,m, and
(Bm∂v)(a) can be expressed in a closed form in terms of the kernel function, i.e.([4])

(Rm∂v)(a) = J−1
m−1Jm, {(Bm∂v)(a)}2 = {J0Jm−1}−1Jm, m ≥ 1. (11)

As remarked in [17], (Bm∂v)(a) is homogeneous in v of degree m, and is NOT, strictly speaking,
an infinitesimal metric as m > 1. Care must be taken in considering “transformation laws” (10)
for (Bm∂v)(a) for m > 1. We also remark that for fixed domain Ω, the quantity (Bm∂v)(a) relies
on the specific Hilbert space strcture of H on Ω. The notation (Bm∂v)(a) will be abused without
indicating the holomorphic Hilbert space H which is to be clear from the context.

The prototypes of the spaces H are the Bergman spaces A2(Ω, dυ) of all holomorphic func-
tions in L2(Ω, dυ) on a bounded domain Ω ⊂ Cn with the normalized volume measure dυ(z) =
V (Ω)−1dV (z) where dV is the Lebesgue measure and V (Ω) is the volume of Ω with respect to
dV , or the Segal-Bargmann space H2(Cn, dµ) of all entire functions in L2(Cn, dµ) for the Gaussian
measure

dµ(z) = (2π)−ne−
|z|2
2 dV (z).

For H = A2(Ω, dυ), the reproducing kernel K(z, w) is then just the original kernel function of
Bergman [4], and (Bm∂v)(a) is exactly the mth order Bergman metric as introduced by Burbea
in [5]. In particular, (B1∂v)(a) is the classical Bergman metric. For H = H2(Cn, dµ), the kernel

function K(z, w) = e
〈z,w〉

2 and (B1∂v)(a) coincides (up to a constant factor) with the Euclidean
metric. As a Hermitian metric, the classical Bergman metric can also be defined as

B1(a, v) = (B1∂v)(a) =
{ n∑
j,k=1

∂2

∂zj∂z̄k
logK(a, a)vj v̄k

} 1
2

(12)

for v ∈ Tz(Ω) ∼= Cn the tangent space at z ∈ Ω ([13]).
The motivation for us to study the mapping Bm originates from the recent intensive research

on Berezin’s operator calculus ([6], [7], [8], [11], [12], [16]). The Berezin transform, introduced by
F. A. Berezin in his quantization program ([2], [3]), provides a general symbol calculus for linear
operators on any holomorphic Hilbert space. More specifically, for H a holomorphic Hilbert space
on Ω and X ∈ Op(H) the algebra of bounded linear operators on H, the Berezin transform (or
symbol) of X is given by

X̃(z) = 〈Xkz, kz〉 = tr(XA(z)), (13)

where kz(·) = K(·, z)K(z, z)−
1
2 is the normalized kernel function at z, and

A(z) = kz ⊗ kz = 〈·, kz〉kz (14)

is the projection onto the span of kz. It is well-known that X̃ is real analytic with ‖X̃‖∞ ≤ ‖X‖,
and X is uniquely determined by X̃.

The study on the interaction between the mth order Bergman metric and Berezin’s operator
calculus was initiated in [17] most recently, where the relationship between (Bm∂v)(a) and (B1∂v)(a)
has also been investigated. In particular, it was shown there that for H = A2(Bn, dυ) on the open
unit ball,

(Bm∂v)(a) =

{
m!(m+ n)!

n!(n+ 1)m

} 1
2

{(B1∂v)(a)}m. (15)

In the same paper, it was also proved separately that an identity similar to (15) holds with different
constant factor on Cn for H = H2(Cn, dµ) (see Theorem 3.14 and Theorem 3.18 of [17]).

In view of the simple intuition that Cn could be considered as a ball with infinite radius, and the
fact that (Bm∂v)(a) is “intrinsic” interpreted as in (10), it would be of interest to find an approach
that could deal with both cases uniformly in this Bergman-type spaces setting. It turns out that
this goal can be achieved by approximating the scaled Segal-Bargmann space H2(Cn, dµp) by a

class of holomorphic Hilbert spaces in an appropriate way, where dµp(z) = pn

πn
e−p|z|

2
dV (z). This
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uniform treatment will be developed in Section 2 and Section 3, while a different proof of (15) will
be provided in the setting of H = A2(Bn, dυα) the weighted Bergman space in Section 2.

Motivated by the definition of mth order Bergman metric, we introduce another mapping Dm

from the space of holomorphic vector fields to the set of functions on Ω in Section 5, and provide an
estimates for (Dm∂v)(z) on the unit ball using our analysis of Berezin’s operator calculus. It turns
out that this estimate coincides with the other one which is a direct consequence of the higher
order Schwarz-Pick lemma in [10] except a different constant factor. In our argument, we need an
iteration formula in [17] which will be refined by determining all coefficients completely in Section
4.

In Section 6, using the refined formula in Section 4 and the higher order Schwarz-Pick lemma in
[10], we are able to show that on the unit ball Bn,

(Cm∂v)(z) = m!{(C1∂v)(z)}m,
where (Cm∂v)(z) is the mth order Carathéodory-Reiffen metric ([5]), and (C1∂v)(z) is the classical
infinitesimal Carathéodory-Reiffen metric.

We conclude by pointing out that by using the refined formula in Section 4 and some result
in Section 6, our estimate for (Dm∂v)(z) in Section 5 can be improved to be the same as the
other one directly from the higher order Schwarz-Pick lemma. This perfect coincidence discloses
some intimate relation between our analysis in Berezin’s operator calculus and the higher order
Schwarz-Pick lemma.

2. A new proof

In this section, we extend (15) to the setting of weighted Bergman space A2(Bn, dυα) by a
different proof, which provides the foundation for our method of approximation in Section 3.

For α > −1, let dυα(z) = cα (1− |z|2)
α
dυ(z) be the probability measure on Bn where cα =

Γ(n+α+1)
n!Γ(α+1)

. For H = A2(dυα) = A2(Bn, dυα) the weighted Bergman space on the unit ball Bn, the

reproducing kernel is given by ([19])

Kα(z, w) =
1

(1− 〈z, w〉)n+1+α
= K(z, w)

n+1+α
n+1 , (16)

where K(z, w) is the kernel function of the standard Bergman space A2(Bn, dυ) as α = 0. It is
easy to check that the Bergman metric (12) induced by Kα(z, w) on Bn is

{(B1∂v)(a)}2 =
(n+ 1 + α){(1− |a|2)|v|2 + |〈a, v〉|2}

(1− |a|2)2
(17)

by (16) and Proposition 1.4.22 in [15].
It is standard that for each a in Bn, there is a ψa ∈ Aut(Bn), the group of all biholomorphic

self-mapping on Bn, with the properties ψa(a) = 0 and ψa ◦ ψa = I, the identity map. More
precisely,

ψa(z) =
a− Paz −

√
1− |a|2Qaz

1− 〈z, a〉
(18)

where P0 = 0, Pa = 1
|a|2a⊗ a for a 6= 0, and Qa = I − Pa ([18]).

Lemma 2.1. For a, z ∈ Bn, v ∈ Cn and ψa ∈ Aut(Bn),

〈z, v〉(1− 〈ψa(z), a〉) = 〈a, v〉 − 〈ψa(z), λ〉,

where λ =
√

1− |a|2v + 〈v,a〉
1+
√

1−|a|2
a with |λ|2 = (1− |a|2)|v|2 + |〈a, v〉|2.

Proof. Without loss of generality, suppose that a 6= 0. By the involutive property of ψa, it suffices
to show that

〈ψa(z), v〉(1− 〈z, a〉) = 〈a, v〉 − 〈z, λ〉.



BEREZIN’S OPERATOR CALCULUS AND HIGHER ORDER SCHWARZ-PICK LEMMA 5

By (18),

〈ψa(z), v〉(1− 〈z, a〉) = 〈a− Paz −
√

1− |a|2Qaz, v〉

= 〈a, v〉 − 1

|a|2
〈z, a〉〈a, v〉 −

√
1− |a|2〈z, v〉+

√
1− |a|2
|a|2

〈z, a〉〈a, v〉

= 〈a, v〉 − 〈z,
√

1− |a|2v〉 − 1

1 +
√

1− |a|2
〈z, a〉〈a, v〉

= 〈a, v〉 − 〈z,
√

1− |a|2v +
〈v, a〉

1 +
√

1− |a|2
a〉.

Let λ =
√

1− |a|2v+ 〈v,a〉
1+
√

1−|a|2
a, and a direct calculation shows that |λ|2 = (1−|a|2)|v|2 + |〈a, v〉|2,

which finishes the proof. 2

In the setting of weighted Bergman space A2(dυα), the key point of our new method is to express
the basis {ej = ∂̄jvK

α
a (·)}mj=0 of Ha,m+1 in terms of a set of orthogonal elements.

Proposition 2.2. For j ≥ 0,

∂̄jvK
α
a (w) =

Γ(j + n+ 1 + α)

Γ(n+ 1 + α)
(1− |a|2)−(n+1+α

2
+j)

j∑
β=0

(
j

β

)
(−1)β〈a, v〉j−β〈ψa(w), λ〉βkαa (w),

where λ =
√

1− |a|2v+ 〈v,a〉
1+
√

1−|a|2
a with |λ|2 = (1−|a|2)|v|2+|〈a, v〉|2, and the set {〈ψa(w), λ〉βkαa (w)}jβ=0

consists of orthogonal elements in A2(dυα).

Proof. For v ∈ Cn\{0}, we write ∂̄jvK
α(w, u)|u=a = ∂̄jvK

α
a (w). By (16), it is easy to see that

∂̄jvK
α
a (w) =

Γ(j + n+ 1 + α)

Γ(n+ 1 + α)
〈w, v〉j(1− 〈w, a〉)−(j+n+1+α).

Since the normalized kernel function kαa at a is

kαa (w) =
Kα(w, a)

Kα(a, a)
1
2

=
(1− |a|2)

n+1+α
2

(1− 〈w, a〉)n+1+α

and ([18])

1− 〈ψa(w), a〉 =
1− |a|2

1− 〈w, a〉
,

it follows that

〈w, v〉j(1− 〈w, a〉)−(j+n+1+α) = (1− |a|2)−(n+1+α
2

+j)kαa (w) {〈w, v〉(1− 〈ψa(w), a〉)}j

= (1− |a|2)−(n+1+α
2

+j)kαa (w) {〈a, v〉 − 〈ψa(w), λ〉}j ,

where the last equality follows from Lemma 2.1. Therefore,

∂̄jvK
α
a (w) =

Γ(j + n+ 1 + α)

Γ(n+ 1 + α)
(1− |a|2)−(n+1+α

2
+j)kαa (w)[〈a, v〉 − 〈ψa(w), λ〉]j

=
Γ(j + n+ 1 + α)

Γ(n+ 1 + α)
(1− |a|2)−(n+1+α

2
+j)

j∑
β=0

(
j

β

)
(−1)β〈a, v〉j−β〈ψa(w), λ〉βkαa (w).

Next we need to show the orthogonality of elements in the set {〈ψa(w), λ〉βkαa (w)}jβ=0. For this

purpose, we consider the operator Ua associated with ψa on A2(dυα), defined by

(Uaf)(w) = (f ◦ ψa)(w)kαa (w).
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Then it is easy to see that Ua is unitary on A2(dυα) by Proposition 1.13 in [19]. Since
{
〈w, λ〉β

}j
β=0

is an orthogonal set in A2(dυα) by (1.21) in [19], and

Ua{〈w, λ〉β} = 〈ψa(w), λ〉βkαa (w),

our assertion follows easily and the proof is completed. 2

The next result gives the estimate for the greatest possible rate of growth of higher order direc-
tional derivatives of Bergman space functions on the unit ball.

Corollary 2.3. For f ∈ A2(dυα) and m ≥ 0,

max
‖f‖≤1

|(∂mv f)(a)|2 =
[Γ(m+ n+ 1 + α)]2

Γ(n+ 1 + α)(n+ 1 + α)m
Kα(a, a){(B1∂v)(a)}2m

×
m∑
β=0

(m!)2

β![(m− β)!]2Γ(β + n+ 1 + α)

{
|〈a, v〉|2

|λ|2

}m−β
.

In particular, for α = 0,

max
‖f‖≤1

|(∂mv f)(a)|2 =
(m+ n)!m!

n!(n+ 1)m
K(a, a){(B1∂v)(a)}2m

m∑
β=0

(
m

β

)(
m+ n

β + n

){
|〈a, v〉|2

|λ|2

}m−β
≤ [(m+ n)!]2m!

(n!)2(n+ 1)m
K(a, a){(B1∂v)(a)}2m

{
1 +
|〈a, v〉|2

|λ|2

}m
. (19)

Proof. By (4) with V = ∂v and Proposition 2.2, we know that

max
‖f‖≤1

|(∂mv f)(a)|2 = ‖∂̄mv Kα
a ‖2

=

∥∥∥∥∥Γ(m+ n+ 1 + α)

Γ(n+ 1 + α)
(1− |a|2)−(n+1+α

2
+m)

m∑
β=0

(
m

β

)
(−1)β〈a, v〉m−β〈ψa(w), λ〉βkαa (w)

∥∥∥∥∥
2

=

∣∣∣∣Γ(m+ n+ 1 + α)

Γ(n+ 1 + α)
(1− |a|2)−(n+1+α

2
+m)

∣∣∣∣2 m∑
β=0

∣∣∣∣(mβ
)
〈a, v〉m−β

∣∣∣∣2 ∥∥〈ψa(w), λ〉βkαa (w)
∥∥2
.

The rest of the proof follows from (17) and the fact that∥∥〈ψa(w), λ〉βkαa (w)
∥∥2

= ‖〈w, λ〉β‖2 =
Γ(n+ α + 1)β!

Γ(β + n+ 1 + α)
|λ|2β

by Lemma 1.11 of [19]. 2

Now we are ready to state the main result of this section.

Theorem 2.4. On A2(dυα),

(Bm∂v)(a) =

{
Γ(m+ n+ 1 + α)m!

Γ(n+ 1 + α)(n+ 1 + α)m

} 1
2

{(B1∂v)(a)}m. (20)

Proof. By Proposition 2.2, we know

(PH⊥
a,m
em)(w) = [PH⊥

a,m
(∂̄mv K

α
a )](w) =

Γ(m+ n+ 1 + α)

Γ(n+ 1 + α)
(−1)m(1− |a|2)−(n+1+α

2
+m)〈ψa(w), λ〉mkαa (w).

The same proof as in Corollary 2.3 shows that

‖PH⊥
a,m
em‖2 =

Γ(m+ n+ 1 + α)m!

Γ(n+ 1 + α)
Kα(a, a)

{
|λ|2

(1− |a|2)2

}m
.
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Then by (3) and (6),

{(Bm∂v)(a)}2 = Kα(a, a)−1‖PH⊥
a,m
em‖2

=
Γ(m+ n+ 1 + α)m!

Γ(n+ 1 + α)

{
|λ|2

(1− |a|2)2

}m
=

Γ(m+ n+ 1 + α)m!

Γ(n+ 1 + α)(n+ 1 + α)m
{(B1∂v)(a)}2m,

as desired. 2

Remark 2.5. When α = 0 in Theorem 2.4, (15) will be recovered simply, while it was proved
differently by using the transformation formula (10) and establishing the iteration formula (24) of
certain vector fields at the origin (see Section 4).

3. A uniform approach

The objective of this section is to develop an approach which will deal with (Bm∂v)(a) on balls
of any radius and Cn uniformly.

For 0 < r <∞ and α > −1, we denote Br = {z ∈ Cn : |z| < r} and dυα,r(z) = cα,r(1− |z|
2

r2
)αdυ(z)

with cα,r = Γ(n+α+1)
n!r2nΓ(α+1)

, then υα,r(Br) = 1, B1 = Bn the open unit ball and dυα,1(z) = dυα(z)

accordingly. It is clear that B1 and Br are biholomorphically equivalent, and any biholomorphic
mapping ψ of B1 onto Br is of the form rσ where σ ∈ Aut(B1). In particular, for w = ψ(z) = z

r
:

Br → B1, it is easy to see that ψ∗(∂v) = ∂ v
r

and

υα(ψ(N)) =

∫
N

dυα,r(z)

for each Borel subset N ⊂ Br. Consequently, the kernel function of the weighted Bergman spaces

A2(Br, dυα,r) is Kα
r (z, w) = (1 − 〈z,w〉

r2
)−(n+1+α) by (9). It also follows from the transformation

formula (10) and Theorem 2.4 that

(Bm∂v)
(Br)(a) = (Bm∂ v

r
)(B1)(

a

r
) =

{
Γ(m+ n+ 1 + α)m!

Γ(n+ 1 + α)(n+ 1 + α)m

} 1
2

{(B1∂ v
r
)(B1)(

a

r
)}m

=

{
Γ(m+ n+ 1 + α)m!

Γ(n+ 1 + α)

} 1
2 {(r2 − |a|2)|v|2 + |〈a, v〉|2

(r2 − |a|2)2

}m
2
. (21)

Lemma 3.1. For p > 0, the functions fr(z) = f(z, r) = (1− |z|
2

r2
)−pr

2
converge to ep|z|

2
uniformly

on the compacta of Cn as r → +∞.

Proof. Using the limit definition of the natural base e, it is easy to see that

lim
r→+∞

fr(z) = ep|z|
2

for each z. We only need to show that the pointwise convergence is actually uniform on each
compact subset M of Cn. For such an M , we can choose R > 0 such that M ⊂ BR. Note that

∂

∂r
f(z, r) = −2pr

(
1− |z|

2

r2

)−pr2 {
ln(1− |z|

2

r2
) +

|z|2
r2

1− |z|2
r2

}
.

For r > R and z ∈M , we claim that ln(1− |z|
2

r2
) +

|z|2

r2

1− |z|2
r2

≥ 0. Let x = |z|2
r2

, then 0 ≤ x < 1 and we

define g(x) = ln(1 − x) + x
1−x . So g(0) = 0 and g′(x) = x

(1−x)2
≥ 0. Thus g(x) ≥ 0 for 0 ≤ x < 1,

which implies that ∂
∂r
f(z, r) ≤ 0, and the functions fr(z) is decreasing in r as r > R for z ∈ M .

So the functions fr(z) are convergent to ep|z|
2

uniformly on M as r → +∞ by Dini’s Theorem. 2
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Theorem 3.2. For fixed p > 0 and pr2
0 > n for some r0 > 0, let α = pr2− n− 1 for r ≥ r0. Then

lim
r→+∞

Kα
r (z, z) = ep|z|

2

uniformly on the compacta of Cn. Consequently, for H = H2(Cn, dµp),

(Bm∂v)
(Cn)(a) = lim

r→+∞
(Bm∂v)

(Br)(a) = {m!pm|v|2m}
1
2 .

Proof. By our assumption, α = pr2 − n− 1 > −1 and Kα
r (z, z) = (1− |z|

2

r2
)−pr

2
. Then by Lemma

3.1, we know

lim
r→+∞

Kα
r (z, z) = ep|z|

2

(22)

uniformly on the compacta of Cn.
On the other hand, by (11) we know that (Bm∂v)

(Br)(a) is a closed expression of

{〈ej, ei〉 = (∂iv∂̄
j
vK

α
r )(a, a)}mi,j=0.

So the interchange of taking limit and differentiation is assured by (22) so that

lim
r→∞

(Bm∂v)
(Br)(a) = (Bm∂v)

(Cn)(a)

for some holomorphic Hilbert space H on Cn with kernel function K(p)(z, z) = ep|z|
2

on the diagonal
of Cn × Cn. Since the function K(p)(z, w) = ep〈z,w〉, as the kernel function of H2(Cn, dµp), is

uniquely determined by K(p)(z, z) = ep|z|
2

by the standard uniqueness theorem, and there is a
bijective correspondence between Hilbert function spaces on Cn and reproducing kernels on Cn

(p.19, [1]), we know that H must be represented by H2(Cn, dµp). Finally, with (21), it is easy to
see that

(Bm∂v)
(Cn)(a) = lim

r→∞
(Bm∂v)

(Br)(a)

= lim
r→∞

{
Γ(m+ pr2)m!

Γ(pr2)

} 1
2
{

(r2 − |a|2)|v|2 + |〈a, v〉|2

(r2 − |a|2)2

}m
2

= {m!pm|v|2m}
1
2 ,

where the last equality follows from Stirling’s formula. 2

4. Revisiting to an iteration formula

For Ω = Bn and w = ψa(z) ∈ Aut(Bn) of the form (18), we define g(w) = (ψa)∗(v) = ψ′a(z)v =
(g1(w), · · · , gn(w)), then g(0) = ψ′a(a)v and (Lemma 3.7 [17])

|g(0)| = (B1∂v)(a)√
n+ 1

(23)

where (B1∂v)(a) is the classical Bergman metric associated to the (unweighted) Bergman space
A2(Bn, dυ). Moreover, let ∂mg stand for the operator {

∑n
j=1 gj(w)∂wj}m and ∂mg(0) = ∂mψ′

a(a)v for

the operator {
∑n

j=1 gj(0)∂wj}m. Let X be a Banach space and C∞(Bn,X ) be the set of smooth

mappings from Bn into X possessing strong derivatives of all orders (see e.g. [12]). An iteration
formula for the action of ∂mg on C∞(Bn,X ) at w = 0 has been established in [17] as follows: for
f ∈ C∞(Bn,X ) and m ≥ 1,

(∂mg f)(w)|w=0 =
m∑
j=1

C
(m)
j h(a, v)m−j(∂jg(0)f)(w)|w=0, (24)

where h(a, v) = (1− |a|2)−1〈v, a〉, and C
(m)
j ’s are constants depending on m and j with C

(m)
m = 1.
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Moreover, a careful examination of the proof of (24) in [17] indicates that C
(m)
j ’s are determined

by the recurrence relation

C
(m)
j = C

(m−1)
j−1 + 2jC

(m−1)
j + j(j + 1)C

(m−1)
j+1 , 1 ≤ j ≤ m, (25)

where C
(m)
m = 1 for m ≥ 1. We denote C

(0)
0 = 1 and C

(m)
0 = 0 for m > 0, C

(m)
j = 0 for j > m or

j < 0. Actually, we can determine these coefficients explicitly.

Proposition 4.1. For m ≥ 1 and 1 ≤ j ≤ m,

C
(m)
j =

(m− 1)!m!

(j − 1)!j!(m− j)!
. (26)

Proof. We proceed by induction on m and j. It is clear that for m = 1 and j = 1, C
(1)
1 = 1. So

(26) holds. Now we assume that (26) is true for some m = k ≥ 1 and for all 1 ≤ j ≤ k. Then for
m = k + 1 and j = 1, by (25) and our hypotheses for m = k, we have

C
(k+1)
1 = C

(k)
0 + 2C

(k)
1 + 2C

(k)
2 = 2C

(k)
1 + 2C

(k)
2 = 2k! + (k − 1)k! = (k + 1)!,

which shows that (26) is true for m = k + 1 and j = 1.
Now for m = k + 1 and 2 ≤ j ≤ k + 1, by (25) and our hypotheses for m = k again, we have

C
(k+1)
j = C

(k)
j−1 + 2jC

(k)
j + j(j + 1)C

(k)
j+1

=
(k − 1)!k!

(j − 2)!(j − 1)!(k + 1− j)!
+ 2j

(k − 1)!k!

(j − 1)!j!(k − j)!
+ j(j + 1)

(k − 1)!k!

j!(j + 1)!(k − 1− j)!

=
(k − 1)!k!

(j − 1)!j!(k + 1− j)!)
{(j − 1)j + 2j(k + 1− j) + (k − j)(k + 1− j)}

=
(k − 1)!k!

(j − 1)!j!(k + 1− j)!)
{k(k + 1)}

=
k!(k + 1)!

(j − 1)!j!(k + 1− j)!)
,

which shows that (26) is also true for m = k + 1 and 2 ≤ j ≤ k + 1. Therefore, we can conclude
that (26) holds for all m ≥ 1 and 1 ≤ j ≤ m. 2

5. Connections to higher order Schwarz-Pick lemma

Most recently, a higher order Schwarz-Pick lemma formulated in terms of the classical Bergman
metric has been proved in [10] for the Fréchet derivative of f = (f1, · · · , fk) ∈ H(Bn,Bk) the class
of holomorphic mappings from Bn into Bk (even in the setting of complex Hilbert balls [9]). For
v ∈ Cn\{0}, we observe that the Fréchet derivative Dm(f, a, v) of f at point a ∈ Bn of order m
defined in [10] can be expressed in our notations as

Dm(f, a, v) = (∂mv f)(a) = ((∂mv f1)(a), · · · , (∂mv fk)(a)) ∈ Ck,

and the higher order Schwarz-Pick lemma in [10] can be rewritten as

(B1∂(∂mv f)(a))(f(a)) ≤ m!

{
1√
n+ 1

(
1 +
|〈a, v〉|
|λ|

)}m−1

{(B1∂v)(a)}m . (27)

Note that the Bergman metric used in (27) differs from the one used in [10] by a factor
√
n+ 1.

One immediate consequence of (27) combining with (17) (α = 0) is that for a ∈ Bn and v ∈ Cn,

sup
f∈H(Bn,Bk)

|(∂mv f)(a)| ≤ m!

(n+ 1)
m
2

{
1 +
|〈a, v〉|
|λ|

}m−1

{(B1∂v)(a)}m . (28)

We notice that (28) has the same flavor as (19) in Corollary 2.3, and believe that there might
have certain connection between our study of higher order “intrinsic” metrics in Berezin’s operator
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calculus and the higher order Schwarz-Pick lemma (27). Actually, our belief will be enhanced by
the fact that we are able to recover (28) with less sharp constant factor based on our analysis in
Berezin’s operator calculus.

First of all, motivated by (28) and the definition of the mth order Bergman metric, it would be

interesting to consider another mapping D
(k)
m defined on the space of holomorphic vector fields by

(D(k)
m V )(a) = sup

f∈H(Ω,Bk)

|(V mf)(a)| = sup
f∈H(Ω,Bk)

{
k∑
j=1

|(V mfj)(a)|2
} 1

2

,

where Ω is a bounded domain, V is a holomorphic vector field on Ω and H(Ω,Bk) is the class of
holomorphic mappings from Ω into Bk. It is also easy to prove that

(D(k)
m V )(Ω1)(z) = (D(k)

m ψ∗(V ))(Ω2)(ψ(z)) (29)

for ψ : Ω1 → Ω2 a biholomorphic mapping. We write (D
(1)
m V )(a) = (DmV )(a). It turns out that

the definition of (D
(k)
m V )(a) is independent of k.

Proposition 5.1. For any k ≥ 1,

(D(k)
m V )(a) = (DmV )(a).

Proof. For f ∈ H(Ω,B1), we define f̂ = (f, 0, · · · , 0) ∈ H(Ω,Bk). Then

|(V mf̂)(a)| = |(V mf)(a)|

for any holomorphic vector field V . It follows that (DmV )(a) ≤ (D
(k)
m V )(a). For the opposite

inequality, we observe that for f ∈ H(Ω,Bk),

|(V mf)(a)| = sup{|〈(V mf)(a), ξ〉| : ξ ∈ Ck, |ξ| = 1}

= sup{|
k∑
j=1

ξ̄j(V
mfj)(a)| : ξ ∈ Ck, |ξ| = 1}

= sup{|(V m

k∑
j=1

ξ̄jfj)(a)| : ξ ∈ Ck, |ξ| = 1}

≤ sup{|(V mh)(a)| : h ∈ H(Ω,B1)}
= (DmV )(a).

The proof is completed. 2

Recall that for the rank one selfadjoint operator A(z) in (14), the mapping Lm defined on the
space of holomorphic vector fields by

(LmV )(a) = ‖(V mA)(a)‖tr

was introduced in [17].

Proposition 5.2. On any bounded domain Ω,

(DmV )(a) ≤ (LmV )(a).

Proof. From the definition (13) of the Berezin transform, we know that for X ∈ Op(A2(Ω)),

|(V mX̃)(a)| = |tr[X(V mA)(a)]| ≤ ‖X‖‖(V mA)(a)‖tr. (30)
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If we take X = Mf the multiplication operator on the Bergman space A2(Ω) with the bounded

symbol f ∈ H(Ω,B1) in (30), it is easy to check that M̃f = f and ‖Mf‖ = ‖f‖∞ ≤ 1. Our
assertion follows easily. 2

In our terminology, (28) is the same as the statement that on the unit ball Bn,

(D(k)
m ∂v)(a) = (Dm∂v)(a) ≤ m!

(n+ 1)
m
2

{
1 +
|〈a, v〉|
|λ|

}m−1

{(B1∂v)(a)}m , (31)

which can be recovered with less sharp constant factor as follows:

Proposition 5.3. For X ∈ Op(A2(Bn)),

|(∂mv X̃)(a)| ≤ ‖X‖
(
m+ n

n

) 1
2 m!

(n+ 1)
m
2

{
1 +
|〈a, v〉|
|λ|

}m−1

{(B1∂v)(a)}m . (32)

Consequently,

(Dm∂v)(a) ≤
(
m+ n

n

) 1
2 m!

(n+ 1)
m
2

{
1 +
|〈a, v〉|
|λ|

}m−1

{(B1∂v)(a)}m . (33)

Proof. It was obtained by the formula (24) in section 4.1 of [17] that on the unit ball,

(Lm∂v)(a) =

{
m∑
j=1

|C(m)
j |2

j!(j + n)!

n!
|h(a, v)|2(m−j)|g(0)|2j

} 1
2

=
(m− 1)!m!{(B1∂v)(a)}m√

n!(n+ 1)m

{
m∑
j=1

(j + n)!

[(j − 1)!]2j![(m− j)!]2

{
|〈a, v〉|
|λ|

}2(m−j)
} 1

2

,

where (23) and (26) are used in the last equality. Thus,

{(Lm∂v)(a)} ≤ m!{(B1∂v)(a)}m√
(n+ 1)m

m∑
j=1

(
n+ j

n

) 1
2
(
m− 1

j − 1

){
|〈a, v〉|
|λ|

}m−j

≤
(
m+ n

n

) 1
2 m!

(n+ 1)
m
2

{
1 +
|〈a, v〉|
|λ|

}m−1

{(B1∂v)(a)}m .

Now (32) follows easily from (30) by taking V = ∂v, and (33) is from Proposition 5.2. 2

6. mth order Carathéodory-Reiffen metric

In this section, we would like to derive an identity similar to (20) on the unit ball Bn between
the mth order Carathéodory-Reiffen metric and the classical infinitesimal Carathéodory-Reiffen
metric.

For a bounded domain Ω, we replace the Hilbert space H by H(Ω,D) the class of holomorphic
functions f on Ω with values in the unit disk D, and the Hilbert space norm by the supremum
norm ‖ · ‖∞ in (1), and denote

Tm(V, a) = {f ∈ H(Ω,D) : (V jf)(a) = 0, j = 0, 1, · · · ,m− 1}
and define a mapping on the space of holomorphic vector fields by

(CmV )(a) = sup
f∈Tm(V,a)

|(V mf)(a)|.

Then it is clear that (CmV )(a) ≤ (DmV )(a) and (C1V )(a) = (D1V )(a) on any bounded domain.
It is also easy to show that Cm satisfies the transformation formula

(CmV )(Ω1)(z) = (Cmψ∗(V ))(Ω2)(ψ(z)), (34)
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where ψ : Ω1 → Ω2 is biholomorphic and ψ∗(V ) is the push-forward of the vector field V under ψ.
If the vector field V = ∂v for v ∈ Cn\{0}, (Cm∂v)(a) is exactly the mth order Carathéodory-Reiffen
metric introduced by Burbea in [5], and (C1∂v)(a) is just the classical infinitesimal Carathéodory-
Reiffen metric ([15]).

Lemma 6.1. For e1 = (1, 0, · · · , 0) ∈ Cn and m ≥ 1,

(Cm∂e1)(0) = (Dm∂e1)(0) = m!

on the unit ball Bn.

Proof. It is clear that (Cm∂e1)(0) ≤ (Dm∂e1)(0) by their definitions. For f(z) = zm1 , it is easy to
check that f ∈ Tm(∂e1 , 0) and (∂me1f)(0) = m!. So m! ≤ (Cm∂e1)(0), while (Dm∂e1)(0) ≤ m! by
(31). 2

Theorem 6.2. On the unit ball Bn,

(Cm∂v)(a) = m!{(C1∂v)(a)}m.

Proof. Based on (24), the same argument as in the proof of Proposition 3.13 of [17] yields that

(Cm∂g)(0) = (Cm∂g(0))(0). (35)

By (34) and (35), we have

(Cm∂v)(a) = (Cm∂g)(0) = (Cm∂g(0))(0). (36)

We choose a unitary transformation U such that U( g(0)
|g(0)|) = e1 where e1 = (1, 0, · · · , 0), then by

(34) again,

(Cm∂g(0))(0) = |g(0)|m(Cm∂ g(0)
|g(0)|

)(0) = |g(0)|m(Cm∂U(
g(0)
|g(0)| )

)(0) = |g(0)|m(Cm∂e1)(0). (37)

Since |g(0)| = |ψ′a(a)v| = (C1∂v)(a), (36), (37) and Lemma 6.1 imply that

(Cm∂v)(a) = |g(0)|m(Cm∂e1)(0) = m!{(C1∂v)(a)}m.

2

Remark 6.3. We remark that (31) could be recovered exactly by an alternative argument involving
Lemma 6.1 in which a particular case of (31) has been used. That is, by (29) and (24),

(Dm∂v)(a) = (Dm∂g)(0) ≤
m∑
j=1

C
(m)
j |h(a, v)|m−j(Dj∂g(0))(0)

=
m∑
j=1

C
(m)
j |h(a, v)|m−j|g(0)|j(Dj∂e1)(0)

=
m!{(B1∂v)(a)}m√

(n+ 1)m

m∑
j=1

(
m− 1

j − 1

){
|〈a, v〉|
|λ|

}m−j
,

which is exactly (31) after reindexing.

Remark 6.4. Combining the results in [5], [17] and this note, we see that

(Cm∂v)(a) ≤ (Bm∂v)(a), (Dm∂v)(a) ≤ (Lm∂v)(a)

on any bounded domain, and they are equivalent to each other and comparable to {(B1∂v)(a)}m on
the unit ball. We conjecture that they are also equivalent on any bounded symmetric domain in Cn.
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