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1 Introduction

In [1], Berteloot proved the following theorem regarding proper holomorphic self-maps.

Theorem 1.1. Let Ω be a complete Reinhardt domain with C2 smooth boundary. Then every
proper holomorphic self-map of Ω is an automorphism.

The novelty here is that neither pseudoconvexity nor finite type of the domain is assumed,
only completeness. This result provides an important case of domains for which the following
classical theorem of H. Alexander [2] proved in 1977 is true.

Theorem 1.2. Every proper holomorphic self-map of the unit ball in Cn (n > 1) is an
automorphism.

Motivated by this theorem, the following problem seems to be well-known.

Open Problem 1.3. Is every proper holomorphic self-map of a smooth bounded domain in
C

n (n > 1) an automorphism.

In this paper, we will consider non-complete Reinhardt domains and prove the following
theorems.

Theorem 1.4. Let Ω be a smooth bounded Reinhardt domain in C2. Then every proper
holomorphic self-map of Ω is an automorphism.

In higher dimensions, we have a weaker result which is a simple consequence of Berteloot
[1], and used in the proof of Theorem 1.4.
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Theorem 1.5. Let Ω be a C2 smooth bounded Reinhardt domain in Cn (n > 1) that contains
the origin. Then every proper holomorphic self-map of Ω is an automorphism.

Since Alexander’s theorem, the problem has been solved for many cases. In 1978, Pinchuk
[3] proved the case for strictly pseudoconvex domains. Pinchuk’s approach was to reduce the
case to that of the unit ball by his scaling method. Bedford and Bell [4] solved the case for
pseudoconvex domains with real analytic boundary. They were able to use a stratification of
weakly pseudoconvex points to control the branching behavior of the maps. In 1996, Huang
and Pan [5] modified this method to solve the case for any domain with real analytic boundary
provided the map is C∞ smooth up to the boundary. Using this result and holomorphic
extension results of Diederich and Pinchuk [6], one concludes that every proper holomorphic
self-map of a real analytic domain in C2 is an automorphism.

Despite these results, the problem remains open, even for the case of pseudoconvex domains
of finite type. However, many positive results have been obtained for domains with symmetries.
We [7] verified the case of smooth bounded pseudoconvex Reinhardt domains of finite type in Cn.
Berteloot [1] solved the case of complete Reinhardt domains with C2 smooth boundary (without
pseudoconvexity assumption) in Cn. His method is based on the study of the Lie Algebra of
holomorphic tangent vector fields of a strictly pseudoconvex Reinhardt hypersurface. In [8],[9]
Coupet, Sukhov and Pan were able to solve the problem for pseudoconvex circular and Hartogs
domains of finite type in C2. They used the scaling method to reduce to the situation where
theory of complex dynamics in C2 can be employed.

We want to point out that the smoothness assumption of domains is very important. Besides
obvious examples, Berteloot and Loeb [10] proved, based on complex dynamics in C2, that there
exists a complete circular domain in C2 with real analytic strictly pseudoconvex boundary
outside of the union of three circles (where the boundary is not smooth) such that there is a
proper holomorphic self-map of the domain which is not biholomorphic. However for some other
non-smooth domains, certain generalized Hartogs triangles, Chen and Xu [11] proved that self-
maps are biholomorphic. We also point out that proper self-maps of smooth bounded domains
in a complex manifold may not be automorphisms by examples of Burns and Schnider. However,
Zhou proved that proper self-maps of certain symmetric domains in a Lie Group indeed are
automorphisms, see details in [12].

2 Branching behavior of proper holomorphic maps

Lemma 2.1. If Ω is a pseudoconvex Reinhardt domain in Cn that contains the origin, then
Ω is complete.

Proof The result follows from a classical result of Reinhardt: If Ω is pseudoconvex and
Ω ∩ {zj = 0} �= ∅, then (z1, ..., zj−1, λzj , zj+1, ..., zn) ∈ Ω whenever z ∈ Ω and |λ| � 1.

The following lemma is important to us and is proved in [13] (Lemma 4).

Lemma 2.2. Let f : Ω1 → Ω2 be a proper holomorphic map between domains in Cn. Assume
that the hulls of holomorphy Ω̂1,Ω̂2 of Ω1, Ω2 are domains in Cn. Then f extends to some proper
holomorphic map f̂ : Ω̂1 → Ω̂2.

Lemma 2.3. Let f be a proper holomorphic self-map of a bounded Reinhardt domain Ω with
C2 smooth boundary in Cn. Then f extends holomorphically to a neighborhood of Ω.
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Proof First we observe that 0 �∈ ∂Ω since Ω is of smoothness C2. Indeed, if we write ∂Ω
as r = r(|z|2, |w|2) = 0, then ∇r = rz z̄ + rww̄. If (0, 0) ∈ ∂Ω, we will have ∇r(0, 0) = 0, a
contradiction to smoothness at 0. So if 0 �∈ Ω, then by a theorem of Barrett [14] that f extends
holomorphically to a neighborhood of Ω. Now we only have to consider the case that 0 ∈ Ω.
Consider the hull of holomorphy Ω̂ of Ω. Since Ω is Reinhardt, then Ω̂ ⊂ Cn. By Lemma 2.2,
we conclude that f extends to a proper holomorphic self-map of Ω̂. Since Ω̂ is pseudoconvex,
Reinhardt and 0 ∈ Ω̂, it follows from Lemma 2.1 that Ω̂ is complete, and therefore, by a result
of Bell [15], that f extends holomorphically to a neighborhood of ¯̂Ω, in particular, Ω̄. The proof
is complete.

Using the same idea, we can give a proof of Theorem 1.5 as follows.

Proof First we extend f to f̂ : Ω̂ → Ω̂, by Lemma 2.2. Since Ω contains the origin, so does Ω̂.
By Lemma 2.1, we see Ω̂ is complete. Since Ω is C2 smooth and bounded, it contains a strictly
pseudoconvex point on its boundary, and therefore Ω̂ contains the same point. Thus a result of
Berteloot ([1], Theorem 1.3) implies that f is biholomorphic.

Now we are ready to apply the results of Berteloot [1] using lemmas above to get the follow-
ing properties of self-maps on the branch locus. The following is a special case of Proposition
3.1 of [1], and is the key to control the branch locus.

Lemma 2.4. Let Ω be a bounded Reinhardt domain Ω of C2 smoothness in Cn+1. Then there
exists a finite family of multi-indices I ⊂ Zn × Z and an associated space of rational functions

G =:
⊕

(K,l)∈I
C · zKwl

such that for any proper holomorphic self-map of Ω, there exists an (n + 1, n + 1) matrix
Qf =: [(Qf )k,p] with entries in G which satisfies the following identity:

[
∂fk

∂zp

]
[(Qf )k,p] = i[δk,pfk].

Proof We only have to verify that the condition of Proposition 3.1 in [1] is met. Namely,
we have to prove the existence of some point η ∈ ∂Ω ∩ (C \ {0})n such that ∂Ω is C2 strictly
pseudoconvex at η and f does not branch on the torus Tη = {|z1| = |η1|, ..., |zn| = |ηn|}. The
existence of strictly pseudoconvex points is ensured by the global smoothness. If η is strictly
pseudoconvex, then Tη is a strictly pseudoconvex torus, and therefore f cannot branch at any
point of Tη because f maps Tη to smooth boundary points by a well-known result [1]. Therefore
the lemma is proved.

By the same reasoning, we have the following, which is Proposition 3.3 of [1].

Lemma 2.5. Let f be a proper holomorphic self-map of a bounded Reinhardt domain Ω of C2

smoothness in Cn. If Vf �= ∅, then (after some linear transformation permuting the coordinate
axes) there exists an integer m � n so that

Vf = ∪m
j=1Hj ,

f(Hj) = Hj ,

f−1(Hj) = Hj ,
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where Hj = Ω ∩ {zj = 0} and j = 1, ..., m.

3 The Proof of Theorem 1.4

First we point out the following simple but useful results.

Lemma 3.1. Let f be a proper holomorphic self-map of {z ∈ C : r < |z| < R} where r > 0.
Then either f = eiθz or eiθ rR

z .

Proof Following the proof of Lemma 3 in [9], we give the simple proof here. It is well-known
that f extends continuously to the boundary. Consider the harmonic function φ(z) = ln|f(z)|.
Then φ is continuous up to the boundary since r > 0. If f maps |z| = r to |z| = r, then f maps
|z| = R to |z| = R. Therefore both φ(z) and ln|z| solve the same Dirichlet problem, which
implies φ(z) = ln|z| or f(z)| = |z|. It follows f(z) = eiθz. If f maps |z| = r to |z| = R, then
f maps |z| = R to |z| = r. We can apply the function rR

f to the above case to conclude that
f = eiθ rR

z .

The useful result of this lemma is the following.

Lemma 3.2. Suppose Ω is a bounded smooth Reinhardt domain in C with finite connectivity
but not simply connected. Then every proper holomorphic self-map of Ω is biholomorphic. In
particular f is eiθz or Ω = {r < |z| < R} and f = eiθrR/z.

Proof Since the domain is assumed smooth then the origin is not the boundary of Ω. Now
we assume ∂Ω is given by |z| = rj , j = 1, ..., k where rj is increasing and ri > 0. Iterating
if necessary, we may assume f maps {r1 < |z| < r2} to itself. Hence Lemma 3.1 applies to
conclude that either f = eiθz or Ω = {r1 < |z| < r2} and f = eiθr1r2/z . Indeed, if Ω has
more than one component, Ω = {r1 < |z| < r2} ∪ {r3 < |z| < r4}, then we would also have
f = eiθr3r4/z, a contradiction since r1r2 �= r3r4.

We will prove Theorem 1.1 using results in the above section. Here we assume that Ω is a
bounded Reinhardt domain with C∞ boundary in C2. In order to prove Theorem 1.2, it suffices
to prove VF = ∅ by a well-known result of Pinchuk. By Lemma 2.5, we have that if Vf �= ∅,
then either Vf = Ω ∩ {z = 0} or Vf = Ω ∩ {z = 0} ∪ Ω ∩ {w = 0}.

Lemma 3.3. Let F = (f, g) be a proper holomorphic self-map of a bounded Reinhardt domain
Ω of C∞ smoothness in C2. If Vf contains Ω ∩ {z = 0}, then g is independent of z.

Proof First, we have F : Ω∩{z = 0} → Ω∩{z = 0} by Lemma 2.5. It follows that f(0, w) = 0,
and g(0, w) is a proper map from Ω ∩ {z = 0} to Ω ∩ {z = 0}. Take a point p = (0, w0) ∈ ∂Ω,
and we may assume F (p) = p since Ω is Reinhardt. In a neighborhood U of p in C2, we can
define ∂Ω near p by the equation

|w|2 + φ(|z|2) = 0.

In fact, we can always have ∂Ω defined by a defining function of the form r(|z|2, |w|2) = 0.
Since Ω ∩ {z = 0} is smooth, so we can solve |w|2 by the implicit function theorem near p.
Consider the complex tangential derivative

L = w̄
∂

∂z
− φr(|z|2)z̄ ∂

∂w
.

By properness, it follows, on U ∩ ∂Ω, that

|g(z, w)|2 + φ(|f(z, w)|2) = 0.
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Operating L on both sides of above equation , we have, on U ∩ ∂Ω

w̄gz ḡ − φr(|z|2)z̄gw ḡ + w̄φr(|f |2)fz f̄ − φr(|z|2)z̄φr(|f |2)fwf̄ = 0.

Letting z = 0,we have on |w|2 = −φ(0) near p

w̄gzg = 0,

which implies that gz(0, w) = 0 on |w|2 = −φ(0). Hence gz(0, w) = 0 for (0, w) ∈ Ω by the
uniqueness of holomorphic functions. Consider Lk = L...L. Rewrite the above equation as

w̄gz ḡ + Az̄ + Bf̄ = 0,

where A, B are defined by the above equation. Taking Lk, we have

w̄Lk(gz)ḡ + (LkA)z̄ + (LkB)f̄ = 0.

Letting z = 0, we have
w̄(gz)(k)ḡ = 0

which implies that g
(k)
z (0, w) = 0 for all k. The Taylor expansion of g at z = 0 for a fixed w

tells that g is independent of z. This completes the proof.

Lemma 3.4. Let g(w) = eiθ w−a
1−āw . There exists 0 < b < 1 such that for |w0| �= 1,

|1 − |gn(w0)|2| � Cbn

for some constant C > 0 and n = 1, 2, ...

Proof We consider the case |w0| < 1. If {gn(w)} is a compact family, this is obvious. If
{gn(w)} is not compact, by the Wolff-Denjoy theorem, {gn(w)} converges to 1 (say). Let
bn = gn(w0). Then

bn+1 =
bn − a

1 − ābn

We observe that a is real since bn → 1. We have

bn+1 − 1 = (bn − 1)
1 + a

1 − abn
,

|bn+1 − 1| = |(bn − 1)|
∣∣∣∣ 1 + a

1 − abn

∣∣∣∣

� 1 − |a|
1 + |a| |bn − 1| � bn

∣∣∣∣1 − b1

b

∣∣∣∣
where b = 1−|a|

1+|a| . By iteration theory, one has

(1 − |bn|2) � C|1 − bn|2.

Therefore

1 − |bn|2 � C(b2)n

∣∣∣∣1 − b1

b

∣∣∣∣
2

≈ Cbn.
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For the case |w0| > 1, we rewrite for |w| > 1, g(w) = 1
g̃(1/w) , where g̃(ζ) = ζ−ā

1−aζ for |ζ| < 1
and ζ = 1/w. It is easy to check that

gn(w) =
1

g̃n(1/w)
.

For |w0| > 1, we have

|gn(w0)|2 − 1 =
1 − |g̃n(1/w0)|2
|g̃n(1/w0)|2 � 1 − |g̃n(1/w0)|2 � Cbn.

The lemma is proved.

Lemma 3.5. Let F = (f, g) be a proper holomorphic self-map of a bounded Reinhardt domain
Ω of C∞ smoothness in C2. If Vf = Ω∩{z = 0}, then ∂Ω is Levi flat near {z = 0}∩∂Ω. More
precisely, ∂Ω is defined by |w|2 = const for z near 0.

Proof Let p = (0, a) ∈ ∂Ω ∩ {z = 0}. We may assume F (p) = p. Choose a neighborhood U

of p so that
∂Ω ∩ U = {|w|2 + φ(|z|2) = 0} ∩ U

Ω ∩ U = {|w|2 + φ(|z|2) < 0} ∩ U

where we assume φ(0) = −1. Since F maps {z = 0} to {z = 0} by Lemma 2,5 and Vf ⊃ {z = 0},
we see that f(0, w) = fz(0, w) = 0. By considering iteration of F and the chain rule, we can
further assume fzz(0, w) = 0. So we conclude that there exists a 0 < δ < 1 such that

|f(z, w)| < |z|2

for |z| < δ and (z, w) ∈ Ω̄ ∩ U .

By Lemma 3.3, g is independent of z, and we have detJF = fz(z, w)gw(w). Since Vf =
Ω ∩ {z = 0} by assumption, we have gw(w) �= 0. That is g(w) is a biholomorphic map from
Ω ∩ {z = 0} to Ω ∩ {z = 0}. When Ω ∩ {z = 0} is simply connected, then it is the unit
disk, otherwise it is an annulus with finitely many boundary components (with the origin not
on the boundary) and Lemma 3.2 applies. Therefore we see that either g(w) = eiθ w−a

1−āw , or
g(w) = eiθw or g(w) = eiθr/w and the annulus is given by {r < |w| < 1}

We claim that φ(|z|2) = −1 for |z| < δ. Indeed, if there is z0 such that |z0| < δ and
φ(|z0|2) > −1. We define w0 such that |w0|2 = −φ(|z0|2). It follows that |w0| < 1 and
(z0, w0) ∈ ∂Ω. By properness of F we have

|gn(w0)|2 + φ(|fn(z0, w0)|2) = 0.

It follows that

1 − |gn(w0)|2 = 1 + φ(|fn(z0, w0)|2) � C|fn(z0, w0)|2 � C|z0|2n+1 � Cδ2n+1
,

where we have used the fact φ(0) = −1 and φ(r) = −1 + O(r) when r ≈ 0. On the other hand,
we have by Lemma 3.4

1 − |gn(w0)|2 � Cbn

for some b: 0 < b < 1. This is a contradiction.
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If there is z0 such that |z0| < δ and φ(|z0|2) < −1. We define w0 such that |w0|2 = −φ(|z0|2).
It follows that |w0| > 1 and (z0, w0) ∈ ∂Ω. By the same argument above and Lemma 3.4, we
will reach a contradiction again. We would like to point out when g(w) = eiθr/w, we may have
to consider an iteration F 2n(z, w) instead, then g(2n)(w) = eiθw. This completes the proof.

We consider the natural projection π : C2 → C defined by π(z, w) = z.

Now we are ready to prove Theorem 1.1. We shall prove it by two cases. According to
Theorem 1.5, we can assume now that Ω does not contain the origin.

Proof Case I: VF = Ω ∩ {z = 0} ∪ Ω ∩ {w = 0}. In this case by Lemma 2.5, we have

F (Ω ∩ {z = 0}) = Ω ∩ {z = 0},

F (Ω ∩ {w = 0}) = Ω ∩ {w = 0},
F−1(Ω ∩ {z = 0}) = Ω ∩ {z = 0},
F−1(Ω ∩ {w = 0}) = Ω ∩ {w = 0}.

Since 0 �∈ Ω, we can also assume that 0 �∈ Ω̂, otherwise similar to the proof (using Theorem 1.3
of [1]) of Theorem 1.5, we can prove that f is biholomorphic. Therefore by the proof of Lemma
2.1, we see that Ω̂∩{z = 0}, Ω̂∩{w = 0} are not simply connected but of finite connectivity due
to smoothness of the boundary of ∂Ω. By Lemma 3.3, f is independent of w, and g independent
of z, and therefore by Lemma 3.2 we have f(z) = az, g(w) = bw where a, b are nonzero complex
numbers. In particular, F = (f, g) is biholomorphic and this is a contradiction.

Case II: VF = Ω ∩ {z = 0}. Since 0 �∈ Ω, we see that w �= 0 on Ω̄. Therefore Vf is a
Reinhardt domain in C with finite connectivity (but not simply connected) and therefore, by
Lemma 3.2 g is aw or a/w with a nonzero constant. We assume a = 1 by iteration if necessary.
Consider E = π(Ω). By Lemma 3.5 Ω is Levi flat near z = 0. Let E0 be a open set in E such
that O = π−1(E0)∩ ∂Ω is the largest connected Levi flat piece on ∂Ω containing ∂Ω∩ {z = 0}.
Then we can see that O = E0 × {|w| = 1}. We can choose a small neighborhood U of O so
that ∂Ω is defined by |w|2 + φ(|z|2) = 0 on U ∩ ∂Ω so that φ(|z|2) = −1 when z ∈ E0, and
φ(|z|2) �= −1 when z �∈ Ē0 but z ∈ π(U). Now we claim that

F (O) = O, F−1(O) = O,

F (∂O) = ∂O, F−1(∂O) = ∂O.

This can be seen as follows. Consider r = |w|2 +φ(|z|2). We observe that ρ = r ◦F is a defining
function near O since gw(w) �= 0 and the complex normal direction remains to be in w near
∂O. Therefore we have the following identity

Λr(p) = |JF |2Λρ(F (p)),

which easily implies the above claim. Here Λr(p) is the Levi-determinant. Choose a point
(z0, w0) ∈ ∂Ω ∩ U such that φ(|z0|2) �= −1. We see that z0 �∈ E0. By properness of F , and
g = w, we conclude that f(z, w0) is a proper map from {|z| < |z0|} \ Ē to itself. By Lemma 3.2,
we see that f(z, w0) is biholomorphic in z. But this is impossible, since f(0, w) = 0, fz(0, w) = 0
by the assumption that VF = Ω ∩ {z = 0}.
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